
Input Contract Testing of Graphical User Interfaces

Tugkan Tuglular

Department of Computer Engineering

Izmir Institute of Technology, Urla, Izmir 35430, Turkey
tugkantuglular@iyte.edu.tr; http://www.iyte.edu.tr/�tugkantuglular

Fevzi Belli

Department of Computer Engineering

Izmir Institute of Technology, Urla, Izmir 35430, Turkey

and

Department of Computer Science, Electrical Engineering and Mathematics

University of Paderborn
Warburger Str. 100, D-33098 Paderborn, Germany

belli@upb.de

http://ivknet.de/index.php/en/associates/81-websites/ivknet-mitarbeiter/107-fevzi-belli-en

Michael Linschulte

Andagon GmbH, Scheidtweilerstr. 4, 50933 K€oln, Germany

m.linschulte@andagon.com

Received 29 April 2014

Revised 23 June 2014

Accepted 19 March 2015

User inputs are critical for the security, safety, and reliability of software systems. This paper
proposes a new concept called user input contracts, which is an integral part of a design-by-

contract supplemented development process, and a model-based testing approach to detect

violations of user input contracts. The approach generates test cases from an input contract
integrated with graph-based model of user interface speci¯cation and applies them to the system

under consideration. The paper presents a proof-of-concept tool that has been developed and

used to validate the approach by experiments. The experiments are conducted on a web-based

system for marketing tourist services to analyze input robustness of system under consideration
with respect to user input contracts.

Keywords: Model-based testing; design-by-contract; event sequence graphs; input validation
testing; security testing.

International Journal of Software Engineering

and Knowledge Engineering

Vol. 26, No. 2 (2016) 183–215

#.c World Scienti¯c Publishing Company
DOI: 10.1142/S0218194016500091

183

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://dx.doi.org/10.1142/S0218194016500091

1. Introduction

As Whittaker [56] indicated, \data is the lifeblood of software; when it is corrupt,

the software is as good as dead." According to Whittaker, this is indeed the

bottom line for software developers and testers. One must consider every single

input from every external resource to have con¯dence in the system under con-

sideration's (SUC) ability to properly handle malicious attacks and unanticipated

operating environments. Deciding which inputs to trust and which to validate is a

constant balancing act. Experiences from safety and security ¯elds [56] have shown

that user inputs, mostly obtained from graphical user interfaces (GUI), should be

validated thoroughly to prevent attacks ranging from injection to denial of service

and resulting in intrusion or even in system crashes. The same is true for safety

violations.

The contract notion is the key used in our work to describe input properties in

precise terms. Preventing invalid input from ever getting to the application in the

¯rst place is possible only at the user interface. Therefore, GUIs should be speci¯cally

designed to ¯lter unwanted or unexpected input. This can be achieved through input

contracts that are de¯ned and used in our work. Model-based speci¯cation of input

contracts is achieved through an input contract model, which enables the input data

and corresponding actions to be de¯ned with their constraints.

Our paper primarily addresses functional testing that checks whether or not a

software element ful¯lls its speci¯cation. Thus, for simplicity, the term \testing" is

used to refer to function-based, speci¯cation-oriented testing, or black-box testing.

The testing approach proposed de¯nes the process to perform tests that are derived

from contracts supporting the creation of test input values and test oracles. Although

there exist several approaches for contract-based automatic testing, the approach

presented in our work is novel because it focuses on user inputs. The paper suggests

that an automatic input testing process is possible with a GUI test driver that

invokes mouse clicks and enters text into rich client GUIs. In this context, contracts

form a valuable source of information regarding the intended semantics of the

software. As noted by Ciupa and Leitner [14], the validity of a software element can

be ascertained by checking the software with respect to its contracts. Therefore,

contracts establish the ground for the automation of the testing process. Accord-

ingly, the primary goal of our work is to develop and implement a fully automated

test case generation for contract-based GUI input testing.

The proposed approach suggests converting graphical user interface speci¯cation

into a model, which is employed to generate positive and negative test cases. An

event-based formal model, called event sequence graph (ESG) [4], is chosen for the

speci¯cation of GUIs. ESG merges inputs and events and turns them to vertices of an

event transition diagram for easy understanding and checking the behavior of the

GUI under consideration.

Our paper uses some aspects of the preliminary work of the authors [53], where

speci¯cations are utilized to ¯nd boundary over°ow vulnerabilities. The novelty of

184 T. Tuglular, F. Belli & M. Linschulte

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

the presented approach stems from the following substantial extensions and

improvements:

(a) The notion of input contract model, which utilizes decision tables (DTs), is

formally introduced. GUI input contracts are explored through an example that

runs through the paper.

(b) The input contract testing approach is entirely new and introduced along with

its algorithm for test case generation. This algorithm generates test cases from

the decision table (DT) de¯ned by input contracts, using parse trees and test

coverage criteria, and utilizes equivalence class partitioning with boundary value

selection. Integration of the input contract testing method with contract-sup-

plemented ESGs is achieved to obtain a comprehensive GUI testing process.

(c) The present paper extensively improves and extends the tool introduced in the

preliminary work [53] in order to include several new facilities, such as an input

contract browser, test suite browser, test result browser, etc.

(d) The approach has been validated by means of a new case study, which tests a

web-based large commercial system for marketing tourist services, such as hotel

room reservation and special agreements for hotel rooms.

In summary, the main contribution of our work is the input contract testing

approach. The proposed approach presents the following novelties:

. The input contract model for GUIs.

. A test case generation algorithm to generate test cases from the DT de¯ned by

contracts, using parse trees and applying equivalence class partitioning and

boundary value techniques.

. A solution to test coverage and test oracle problems within the context of input

contract testing.

Section 2 giving a summary of related work is followed by theoretical background,

namely Sec. 3, which presents a theoretical comparison of existing de¯nitions used in

GUI testing. Section 4 describes modeling GUIs with input contracts and contract-

supplemented ESGs. Section 5 presents the input contract testing approach. This

enables the expansion of the contract-supplemented ESG view for considering GUI-

based input testing processes. Section 6 presents the above mentioned case study

that experimentally validates the approach introduced. This section also discusses

the limitations of the approach, lessons learned by experiments, and threats to their

validity. In Sec. 7 the tool developed for input contract testing is described. Section 8

outlines the planned future work and concludes the paper.

2. Related Work

It is widely accepted that interface signatures, even with comments, are insu±cient

to capture and control the salient properties of an application [2]. Thus,

Input Contract Testing of Graphical User Interfaces 185

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

supplementary speci¯cations are needed on the functional and non-functional

aspects, such as architecture, performance, and quality of services [15]. Contracts, a

technique for specifying behavioral compositions and the obligations on participating

objects [23], seem a good candidate for this purpose. Contracts formalize object

behavior collaborations and relationships [26]. There is no generally accepted for-

malism for contract representation.

Meyer [36] introduced DbC as an object-oriented design technique. According to

DbC, a method can be evaluated with respect to preconditions, postconditions, and

invariants similar to a legal contract. Wampler [54] explains DbC brie°y as follows:

\DbC is a way of describing the contract of a component interface in a program-

matically-testable way. Preconditions specify the inputs the client must provide for

enabling the component to successfully perform its work. Postconditions are guar-

antees made by the component on the results of that work, assuming the pre-

conditions are satis¯ed."

Some of the approaches utilizing the contract idea for testing are as follows. Zheng

and Bundell [58] introduced Test by Contract, which is an UML-based software

component testing technique. There is also a contract-based testing technique for

testing web services [22]. For uncovering errors some languages are extended to

conform to DbC. In [43], the DbC concept is adapted into Python by integrating

mechanisms, where method parameters and instance variables are evaluated by

dynamic type checking. Guerreiro [20] used DbC in Cþþ through inheritance of the

assertion class.

There are many research papers published on the subject of testing using formal

speci¯cations [27, 39, 44]. Speci¯cations can be used for testing in several ways: as

¯lter for invalid inputs, as guidance for test generation, as coverage criterion, and as

an automated oracle [13, 47].

A testing criterion imposes rule(s) on a set of test cases [38]. In our work, full

predicate coverage criterion [38], which requires testers to generate inputs derived

from each clause in each predicate at minimum, is satis¯ed.

Test oracles decide whether the result of a test case is a success or not. Since

manual development of test oracles is expensive [11] and a general methodology for

the generation of test oracles does not exist, they are frequently complex and error

prone [3, 10]. For instance, Binder [10] discusses the idea of using assertions based on

contracts as test oracles. Taking it a step further, Ciupa et al. [12] used a contract-

based oracle to achieve full automation in the testing process.

Input validation process controls the syntax of information provided through GUI

and partly its semantics [21]. Missing input validation may cause a software to

malfunction or may introduce vulnerabilities to be exploited by attacks. To validate

GUIs various speci¯cation-based test techniques exist [40]. Event sequence graphs [4]

and event °ow graphs [33] can be used for the validation of GUI speci¯cation. In our

work ESG notation, which intensively uses formal notions and algorithms known

from graph theory and automata theory, is chosen because of its relevance to the

approach introduced in our work.

186 T. Tuglular, F. Belli & M. Linschulte

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Karam et al. [25] modeled GUIs using objects, their properties, and actions ap-

plied to those properties. Another method used for modeling GUIs is to specify them

as a set of operations acting on objects [35]. In another work, Miao and Yang [37]

treated GUI as a series of interfaces, where each interface is regarded as a state. They

modeled a GUI state as a quadruple (W, O, P, V), where W represents windows, O

objects, P properties, and V values, respectively.

