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The problem of motion of the vortices around an oscillating cylinder in the presence of a uniform
flow is considered. The Hamiltonian for vortex motion for the case with no uniform flow and
stationary cylinder is constructed, reduced, and constant Hamiltonian �energy� curves are plotted
when the system is shown to be integrable according to Liouville. By adding uniform flow to the
system and by allowing the cylinder to vibrate, we model the natural vibration of the cylinder in the
flow field, which has applications in ocean engineering involving tethers or pipelines in a flow field.
We conclude that in the chaotic case forces on the cylinder may be considerably larger than those
on the integrable case depending on the initial positions of vortices and that complex phenomena
such as chaotic capture and escape occur when the initial positions lie in a certain region.
© 2010 American Institute of Physics. �doi:10.1063/1.3497915�

The investigation of point vortices in domains with
boundaries is a popular research area with possible ap-
plications in engineering and physics such as the interac-
tion of tension leg platforms or semisubmersibles with
vortices in a uniform flow field. Integrable and chaotic
cases of vortex motion are investigated in this paper.
Chaotic motion of vortices is not only interesting in its
own right but also it has some practical consequences
such as causing increase on forces acting on the cylinder.
Integrability in dynamical systems is very rare. Even if
the system is integrable, it is not an easy task to reduce
the system to lower dimensions. In this study, we find an
integrable system of vortices and reduce it to two space
dimensions and plot the constant Hamiltonian curves.

I. INTRODUCTION

We consider two different problems: the problem of fluid
advection excited by two vortices and a uniform flow in the
presence of a cylinder and the problem of motion of the
vortices around the cylinder where a perturbation of the cyl-
inder is also considered. Milne–Thomson’s circle theorem1 is
used to determine the flow field. In the fluid advection prob-
lem forces are calculated by the Blasius theorem. The effect
of the independent circulation around the cylinder on force is
investigated.

The Hamiltonian for vortex motion is constructed, re-
duced, and constant Hamiltonian �energy� curves are plotted
when the system is shown to be integrable according to
Liouville. By adding uniform flow to the system and by al-
lowing the cylinder to vibrate, we model the natural vibra-
tion of the cylinder in the flow field, which has applications
in ocean engineering involving tethers or pipelines in a flow
field.

In this paper we consider several cases involving vorti-
ces, uniform flow, a cylinder, and an oscillatory perturbation

to the cylinder. In all cases first we deal with the fluid motion
problem excited by the vortices and the uniform flow and
then we consider the vortex motion problem. First we study
the case of a stationary cylinder and two vortices and we see
that the motion of vortices in this case is integrable when the
vortices have equal strength. In the second case where a
uniform flow is added to the system of two vortices and a
cylinder, the symmetry is destroyed by the uniform flow and
the motion of vortices is probably not integrable. The last
case we consider involves the oscillatory perturbation of the
cylinder, uniform flow, and vortices, and this case has appli-
cations in vortex induced oscillations of tethers. We demon-
strate that chaos exist for certain parameter values and this
results in higher forces exerted by the fluid on the cylinder.

In most vortex induced vibration problems,2–4 numerical
and semianalytical techniques have been used to estimate
stability, modes of oscillations, displacement, and vortex
forces. The hydrodynamic interaction between vortices and
an oscillating cylinder in the presence of a uniform flow will
be considered and it may be used in understanding vortex
induced vibration problems.

Hydrodynamic interaction problem has been studied by
many authors in connection with free surface waves and sur-
face piercing vertical cylinders �see, for example, Refs. 5 and
6�. The basic idea behind these studies is that incoming
waves can be decomposed into modes and diffracted waves
from cylinders can be related to these modes and then the
interaction takes place when we relate the coordinate systems
at the center of each cylinder by using addition theorems. A
similar idea was used by Pashaev and Yilmaz7 to find the
interaction between cylinders and a vortex in the two-
dimensional plane. There are other methods such as Abelian
function theory and conformal mapping techniques used in
solving vortex body interaction problems �see Refs. 8–11�.

To the best knowledge of authors, there are no results in
the literature studying two vortices in the presence of a uni-
form flow and a vibrating cylinder. It is known that in un-
bounded plane, the motion of three vortices is integrable12
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and the motion of four vortices is integrable for special ar-
rangements of vortices.13–15 Vortices in annular regions have
also been investigated by many authors. Johnson and
McDonald16 solved the problem in terms of elliptic func-
tions. Analysis of the same problem by the method of images
in terms of the q-calculus has been examined by Pashaev and
Yilmaz.8 Advection problem of a point vortex in closed do-
mains has been studied by Zannetti and Franzese.17 They use
canonical transformations to eliminate the time dependence
of the Hamiltonian.

