
Computational and Bioinformatics 

Methods for miRNA Gene Prediction 

Jens Allmer 

Molecular Biology and Genetics, Izmir Institute of Technology, Gulbahce, Urla, Izmir, Turkey 

 

Original Article 

The original publication is available at http://link.springer.com/protocol/10.1007/978-1-62703-748-8_9. 

 

Key Words 

miRNA, secondary structure prediction, homology-based prediction, ab initio prediction, 

miRNA prediction accuracy, multiple sequence alignment-based prediction 

 

Running Head 

Bioinformatics Methods for miRNA Gene Prediction 

 

  



Summary 

MicroRNAs (miRNA) have attracted ever increasing interest in recent years. Since experimental 

approaches for determining miRNAs are non-trivial in their application, computational methods 

for the prediction of miRNAs have gained popularity. Such methods can be grouped into two 

broad categories 1) performing ab initio predictions of miRNAs from primary sequence alone, 

and 2) additionally employing phylogenetic conservation. Most methods acknowledge the 

importance of hairpin or stem loop structures and employ various methods for the prediction of 

RNA secondary structure. Machine learning has been employed in both categories with 

classification being the predominant method. In most cases, positive and negative examples are 

necessary for performing classification. Since it is currently elusive to experimentally determine 

all possible miRNAs for an organism, true negative examples are hard to come by and therefore 

the accuracy assessment of algorithms is hampered. In this chapter, first RNA secondary 

structure prediction is introduced since it provides a basis for miRNA prediction. This is 

followed by an assessment of homology and then ab initio miRNA prediction methods. 

1. Introduction 

Non coding RNAs (ncRNA) represent a large portion of the transcriptome and have recently 

received much attention (1) although the term ncRNA may not have been chosen well since 

many so called ncRNAs also lead to mRNAs (2). These ncRNAs have been grouped into 

families (3, 4) one of which, microRNAs, is the focus of this book. MiRNAs can originate from 

any part of a genome (5) and can lead to silencing of transcripts originating from anywhere in the 

genome. MiRNA genes' presence or their effects have been shown in many species and even 

viruses make use of miRNAs to regulate host and virus encoded genes (6).  



There are at least two computational challenges: 1) the prediction of miRNAs in a genome and 2) 

the mapping of the miRNAs to likely targets. This chapter focuses on the prediction of miRNAs 

within a genome. Computational miRNA gene prediction can be grouped into several 

approaches. Generally, either homology modeling or machine learning is applied to extract likely 

miRNAs from a genome. Although homology modeling can glean information from already 

successfully established miRNAs from a related organism's genome, it is also limited since 

completely novel miRNAs cannot be determined in this way. Furthermore, miRNAs evolve 

quickly and very close homology is thus needed for successful miRNA gene prediction (7). 

Another approach, machine learning, is hampered in a similar manner but assumes that the 

examples for learning are derived from the organism in question. In the following, first miRNA 

gene prediction will be further explored followed by a brief discussion of RNA secondary 

structure prediction, a process vital to all approaches in miRNA gene prediction. Then 

homology-based miRNA gene prediction and ab initio gene prediction will be discussed. 

2. miRNA Gene Prediction 

Identification of miRNA genes is computationally challenging since a genome can be divided 

into millions of putative miRNAs of appropriate sequence length (e.g.: 80--200 nucleotides for 

pre-MiRNAs). Folding all these sequences in silico increases the complexity and may only be 

practical for small genomes. Furthermore, many hairpin structures can be found in the 

predictions and will thus lead to an abundance of putative miRNAs many of which may 

represent false positive results. An inherent problem to the experimental validation of miRNAs 

occurs because their expression may only happen in response to specific signals or at certain 

developmental stages (8). See chapters 13 and 14 in this volume or Bentwich 2005 for more 



details on miRNA gene validation (9). In order to decrease the number of false positive results 

many filtering strategies have been developed and will be discussed later in this chapter. Since 

both, homology guided detection algorithms and ab initio miRNA gene prediction algorithms 

rely on the prediction of RNA secondary structure, a number of such tools shall be introduced 

first before the two miRNA gene prediction approaches are discussed in more detail. 