Some model-based testing tools for GUI testing were available [34, 50]. Silva et al.

[50] used task models for the generation of oracles in GUI testing. Memon et al. [34]

developed a test oracle technique that utilizes formal model of the GUI under con-

sideration to determine if a GUI behaves as expected for a given test case. There were

also examples where DbC concepts are utilized for testing GUIs [29, 41]. Paiva et al.

[41] described a GUI testing process using a formal speci¯cation developed in Spec,

which employs DbC concept. Lamancha et al. [29] developed test oracle procedures

from UML state machines.

In addition to model-based GUI testing, there are formal, theoretically sound

approaches based on search algorithms, genetic algorithms, neural networks, and

machine learning for GUI testing. Marchetto and Tonella [32] claimed that the main

drawback of state-based approach is that the exhaustive generation of semantically

interacting event sequences limits quite severely the maximum achievable length,

while longer sequences would have higher fault exposing capability. They investi-

gated a search-based algorithm for the exploration of large space of long interaction

sequences, in order to select those that are most promising, based on a measure of

test case diversity. Gross et al. [19] indicated that unit-level generated test cases for

GUIs may be infeasible meaning that a test case may represent an execution that

would never occur in reality. They also found that unit-level generated test cases for

GUIs in spite of higher coverage produce false failures ��� that is, indicating a

problem in the generated test suite rather than the program. They recommended

considering search-based testing as an alternative to avoid false failures.

Rauf et al. [46] presented a GUI testing and coverage analysis technique centered

on genetic algorithms, since they claimed that genetic algorithms search for the best

possible test parameter combinations that are according to some prede¯ned test

criterion. Huang et al. [24] used a genetic algorithm to evolve new test cases to

increase test suite's coverage while avoiding infeasible sequences. Their experimental

results showed that the genetic algorithm outperforms a random algorithm trying to

achieve feasible coverage goal in almost all cases.

Ye et al. [57] used acceptable images of GUI as a set of contracts and trained

multi-weighted neural networks, which then acted as an oracle for testing the GUI.

Gove and Faytong [18] claimed that a model of the GUI may not completely rep-

resent the GUI, and therefore may allow infeasible test cases to be generated that

violate constraints in the GUI. They used two di®erent machine learning techniques,

namely support vector machines and grammar induction, to identify infeasible test

cases. They demonstrated that these techniques are robust across di®erent-length

test cases and di®erent GUI constraints.

Input Contract Testing of Graphical User Interfaces 187

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

The term input contract for window systems is de¯ned as contracts that determine

the input interface of the window under consideration [45]. Later, the term input

contract is de¯ned for software components as contracts upon which the component

relies [49]. Similar de¯nitions can be found for component-based software [17]. In our

work, GUI input contracts are de¯ned as contracts established on the GUI input

component between GUI and user.

The approach presented in our work di®ers from the ones mentioned above in that

it concentrates on GUI input components and presents a novel input contract testing

approach with its new test case generation algorithm.

Di®ering from these works, Petrenko et al. stated in 2012 that a long-term

challenge in test generation is related to the data aspect of test models [42]. One

recent work proposed reducing test length for FSMs with extra states [51]. Our work

integrates input contracts to GUI model, and thus is a step in this direction.

All of the above mentioned approaches have in common that they rather intro-

duce notions and techniques for test case handling and generation, but hardly for

optimization of test suites and thus test e®ort, as, e.g. contrarily suggested by Belli

[4], Aho et al. [1] and Wan et al. [55] which will be considered in this paper.

In addition to the brief review and comparison of related, theory-based work in

this section the next section will discuss further approaches that also are of sound

theoretic background. Reasons why a speci¯c method, namely Event Sequence

Graphs is chosen, are given in the following section.

3. Theoretical Background

Our work follows model based testing approach for GUI testing. Two main types of

models considered in this testing context are holistic models and scenario models,

where the former are models which attempt to describe the expected behavior of a

system under consideration (SUC) as completely as possible in a single formal

speci¯cation, while the latter focus on a number of test scenarios describing various

aspects of the expected behavior [42].

One type of holistic models is sequential models, which include ¯nite state

machines (FSMs), input/output transition systems (IOTSs), and various state

machines [42]. Our work follows FSM-based GUI testing that is explained in the

following before we compare it with other, theoretically sound approaches.

A FSM M can be represented by a directed graph G ¼ ðV ;EÞ where the set V ¼
fv1; . . . ; vng of vertices represents the set of speci¯ed states S of the FSM and a

directed edge represents a transition from one state to another in the FSM [1]. In this

context, a precise de¯nition of input and output operations is necessary which follows.

De¯nition 1. The sets of input and output operations de¯ned for every state of M

are called the permissible input set I and the permissible output set O, respectively.

Each edge in G is labeled by an input operation ak 2 I and a corresponding output

operation ol 2 O. Thus, an edge in E from vi to vj has label ak=ol if and only if FSM

188 T. Tuglular, F. Belli & M. Linschulte

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

M, in state si, upon receiving input ak produces output ol, and moves into state sj.

Since there may be more than one transition from state vi to vj with di®erent input

and output operations, there are multiple edges in G. Therefore, an edge in G is fully

speci¯ed by a triple (vi; vj;L) where L � ak=ol, L
ðiÞ � ak, and LðoÞ � ol [1].

De¯nition 1 assures that a path ofG representing a FSMM is a sequence of inputs

and outputs, which is suitable for capturing behavior of GUIs. Two main FSM based

models that capture behavior of GUIs are Event Flow Graphs (EFGs) and Event

Sequence Graphs. The de¯nition of EFG is as follows [35]:

De¯nition 2. An event-°ow graph for a component C is a quadruple <V ;E;B; I>,

where:

(1) V is a set of vertices representing all the events in the component. Each v 2 V

represents an event in C;

(2) E � V � V is a set of directed edges between vertices. Event ei follows ej if and

only if ej may be performed immediately after ei. An edge ðvx; vyÞ 2 E if and only

if the event represented by vy follows the event represented by vx;

(3) B � V is a set of vertices representing those events of C that are available to the

user when the component is ¯rstly invoked; and

(4) I � V is the set of restricted-focus events of the component.

In the de¯nition, a GUI component C is an ordered pair <RF ;UF >, where RF

represents a model window in terms of its events and UF is a set whose elements

represent modeless windows also in terms of their events. Each element of UF is

invoked either by an event in UF or RF.

Based on EFG notion, Memon et al. also de¯ned integration tree to show how

GUI components are integrated to form the GUI as follows [35].

De¯nition 3. An integration tree is a triple <N;R;B>, where N is the set of

components in the GUI, R 2 N is a designated component called the Main

component. It is said that a component Cx invokes component Cy if Cx contains a

restricted-focus event ex that invokes Cy. B is the set of directed edges showing the

invokes relation between components, i.e., ðCx;CyÞ 2 B if and only if Cx invokes Cy.

EFG has practical advantages for GUI test automation and supports tool builders

with its notation. On the other hand, EFG does not explicitly de¯ne any mechanism

for modularization, or re¯nement, and optimization, which are dedicated to GUI

development. A similar FSM-oriented GUI testing approach, based on event se-

quence graph notion (ESG), provides necessary mechanism for re¯nement (see

De¯nitions 4–7) and optimization. ESG achieves minimization [5] through the al-

gorithm rooted in Chinese postman problem [16], whereas EFG uses genetic algo-

rithm to eliminate infeasible test sequences [24].

Notions necessary for exploiting the advantages of ESG-based approach are

borrowed from [4, 6, 28] and represented in the following, starting with a precise

de¯nition of ESG.

Input Contract Testing of Graphical User Interfaces 189

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

De¯nition 4. An event sequence graph ESG ¼ ðV ;E;�;�Þ is a directed graph

where V 6¼ � is a ¯nite set of vertices (nodes), E � V � V is a ¯nite set of arcs

(edges), �, � � V are ¯nite sets of distinguished vertices with � 2 �, and � 2 �,

called entry nodes and exit nodes, respectively, wherein 8 v 2 V there is at least one

sequence of vertices h�; v0; . . . ; vki from each � 2 � to vk ¼ v and one sequence of

vertices hv0; . . . ; vk; �i from v0 ¼ v to each � 2 � with (vi; viþ1Þ 2 E, for i ¼ 0;

. . . ; k� 1 and v 6¼ �, �.

� (ESG), � (ESG) represent the entry nodes and exit nodes of a given ESG,

respectively. To mark the entry and exit of an ESG, all � 2 � are preceded by a

pseudo vertex `[' 62 V and all � 2 � are followed by another pseudo vertex `]' 62 V . The

semantics of an ESG is as follows. Any v 2 V represents an event. For two events v,

v 0 2 V , the event v 0 must be enabled after the execution of v i® ðv; v 0Þ 2 E. The

operations on identi¯able components of the GUI are controlled and/or perceived by

input/output devices, i.e. elements of windows, buttons, lists, checkboxes, etc. Thus,

an event can be a user input or a system response; both of them are elements of V and

lead interactively to a succession of user inputs and expected desirable system

outputs.

Example 1. For the ESG given in Fig. 1: V ¼ fa; b; cg, � ¼ fag, � ¼ fbg, and
E ¼ fða; bÞ; ða; cÞ; ðb; cÞ; ðc; bÞÞg. Note that arcs from pseudo vertex [and to pseudo

vertex] are not included in E. The pseudo vertices [,] are used to mark the entry and

exit of an ESG, respectively.