II. FLUID ADVECTION AND FORCES
ON THE CYLINDER

Since the problems we consider are on the two-
dimensional plane, we shall frequently make use of the
theory of complex analytic functions. Also, Milne–
Thomson’s1 circle theorem will be very useful when we con-
sider a single cylinder. We rewrite the circle theorem for the
convenience of the reader.

Theorem 1: Milne–Thomson circle theorem. Let there
be irrotational two-dimensional flow of incompressible invis-
cid fluid in the z-plane. Let there be no rigid boundaries and
let the complex potential of the flow be f�z� , where the
singularities of f�z� are all at a distance greater than a from
the origin. If a circular cylinder, typified by its cross-section
the circle C , �z�=a , be introduced into the field of flow, the
complex potential becomes

� = f�z� + f�a2

z̄
� = f�z� + f̄�a2

z
� ,

with (i) the same singularities as f�z� in �z��a and (ii)
�z�=a as a streamline.

The proof is easy once we notice that on the cylinder the
complex potential becomes real so that the circle is a stream-
line.

We formulate the problem of two vortices, a uniform
flow, and a stationary cylinders in unbounded two-
dimensional domain. In what follows z denotes the complex
variable x+ iy. We assume that a cylinder of radius a is
placed at the origin in an unbounded two-dimensional fluid
domain where two point vortices with strengths �1, �2 are
located outside the cylinder at points z01, z02, respectively.
There is a uniform flow with velocity u0 in the negative y
direction at infinity. The complex potential is given by the
circle theorem of Milne–Thomson,1

� = iu0z + i�1 log�z − z01� + i�2 log�z − z02�− iu0
a2

z

− i�1 log�a2

z
− z̄01� − i�2 log�a2

z
− z̄02� . �1�

The first three terms in Eq. �1� are complex potentials of the

two vortices and the uniform flow and the last three terms
represent the effect of the cylinder. It is easy to see that on
the cylinder, the imaginary part of the complex potential, the
stream function, vanishes hence the boundary condition is
satisfied. After some simple manipulations we can rewrite
the complex potential as

� = iu0�z −
a2

z
� + i�1 log�z − z01� − i�1 log�z − z1��

+ i�1 log�z� − i�1 log�− z̄01� + i�2 log�z − z02�

− i�2 log�z − z2�� + i�2 log�z� − i�2 log�− z̄02� , �2�

where z1�=a2 / z̄01 and z2�=a2 / z̄02. We notice that in Eq. �2�
there are two images for each vortex: one at the inverse point
of the vortex with respect to the cylinder, a2 / z̄01, another one
at the origin. While the first image has the negative strength,
the latter has the positive strength.

We should remark that the image vortex at the origin is
not necessary to satisfy the boundary condition, for a vortex
at the center of the cylinder will give only tangential com-
ponent on the boundary of the cylinder. The effect of the
image at the center which has the same strength but opposite
sign to the one at the inverse point is to produce zero circu-
lation about the cylinder. It is possible to generalize the prob-
lem by making the strength of the image at the center differ-
ent from the one at the inverse point and therefore to have
nonzero circulation about the cylinder. However, as we shall
see, zero circulation does not necessarily mean zero force.

The complex velocity is obtained by differentiating
Eq. �2�,

V̄ = iu0�1 +
a2

z2 � +
i�1

z − z01
−

i�1

z − z1�
+

i�1

z
+

i�2

z − z02

−
i�2

z − z2�
+

i�2

z
, �3�

where V̄=d� /dz=u− iv, with u and v being rectangular
components of velocity. Henceforth, we shall work with
complex velocity and avoid dealing with the multivalued
function log. In Fig. 1 the flow field is shown when the two
vortices have the same strength and u0=0. We see that at the
bisector of the line joining the centers of two vortices, there
is a stagnation point. Whereas in Fig. 2 where total strength
of vortices vanishes and u0=0 there are no stagnation points.
Also the force acting on the cylinder is 80 times higher in the
latter case.