2.1. RNA Secondary Structure Prediction 

Prediction of RNA secondary structure is integral to many algorithms trying to find hairpins, also 

known as stem-loop structures and pre-miRNAs, which may give rise to miRNAs. In general, the 

prediction of secondary structure is much easier for shorter sequences, which means that the 

longer the sequence becomes the more difficult the prediction which is further reflected in 

exponentially increasing algorithm run time. Therefore, most algorithms which use secondary 

structure prediction resort to merely predicting the hairpin structure which is always contained in 

a sequence of less than 500 nucleotides which can successfully be folded in a short time. There 

are a number of algorithms which can be used for RNA secondary structure prediction (Table 1). 

The table is sorted by usage statistics not by successfulness of the algorithm. A recent paper has 

shown, however, that in the realm of predicting the secondary structure of short nucleotide 

sequences RNAfold seems to be most successful (10). 

For both methods, the homology-based prediction of miRNA genes and their ab initio prediction, 

RNA structure prediction is vital. One feature of miRNAs is the stem loop structure which seems 

to be important for processing of the pre-miRNA into a mature miRNA with Drosha and Dicer. 

The homology-based prediction of miRNA genes is inherently simpler than their ab initio 

prediction and shall thus be discussed first. 



2.2. Homology-Based miRNA Gene Prediction 

In contrast to ab initio gene prediction where miRNA genes need to be found without additional 

knowledge, homology-based mapping methods can build on available and experimentally 

validated miRNAs and find similar structures and sequences in related species. 

All software that enable mapping of a known miRNAs to homologous genomes take sequence 

similarity as well as RNA secondary structure into account (Table 2). The assumption is that a 

mature miRNA derives from a hairpin structure formed by folding its pre-miRNA. The approach 

taken by one of the most recent developments, MapMi (21), first scans the miRNA sequences 

against the target genome and then creates two potential pre-miRNAs from it. The ViennaRNA 

package (13) is used to fold the extracted RNA sequences. Finally, the results are scored, ranked 

and displayed. Both a web service with rich display facilities and a downloadable, local, version 

are freely available for this program which as the authors report achieves 92% sensitivity at 98% 

specificity.  

Although mapping by homology is a straightforward approach, it can only reproduce results and 

cannot find new miRNA genes. Since many miRNAs are species specific these will always be 

missed by this method and therefore other strategies need to be used in tandem. Additionally, 

miRNA genes evolve very rapidly which further limits the applicability of homology-based 

methods (37, 38). 

A recent study by Keshavan and colleagues pointed out that it is important to make sanity checks 

when constructing a computational pipeline for miRNA gene detection since in their case the 

temperature at which Ciona intestinalis operates is only 18 degrees Celsius while most folding 



programs default to 37 degrees Celsius (39). They were able to confirm about half of their 

predictions by either microarray analysis or by the fact that the predicted hairpins were already in 

other databases.  

The two aforementioned studies are just a small selection of the large amount of available studies 

but the following section aims to briefly summarize common approaches among different 

studies. 

2.2.1. Methods Used in Homology-Based miRNA Detection 

There are many ways to detect and filter hairpin structures and miRNAs. The list below is 

separated into two sections, the first one showing methods for hairpin/ miRNA detection and the 

second one listing methods used to filter/remove false positive identifications. The methods 

below are a non-comprehensive list and some methods may not be used synergistically while 

others can be combined. In general any algorithm used for homology detection of hairpins or 

miRNAs uses a combination of some of the methods in the list but no algorithm has been 

proposed that integrates most of the detection and filtering methods below. 

 Methods for initially detecting miRNAs 

 Difference in evolutionary conservation  

o coding arm, non-coding arm, seed region 

o loop, stem flanking regions 

o effect on secondary structure 

 Scanning for hairpin structures conserved in closely related species 

o Sliding window (70--110), folding sequences for each window 



o Level of expected similarity can be adjusted 

 Windows with high sequence conservation (sometimes higher than for coding sequences) 

flanked by windows with high sequence variation 

 Homology of the miRNA targets among genomes 

Since studies have shown that excessive number of conserved hairpin structures can be found 

(40), additional criteria for their filtering need to be established, some of which are listed below. 