Furthermore, � (initial) and ! (end) are functions to determine the initial vertex

and end vertex of an ES, e.g. for ES ¼ ðv0; . . . ; vkÞ initial vertex and end vertex are

�ðESÞ ¼ v0, !ðESÞ ¼ vk, respectively. For a vertex v 2 V , NþðvÞ denotes the set of

all successors of v, and N�ðvÞ denotes the set of all predecessors of v. Note that

N�ðvÞ is empty for an entry � 2 � and NþðvÞ is empty for an exit � 2 �.

De¯nition 5. Let V , E be de¯ned as in De¯nition 4. Then any sequence of vertices

hv0; . . . ; vki is called an event sequence (ES) i® ðvi; viþ1Þ 2 E, for i ¼ 0; . . . ; k� 1.

The function l(length) of an ES determines the number of its vertices. In partic-

ular, if lðESÞ ¼ 1 then ES ¼ ðviÞ is an ES of length 1. Note that the pseudo vertices

[and] are not considered in generating any ESs. Neither are they included in ESs nor

Fig. 1. An ESG with a as entry and b as exit and pseudo vertices [,].

190 T. Tuglular, F. Belli & M. Linschulte

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

considered to determine the initial vertex, end vertex, and length of the ESs. An

ES ¼ hvi; vki of length 2 is called an event pair (EP).

De¯nition 6. An ES is a complete ES (or, it is called a complete event sequence,

CES), if �ðESÞ ¼ � 2 � is an entry and !ðESÞ ¼ � 2 � is an exit.

A CES may invoke no interim system responses during user-system interaction,

i.e. it may consist of consecutive user inputs and a ¯nal system response. CESs

represent walks from the entry of the ESG to its exit, realized by the form

ðinitialÞ user inputs ! ðinterimÞ system responses ! � � �
! ðfinalÞ system response:

Note that a CES may invoke no interim system responses during user-system

interaction, i.e. it may consist of consecutive user inputs and a ¯nal system response.

To keep the size of ESGs tractable, the ESGs topmost layer can be re¯ned in several

modularization steps resulting in a hierarchical set of ESGs. In Fig. 2, an example of

a vertex v being re¯ned by another ESG is given. The ¯gure also contains the

completed, or resolved, version without re¯nement.

De¯nition 7. Given an ESG, say ESG1 ¼ ðV1;E1Þ, a vertex v 2 V1, and an ESG,

say ESG2 ¼ ðV2;E2Þ. Then replacing v by ESG2 produces a re¯nement of ESG1, say

ESG3 ¼ ðV3;E3Þ with V3 ¼ V1 [V2nfvg, and E3 ¼ E1 [E2 [Epre [EpostnE1replaced

(`n': set di®erence operation), wherein Epre ¼ N�ðvÞ � �ðESG2Þ (connections of

the predecessors of v with the entry nodes of ESG2), Epost ¼ �ðESG2Þ �NþðvÞ

Fig. 2. Re¯nement of a vertex v and its embedding in the completed (resolved) ESG.

Input Contract Testing of Graphical User Interfaces 191

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

(connections of exit nodes of ESG2 with the successors of v), and E1replaced ¼
fðvi; vÞ; ðv; vkÞg with vi 2 N�ðvÞ and vk 2 NþðvÞ (replaced arcs of ESG1).

Modeling input data, especially concerning causal dependencies between each

other as additional nodes, in°ates the ESG model since vertices represent events and

edges allowed sequences of events and not transitions as in automata theory. As-

suming that a condition for choosing input data can be evaluated to true or false, the

combination of conditions results in 2 jCj combinations, where jCj represents the

number of conditions. Each combination of conditions would have to be modeled as

vertex and is to be connected with the appropriate successor. Thus a DT with n

binary conditions subsumes 2n nodes to realize a thorough evaluation considering all

combinations. To avoid this in°ation, decision tables are introduced to re¯ne a node

of the ESG. Such re¯ned nodes are double-circled. The successors of such re¯ned

vertices represent the actions of the DT and vice versa.

De¯nition 8. A Decision Table DT ¼ ðC;A;RÞ represents actions that depend on

certain constraints, where

. C 6¼ � is the set of constraints (conditions) as Boolean predicates,

. A 6¼ � is the set of actions, and

. R 6¼ � is the set of rules, each of which triggers executable actions depending on a

certain combination of constraints.

Decision tables are popular in information processing and are used for testing, e.g.

in cause and e®ect graphs. A decision table (DT) logically links conditions (\if") with

actions (\then") that are to be triggered, depending on combinations of conditions

(\rules") [9]. The class diagram of DT is given in Appendix A.

De¯nition 9. Let R be de¯ned as in De¯nition 8. Then, a rule r 2 R can be de¯ned

by r ¼ ðCTrue;CFalse;AxÞ, where
. CTrue � C is the set of constraints that have to be resolved to true,

. CFalse � C is the set of constraints that have to be resolved to false, and

. Ax � Aui � Axcpt is the set of actions that should be executable if all constraints

t 2 CTrue are resolved to true and all constraints f 2 CFalse are resolved to false

with

— Aui containing possible user interactions,

— Axcpt containing exception messages.

That is, one rule represents a speci¯c combination of conditions, where each

condition is evaluated either to true or to false. Depending on one rule, one or several

follow-on actions are allowed. In the other way around, the execution of a speci¯c

action is only allowed if input data is chosen along a rule which possesses the con-

sidered action as allowed successor. As already stated above, the combination of

conditions results in 2 jCj combinations, that is, 2 jCj rules can be formulated without

producing redundancy. Note that CTrue [CFalse ¼ C and CTrue \ CFalse ¼ � under

192 T. Tuglular, F. Belli & M. Linschulte

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

regular circumstances. In certain cases it is inevitable to mark conditions with a don't

care (symbolized with a `-' in DT), i.e. such a condition is not considered in a rule and

CTrue [CFalse � C. A DT is used to re¯ne data input of GUI's.

Example 2. An example of DT is given in Table 1. This DT can be used to re¯ne

a node of an ESG. This node will be double-circuled and next event, which is an

action in the DT, is decided with respect to DT that is attached to this double-

circuled node. Such an ESG is called DT-supplemented ESG and is shown in

Fig. 3.

For DTs, such as the one presented in Table 1, X entry indicates an action, or for

GUIs a user interaction. No exception is de¯ned for actions y and z. As an example,

rule 1 (R1) reads as follows: If v0 is resolved to true and v1 is resolved to false, then

action y will be executed. If this DT is used to re¯ne a node of ESG, such as given in

Fig. 3, then regarding to R1 next event after v will be y and the ES will be

(. . . ; v; y; . . .).

[]v

y

zx

Fig. 3. An example of DT-supplemented ESG.

Table 1. An example of DT.

Rules
R0 R1 R2

C
on

st
r. v0 F T T

v1 - F T

A
ct

io
ns y X X

z X

Input Contract Testing of Graphical User Interfaces 193

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

4. Modeling GUI with Input Contracts

This section, together with Sec. 5, introduces the notions and concepts of the pro-

posed approach, illustrated by a simple example. In interactive systems, user inputs

are usually forwarded to the systems application logic by means of a GUI that can be

described as a composition of

. objects, such as menus, panels, labels, input/output areas, and buttons, and

. operations performed on the objects, such as \enter text" and \press button".

Users direct the course of action taken by the software through GUI interactions.

Since the events cause changes in the state of the software through GUI objects, the

GUI objects re°ect that change in their state. GUIs can be characterized by the

objects contained, the properties of the corresponding objects, and event-driven

input to the corresponding objects.

Since large GUIs may contain numerous objects and operations, it is necessary to

decompose a GUI into components to enable a manageable structure. Mao et al. [31]

de¯ned GUI component as an independent, replaceable module which encapsulates

data and operations used to implement some speci¯c functions. A GUI component is

a unit composed of GUI objects that communicate through contractually speci¯ed

interfaces.

The notions and concepts of the proposed approach will be illustrated by a run-

ning example drawn from a simpli¯ed input component of Age Application which

calculates the number of days lived up to that given age and number of days left to a

biological stage from a given age. Note that this running example (Fig. 4), imple-

mented using Java Swing, is kept very simple to ease understanding of the proposed

approach. Section 6 presents a case study, which is drawn from a large, commercial,

real-life project. This two-level presentation of examples is supposed to increase the

readability and at the same time to demonstrate and validate the versatility and

scalability of the approach introduced.

De¯nition 10. Given a GUI, the quadruple � is an input contract model (Io, Dv,

Ac, Co), where

. Io is the ¯nite set of GUI input objects;

. Dv is the ¯nite set of data variables;

. Ac is the ¯nite set of actions on GUI;

. Co is the input contract de¯nition represented by a DT.

With respect to the running example, its input contract has the following data

variables used in DT constraints: age, which holds the entered age, and biologi-

calStage,which holds the selected biological stage.

It is assumed that the value for age is entered to the age variable through the GUI

input object inputArea[Age]. Similarly, it is assumed that the value for biological

stage is entered to the biologicalStage variable through the GUI input object

comboBox[Biological Stage]. Biological stages are adolescence (12–20) and adult

194 T. Tuglular, F. Belli & M. Linschulte

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

(21-death). These values are stored in variables as follows: adolescenceLB with a

value 12 and adultLB with 21. The actions of Age Application are calculate and

error/warning.

GUI input contract of Age Application is given in Table 2 with the following

assertions:

. The user of Age Application promises that the value for age to be entered is of type

integer, greater than 0 and less than 150.

