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a b s t r a c t

Tunneling, transport of particles through classically forbidden re-
gions, is a pure quantum phenomenon. It governs numerous
phenomena ranging from single-molecule electronics to donor–
acceptor transition reactions. The main problem is the absence
of a universal method to compute tunneling time. This problem
has been attacked in various ways in the literature. Here, in the
present work, we show that a statistical approach to the problem,
motivated by the imaginary nature of time in the forbidden regions,
lead to a novel tunneling time formulawhich is real and subluminal
(in contrast to various known time definitions implying superlu-
minal tunneling). In addition to this, we show explicitly that the
entropic time formula is in good agreement with the tunneling
timemeasurements in laser-driven He ionization. Moreover, it sets
an accurate range for long-range electron transfer reactions. The
entropic time formula is general enough to extend to the photon
and phonon tunneling phenomena.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Tunneling, transport of subatomic particles through the regions of space forbidden to classical
motion, is a pure quantum phenomenon. Its physical relevance was first established by Gamow in his
analysis of the α-decay [1–3]. The tunnel diode [4,5] of Esaki was its first technological application.
Undoubtedly, scanning tunneling microscope (STM) [6] of Binning and Rohrer started a new pace
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in scientific and technological advancements. Today, for example, it is known that electron transfer
reactions involve tunneling as the underlying mechanism. It governs acceptor–donor transition pro-
cesses so that charge separation by electron transfer reaction takes place at photosynthetic reaction
centers [7] after excited electrons are transferred by antenna pigments in consequence of the coherent
electron energy transfer [8] during the photosynthesis. Tunneling is a ubiquitous mechanism that
underlies numerous physical [9], chemical [10], biological [11] and technological phenomena [12].

Tunneling time, the time elapsed during the tunneling process, is crucial for determining reaction
speeds of tunneling-enabled rare processes ranging from high-speed electronic devices to nuclear
fusion.Moreover, it also plays an important rolewhile determining the electron transfer reaction rates
based on the interaction of electron with the corresponding vibrational mode of the molecule [13].
Recently, transition from region where Born–Oppenheimer approximation holds, to region where it
breaks down is also investigated in terms of tunneling time [14]. In fact, with the advent of strong laser
ionization experiments [15–19], it is becoming possible to measure the tunneling time [20,21] where
certain metrological problems [22,23] with the detection of the tunneling particle are shown to be
surmountable [24,25]. Strong laser fields enable electrons to tunnel out of atoms, where the potential
barrier formed forms a testbed for models of tunneling time [26,27].

Tunneling time depends onwhat kinetic theory is set forth for tunneling process, and therefore, the
literature consists of various time definitions [28–31]. They include traversal time throughmodulated
barriers [32–35], spin precession time [36–38], flux–flux correlation duration [39], phase stationary
time [40–42], and Feynman path integral (FPI) averaging of the classical time [43–45]. Some of them
are complex, some are difficult to associate with tunneling and some suffer from superluminality.
Interestingly, contrary to their raison d’etre, all these tunneling times utilize a sort of time operator
since they involve derivatives with respect to energy or potential. This is not the case for FPI averaging
yet the resulting time is still controversial because classical trajectories live in imaginary time
and their probability amplitudes interfere [46–50]. At present, the problem with these and other
tunneling time definitions is that they seem incapable of explaining the experimental data as was
comparatively analyzed and experimented in [51]. In view of the growing scientific and technological
needs, however, it is necessary to have a working model that can reliably estimate the tunneling time
for a given potential barrier.

The present work reports on a novel formulation of the tunneling time. The formulation, based on
a statistical description of the evanescing particle in the classically forbidden region, gives a tunneling
time which shows good agreement with the experimental data compared to all the widely-used time
definitions. The essence of the formulation is that, in the classically forbidden region time flows
in imaginary direction, and correspondence between imaginary time in quantum mechanics and
temperature in statistical mechanics enables a statistical formulation for tunneling. The resulting
thermal energy, through the uncertainty principle, sets a generalized time interval depending on
the transmission amplitude. Next, this model is applied numerically to the laser-driven He ionization
covering recent experimental data [51] and to the electron transfer reactions. It is found that entropic
tunneling time is in good agreement with the experimental data for the former, and sets the validity
range of electron transitions in the long range electron transfer reactions, for the latter.