 

 Methods for filtering detected hairpins 

 Varying level of sequence conservation within stem structure 

 Using general properties of hairpin structures that can be learned from examples 

 Repetitively detected structures are generally discarded 

 Minimum free energy 

 Length of stem loop structure 

 If matching to certain annotation of a genome (e. g.: coding sequence) the detections may 

be discarded 

 Base composition 

 MiRNA gene clustering 

 Upstream and downstream conserved regions surrounding miRNA genes 

 Sequence entropy 

 Identity with a multiple sequence alignment 

 Position of mature sequence within hairpin structure 



 Maximal internal loop and bulge sizes 

 EST sequences can confirm that sequences are transcribed 

 Text mining 

2.2.2. Accuracy of Homology-Based miRNA Prediction 

MirScan (27) has been applied to Caenorhabditis elegans and the predictions were validated 

experimentally setting the sensitivity to 0.50 at a specificity of 0.70 (27). The same study has 

also shown that many miRNAs are present at high levels, between 1000 and 50000 molecules 

per cell. Another study which also validated the predictions experimentally, studied the 

conservation among ten primate species and found that sequences representing stem loops are 

conserved whereas flanking regions and loop region are highly variable (30). The sensitivity of 

the method was reported at 0.83 but the specificity was not given. It may be rather low due to 

their prediction of 976 putative miRNAs where 179 were confirmed in miRNA databases and 

only 16 out of 69 predicted miRNAs have been confirmed via Northern Blot analysis. A study 

using two Drosophila species had a similar sensitivity (0.75) to the other studies presented above, 

but no value for the specificity was presented. 24 new miRNAs were, however, confirmed by 

Northern blotting (40). Huang and colleagues presented MirFinder which on their training and 

test set achieved an accuracy of 99.6% and had an area under the receiver operator characteristic 

(ROC) curve of almost 1 (41). They compared their ROC curve to those from other studies but 

this may be at best be misleading due to the usage of completely different training and test 

datasets. Artzi and colleagues set their filter specificity to 95%; they estimated the sensitivity of 

their algorithm at 88% (85% - 94% on seven mammalian species) (23). The content of the 

miROrtho database has been constructed with a hairpin prediction accuracy of 95%, yielding a 



sensitivity of 84% at 97% specificity (24). They then filtered these hairpins by homology with an 

independent accuracy of 91%, but they do not report the overall accuracy measures. MapMi 

reports a sensitivity of 92% at a specificity of 98%. Wang and colleagues did not explicitly 

report on the accuracy of their algorithm but were able to confirm 67% of their predicted 

miRNAs by Northern blotting (33). 

That the reported accuracies have to be viewed critically can be seen in a study by Leung and 

colleagues who found quite different sensitivities for ProMirII and miR-abela then the ones 

reported in their respective publications (21). They also report that they were able to increase the 

positive prediction value by more than 15% at high sensitivity. Since all accuracy measures 

reported above are derived from different studies, using different datasets, they are not integrated 

into a table for easy comparison since that would be misleading. In fact, the measures reported 

above can hardly be compared and are most likely highly optimistic. A study independently 

comparing these measures objectively needs yet to be done. Experimental validation may seem 

to actually proof the existence and effect of a miRNA but the opposite is not true so that these 

approaches can only be used to confirm the existence but never to prove the absence of a 

miRNA.  

Two examples of algorithms for homology-based miRNA gene prediction will be presented as 

anecdotes in the next section. 

2.2.3. Selected Examples Performing Homology-Based miRNA Gene Detection 



Due to the large number of available miRNA gene prediction algorithms only the most cited one, 

MiRscan (27), and ProMiR II (29) will be discussed in some more detail followed by a more 

general statement about prediction accuracy.  

 ProMiR II 

ProMiR was first introduced in 2005 as an algorithm that simultaneously considers structure and 

sequences of pre-miRNAs (42). A machine learning approach was used with positive examples 

from known human miRNAs and negative examples extracted quasi-randomly from the human 

genome. Their hidden Markov model includes both sequence and structure and predicts for each 

element of the sequence whether it is part of a pre-miRNA or not. The predicted pre-miRNAs are 

then further evaluated in regards to their minimum free energy and their conservation among 

vertebrates.  

ProMiR II extends ProMiR by adding knowledge about miRNA gene clustering, G/C ratio 

conservation, and entropy of candidate sequences (29). Another improvement of ProMiR II is 

that different criteria are now implemented in modules making the approach very extensible. In 

addition to that, several databases are integrated into the analysis without need for user 

intervention. ProMiR II is a web server available at: 

http://cbit.snu.ac.kr/~ProMiR2/introduction.html. No values for specificity and sensitivity are 

reported but the provided ROC curve seems to have an area under the curve somewhere between 

80% and 95% which is similar to other algorithms (see Table 2). 