. The user of Age Application promises that if the selected biological stage is ado-

lescence then the value for age to be entered is less than 12 and if the selected

biological stage is adult then the value for age to be entered is less than 21.

. The Age Application promises that if calculate button is pressed number of days

lived for that age is to be displayed on response.

. If the user entered an invalid value for age, the most appropriate explanatory

error/warning message will be presented.

To sum up, complete input contract model of Age Application is given as follows:

� ¼ ðIo;Dv;Ac;CoÞ with

. Io ¼ finputArea½Age�; comboBox½Biological Stage�g;

. Dv ¼ fage; biologicalStage; adolescenceLB; adultLBg;

. Ac ¼ ferror=warning; calculateg;

. Co is given in Table 2.

Fig. 4. Screenshots of Age Application.

Input Contract Testing of Graphical User Interfaces 195

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

[]Calculate
Input

Age data

Error/
Warning

Fig. 5. Contract-supplemented ESG for input component of Age Application.

Table 2. DT for Age Application.

Constraints R0 R1 R2 R3 R4 R5 R6

C0: age is Type Of Integer F T T T T T T

C1: age > 0 ��� F T T T T T

C2: age < 150 ��� ��� F T T T T
C3: biologicalStage ¼ ADOLESCENCE and age < adolescenceLB ��� ��� ��� F T ��� ���
C4: biologicalStage ¼ ADULT and age < adultLB ��� ��� ��� ��� ��� F T

A0: error/warning e e e e e

Exception00 X

Exception01 X
Exception02 X

Exception03 X X

A1: calculate X X

Exception00: ERROR.AGE NOT INTEGER.

Exception01: ERROR.AGE LESS THAN OR EQUAL TO ZERO.
Exception02: WARNING.AGE GREATER THAN OR EQUAL TO 150.

Exception03: ERROR.NOT PRIOR TO BIOLOGICAL STAGE.

196 T. Tuglular, F. Belli & M. Linschulte

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

As stated before, event sequence of GUI is modeled with contract-supplemented

ESG. It is an ESG with a special DT, where conditions of DT come from constraints

of input contracts. Input contract model provides a guideline for the construction of a

contract-supplemented ESG for the GUI it represents. Input objects, such as

inputArea and comboBox, and button objects indicate possible events. Event

sequences are established among these events through drawing edges between ver-

tices. Figure 5 presents contract-supplemented ESG of Age Application. The ESG

given in Fig. 5 models GUI events of Age Application as follows: After age data is

inputted, with respect to DT next action is determined. If Error/Warning is dis-

played, the user dismisses it and Age Application waits for another input. If there is

no Error/Warning, the user presses Calculate button to see the result of calculation.

Then the user can either exit the application or go back to input age data again.

5. Input Contract Testing

Speci¯cations can be used for testing in several ways: as ¯lter for invalid inputs, as

guidance for test generation, as coverage criterion, or as an automated oracle. As

explained in Sec. 4, an input contract is used when designing the input contract

testing process for GUI. This section explains how input contract violations can be

detected within the input context of GUI speci¯cation.

For GUI input contract testing, test scope is always a GUI. A set of GUI com-

ponents that make up a window can be tested if event-based testing is integrated into

input contract testing. Therefore, GUI input contracts are modeled with contract-

supplemented ESGs in our work so that a seamless testing process can be achieved

for a window or a composition of GUI input elements. Solutions for automating test

case generation and test result interpretation stages are described in the following

paragraphs.

A test case speci¯es input values for a method of an input component, which may

work on one or more inputArea. A test suite is composed of test cases to check

validation of all assertions o®ered by an input contract. The input values making up

a test case can be derived from the constraints of a provided contract. Expected

outputs are actions with or without exceptions given in DT. Please note that an

input contract is not supposed to cover all inputs, its purpose is to ¯lter.

GUI input contract testing process is given in Algorithm 1. In our work, full event

coverage and full rule coverage criterion is ful¯lled in terms of coverage. For full

event coverage criterion, each event is executed at least once. In other words, each

node of ESG is visited at least once. For full rule coverage criterion, each rule should

be tested independently. These test cases should be sampled from input space

composed of valid and invalid values of constraints.

The DT is used to produce test cases automatically. Since it is often not feasible to

include all possible input values for a test case, the central question of testing is about

the selection of test input values most likely to reveal faults. This problem comes

down to grouping data into equivalence classes, which should comply with the

Input Contract Testing of Graphical User Interfaces 197

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

property that if one value in the set causes a failure, then all other values in the set

will cause the same failure. Conversely, if a value in the set does not cause a failure,

then none of the others should cause a failure. This property allows using only one

value from each equivalence class as a representative for its set.

Equivalence class testing divides the test value domain into equivalence classes

using contract conditions. Each test case selects one input value from each equiva-

lence class. This approach is improved by boundary value selection of input values

for numeric and date data, which appear at the boundaries of equivalence classes

[30]. For string data, such as names, and for other types of data, such as ¯les, a set of

input values representing each equivalence class should be manually prepared in

advance with respect to the input contract and then test input values are selected

randomly for each equivalence class. Thus, in our work, cause-e®ect testing, which

generates test values from decision tables, is used to strengthen equivalence class

testing. In the presented approach, causes are input conditions and e®ects are

represented by actions. This proposed approach is presented in Algorithm 2, namely

input contract-based test case generation algorithm, which derives test inputs from

contract-supplemented ESG.

The input contract-based test case generation algorithm produces test values for

each rule in the DT. The DT is represented with a data structure that contains the

set of variables, the set of clauses along with its variable(s) and their equivalence

classes, the set of actions and exceptions, and the set of rules wherein each rule is

composed of a conjunction of clauses and conjunction of actions and exceptions.

For each rule, the function findTestInputValue is called. It attempts to ¯nd

values for variables that satisfy the Boolean expression that is a special case of a

constraint satisfaction problem [48] of the corresponding rule in the DT. The function

solveCSP determines valid and invalid equivalence classes for each clause and

searches the values that make the Boolean expression true. The runtime complexity

of the whole algorithm mainly depends on this function, which has to be solved for

each rule of the DT.

The algorithm of getAssignment within the function solveCSP starts by

assigning a value to a single variable and extends the solution step-by-step with the

other variables by assigning values. If a value assignment to the current variable is

generate the corresponding ESG

cover all events by means of CESs

foreach CES with decision tables do

 generate data-expanded CES using corresponding DT (input contract-

 based test case generation)

apply the test suite to GUI

observe GUI output to determine whether a correct response or a faulty

 event occurs

Algorithm 1. The input contract testing process.

198 T. Tuglular, F. Belli & M. Linschulte

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

not possible due to previously selected values, the algorithm steps back and chooses

next value from the set of boundary values for the current variable. This procedure is

also called \simple backtracking". The proposed algorithm combines backtracking

with the techniques \Arc Consistency Check" and \Minimum Remaining Values",

see [48] for further information, to solve the given constraint satisfaction problem

modeled by DT.

The runtime complexity for backtracking is given as Oðn 	 dÞ where n is the

number of nodes for the corresponding constraint graph and d is the depth of the

graph. The runtime complexity for the consistency check is given as Oðn2d3Þ [48].
However, in practice the number of variables on a GUI is strictly limited due to

usability restrictions.

Simultaneously, this also limits the number of corresponding constraints so that the

runtime complexity of this algorithm is negligible. Furthermore, the search space for

numerical valuesmay be narrowed by considering only boundary values of equivalence

classes. Finally, the function solveCSP returns test case inputs for a rule in the decision

table. Resulting test cases contain test input values as well as expected results.

The development of test oracles, which automatically performs a pass/fail evalu-

ation of the test case, is an important issue in software testing. Developing such test

oraclesmanuallywhenwriting test drivers is expensive and error-prone. Since ourwork

foreach event with DT do

foreach rule in DT do

findTestInputValue(DT, rulei)

function findTestInputValue

begin

tc_inputs : Test_Case_Inputs

set_clauses : LIST[<Clause, Variable, EquivalenceClasses]

b : BooleanExpr

set_clauses ← getClauses(DT)

b ← determineBooleanExpr(DT, rule)

tc_inputs ← solveCSP(b, set_clauses)

return tc_inputs

end

function solveCSP

begin

assignment : LIST[<Variable , SelectedValue>]

g ← getConstraintGraph(b, set_clauses)

assignment ← getAssignment(g, assignment)

return assignment

end

Algorithm 2. The input contract-based test case generation algorithm.

Input Contract Testing of Graphical User Interfaces 199

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

proposes that assertions based on contracts can e®ectively be utilized as test oracles,

the presentedmethodology is composed using di®erent techniques to derive the oracles

from the contracts in synchronization with the generation of test input values.

Fully automated testing requires automating the handling of oracles. In this case,

evaluation of test results is straight forward due to the presence of contracts as

speci¯cations. Test cases are generated with expected test results automatically from

the DT, which is constructed from input contracts. Since the test oracle in our work

uses executable input contracts by means of checking test case results, test outputs

can be easily compared with expected test results. Thus, the test oracle in our work

enables an automatic pass/fail evaluation of the test case. If the obtained results

match the expected results, then the test case passes, otherwise it fails.