The energy–time uncertainty, whichwe utilize for the thermal energy of the tunneling particle, has
been utilized in a different tunneling time study [52]. In that relatedwork, it is assumed that exchange
between the kinetic energy of the electron and the potential energy describing the tunneling region
leads to an uncertainty in the total energy of the electron. It is then taken that the uncertainty in this
total energy is proportional to the potential energy at the exit point of the electron ∆E ∝ |Vexit |. The
model potentials used in [52], which are based on effective nuclear charge models described already
in Section 4.1, are also used in this study to compute the tunneling time of the experiment. As a result,
even though these two models have not much in common other than the energy–time uncertainty,
results given here in Section 4.1 and in [52] show good agreement for He ionization in attosecond
experiments. It is with further experimental data that possible relationship between our approach
and that of [52] may be settled.

In Section 2 below given are derivation of the entropy characterizing the tunneling particle and
definition of the tunneling time. Section 3 compares the entropic tunneling time with other times.
Section 4 is devoted to numerical study including laser-induced He ionization and electron transfer
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Fig. 1. Schematic illustration of the tunneling setup. Potential is smooth. Its central region is the tunneling region.

reactions in two separate subsections. Section 5 concludes the work and gives future prospects
on applications to different tunneling-enabled phenomena and extensions to photon and phonon
tunnelings.

2. Entropic tunneling time

In classical dynamics, time elapsed while a particle moves from one point to another cannot be
determined without knowing its momentum at each point in between. This is because momentum is
generator of the translation and, with strict energy conservation, it becomes p(x) =

√
2m (E − V (x))

for a particle moving along x axis with mass m, potential energy V (x) and total energy E. The particle
turns back to its region of incidence from the turning points xL and xR at which E = V (xL) = V (xR).
The setup is illustrated in Fig. 1. In this forbidden region (the central region in the figure) E < V (x)
and classical dynamics proceeds with imaginary momentum p(x) = i℘(x) with

℘(x) =

√
2m (V (x) − E) (1)

and the lapse time it defines becomes also imaginary t → −iτc (see [53] for time arrow) with

τc =

∫ xR

xL

mdx
℘(x)

(2)

defining what one may call the classical tunneling time. Its imaginary nature implies that traversing
the classically forbidden region costs no real time. The scattering process seems instantaneous and
acausal. There is an ongoing debate [22,23,54] on the nature of the tunneling time. In the presentwork,
assumption is that tunneling time is real and finite [55–57] and is consistent with earlier discussions
in [58–60].

By definition, passage of the particle from xL to xR with conserved energy (E < V (x)) defines
quantum tunneling. It is a pure quantum phenomenon. Tunneling time, however, is not a quantum
concept [61]. The reason is that time is not an observable representable by some operator as
otherwise it would stop flowing in its eigenstates. Physically correct description of tunneling time,
a deterministic dimension, might therefore involve an amalgamate of the classical description above
and the quantumbehavior. (Despite these, recently Bauer proposed a self-adjoint time operator based
on Dirac’s formulation of relativistic quantum mechanics [62,63]. This proposed time is correlated
with zitterbewegung type fluctuations, and has been claimed [64] to agree the experiment [51]. Loss
of probability interpretation in relativistic realm and averaging-out of the zitterbewegung term over
positive-energy states make this time definition curious.) To this end, one first notes that time flow
is directly correlated with particle’s momentum (as defined in Eq. (2)), and thus, tunneling time
must be addressed in momentum eigenstates ψm(x), not in energy eigenstates ψe(x) (Schroedinger
equation refers to energy not displacement). The second point is that, as a means of ensuring
penetration of the particle into the classically forbidden region, classical momentummust function as
the momentum eigenvalue associated with ψm(x). More precisely, ψm(x) must satisfy the eigenvalue
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equation p̂ψm(x) =
√
2m(E − V (x))ψm(x) where p̂ = −ih̄ d

dx is the momentum operator. In tunneling
region, where p(x) = i℘(x), one gets

d
dx
ψm(x) = −

√
2m(E − V (x))

ih̄
ψm(x) ≡ −

℘(x)
h̄
ψm(x) (3)

in agreementwith energy conservation. Thismomentumeigenvalue shows that particle’smomentum
inside the tunneling region is strongly correlatedwith the potential function. At every point under the
barrier, particle’s momentum changes point to point and leads to the classical time in (2) integrated
over the history of motion. This equation can always be integrated to find