 MiRscan II 



MiRscan was first introduced in 2003 to find miRNA genes conserved between two species (27). 

Initially, a screen for hairpin structures conserved between two genomes is performed; afterward 

the hairpin structures are evaluated in respect to their features. Among these features, which are 

used to discriminate between true and false miRNA genes, are stringent base pairing in the 

miRNA:mRNA target duplex seed region, less stringent base pairing in the remaining structure, 

sequence bias in the first 5 bases, loop symmetry, and bulges.  

MiRscan II (28) extends MiRscan by including the genomic sequence upstream of the miRNA 

gene into the analysis algorithm. In addition to general conservation for the miRNA gene 

flanking regions, at about 200 bp a conserved motif was observed. These findings and orthology 

of host genes for intronic RNA were incorporated into the new program. The new version 

supersedes MiRScan and is the one referenced on the web server 

(http://genes.mit.edu/burgelab/MiRscanII/). 

2.3. Ab initio miRNA Gene Prediction 

Ab initio miRNA gene prediction needs no other information than the primary sequence in order 

to determine whether it is a true miRNA. Two possible modes of operation are possible with one 

using multiple sequences and the other based on single sequences.  

2.3.1. Multiple Sequence Based miRNA Gene Prediction 

RNAmicro is an SVM-based classifier that enables detection of hairpin structures in multiple 

sequence alignments (43). The approach tries to balance sensitivity and specificity unlike most 

other approaches in miRNA detection which try to minimize the number of false positives. In 

their initial tests they achieved a sensitivity of 91% at a specificity of 99% which as they point 



out cannot be achieved in a real dataset due to limitations of RNAz which places an optimistic 

upper bound of 80% sensitivity at 99% specificity on experiments with real data. 

2.3.2. Single Sequence Based miRNA Gene Prediction 

One important field of research is the detection of novel miRNA genes. While there are 

experimental methods (see chapters 1-3 and 6 in this volume) to perform this task like forward 

genetic screens and identification in small RNA libraries (44) as well as deep sequencing 

methods (45); also refer to (46) for approaches to identify ncRNAs (47). These methods are 

either time consuming, inefficient, or expensive. Therefore, it is necessary to also develop 

computational methods to predict miRNA genes that can be used in tandem with experimental 

strategies. Some of the current approaches are listed in Table 3. In general a mature miRNA 

should be derived from the stem part of a short hairpin RNA (shRNA) which should form a large 

number of Watson-Crick pairs and few internal loops and bulges (cf. Figure 1). Other criteria 

are, for instance, that the mature miRNA is conserved in closely related species (see Homology-

based miRNA gene prediction). Presence of Drosha and Dicer in the organism and accumulation 

of relevant product in deficient mutants is an experimental validation for a miRNA. 

Thermodynamic stability of hairpins and similarity to known miRNAs can also serve as 

supporting evidence when predicting new miRNAs. This can, for example, be done by defining 

features of known miRNAs and training a classifier such as a support vector machine (SVM). 

Clustering of miRNA genes in a genomic locus can further support the validity of miRNA genes 

(48).  



 

Figure 1: The primary sequence for this hairpin was manually designed such that the selected elements were guaranteed to be 
present in one hairpin. The sequence was folded using RNAShapes. 

In a more systems driven approach the predicted mature miRNAs can be validated further by 

looking for targets in, for example 3’UTRs, and by evaluating the multiplicity of targets per 

miRNA and target sites per regulated mRNA (see chapters 12-14 in this volume). The non-

comprehensive list of miRNA gene prediction programs and web servers in Table 3 contains 

algorithms using different strategies which are summarized in the following section for single 

sequence miRNA gene prediction. 