For the running example, the test suite produced by the tool introduced in Sec. 7

employing Algorithm 1 and Algorithm 2 is as follows:

No. of CES: 1 with No. of Events: 14

[Input Age data(age:A,biologicalStage:Adult¼>C0:F,C1:-,C2:-,C3:-,C4:-),

Error/Warning E00,

Input Age data(age:-1,biologicalStage:Adolescence¼>C0:T,C1:F,C2:-,C3:-,C4:-),

Error/Warning E01,

Input Age data(age:200,biologicalStage:Adult¼>C0:T,C1:T,C2:F,C3:-,C4:-),

Error/Warning E02,

Input Age data(age:18,biologicalStage:Adolescence¼>C0:T,C1:T,C2:T,C3:F,C4:-),

Error/Warning E03,

Input Age data(age:7,biologicalStage:Adolescence¼>C0:T,C1:T,C2:T,C3:T,C4:-),

Calculate,

Input Age data(age:25,biologicalStage:Adult¼>C0:T,C1:T,C2:T,C3:-,C4:F),

Error/Warning E03,

Input Age data(age:18,biologicalStage:Adult¼>C0:T,C1:T,C2:T,C3:-,C4:T),

Calculate]

6. Case Study

The case study describes tests carried out for validating a web-based hotel reserva-

tion system named Isik's System for Enterprise-Level Web-Centric Tourist Appli-

cations (ISELTA) using a set of input contracts, thus demonstrating the practical

use of the approach presented, and discussing also its characteristic features and

limitations. These tests generated using the approach introduced in our paper

revealed reliability- and safety-relevant faults, such as possible setting of a past

arrival date in the case of hotel reservation system.

6.1. System under consideration

ISELTA, the system under consideration for the case study, is an online reservation

system for hotel providers and travel agents, as well as end users. It is a product of

200 T. Tuglular, F. Belli & M. Linschulte

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

the cooperation between a mid-size German company (Isik Touristik Ltd.) and

University of Paderborn for marketing tourist services with 53,000 source lines

of code. For instance, booking can be performed by the search menu given in

Appendix B. It shows a website for booking special o®ers. These o®ers consist of a

¯xed number of days of accommodations within a certain time interval and may

include other special services that are included.

For the case study described here, the \Enter Specials" module of ISELTA was

selected. At ¯rst glance, this module seems to be relatively small; however, its be-

havior is quite complex because the module contains several di®erent contexts. Ac-

cordingly, the formal model constructed is large and far from trivial. To keep the

presentation of this case study in our paper compact, only the main interface is

modeled resulting in 12 nodes, 25 edges, and 2 DTs each having 17 rules and analyzed

to generate and perform tests.

The \Enter Specials" module enables a hotel or travel agent to o®er and manage

special prices for the selected hotel. The webpage shown in Appendix C is used to

create such a special o®er. The input ¯elds for arrival, departure, number of items,

price, and name are mandatory ¯elds. Dates and the ¯le name of the photo are

selected by the user via dedicated dialogs. The site for administrating the specials

also enables the user to edit or delete existing ones. Existing items are shown within

an HTML table above the input ¯elds. Each row describes an item and contains two

buttons to delete or edit it. When editing an item, the existing data is loaded into the

corresponding input ¯elds. One of the DTs of contract for \Enter Specials" module is

presented in Table 3.

6.2. Test process

The \Enter Specials" module is represented by an ESG given in Appendix D. It shows

the ESG that models the menu given in Appendix C for setting up, editing, and

deleting specials. In this ESG, \Special data 1" node with two circles is re¯ned by the

DT for \Enter Specials", which is given in Table 3. This DT augments the nodes with

two circles of the ESG in Appendix D to consider the variety of the input data. In the

same ESG, \Special data 2" node with two circles is re¯ned by another DT, which has

exactly the same content of DT for \Enter Specials", which is given in Table 3.

Without DTs, all combinations of conditions would have to be modeled as vertices

which are to be connected with the appropriate successor. Thus, a DT with n binary

conditions subsume 2n nodes to realize a thorough evaluation considering all com-

binations. This fact demonstrates the power of DTs to enable a reduction in the size

of the model.

The model developed for testing the whole ISELTA web application consisted of 8

ESGs augmented by 9 DTs containing the contracts. These 8 ESGs build up a

hierarchical set of models and can be combined into one large resolved model (see

De¯nition 7 and Fig. 2). Details of these 8 ESGs are given in Table 4. The ESG8

corresponds to the \Enter Specials" described earlier.

Input Contract Testing of Graphical User Interfaces 201

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

T
ab

le
3.

D
ec
is
io
n
ta
b
le

fo
r
te
st
in
g
sp
ec
ia
ls
.

C
on

d
it
io
n
s

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
1
0

R
1
1

R
1
2

R
13

R
14

R
15

R
16

R
17

1
A
rr
iv
al
D
at
e
>

T
O
D
A
Y

T
T

T
F

T
T

T
T

T
T

T
T

T
T

T
T

T

2
D
ep
ar
tu
re
D
at
e
>

T
O
D
A
Y

���
T

T
T

F
T

T
T

T
T

T
T

T
T

T
T

T

3
D
ep
ar
tu
re
D
at
e
>

A
rr
iv
al
D
at
e

���
T

F
T

F
T

T
T

T
T

T
T

T
T

T
T

T

4
R
oo
m
T
y
p
e
2
R
O
O
M
T
Y
P
E
S

T
T

T
T

T
F

T
T

T
T

T
T

T
T

T
T

T
5

N
oO

fR
oo

m
s
M
A
T
C
H
E
S
([
1-
9]
[0
-9
]*
)

T
T

T
T

T
T

F
T

T
T

T
T

T
T

T
T

T

6
T
ot
al
P
ri
ce

M
A
T
C
H
E
S
([
1-
9]
[0
-9
]*
(,
[0
���

9]
f1
,2
g)
?)

T
T

T
T

T
T

T
F

T
T

T
T

T
T

T
T

T

7
P
h
ot
oF

il
eN

am
e
¼

E
M
P
T
Y

T
T

T
T

T
T

T
T

F
F

F
F

T
T

T
T

T

8
P
h
ot
oF

il
eT

y
p
e
M
A
T
C
H
E
S
([
jp
g
jg
if
])

���
���

���
���

���
���

���
���

T
F

T
T

���
���

���
���

T
9

P
h
ot
oF

il
eS
iz
e
>

0
M
B

���
���

���
���

���
���

���
���

T
T

F
T

���
���

���
���

T

10
P
h
ot
oF

il
eS
iz
e
<

1
M
B

���
���

���
���

���
���

���
���

T
T

T
F

���
���

���
���

T

11
D
es
cr
ip
ti
on

N
at

¼
E
M
P
T
Y

T
T

T
T

T
T

T
T

T
T

T
T

F
F

T
T

T
12

D
es
cr
ip
ti
on

N
at

M
A
T
C
H
E
S
([
nw

n.:
,;
!@

$€
ä€ o
üß

ns
]þ

)
���

���
���

���
���

���
���

���
���

���
���

���
T

F
���

���
���

13
D
es
cr
ip
ti
on

In
t
¼

E
M
P
T
Y

T
T

T
T

T
T

T
T

T
T

T
T

T
T

F
F

T

14
D
es
cr
ip
ti
on

In
t
M
A
T
C
H
E
S
([
nw

n.:
,;
!@

$€
ä€ o
üß

ns
]þ

)
���

���
���

���
���

���
���

���
���

���
���

���
���

���
T

F
���

15
N
am

e
M
A
T
C
H
E
S
([
a-
zA

-Z
0-
9]
þÞ

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

F
A

1
G
iv
e
E
rr
or

M
es
sa
ge

X
X

X
X

X
X

X
X

X
X

X
X

A
2

A
d
d
/S

av
e

X
X

X
X

X

A
3

C
an

ce
l

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

202 T. Tuglular, F. Belli & M. Linschulte

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

The resolved model, or ESG, from which test cases can also be generated, consists

of 65 nodes and 244 edges. Note that the number of nodes and edges of this large ESG

does not correspond to the sum of the single ESGs. This is due to the fact that the

pseudo start and end nodes of re¯ning ESGs are deleted during transformation. For

more information on this transformation refer to De¯nition 7 and [6]. However, Belli

et al. [7] indicated that for large models test case generation becomes very costly and

the generated test case set is very large leading to infeasible long test execution time.

They also showed that modularization of the modeling process can make test process

e±cient and feasible.

The resolved ESG is augmented by 9 DTs. These DTs have 4, 3, 12, 9, 11, 5, 6, 17,

17 rules respectively, in total 84 rules. Thus, these DTs saves the resolved ESG

visualizing 84 additional vertices. Therefore, the resolved ESG represents in reality

an ESG with 68þ 84 ¼ 152 nodes.

On the basis of the ESG models and DTs, test cases comprising 41 di®erent kinds

of datasets have been generated and executed, testing particularly the given input

contracts. For the resolved ESG, 5 CES (see De¯nition 6) are automatically gener-

ated with events 805, 33, 3, 3 and 4 respectively, in total 848 events. Automatic test

generation took less than 900ms for all the trials performed on a computer with

2.70GHz Intel i7 Processor and 8GB RAM. Test generation is supported by a tool

described in Sec. 7.

6.3. Analysis of test results and lessons learned

Table 5 contains the list of faults detected for the Specials module during test exe-

cution. In Table 5, the column title \Erroneous?" means whether the given test input

should result in an error or not, whereas the column title \Error Message?" means

that is there an error message with the given test input. In total, 25 faults have been

revealed. The large number of faults related to the Specials mask is due to the fact

that this is a new feature in ISELTA and had not yet been tested thoroughly.