Before we calculate the force on the cylinder, we shall
generalize Eq. �3� by making the strength at the center of the
cylinder arbitrary,
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V̄ = iu0�1 +
a2

z2 � +
i�1

z − z01
−

i�1

z − z1�
+

i�0

z
+

i�2

z − z02

−
i�2

z − z2�
. �4�

By Blasius’ theorem, the force on the system is given by

F̄ =
i�

2
	

�z�=a

V̄2dz = 2���1
2� 1

z01 − z1�
� + 2���2

2� 1

z02 − z2�
�

+ 2���1�2� 1

z01 − z2�
+

1

z02 − z1�
� − 2���0� �1

z01
+

�2

z02
�

− 2��u0��1� a2

z01
2 + 1� + �2� a2

z02
2 + 1� − �0� . �5�

Notice that the circulation around the cylinder depends
on the value of �0,

� = 2���1 − �0 + �2� ,

when �0=�1+�2, circulation would be zero, as expected.
We consider two cases: �1� u0=0 and �2� u0�0.

�1� When there is no uniform flow, a simple analysis of Eq.
�5� shows that force on the cylinder becomes zero under
certain conditions; when vortices have the same strength
��1=�2�, are equidistant from the center of the cylinder,
and are placed symmetrically with respect to the center.
Maximum force would occur in the limiting case when
the same-sign vortices collide. Instead of �1=�2, if we
assume that �1=−�2, then �0 must be zero for force to
be zero under the same conditions as before.

�2� However, when there is a uniform flow and �1=�2, force
is never zero. If �1=−�2 then for force to be zero vorti-
ces must be placed symmetrically with respect to the
center of the cylinder and �0=0.

III. MOTION OF VORTICES

We consider the cases with and without uniform flow
separately for two cases have completely different character-
istics. Without uniform flow, there is symmetry in the system
and the vortex motion is integrable. However, with uniform
flow the symmetry is lost and the behavior is chaotic.

A. The case of two vortices and a cylinder

Consider two vortices of strengths �1, �2 at z01, z02 and a
cylinder of radius a at the origin. The complex velocity is
given by

V̄ =
i�1

z − z01
−

i�1

z −
a2

z̄01

+
i�2

z − z02
−

i�2

z −
a2

z̄02

+
i�0

z
. �6�

The motion of vortex at z01 can be found by replacing z by
z01 in Eq. �6�, and omitting the effect of the vortex itself,

dz̄01

dt
=

i�2

z01 − z02
−

i�1z̄01

�z01�2 − a2 −
i�2z̄02

z01z̄02 − a2 +
i�0

z01
.

The motion of vortex at z02 can be found similarly

dz̄02

dt
=

i�1

z02 − z01
−

i�2z̄02

�z02�2 − a2 −
i�1z̄01

z02z̄01 − a2 +
i�0

z02
.

Letting z01=x01+ iy01 and z02=x02+ iy02, we have a system of
four coupled ordinary nonlinear differential equations,
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FIG. 2. Velocity distribution about a cylinder at the origin with two vortices
of vanishing total strength. Velocity vectors are scaled down by the factor of
1.3.
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FIG. 1. Velocity distribution about a cylinder at the origin with two vortices
of unit strength. Velocity vectors are scaled down by the factor of 1.3.
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dx01

dt
=

�2�y01 − y02�
�z01 − z02�2

−
�1y01

�z01�2 − a2

+
�2�a2y02 − y01�z02�2�

�z01z̄02 − a2�2
+

�0y01

�z01�2
, �7�

dy01

dt
= −

�2�x01 − x02�
�z01 − z02�2

+
�1x01

�z01�2 − a2

−
�2�a2x02 − x01�z02�2�

�z01z̄02 − a2�2
−

�0x01

�z01�2
, �8�

dx02

dt
=

�1�y02 − y01�
�z02 − z01�2

−
�2y02

�z02�2 − a2

+
�1�a2y01 − y02�z01�2�

�z02z̄01 − a2�2
+

�0y02

�z02�2
, �9�

dy02

dt
= −

�1�x02 − x01�
�z02 − z01�2

+
�2x02

�z02�2 − a2

−
�1�a2x01 − x02�z01�2�

�z02z̄01 − a2�2
−

�0x02

�z02�2
. �10�

The Hamiltonian of vortex motion easily can be written
down by inspection,

H =
�1�2

2
log��x01 − x02�2 + �y01 − y02�2� −

�1
2

2
log�x01

2 + y01
2

− a2� −
�2

2

2
log�x02

2 + y02
2 − a2� +

�1�0

2
log�x01

2 + y01
2 �

+
�2�0

2
log�x02

2 + y02
2 � −

�1�2

2
log��y01x02 − x01y02�2

+ �y01y02 + x01x02 − a2�2� . �11�

Then it is easy to check that the motion equations can be
derived using the Hamiltonian,

dx0i

dt
=

1

�i

�H

�y0i
,

dy0i

dt
= −

1

�i

�H

�x0i
, i = 1,2.