 Methods Used in Single Sequence Based miRNA Gene Prediction 

 Proximity to known miRNA genes since miRNAs sometimes reside in clusters 



 Varying level of sequence conservation within stem structure 

 Using general properties of hairpin structures that can be learned from examples 

 Minimum free energy threshold 

 Length of stem loop structure threshold 

 Base composition 

 Local contiguous substructures paired with central sequence information of the 

substructure 

 P-value derived from the predicted structure compared with randomized structures of the 

same sequence 

 Filtering Strategies 

Obviously, it would be beneficial to include as much information as possible for discriminating 

false positive identification to increase prediction accuracy although the use of too many 

parameters can lead to over-training (see chapters 7 and 10 in this volume). For instance, 

sequence, structure and homology information can be used in tandem. Some of the information 

that can be used to distinguish true from false positive miRNA gene predictions are given below: 

 miRNA genes are small noncoding genes (<150 nt) 

o miRNA length 

 varies between plants and animals 

 originates from pre-miRNA (80--120 nt) 

o forms a characteristic hairpin structure 

o low free energy 

o sequence composition 



 G/C composition varies between plants and animals 

 sequence conservation by homology 

o sequence 

 different for plants and animals 

o stem loop structure 

 varies between plants and animals 

 Clustering of multiple miRNAs in a genome locus 

 Each miRNA needs a target with sufficient complementarity 

 Location of miRNA and target 

o Origin (intron, exon, intergenic) 

o Target (exon, 3’UTR) 

 Methods for filtering detected hairpins 

Whether a computationally detected hairpin is truly interesting and whether it affords spending 

time and money on follow-up experimental research is not always clear. Some filtering can be 

performed to narrow down the number of putative miRNAs to an amount that suitable for budget 

and time constraints. 

 Varying level of sequence conservation within stem structure (for homology-based 

predictions or post filtering for ab initio approaches) 

 Using general properties of hairpin structures that can be learned from examples 

 Repetitively detected structures are generally discarded 

 Minimum free energy threshold filtering 

 Length of stem loop structure threshold filtering 



 If matching to certain annotation of a genome (e. g.: coding sequence) the detections may 

be discarded 

 Base composition 

 miRNA gene clustering 

 upstream motif about 200 nucleotides before miRNA genes 

 Text mining 

Other information that could be included is, for example, the existence of a cap and a poly-A tail 

for pri-miRNAs that are often found in experimentally validated miRNAs. 

Although the annotation of the genomic region has been used for filtering, it is clear that 

miRNAs can come from any region of a genome (5) and this filtering can thus only be used for 

reducing computational complexity and not for a biological valid reason. 

 Selected Examples Performing ab initio miRNA Gene Prediction  

Due to the large number of available miRNA gene prediction algorithms only, two of them, miR-

abela (3) and MiPred (53) will be discussed in some more detail followed by a more general 

statement about prediction accuracy.  

 MiR-abela 

The approach for ab initio prediction of miRNAs by Sewer et al. assumes that miRNAs cluster 

and that they may be co-transcribed (3). Therefore, they restrict the search of novel miRNAs to 

areas having close proximity to already known miRNAs. For determining miRNAs, they first 

check for robust stem loop structures in the area around known miRNAs because they state that 

the structure is important for recognition and processing by Drosha and Dicer. For this, the 



similarity to known stem loops is calculated using a support vector machine based on weighted 

sequence and structural features. Overall they describe 40 features for pre-miRNA determination 

with 16 features describing stem loop structures, 10 features for symmetrical regions of a stem 

loop, 11 features with relaxed symmetry constraints and 3 features in respect to mature miRNA 

sized portions of a hairpin. 

When using their method to predict hairpins in the proximity of known hairpins from the Rfam 

database in human, mouse, and rat, they were able to achieve a sensitivity of about 89% for their 

hairpin detection in these species for their artificial negative examples they achieved a false 

negative discovery rate of 29%, a sensitivity of 71% with only 3% false positives. 

 MiPred 

Ng and Mishra proposed an SVM based ab initio prediction method for finding miRNAs in 2007 

(53). In this study, 29 features have been employed to describe a hairpin at the di-nucleotide, 

folding, thermodynamic, and topological levels. Ng and Mishra trained the classifier on human 

pre-miRNAs and later used the model to predict miRNAs for human with high sensitivity and 

specificity. When they used the same model to test the generalization ability of miPred, an 

average sensitivity of 88% at an average specificity of 98% on a variety of species was achieved. 

They also compared their method with other existing predictors and found that their method and 

RNAmicro (43) perform similar, both outperforming the other tools tested, by large. While 

RNAmicro employs multiple sequences for the prediction, miPred only uses a single sequence 

which makes these programs not directly comparable. Thus, according to the authors, miPred is 

the most successful quasi ab initio miRNA predictor for single sequences among the methods 

tested in their assessment. 



 Accuracy of miRNA Gene Prediction 

It is hard to assess the specificity and sensitivity of algorithms in the absence of at least one fully 

annotated genome therefore this section does not compare the accuracy of existing algorithms. 