Even some already known faults have been detected for other components,

which have been marked as ¯xed in the past, e.g. check-in days could remain empty

where at least one check-in day was expected. Moreover, faults 18 and 23–25 do not

lead to errors, i.e. the system does not accept the given input data yet does not

output an error message. Finally, the decision tables have been heavily consoli-

dated, i.e. the rules has been reduced wherever redundancy and/or contradiction

were detected.

Table 4. Size of ESG models used in the case study.

ESG1 ESG2 ESG3 ESG4 ESG5 ESG6 ESG7 ESG8 Resolved ESG

Nodes 6 4 7 14 17 7 22 12 68

Edges 10 4 25 26 46 10 93 25 251

Decision Tables 0 0 0 0 3 0 4 2 9

Input Contract Testing of Graphical User Interfaces 203

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

T
ab

le
5.

O
u
tp
u
ts

of
te
st

ca
se
s
d
et
ec
ti
n
g
a
fa
u
lt
.

#
T
es
t
In
p
u
t

D
es
cr
ip
ti
on

E
rr
on

eo
u
s?

E
rr
o
r

M
es
sa
g
e?

1
A
rr
iv
al

>
fT

O
D
A
Y
ga

n
d
D
ep
ar
tu
re

¼
E
M
P
T
Y

In
it
ia
l
se
le
ct
io
n
of

d
at
e
fo
r
d
ep
ar
tu
re

is
n
ot

ar
ri
v
al
þ
1

Y
es

Y
es

2
P
h
ot
o
F
il
e
S
iz
e
>

1
M
B

F
il
es

la
rg
er

th
an

1
M
B

in
si
ze

is
ch
os
en
.

Y
es

N
o

3
P
h
ot
o
F
il
e
S
iz
e
>

1
M
B

F
il
es

la
rg
er

th
an

1
M
B

in
si
ze

is
ap

p
en
d
ed
.

Y
es

N
o

4
P
h
ot
o
F
il
e
N
am

e
¼

te
x
t.
tx
t

A
ll
p
os
si
b
le

¯
le

ty
p
es

ca
n
b
e
ch
os
en
.

Y
es

N
o

5
d
ep
ar
tu
re

<
fT

O
D
A
Y
g

If
d
at
e
of

d
ep
ar
tu
re

is
se
t
to

a
v
al
u
e
in

th
e
p
as
t,
on

ly
th
e
d
at
e
of

th
e

ar
ri
v
al

is
ad

ap
te
d
.

Y
es

N
o

6
N
o
of

it
em

s
ab

ov
e
50

0
d
ig
it
s

V
al
u
es

of
ar
b
it
ra
ry

le
n
gt
h
ar
e
p
os
si
b
le

fo
r
n
u
m
b
er

of
it
em

s.
Y
es

N
o

7
T
ot
al
P
ri
ce

ab
ov

e
50

0
d
ig
it
s

V
al
u
es

of
ar
b
it
ra
ry

le
n
gt
h
ar
e
p
os
si
b
le

fo
r
p
ri
ce
s.

Y
es

N
o

8
S
p
ec
ia
l
ab

ov
e
50

0
d
ig
it
s

V
al
u
es

of
ar
b
it
ra
ry

le
n
gt
h
ar
e
p
os
si
b
le

fo
r
n
am

es
of

a
sp
ec
ia
l.

Y
es

N
o

9
A
rr
iv
al

¼
E
M
P
T
Y

an
d
D
ep
ar
tu
re

>
fT

O
D
A
Y
g

It
is
p
os
si
b
le

to
se
t
on

ly
th
e
d
at
e
of

th
e
d
ep
ar
tu
re
,
b
u
t
n
ot

of
th
e

ar
ri
v
al
.
T
h
is
le
ad

s
to

a
P
H
P
w
ar
n
in
g
af
te
r
se
n
d
in
g
th
e
d
at
a.

Y
es

N
o

10
N
am

e
¼
\a

sd
fg
n"

If
th
e
n
am

e
of

a
sp
ec
ia
l
en
d
s
w
it
h
\
n"

,
a
w
ar
n
in
g
(p
ar
se
r
er
ro
r)

is

sh
ow

n
.

Y
es

N
o

11
N
o
of

it
em

s
¼
\0

12
3"

If
\0

"
p
re
ce
d
es

th
e
n
u
m
b
er

of
it
em

s,
it
is
n
ot

re
m
ov

ed
.

Y
es

N
o

12
P
ri
ce

¼
\0

12
3"

If
\0

"
p
re
ce
d
es

a
p
ri
ce
,
it
is
n
ot

re
m
ov

ed
.

Y
es

N
o

13
T
ot
al
P
ri
ce

¼
\1

00
"
an

d
T
ot
al
P
ri
ce

¼
\5

0.
00

"
P
ri
ce
s
ar
e
n
ot

u
n
if
or
m
ly

se
t
on

th
e
ov

er
v
ie
w
to

tw
o
d
ec
im

al
p
la
ce
s.

Y
es

���
14

P
ri
ce

¼
\4

55
n5

6"
P
ri
ce

ca
n
co
n
ta
in

\
n"

,
m
or
eo
v
er
,
th
is
ch
ar
ac
te
r
is
d
u
p
li
ca
te
d
af
te
r

se
n
d
in
g
th
e
d
at
a.

Y
es

N
o

15
N
o
of

it
em

s
¼

0
N
u
m
b
er

of
it
em

s
ca
n
b
e
se
t
to

\0
".

Y
es

N
o

16
P
h
ot
o
F
il
e
N
am

e
¼
\t
es
t.
jp
g"

an
d
P
ri
ce

¼
\a

b
c"

T
h
e
p
at
h
of

th
e
im

ag
e
¯
le
is
lo
st
,
if
on

e
of

th
e
ot
h
er

¯
el
d
s
is
fa
u
lt
y
.

Y
es

N
o

17
P
h
ot
o
F
il
e
N
am

e
¼
\0

.j
p
g"

an
d
P
h
ot
o
F
il
e
S
iz
e
¼

0
F
il
es

w
it
h
si
ze

of
0
b
y
te

le
ts

th
e
ap

p
li
ca
ti
on

fr
ee
ze
.

Y
es

N
o

18
A
rr
iv
al

¼
E
M
P
T
Y

an
d
D
ep
ar
tu
re

¼
E
M
P
T
Y

If
in
p
u
t
¯
el
d
s
fo
r
ar
ri
v
al

an
d
d
ep
ar
tu
re

ar
e
em

p
ty
,
th
es
e
¯
el
d
s
ar
e

n
ot

h
ig
h
li
gh

te
d
,
w
h
en

se
n
d
in
g
d
at
a.

N
o

N
o

19
D
es
cr
ip
ti
on

N
at

¼
\a

b
c
nd

ef
"

ch
ar
ac
te
r
\
n"

d
u
p
li
ca
te
d
in

D
es
cr
ip
ti
on

N
at

Y
es

���
20

D
es
cr
ip
ti
on

In
t
¼
\a

b
cn

d
ef
"

ch
ar
ac
te
r
\
n"

d
u
p
li
ca
te
d
in

D
es
cr
ip
ti
on

In
t

Y
es

���
21

A
rr
iv
al

<
fT

od
ay

g
A
rr
iv
al

ca
n
b
e
se
t
to

th
e
p
as
t
u
si
n
g
sa
v
e
ac
ti
on

Y
es

N
o

22
D
ep
ar
tu
re

<
fT

od
ay

g
D
ep
ar
tu
re

ca
n
b
e
se
t
to

th
e
p
as
t
u
si
n
g
sa
v
e
ac
ti
on

Y
es

N
o

23
T
ot
al
P
ri
ce

¼
\a

b
c"

N
o
w
ar
n
in
gs

fo
r
p
ri
ce
s
in

ca
se

of
fa
u
lt
y
in
p
u
ts
.

N
o

N
o

24
N
o
of

it
em

s
¼
\a

b
c"

N
o
w
ar
n
in
gs

fo
r
n
o
of

it
em

s
in

ca
se

of
fa
u
lt
y
in
p
u
ts

N
o

N
o

25
A
rr
iv
al

¼
E
M
P
T
Y

an
d
D
ep
ar
tu
re

¼
E
M
P
T
Y

T
h
er
e
is
n
o
w
ar
n
in
g
in

ca
se

of
em

p
ty

d
at
es

fo
r
ar
ri
v
al

an
d
d
ep
ar
-

tu
re
.

N
o

N
o

204 T. Tuglular, F. Belli & M. Linschulte

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

The results of the analysis of the test process encourage the generalization that in

the practice, preconditions and postconditions are not paid attention adequately and

thus necessary measures are not considered during software development. For

existing software, tools such as the one used in the practical case study (see the next

section) are strongly recommended to uncover de¯cient or inadequate control

mechanisms in the software so that failures or undesirable situations that may occur

can be prevented.

If software is to be developed from scratch, then formal representation of input

contracts, such as presented in our paper, are considerably useful for the correct

implementation of speci¯cations, as well as for the automation of software de-

velopment and of software testing. Not only user interfaces but also component

interfaces may be separated from business logic through input contracts, which

may help both correct development and validation of the business logic part of

the SUC.

Moreover, it is observed that reusing input contracts is possible, which is also

valid for ESGs and DTs. For instance, input contracts containing name based

preconditions uses the \MATCHES([a-zA-Z]þ)" regular expression in 3 DTs 4

times and the \MATCHES([a-zA-Z0-9]þ)" regular expression in 2 DTs, repeatedly.