We know that the Hamiltonian is an integral constant.
We shall show that the angular momentum,

I = 

k=1

2

�kz0kz̄0k,

is also an integral constant. Since

�3 �2 �1 1 2 3
x
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�1

1

2

3

y

FIG. 3. Motion of vortices of unit strength around the cylinder at the origin
with initial vortex starting positions being �1.322 876,0�, �2.061 553,0� and
�0=�1+�2. Continuous and dashed lines denote the trajectories of vortices.
The initial points correspond to the point B in Fig. 5.
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FIG. 4. �a� Motion of vortices with vanishing total strength around the
cylinder at the origin with �0=�1+�2. Initial vortex positions are �1,4� and
��1,4�. �b� Motion of vortices with vanishing total strength around the
cylinder at the origin with �0=�1+�2. Initial positions are �1.07,0� and
�1.04,0�. Continuous and dashed lines denote the trajectories of vortices.
Small solid dots indicate the initial positions of vortices.
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dI

dt
=

d

dt
�


k=1

2

�kz0kz̄0k� = �1�2x01
dx01

dt
+ 2y01

dy01

dt
�

+ �2�2x02
dx02

dt
+ 2y02

dy02

dt
� = 0,

angular momentum is independent of time. The Poisson
bracket of the Hamiltonian and the angular momentum can
be calculated as follows:

�I,H� =
�I

�x01

�H

�y01
−

�I

�y01

�H

�x01
+

�I

�x02

�H

�y02
−

�I

�y02

�H

�x02

= 2�1�2��1 − �2�
x02y01

�z01 − z02�2
+ 2�1�2��2 − �1�

	
x01y02

�z01 − z02�2
+ 2�1�2��1 − �2�

a2x01y02

�z01z̄02 − a2�2

+ 2�1�2��2 − �1�
a2x02y01

�z01z̄02 − a2�2
.

When �1=�2 we obtain that �I ,H�=0 then the Hamiltonian
and the angular momentum are in involution. Hence the sys-
tem is integrable according to Liouville.

Next we consider two numerical examples where
�1= 
�2=1 and a=1, then the motion of vortices are de-
picted in the Figs. 3 and 4. We see that when the vortices
have the same strength, they rotate around each other and
also around the cylinder �Fig. 3�, whereas in the latter case
vortices either translate with a uniform velocity �Fig. 4�a�� or
rotate around the cylinder �Fig. 4�b��.

Since the system is integrable we shall try to reduce the
system from four space variables to two space variables and
then plot the constant Hamiltonian curves which gives infor-
mation about the dynamical system in question. In order to
put the motion equations in the usual Hamiltonian form, we
let pi=
��i�x0isi and qi=
��i�y0i, where si=sign��i�, then we
have

dpi

dt
=

�H�

�qi
,

dqi

dt
= −

�H�

�pi
, i = 1,2,

where

H� =
�1�2

2
log� p1

2 + q1
2

��1�
+

p2
2 + q2

2

��2�
−

2p1p2


��1�2�s1s2

−
2q1q2


��1�2�
� −

�1
2

2
log� p1

2 + q1
2

��1�
− a2� −

�2
2

2
log� p2

2 + q2
2

��2�
− a2�

+
�1�0

2
log� p1

2 + q1
2

��1�
� +

�2�0

2
log� p2

2 + q2
2

��2�
� −

�1�2

2
log�q1

2p2
2 + p1

2q2
2 + q1

2q2
2 + p1

2p2
2

��1�2�
− 2a2� q1q2


��1�2�
+

p1p2


��1�2�s1s2
� + a4� .

Then we employ polar coordinates pi
2+qi

2=2Ri and qi / pi=tan Pi, i=1,2, so the Hamiltonian and the motion equations become

H� =
�1�2

2
log�2R1

��1�
+

2R2

��2�
−

4
R1R2


��1�2�
s1s2 cos�P1 − s1s2P2�� −

�1
2

2
log�2R1

��1�
− a2� −

�2
2

2
log�2R2

��2�
− a2� +

�1�0

2
log�2R1

��1� �
+

�2�0

2
log�2R2

��2� � −
�1�2

2
log�4R1R2

��1�2�
−

4a2
R1R2


��1�2�
s1s2 cos�P1 − s1s2P2� + a4�

and

dRi

dt
=

�H�

�Pi
,

dPi

dt
= −

�H�

�Ri
, i = 1,2.