The reported values from different publications are listed but the reader should be aware of the 

fact that these values cannot be compared and may even be misleading (cf. Accuracy of 

Homology-Based miRNA Detection Section). 

NovoMir, software for plant miRNA gene prediction, achieved a sensitivity of 80% at a 

specificity of 99% (54). MiRenSVM an algorithm combining three SVM achieved a sensitivity 

of 93% at a specificity of 97% (50). 

Xue and colleagues trained an SVM to distinguish between real and pseudo pre-miRNAs which 

achieved about 90% accuracy within human, from which the training data were derived, but 

interestingly also achieved high accuracies of up to 90% in other species (51). On human data 

they achieved a sensitivity of about 93% at a specificity of about 88%. 

A study by Jiang and colleagues (52) which reused the same approach as Xue and colleagues 

(51), but added P-value and minimum free energy to the classification parameters and also used 

Random Forrest, a different classification algorithm, achieved a sensitivity of 95% at a 

specificity of 98%.  

A recent study by Zeller and coworkers first extracted all shRNAs from the Ciona intestinalis 

genome filtered the results by structure/sequence conservation, homology to known microRNAs, 

and phylgenetic footprinting. For all 458 putative miRNAs predicted in this way a microarray 



was designed (39). They were able to identify 100 of these using the microarray and 170 as 

homologous in the small RNA database for C. intestinalis (57). 

Many algorithms for miRNA gene prediction are based on machine learning strategies. In 

general, these algorithms need a sufficient number of positive as well as negative examples. 

Although many miRNA genes seem to be unique in any organism, positive training examples 

can easily be found, whereas negative examples are hard to come by. They are also difficult to be 

established experimentally since an mRNA needs to be expressed in order to be affected by a 

miRNA which may only be possible in some specific developmental stadium. Some negative 

examples that were picked in studies like mRNA sequences (3) are dubious since to our current 

knowledge miRNAs can originate from any part of an mRNA. Therefore, one class classifiers 

which do not need negative examples may be of help in the future (58).  

Without an encompassing knowledge of miRNA genesis only a systems approach can increase 

the accuracy of current methods. To the best of my knowledge, there is no existing systems 

approach that evaluates all initially introduced descriptors and discriminators for miRNA genes 

and further validates them with additional discriminating information such as transcription factor 

binding sites, expression assays using microarrays and many other more. Usage of several of 

these features in tandem is obligatory since when scanning the genome for putative miRNAs the 

number is enormous thus it needs to be strictly scrutinized. 

3. Methods for Filtering of Predicted miRNAs 

Rfam is a database grouping non coding RNAs, from over 200 complete genome sequences, into 

families aiming to facilitate the identification and classification of new non coding RNA 



sequences (4, 59). This resource can help assessing whether a predicted miRNA actually fits to 

the miRNA family and thus aid in deciding whether it should be retained or removed from the 

predictions. Further databases such as UCbase (60) and others, can provide supporting 

information for confirmation of potential miRNAs. 

Our recent assessments of miRBase, however, contradicts the above statement since we found 

many sequences which were labeled as miRNA but obviously must use a different mechanism 

since they do not fit to the current definition of miRNAs and their genesis or to the proposed 

processing pathway via Drosha, Dicer and RISC (Saçar, Hamzeiy, and Allmer, submitted). 

4. Conclusion 

Today's databases contain many miRNAs but at least one study suggests that these miRNAs may 

only represent abundant variants (40) another study found that the miRNAs, they were able to 

confirm experimentally, also turned out to be quite abundant (27), somewhat confirming the 

previous suggestion. Therefore, there is a large need for ab initio prediction of miRNAs in 

addition to homology detection. Ab initio prediction of genes has been discussed in this chapter 

but despite many approaches (Table 3) there is no user friendly software which would allow the 

ab initio prediction of miRNAs from sequences. 

5. Outlook 

Future miRNA gene prediction approaches should take a system approach and evaluate all parts 

of the system here, for instance, miRNA genesis and miRNA targeting at the same time. This can 

raise the confidence in individual predictions and reduce the number of false predictions (61, 62). 



They could further include text mining (63), gene ontologies and networks (64), promoter 

sequences (65),  

Integrative approaches like MMIA (62), which uses multiple miRNA target prediction 

algorithms in parallel, will also enhance prediction coverage and accuracy in the future. 