Reusability, as in software development, increases the e±ciency of speci¯cation

writing and test case generation, which has a direct impact on the feasibility of the

approach.

6.4. Threats to validity

Analysis of the results from the case study demonstrates that the proposed approach

is e±cient for testing especially condition checking parts of GUIs. All the results

obtained in our work are valid with respect to the theoretical background explained

in Secs. 3–6, especially Algorithms 1 and 2. However, following aspects are to be

considered:

First, it is assumed that SUC can be modeled by a collection of ESGs. This might

not be feasible in some situations. Furthermore, the model used in our work is

assumed to be correct and complete for the desired behavior.

Second, in the case studies, internal system events or system outputs are not

explicitly included in the models, partially because their focus is on the user events

and they follow a black-box testing approach. However, they are used to determine

contexts of user events and derive expected outputs. Nevertheless, explicit inclusion

of these elements (internal system events or system outputs) may be required in some

applications.

Third, coverage-based testing is used in the proposed framework. Using coverage-

based approaches for large and complex systems might result in too many and too

long test sequences. Although long test sequences tend to ¯nd more faults, unnec-

essarily too long can be unnecessarily too expensive [8]. The decision whether or not

to stop testing is made based on the coverage criteria used.

Input Contract Testing of Graphical User Interfaces 205

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

7. Tool Support

For practical use of the presented approach in real-life projects, an input contract

testing tool is developed in Java. This tool loads the contract as a DT from a ¯le and

displays the contract via its Decision Table window. The Model Browser window

presents the model for test case generation (see Appendix D). It provides basic

functionalities for creation, editing, saving, and loading an ESG model. Moreover, it

is able to check the ESG model for its correctness with respect to De¯nition 4. The

model also contains double circled vertices with corresponding decision tables

according to the input contracts. An example Decision Table window is given

in Appendix E.

Another window of input contract testing tool is Test Suite Browser, which

generates and presents the generated test cases. Moreover, Test Suite Browser is able

to generate test scripts that can be run automatically. This is due to the fact that,

within the model browser, a vertex can be annotated with pieces of source code

executing the underlying event within a given test execution environment. This

enables automatic generation of test scripts along the computed test sequences.

Developedmain packages of the input contract testing tool are inputContract, fsm,

esg, decisionTable, and solver. External graphics libraries, such as jgraphx.jar and

jgrapht.jar, are utilized in the tool along with swing and database connection libraries.

The process to use this tool is as follows: First, the ESG model and the DTs are

constructed in order to ful¯ll the imported input contracts. On top of the model, the

test cases and test scripts can be generated via Test Suite Browser in the next step.

The test scripts are not executed by the input contract testing tool automatically.

For automatic test execution, the Selenium test runner (http://docs.seleniumhq.

org/) has been used, which provides automatic execution of the generated test

scripts. All tests have been executed using Mozilla Firefox Browser Version 28.0,

which is controlled by Selenium and which is installed on a computer with 2.70GHz

Intel i7 Processor and 8GB RAM.

8. Conclusion and Future Work

Based on formal notions of event sequence graph, decision tables, and contracts, our

paper introduces a practical and novel framework to model and test input compo-

nents. The approach generates test cases and test oracles using preconditions and

postconditions. For cost reduction during project work, a tool has been implemented,

which includes a fault detection component.

A case study validates and analyzes the proposed approach. Revealing 25 faults of

the SUC investigated in the case study indicates that the approach is able to detect

faults, especially de¯ciencies in the precondition checking parts of GUIs with respect

to input contracts. To sum up, the main contributions of our work are:

. The introduced input contract model can easily be implemented using DTs.

206 T. Tuglular, F. Belli & M. Linschulte

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

. The input contract testing approach introduced includes an algorithm to generate

test cases from a DT constructed using input contracts, parse trees and applying

equivalence class partitioning and boundary value techniques. For an ESG model

with 68 nodes, 251 edges, and 9 DTs with 84 rules in total, our algorithm auto-

matically generates 5 complete event sequences with 848 events in total.

. Aspects of test coverage and test oracle problems within the context of input

contract testing are presented and applied.

Di®erent paths are set forth for future work. The ¯rst one is to perform an

empirical research on the presented approach to answer the following questions: a)

How much overhead does the presented approach impose on a tester of large software

systems? b) How far can a tester develop contracts for such an application and how

long would it take? c) How would a tester developing contracts for applications

impact speed of execution during testing?

Analysis of the test case generation process reveals the fact that ESGs are to be

transformed into one large model for test case generation. On the other hand, DTs

could be consolidated, which results in reduced number of rules. Both facts give some

clues about the scalability of the presented approach. Transforming ESGs into one

large model might complicate test case generation and the intuitive partitioning of

SUC intended by the tester would be lost. Further test generation techniques are

considerable,whichmake use of the intuitive partitioning of the tester to reduce and/or

simplify test sequences and their generation, especially with regard to input contracts.

The more input contracts exist, the more costly is their evaluation. This is due to the

fact that adding just one single input contract doubles (in theworst case) the number of

combinations of input contracts to be tested. Thus, further techniques to reduce the

evaluation complexity of large sets of input contracts could be helpful, such as parti-

tioning of input contracts that could be achieved by a hierarchical set of DTs.

The second path for future work is to introduce formal semantics for input con-

tracts. Therefore, extension of the approach is planned for re¯nement and inclusion

operations on contracts. These operations aim to provide distinct means to express

complex input behavior in terms of simpler behavior. Furthermore, a re¯nement

enables specialization of contractual obligations and invariants of other contracts,

whereas inclusion allows contracts to be composed from simpler sub-contracts [23].

With these contract operations, an approach for combining input components and

testing them as a single unit is to be de¯ned and implemented. Those extensions are

necessary to judge whether or not it pays o® to go through the e®ort to test for

speci¯c types of errors. More formalism for input contracts is necessary to system-

atically discuss and justify the di®erences between input contracts and classical

Meyer contracts with respect to inheritance mechanism, @pre operator, simple data

types, and method calls, which is also planned as future work.

A further future goal is to work on mutation-based analysis of contracts [52] to

estimate their e±ciency. In addition, contracts can be used to correct existing source

Input Contract Testing of Graphical User Interfaces 207

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

code with missing/erroneous input validation by static insertion of corresponding

input validation source code.

Acknowledgments

We thank Dr.-Ing. Axel Hollmann, Andagon GmbH, Germany, and M.Sc. Can Arda

Muftuoglu, M.O.S.S. GmbH, Germany, for valuable hints and discussions.

Appendix A. Class Diagram of DT

208 T. Tuglular, F. Belli & M. Linschulte

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Appendix B. Booking Mask for \Special O®ers" in ISELTA

Input Contract Testing of Graphical User Interfaces 209

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Appendix C. Input form to \Enter Specials" in ISELTA

210 T. Tuglular, F. Belli & M. Linschulte

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Appendix D. Input Contract Testing tool: Model Browser GUI for

\Enter Specials" in ISELTA

Input Contract Testing of Graphical User Interfaces 211

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Appendix E. Input Contract Testing Tool: Decision Table GUI for

\Enter Specials" in ISELTA

212 T. Tuglular, F. Belli & M. Linschulte

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

References

1. A. V. Aho, A. T. Dahbura, D. Lee and M. U. Uyar, An optimization technique for
protocol conformance test generation based on UIO sequences and rural Chinese postman
tours, IEEE Trans. Commun. 39(11) (1991) 1604–1615.

2. F. Bachman, L. Bass, C. Buhman, S. Comella-Dorda, F. Long, J. Robert, R. Seacord and
K. Wallnau, Technical concepts of component-based software engineering, Defense
Technical Information Center, 2000.

3. B. Beizer, Software Testing Techniques, 2nd ed. (Van Nostrand Reinhold, New York,
1990).

4. F. Belli, Finite state testing and analysis of graphical user interfaces, in Proceedings of
12th International Symposium on Software Reliability Engineering, 2001, pp. 34–43.

5. F. Belli and C. J. Budnik, Test minimization for human-computer interaction, Applied
Intelligence 26(2) (2007) 161–174.

6. F. Belli, C. J. Budnik and L. White, Event based modelling, analysis and testing of
user interactions: Approach and case study, Software Testing, Veri¯cation and Reliability
16(1) (2006) 3–32.

7. F. Belli, N. Guler and M. Linschulte, Does \Depth" Really Matter? On the Role of Model
Re¯nement for Testing and Reliability, in 35th Annual Computer Software and Appli-
cations Conference, 2011, pp. 630–639.

8. F. Belli, N. Güler and M. Linschulte, Are longer test sequences always better? ��� A
reliability theoretical analysis, in Fourth International Conference on Secure Software
Integration and Reliability Improvement Companion, 2010, pp. 78–85.

9. F. Belli and M. Linschulte, On negative tests of web applications, Annals of Mathematics,
Computing & Teleinformatics 1(5) (2008) 44–56.

10. R. Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools (Addison-
Wesley Professional, 2000).

11. L. C. Briand, Y. Labiche and H. Sun, Investigating the use of analysis contracts to
improve the testability of object-oriented code, Software: Practice and Experience 33(7)
(2003) 637–672.

12. I. Ciupa, A. Pretschner, A. Leitner, M. Oriol and B. Meyer, On the predictability of
random tests for object-oriented software, in 1st International Conference on Software
Testing, Veri¯cation, and Validation, 2008, pp. 72–81.