Finally, with the new set of canonical variables,

Q1�P1,P2� = P1 − s1s2P2, Q2�P1,P2� = s2P2,

G1�R1,R2� = R1, G2�R1,R2� = s1R1 + s2R2,

the Hamiltonian becomes

K =
�1�2

2
log�2G1

��1�
+

2s2�G2 − s1G1�
��2�

−
4s1s2


��1�2�

G1s2�G2 − s1G1� cos Q1� −

�1
2

2
log�2G1

��1�
− a2�

−
�2

2

2
log�2s2�G2 − s1G1�

��2�
− a2� +

�1�0

2
log�2G1

��1� � +
�2�0

2
log�2s2�G2 − s1G1�

��2� �
−

�1�2

2
log�4G1s2�G2 − s1G1�

��1�2�
−

4a2s1s2


��1�2�

G1s2�G2 − s1G1� cos Q1 + a4� , �12�
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and the corresponding motion equations are

�K

�Q1
=

dG1

dt
,

�K

�G1
= −

dQ1

dt
,

�K

�G2
= −

dQ2

dt
,

and the angular momentum becomes

I = �1�x01
2 + y01

2 � + �2�x02
2 + y02

2 � = �1� p1
2 + q1

2

��1�
�

+ �2� p2
2 + q2

2

��2�
� = 2�s1R1 + s2R2� = 2G2.

Since angular momentum is constant, the Hamiltonian is
cyclic in Q2 and its conjugate G2, which is angular momen-
tum, is constant. By employing these sets of canonical
transformations, we reduce the system from four degrees
of freedom to two degrees of freedom, G1 and Q1.
The ranges for the variables G1, Q1 and the constant
G2 are G1� �a2 /2���1�, G2� �a2 /2��s1��1�+s2��2��, and
−2��Q1�2�.

We consider a numerical example when �1=�2=1 and
a=1. In this case the level curves of the Hamiltonian are
shown in Fig. 5 for G2=3 in a coordinate system �X ,Y�,
where X=
2R1 cos�P1− P2� and Y =
2R1 sin�P1− P2�. That
implies we are measuring the distance of the first vortex to
the origin in the coordinate system �X ,Y� that rotates with
the second vortex. In fact, Fig. 5 corresponds to the Poincare
map in the system �p ,q�, where the angular momentum and
the Hamiltonian are first integrals of motion. So the trajecto-
ries are plotted when the angular momentum and P2 are

fixed. We also notice that, in Fig. 5, there are two fixed
elliptic points at the points �−
3,0� and �
3,0� and that the
trajectories are confined to the circles with radii of 1 and 
5.
The inner circle in Fig. 5 corresponds to the cylinder and
the outer one exists since the total angular momentum is
constant.

In Fig. 6, the level curves of the Hamiltonian are shown
for the case when vortices have opposite strengths and
G2=3. We see that when the initial positions of vortices are
close to the cylinder, they rotate around the cylinder �see Fig.
4�b��. But when they start off far enough from the cylinder,
they translate with uniform velocity �Fig. 4�a��. Although we
cannot prove the integrability directly in this case, it is obvi-
ous from Fig. 6 that the system is integrable.

B. Motion of two vortices around a cylinder
in the presence of a uniform flow

Consider two vortices of strengths �1, �2 at z01, z02, a
uniform flow with velocity along negative y axis u0 and a
cylinder of radius a at the origin. The complex potential is

V̄ = iu0�1 +
a2

z2 � +
i�1

z − z01
−

i�1

z −
a2

z̄01

+
i�2

z − z02
−

i�2

z −
a2

z̄02

+
i�0

z
. �13�

The motion of vortices at z01 and z02 can be found easily,
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FIG. 5. The level curves for the Hamiltonian in XY coordinates. Vortices
have unit strength and there is no net circulation about the cylinder;
�0=�1+�2. The capture zone is shown as gray shaded region in the
figure. The coordinates of the points are: A= �1.65,0�, B= �1.322 876,0�,
C= �1.2206,0�, D= �1.15,0�, E= �0,1.5�.
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FIG. 6. The level curves for the Hamiltonian in XY coordinates. Vortices
have opposite unit strengths and there is no net circulation around the cyl-
inder; �0=�1+�2.
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dz̄01

dt
= iu0�1 +

a2

z01
� +

i�2

z01 − z02
−

i�1z̄01

�z01�2 − a2 −
i�2z̄02

z01z̄02 − a2

+
i�0

z̄01

,

dz̄02

dt
= iu0�1 +

a2

z02
� +

i�1

z02 − z01
−

i�2z̄02

�z02�2 − a2 −
i�1z̄01

z02z̄01 − a2

+
i�0

z̄02

.