Besides miRNAs, very similar structures adjacent to them, termed moRs, have been shown to 

induce gene silencing (57) which shows that we have not yet seen all biological regulatory 

options. 

Strategies that make use of experimental data, such as deep sequencing data, for miRNA 

prediction (66) will in the future be more abundant and likely lead to detection of new miRNAs 

which do not closely resemble currently known miRNAs. 

Other new findings, like spliced miRNAs (55), may be found in the future, further complicating 

the already complex prediction of miRNAs. 
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8. Tables 

Table 1: Non comprehensive list of programs predicting the secondary structure from primary 

RNA sequence. The rows are sorted decreasingly by average citation count per year. 

Name Summary Systems Availability Referenc

e 

Dynalign Aligns two nucleotide 

sequences and predicts 

their common 

structure. 

ANSI C++ code, 

Part of RNAstrucuture 

(MS Windows) 

rna.chem.roche

ster.edu, 

Open Source 

(11) 

Unnamed Predicts RNA 

secondary structure 

using covariational and 

free energy methods. 

- - (12) 

RNAfold Predicts RNA 

secondary structure 

using minimum free 

energy. 

Web service, 

local installation 

http://rna.tbi.un

ivie.ac.at/cgi-

bin/RNAfold.c

gi 

(13) 

RNAHybr Finds the minimum 

free energy 

Web service, 

limited local 

http://bibiserv.t

echfak.uni-

(14) 



id hybridization of two 

RNAs 

installation bielefeld.de/rna

hybrid/ 

RNAStruc

ture 

Determines secondary 

structure using 

dynamic programming 

with free energy 

minimization 

MS Windows, C++ rna.chem.roche

ster.edu 

(15) 

mfold Determines secondary 

structure using 

dynamic programming 

with free energy 

minimization 

Fortran, C, UNIX www.ibc.wustl.

edu/~zuker/rna/

form1.cgi 

(16) 

RNADista

nce 

Calculates the distance 

among structures based 

on string editing and 

base pair distance. 

Local installation http://www.tbi.

univie.ac.at/~iv

o/RNA/man/R

NAdistance.ht

ml 

(17) 

ViennaRN

A 

Unified access to 

various RNA tools of 

Web service, 

Software package 

rna.tbi.univie.a

c.at 

(13) 



the Vienna package 

taveRNA A package containing 

secondary structure 

prediction, RNA-RNA 

interaction, and a 

database pruning 

algorithm. 

Web service compbio.cs.sfu.

ca/taverna 

(18) 

RNAShap

es 

Predicts secondary 

structure by evaluating 

promising shapes with 

Boltzman probabilities. 

Web service, local 

installation 

http://bibiserv.t

echfak.uni-

bielefeld.de/rap

idshapes/submi

ssion.html 

(19) 

UNAFold Simulates folding, 

hybridization, and 

melting pathways for 

up to two sequences  

Local installation http://mfold.rna

.albany.edu/ 

(20) 

 

 



Table 2: Non-comprehensive selection of software that allows homology mapping of miRNAs to 

the source genome or to related species. The rows are sorted decreasingly by average citation 

count per year. 

Name Summary Clade URI Referen

ce 

MicroHarves

ter 

BLAST search for 

candidates filtered by 

structural features specific 

to plant miRNAs  

Plant http://www-

ab.informatik.uni-

tuebingen.de/brisbane/tb/i

ndex.php?view=microhar

vester2 

(22) 

miRNAmine

r 

BLAST search for 

homologs with filtering by 

minimum free energy and 

alignment conservation 

Animal http://groups.csail.mit.ed

u/pag/mirnaminer/ 

(23) 

miROrtho Homology extended 

alignments of known 

miRBase families and 

putative miRNA families 

using SVM and orthology 

Animal http://cegg.unige.ch/miro

rtho 

(24) 



CoGemiR Sequence similarity and 

secondary structure 

analysis similar to 

miRNAminer but with a 

larger number of species 

Animal http://cogemir.tigem.it/ (25) 

MapMi Maps miRNAs within 

species and across species 

using sequence homology 

and structure 

Any http://www.ebi.ac.uk/enri

ght-srv/MapMi/ 

(26) 

MiRscan Trained on examples 

conserved between two 

closely related species 

derived from a fold-first 

find-homologs later 

strategy 

Worms http://genes.mit.edu/mirs

can/ 

(27) 