13. I. Ciupa, Strategies for random contract-based testing, Diss., Eidgen€ossische Technische
Hochschule ETH Zürich, Nr. 18143, 2008.

14. I. Ciupa and A. Leitner, Automatic testing based on design by contract, in Proceedings of
Net.ObjectDays, 2005, pp. 545–557.

15. P. Collet, R. Rousseau, T. Coupaye and N. Rivierre, A contracting system for hierarchical
components, Component-Based Software Engineering, 2005, pp. 187–202.

16. J. Edmonds and R. M. Karp, Theoretical improvements in algorithmic e±ciency for
network °ow problems, J. ACM 19(2) (1972) 248–264.

17. S. H. Edwards, G. Shakir, M. Sitaraman, B. W. Weide and J. Hollingsworth, A frame-
work for detecting interface violations in component-based software, in Proceedings of
Fifth International Conference on Software Reuse, 1998, pp. 46–55.

18. R. Gove and J. Faytong, Machine learning and event-based software testing: Classi¯ers
for identifying infeasible GUI event sequences, Adv. Comput. 86 (2012) 109–135.

19. F. Gross, G. Fraser and A. Zeller, Search-based system testing: High coverage, no false
alarms, in International Symposium on Software Testing and Analysis, 2012, pp. 67–77.

20. P. Guerreiro, Simple support for design by contract in Cþþ, in 39th International
Conference and Exhibition on Technology of Object-Oriented Languages and Systems,
2001, pp. 24–34.

Input Contract Testing of Graphical User Interfaces 213

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

21. J. H. Hayes and J. O®utt, Input validation analysis and testing, Empirical Software
Engineering 11(4) (2006) 493–522.

22. R. Heckel and M. Lohmann, Towards contract-based testing of web services, Electronic
Notes in Theoretical Computer Science 116 (2005) 145–156.

23. R. Helm, I. M. Holland and D. Gangopadhyay, Contracts: Specifying behavioral com-
positions in object-oriented systems, 1990.

24. S. Huang, M. B. Cohen and A. M. Memon, Repairing GUI test suites using a genetic
algorithm, in Third International Conference on Software Testing, Veri¯cation and
Validation, 2010, pp. 245–254.

25. M. R. Karam, S. M. Dascalu and R. H. Hazim�e, Challenges and opportunities for im-
proving code-based testing of graphical user interfaces, J. Computational Methods Sci.
and Eng. 6 (2006) 379–388.

26. Z. Kiziltan, T. Jonsson and B. Hnich, On the de¯nition of concepts in component based
software development, Department of Information Science, Uppsala University, 2000.

27. R. Kramer, iContract-the Java TM design by contract TM tool, in Proceedings Tech-
nology of Object-Oriented Languages, 1998, pp. 295–307.

28. B. Kruger and M. Linschulte, Cost reduction through combining test sequences with
input data, in IEEE Sixth International Conference on Software Security and Reliability
Companion, 2012, pp. 207–216.

29. B. P. Lamancha, M. Polo, D. Caivano, M. Piattini and G. Visaggio, Automated gener-
ation of test oracles using a model-driven approach, Information and Software Technology
55(2) (2013) 301–319.

30. H. Liu and Kuan H. B. Tan, Covering code behavior on input validation in functional
testing, Information and Software Technology 51(2) (2009) 546–553.

31. C. Mao, Y. Lu and J. Zhang, Regression testing for component-based software via built-in
test design, in Proceedings of the ACM Symposium on Applied Computing, 2007, pp.
1416–1421.

32. A. Marchetto and P. Tonella, Search-based testing of Ajax web applications, in 1st
International Symposium on Search Based Software Engineering, 2009, pp. 3–12.

33. A. M. Memon, An event-°ow model of GUI-based applications for testing, Software
Testing, Veri¯cation and Reliability 17(3) (2007) 137–157.

34. A. M. Memon, M. E. Pollack and M. Lou So®a, Automated test oracles for GUIs, ACM
SIGSOFT Software Engineering Notes, 2000, pp. 30–39.

35. A. M. Memon, M. Lou So®a and M. E. Pollack, Coverage criteria for GUI testing, ACM
SIGSOFT Software Engineering Notes 26(5) (2001) 256–267.

36. B. Meyer, Applying design by contract, Computer 25(10) (1992) 40–51.
37. Y. Miao and X. Yang, An FSM based GUI test automation model, in 11th International

Conference on Control Automation Robotics & Vision, 2010, pp. 120–126.
38. A. J. O®utt, Y. Xiong and S. Liu, Criteria for generating speci¯cation-based tests, in Fifth

IEEE International Conference on Engineering of Complex Computer Systems, 1999,
pp. 119–129.

39. J. O®utt, S. Liu, A. Abdurazik and P. Ammann, Generating test data from state-based
speci¯cations, Software Testing, Veri¯cation and Reliability 13(1) (2003) 25–53.

40. J. O®utt, Y. Wu, X. Du and H. Huang, Web application bypass testing, in Proceedings of
the 28th Annual International Computer Software and Applications Conference, 2004,
pp. 106–109.

41. A. C. R. Paiva, J. C. P. Faria, N. Tillmann and R. A. M. Vidal, A model-to-implemen-
tation mapping tool for automated model-based GUI testing, in Formal Methods and
Software Engineering, 2005, pp. 450–464.

214 T. Tuglular, F. Belli & M. Linschulte

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

42. A. Petrenko, A. Simao and J. Maldonado, Model-based testing of software and systems:
Recent advances and challenges, Int. J. Softw. Tools Technol. Transf. 14(4) (2012) 383–
386.

43. R. Plosch, Design by contract for Python, in Proceedings of Software Engineering Con-
ference, Asia Paci¯c and International Computer Science Conference, 1997, pp. 213–219.

44. R. Plosch and J. Pichler, Contracts: From analysis to Cþþ implementation, in Proc.
Technology of Object-Oriented Languages and Systems, 1999, pp. 248–257.

45. R. Rao, Implementational re°ection in Silica, in European Conference on Object-Ori-
ented Programming, 1991, pp. 251–267.

46. A. Rauf, S. Anwar, M. A. Ja®er and A. A. Shahid, Automated GUI test coverage analysis
using GA, in Seventh International Conference on Information Technology: New Gen-
erations, 2010, pp. 1057–1062.

47. D. J. Richardson, TAOS: Testing with analysis and oracle support, in Proceedings of the
ACM SIGSOFT International Symposium on Software Testing and Analysis, 1994, pp.
138–153.

48. S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik and D. D. Edwards, Arti¯cial Intelli-
gence: A Modern Approach, Vol. 2 (Prentice Hall, Englewood Cli®s, 1995).

49. A.-M. Sassen, G. Amorós, P. Donth, K. Geihs, J.-M. J�ez�equel, K. Odent, N. Plouzeau and
T.Weis, QCCS: A methodology for the development of contract-aware components based
on aspect oriented design, in AOSD Early Aspects Workshop, 2002.

50. J. L. Silva, J. C. Campos and A. C. R. Paiva, Model-based user interface testing with spec
explorer and concurtasktrees, Electronic Notes in Theoretical Computer Science 208
(2008) 77–93.

51. A. Simão, A. Petrenko and N. Yevtushenko, On reducing test length for FSMs with extra
states, Softw. Testing, Verif. Reliab. 22(6) (2012) 435–454.

52. Y. Le Traon, B. Baudry and J.-M. J�ez�equel, Design by contract to improve software
vigilance, IEEE Trans. Software Engineering 32(8) (2006) 571–586.

53. T. Tuglular, C. A. Muftuoglu, F. Belli and M. Linschulte, Event-based input validation
using design-by-contract patterns, in 20th International Symposium on Software Reli-
ability Engineering, 2009, pp. 195–204.

54. D. Wampler, Contract4J for design by contract in Java: Design pattern-like protocols and
aspect interfaces, in Proceedings of the Fifth AOSD Workshop on Aspects, Components,
and Patterns for Infrastructure Software, 2006, pp. 27–30.

55. B. Wan, G. V. Bochmann and G. Jourdan, Evaluating reliability-testing usage models, in
36th Annual Computer Software and Applications Conference, 2012, pp 129–137.

56. J. A. Whittaker, Software's invisible users, Software 18(3) (2001) 84–88.
57. M. Ye, B. Feng and L. Zhu, Automated oracle based on multi-weighted neural networks

for GUI testing, Information Technology Journal 6(3) (2007).
58. W. Zheng and G. Bundell, Test by contract for UML-based software component testing,

in International Symposium on Computer Science and Its Applications, 2008, pp. 377–
382.

Input Contract Testing of Graphical User Interfaces 215

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

6.
26

:1
83

-2
15

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
06

/2
4/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.

	Input Contract Testing of Graphical User Interfaces
	1. Introduction
	2. Related Work
	3. Theoretical Background
	4. Modeling GUI with Input Contracts
	5. Input Contract Testing
	6. Case Study
	6.1. System under consideration
	6.2. Test process
	6.3. Analysis of test results and lessons learned
	6.4. Threats to validity

	7. Tool Support
	8. Conclusion and Future Work
	Acknowledgments
	Appendix A. Class Diagram of DT
	Appendix B. Booking Mask for “Special Offers” in ISELTA
	Appendix C. Input form to “Enter Specials” in ISELTA
	Appendix D. Input Contract Testing tool: Model Browser GUI for “Enter Specials” in ISELTA
	Appendix E. Input Contract Testing Tool: Decision Table GUI for “Enter Specials” in ISELTA
	References