Letting z01=x01+ iy01 and z02=x02+ iy02, we have a system of
ordinary nonlinear differential equations,

dx01

dt
=

2u0a2x01y01

�z01�4
+

�2�y01 − y02�
�z01 − z02�2

−
�1y01

�z01�2 − a2 +
�0y01

�z01�2

+
�2�a2y02 − y01�z02�2�

�z01z̄02 − a2�2
, �14�

dy01

dt
= u0�a2y01

2 − a2x01
2

�z01�4
− 1� −

�2�x01 − x02�
�z01 − z02�2

−
�0x01

�z01�2

+
�1x01

�z01�2 − a2 −
�2�a2x02 − x01�z02�2�

�z01z̄02 − a2�2
, �15�

dx02

dt
=

2u0a2x02y02

�z02�4
+

�1�y02 − y01�
�z02 − z01�2

−
�2y02

�z02�2 − a2 +
�0y02

�z02�2

+
�1�a2y01 − y02�z01�2�

�z02z̄01 − a2�2
, �16�

dy02

dt
= u0�a2y02

2 − a2x02
2

�z02�4
− 1� −

�1�x02 − x01�
�z02 − z01�2

−
�0x02

�z02�2

+
�2x02

�z02�2 − a2 −
�1�a2x01 − x02�z01�2�

�z02z̄01 − a2�2
. �17�

Consider the function

H = u0�1x01�1 −
a2

x01
2 + y01

2 � + u0�2x02�1 −
a2

x02
2 + y02

2 �
+

�1�2

2
log��x01 − x02�2 + �y01 − y02�2� −

�1
2

2
log�x01

2

+ y01
2 − a2� −

�2
2

2
log�x02

2 + y02
2 − a2� +

�1�0

2
log�x01

2

+ y01
2 � +

�2�0

2
log�x02

2 + y02
2 � −

�1�2

2
log��y01x02

− x01y02�2 + �y01y02 + x01x02 − a2�2� . �18�

Then

dx0i

dt
=

1

�i

�H

�y0i
,

dy0i

dt
= −

1

�i

�H

�x0i
, i = 1,2.

Hence the system is Hamiltonian. Consider the angular
momentum

I = 

k=1

2

�kz0kz̄0k.

Since

dI

dt
=

d

dt
�


k=1

2

�kz0kz̄0k�
= �1�2x01

dx01

dt
+ 2y01

dy01

dt
�

+ �2�2x02
dx02

dt
+ 2y02

dy02

dt
� � 0,

angular momentum is not independent of time and hence the
system is probably not integrable.

Consider the case �1=�2=1, �0=2, a=1, and u0=0.1,
then the motion of vortices starting at z01=1.2206 and
z02=2.1237 �corresponding to point C of Fig. 5� is shown in
Fig. 7. We can see that initially vortices rotate around the
cylinder in a chaotic fashion and then escape to infinity. It
can be shown that the trajectories depend on the initial con-
ditions drastically, for example, in Fig. 8 initial conditions
are z01=1.322 876 and z02=2.061 553 �corresponding to
point B of Fig. 5� and vortices rotate around the cylinder
regularly as if there is no uniform flow �compare it with Fig.
3�. It is no coincidence that in the latter case initial points
correspond to a region that is inside the gray shaded zone
shown in Fig. 5 and that in the former case we are just
outside that zone.

A capture zone where vortices rotate around the cylinder
is shown in Fig. 5. Outside this zone, vortices escape to
infinity unless they start off with initial points that corre-
spond to points close to the cylinder in Fig. 5, in which case

�2 2 4
x

�4

�2

2

y

FIG. 7. Trajectories of two vortices in uniform flow �u0=0.1� with �0=�1

+�2 and initial points z01=1.2206 and z02=2.1237. Continuous and dashed
lines denote the trajectories of vortices. The initial points correspond to
point C in Fig. 5.
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they rotate around the cylinder just like the capture zone. In
fact, the choice of initial conditions are not arbitrary: for Fig.
8 initial conditions are chosen such that we are inside the
capture zone in Fig. 5 �point B� and for Fig. 7 initial condi-
tions are chosen so that we are just outside the capture zone
in Fig. 5 �point C�. So, we can conclude that if we are close
enough to the elliptic point of the integrable case of two
vortices without uniform flow, the trajectories in both cases
would behave similarly �Figs. 3 and 8�, but when we are far
from the elliptic points �outside the capture zone�, trajecto-
ries would behave differently �Figs. 3 and 7�. Point E of Fig.
5 corresponds to the physical situation that vortices are
placed such that the lines passing through the vortices and
the origin are perpendicular. In this case vortices escape to
infinity. Point A of Fig. 5 is very close to the elliptic point
and the initial positions of vortices are very close to each
other and the vortices rotate around the cylinder.