MiRscanII Supersedes MiRscan, adds 

conservation of miRNA 

gene flanking regions and 

a conserved motif 

Worms http://genes.mit.edu/burg

elab/MiRscanII/ 

(28) 



ProMiR II Integrative approach using 

several databases and 

criteria as well as several 

custom modules 

Animal http://cbit.snu.ac.kr/~Pro

MiR2/introduction.html 

(29) 

unnamed Homologous miRNA 

genes among primates 

used to determine general 

characteristics of miRNA 

genes in vertebrates 

Vertebrat

es 

Not associated website 

allowing phylogenetic 

shadowing:  

http://eshadow.dcode.org/ 

(30) 

MiRFinder Based on pairwise genome 

searches for shRNA using 

SVM for filtering, 

introduces mutation model 

for hairpins 

Any http://www.bioinformatic

s.org/mirfinder/ 

(31) 

Unnamed Homology between 

Arabidopsis and Oryza; 

approach also takes target 

information into account 

Plant - (32) 

Unnamed Homology between Plant - (33) 



Arabidopsis and Oryza; 

approach also takes target 

information into account 

Unnamed Exploit clustering of 

miRNAs to filter miRNA 

predictions 

Mammal

s 

- (21) 

Unnamed GSS, EST versus known 

miRNAs and proteins with 

subsequent feature based 

filtering 

Plant - (34) 

RNAz Detects 

thermodynamically stable 

and evolutionarily 

conserved ncRNA 

secondary structures in 

MSA 

Any http://rna.tbi.univie.ac.at/

cgi-bin/RNAz.cgi 

(35) 

QRNA Uses comparative genome 

sequence analysis to detect 

conserved ncRNA 

Any http://selab.janelia.org/so

ftware.html 

(36) 



secondary structures 

 

 

 

Table 3: Non-comprehensive list of software that allows the ab initio prediction of miRNA 

genes. Rows are sorted by number of citations. 

Program Summary Clade URL Reference

miRseeke

r 

First homologous miRNA gene 

fishing then structure and 

nucleotide sequence divergence 

filtering 

flies Not functional: 

http://www.fruitfly.or

g/seq_tools/miRseeke

r.html 

(40) 

PalGrade Hairpin structural and sequence 

characteristics model with 

subsequent experimental 

validation 

huma

n 

- (49) 

Dynalign Finds ncRNAs by optimizing total 

free energy between RNA 

sequences, alternative fast SVM 

Any http://rna.urmc.roches

ter.edu/dynalign.html 

(11) 



classification 

MiRenSV

M 

Employs multiple targeted SVM 

to model different types of 

miRNAs 

Any - (50) 

MiR-

abela 

Assumes miRNA gene clustering 

and searches for new genes in 

proximity of known genes 

Huma

n, 

mouse

, rat 

http://www.mirz.unib

as.ch/cgi/pred_miRN

A_genes.cgi 

(3) 

Triplet-

SVM 

Forms structure sequence triplets 

from hairpins and classifies them 

using a SVM 

Any http://bioinfo.au.tsing

hua.edu.cn/mirnasvm/ 

(51) 

RNAmicr

o 

First structure of shRNAs (RNAz) 

then SVM filtering of MSAs 

Any http://www.tbi.univie.

ac.at/~jana/software/

RNAmicro.html 

(43) 

miPred Introduces a new machine 

learning approach, random forest, 

and improves upon Triplet-SVM 

Any http://www.bioinf.seu

.edu.cn/miRNA/ 

(52) 



miPred Uses SVM classification without 

homology and defines 29 

parameters to describe hairpin 

structures 

Any Not functional: 

http://web.bii.a-

star.edu.sg/~stanley/P

ublications 

(53) 

NovoMir Uses a series of filter steps and 

statistical models to determine 

pre-miRNAs in a plant genome. 

Plant www.biophys.uni-

duesseldorf.de/~teune

/Data/novomir-2010-

10-10.tgz 

(54) 

SplamiR Predicts miRNAs which derive 

from spliced transcripts. 

Plant www.uni-

jena.de/SplamiR.html 

(55) 

MiRPara Predicts miRNAs from high 

throughput sequencing data using 

a SVM. 

Any www.whiov.ac.cn/bio

informatics/mirpara 

(56) 
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