A Poincare section of the case with uniform flow would
be helpful to analyze the system. Around the elliptical point

we choose six different and arbitrary initial conditions and
plot the position of the second vortex when the first vortex
crosses the positive part of the x axis �see Fig. 9�. For five
initial conditions, the strobed trajectory points lie on invari-
ant tori of the elliptical point �solid dots�, while for the sixth
initial condition, the points are scattered and eventually vor-
tices escape to infinity �Fig. 7�.

In all numerical simulations, the Runge–Kutta method
with adaptive step size control is used to integrate the motion
equations. Its results compare very well with the results of
some standard packages. We notice that in almost all simu-
lations involving chaotic behavior, it was necessary to vary
the time step.

IV. OSCILLATING CYLINDER IN A UNIFORM FLOW
WITH VORTICES

The oscillating cylinder problem with only one vortex
has been solved by Kadtke and Novikov.18 Here we shall
consider the case of two vortices. The Hamiltonian is slightly
different from the previous case,

H = u0�1 + � sin wt���1x01�1 −
a2

x01
2 + y01

2 � + �2x02�1 −
a2

x02
2 + y02

2 �� +
�1�2

2
log��x01 − x02�2 + �y01 − y02�2�

−
�1

2

2
log�x01

2 + y01
2 − a2� −

�2
2

2
log�x02

2 + y02
2 − a2� +

�1�0

2
log�x01

2 + y01
2 � +

�2�0

2
log�x02

2 + y02
2 �

−
�1�2

2
log��y01x02 − x01y02�2 + �y01y02 + x01x02 − a2�2� , �19�

�2 �1 1 2
x

�2

�1

1

2

y

FIG. 8. Trajectories of two vortices in uniform flow �u0=0.1� with �0=�1

+�2 and initial points z01=1.322 876 and z02=2.061 553. Continuous and
dashed lines denote the trajectories of vortices. The initial points correspond
to point B in Fig. 5.
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FIG. 9. Poincare section for the parameters which generates the system of
Fig. 7. Solid dots are used for the five different initial conditions for which
the vortices lie on invariant tori of the elliptical point. Unfilled circles are
used for the sixth initial condition that vortices eventually escape to infinity
after several rotations around the cylinder.
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where w is the frequency and � is the amplitude of the oscil-
lation. The motion equations can be written down using

dx0i

dt
=

1

�i

�H

�y0i
,

dy0i

dt
= −

1

�i

�H

�x0i
, i = 1,2.

In Figs. 10 and 11, trajectories of the vortices are shown for
different initial conditions. For all cases, vortices’ initial po-
sitions are on y axis: In Fig. 10 vortices are on points
z01= �0,1.126 865�, z02= �0,2.174 897� �corresponding just
to the right of point D of Fig. 5� initially and both vortices
escape to infinity eventually after both of them rotate around
the cylinder many times; for the second case �Figs. 11�a� and
11�b��, vortices start at points z01= �0,1.126 200�, z02

= �0,2.175 241� and z01= �0,1.220 600�, z02= �0,2.175 241�,
respectively, and there is no escape to infinity. Initial points
for Fig. 11�a� correspond to point D of Fig. 5 which is close
to the cylinder, so vortices rotate around the cylinder. For
Fig. 11�b�, initial points correspond to point C of Fig. 5 and
vortices rotate around the cylinder. So we conclude that if we
are close enough to the cylinder �Fig. 11�a�� or to the capture
zone �Fig. 11�b��, vortices rotate, however, if we are just in
between these regions escape occurs �Fig. 10�. So the capture
zone is roughly valid �slightly enlarged� for the case of vi-
brating cylinder.

Chaotic interaction of a cylinder with vortices could re-
sult in large forces compared with the integrable case �Figs.
12 and 13�. Magnitude of the force on the cylinder in the
integrable case of two vortices is shown in Fig. 12. For cha-
otic cases when there is a uniform flow together with pertur-
bation on the cylinder and two vortices �Fig. 13�, the force

on the cylinder may become twice as large as the force in the
integrable case depending on the initial conditions. Similar
results on pressure distribution have been obtained by
Kadtke and Novikov18 for the one vortex case. This result
has important consequences in some engineering applica-
tions such as the interaction of tethers of tension leg plat-
forms with vortices and uniform flow.

�4 �2 2 4
x

�4

�2

2

4

y

FIG. 10. Trajectories of two vortices. The parameters are �1=1, �2=1,
�0=2, �=0.1, �=1, u0=0.1, z01= �0,1.126 865�, z02= �0,2.174 897�. Con-
tinuous and dashed lines denote the trajectories of vortices. Initial points
correspond to a point just to the right of point D of Fig. 5. Small solid dots
indicate the initial positions of vortices.
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FIG. 11. �a� Trajectories of two vortices. The parameters are �1=1, �2=1,
�0=2, �=0.1, �=1, u0=0.1, z01= �0,1.126 200�, z02= �0,2.175 241�. Con-
tinuous and dashed lines denote the trajectories of vortices. Initial points
correspond to point D of Fig. 5. Small solid dots indicate the initial positions
of vortices. �b� Trajectories of two vortices. The parameters are �1=1, �2

=1, �0=2, �=0.1, �=1, u0=0.1, z01= �0,1.220 600�, z02= �0,2.175 241�.
Continuous and dashed lines denote the trajectories of vortices. Initial points
correspond to point C of Fig. 5. Small solid dots indicate the initial positions
of vortices.
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V. CONCLUSIONS

Two problems are studied: the problem of fluid advec-
tion excited by two vortices and a uniform flow in the pres-
ence of a cylinder and the problem of motion of the vortices
around the cylinder where a perturbation of the cylinder is
also considered. In the fluid advection problem forces are
calculated. The arbitrary independent circulation around the
cylinder, �0, is an important parameter in force calculations;
for the case of vortices with opposite signs with or without
uniform flow �0 must be zero for force to be zero.

The Hamiltonian for the motion of vortices without uni-
form flow is constructed, reduced, and constant Hamiltonian
�energy� curves are plotted and the system is shown to be
integrable according to Liouville. Motions of vortices with

unit strength are confined to a region between two concentric
circles; small circle representing the cylinder and the larger
one exist due to the conservation of angular momentum
�Fig. 5�. There are also two fixed elliptical points.

By adding uniform flow to the system, the symmetry is
destroyed and the system is no longer integrable �Fig. 7�.
However, by choosing the initial points close to the elliptic
points of the integrable case in Fig. 5, we are able to obtain
trajectories confined to a thick orbit around the cylinder
�Fig. 8�. A Poincare section analysis was useful to demon-
strate that away from the elliptic points motions are chaotic
�Fig. 9�.

Finally, by allowing the cylinder to vibrate we model the
natural vibration of the cylinder in the flow field, which has
applications in ocean engineering involving tethers or pipe-
lines in a flow field. Interesting cases of chaotic capture and
escape are shown in Figs. 10 and 11. We also observe that
chaotic interaction may cause large forces on the cylinder
depending on the initial positions of vortices �Figs. 12 and
13�.

There are similarities and differences between the one
vortex case of Kadtke and Novikov18 and the present inves-
tigation of two vortices. In both cases, chaotic capture and
escape of the vortex �vortices� occur. Kadtke and Novikov
gave a capture zone in Fig. 12 of their paper, which is closely
related to the separatrix. In the present case of two vortices,
a capture zone plot similar to the one given by Kadtke and
Novikov is given in Fig. 5. When u0 is small, say, less than
0.1, and there is no vibration, vortices with initial points
corresponding to a region inside the capture zone will not
escape to infinity �see Fig. 8�. So, for initial points corre-
sponding to points that are inside the capture zone or that
are close to the cylinder in Fig. 5, vortices rotate around
the cylinder. Outside these two regions, vortices escape to
infinity.

When there is vibration of small magnitude, �=0.1, and
of frequency �=1, the capture zone plot is still roughly valid
�see Figs. 10 and 11�. For Figs. 11�a� and 11�b�, the initial
points correspond to points D and C of Fig. 5 and there is no
escape. However, for Fig. 10, the initial points are chosen to
correspond just to the right of point D �between C and D�
and vortices escape. We can conclude that the effect of per-
turbation is to enlarge the capture zone slightly.
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