ψm(x) = ψm(xL) exp
{
−

1
h̄

∫ x

xL

℘(x̃)dx̃
}

(4)

which is an evanescent wave that decays exponentially as the particle penetrates farther and farther
from xL. This evanescent behavior is the key aspect of the tunneling phenomenon. It encodes all the
essential ingredients needed to describe the tunneling dynamics. To ensure that particle is in the
tunneling region, the probability to find the particle at x satisfying xL ≤ x ≤ xR (proportional to
ψ

†
m(x)ψm(x)) can be normalized with respect to the probability that it got into the tunneling region at

xL (proportional to ψ
†
m(xL)ψm(xL)). This way, probability to find the particle at x = xR becomes

pm =
ψ

†
m(xR)ψm(xR)

ψ
†
m(xL)ψm(xL)

= exp
{
−

2
h̄

∫ xR

xL

℘(x)dx
}

≡ e−2Φ (5)

where, for future use, one introduces the dimensionless quantity

Φ =
1
h̄

∫ xR

xL

℘(x)dx (6)

whichmeasures action of the particle in units of h̄. It now becomes clear that pm vanishes for infinitely
wide and infinitely high potential barriers (pm → 0 as Φ → ∞) and equals unity if the barrier
is absent (pm → 1 as Φ → 0). Nevertheless, pertaining to a definite momentum state, it cannot
tell whether tunneling has really been completed or not. The question of whether the particle has
tunneled or reflected is determined by the tunneling transmission probability pt not pm. It is obtained
by solving the Schroedinger equation

d2

dx2
ψe(x) = −

2m
h̄2 (E − V (x))ψe(x) ≡

(
℘(x)
h̄

)2

ψe(x) (7)

wherein the energy eigenfunction ψe(x), unlike the momentum eigenfunction ψm(x), involves both
right-evanescing and left-evanescing waves. They give rise to the well-known transmission and
reflection probabilities [3,9,12].

In general, when interpreted as inverse temperature, the imaginary time is known to transform
propagators in quantum mechanics into partition functions in statistical mechanics [65]. This en-
sures that tunneling time can be addressed in a statistical framework despite the peculiarity that
what is referred to here is a single particle (not a collection of particles as in the usual statistical
thermodynamics). Moreover, the particle is not in a mixed state (it is the evanescent wave decaying
towards xR). This means that entropy, required by temperature, must be defined in a different way.
Fundamentally, entropy is given by logarithm of the number of microstates. The requisite microstates
can be identified by excogitating to volume of the particle’s phase space in units of h̄. This quantity is
precisely the main variable Φ and counting it means essentially the Bohr–Sommerfeld quantization
rule. It refers to periodic dynamics which is what happens in tunneling region when potential is
effectively inverted with imaginary time. Fig. 2 gives an illustration of how Φ can be related to the
microstates pertaining to a tunneling particle. Identification of Φ with the number of microstates
enables a statistical description of tunneling dynamics. For a correct formulation, one observes that
entropy, specific to the tunneling region, must vanishwhen the barrier is absent (Φ → 0). Thismeans
that the number ofmicrostates can be taken as 2Φ+1,where the factor of 2 is put for getting an integer
since Φ is half-integer and the 1 is added for obtaining correct limiting value as Φ → 0. As a result,
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Fig. 2. Schematic representation of the phase space volume and total quantum actions.

the tunneling particle acquires entropy [66] kB pm log (1 + 2Φ) which equals, after relating Φ to pm
via (5), the compact expression

S(pm) = kB pm log (1 − log pm) (8)

which satisfies S(pm = 0) = 0, S(pm = 1) = 0 and S(pm) ≥ 0. Needless to say, this loglog structure is
an artifact of the exponential relationship betweenΦ and pm in Eq. (5). To see this, one notes that use of
the uniform probability pu = 1/(1+2Φ) would result in the familiar Boltzmann entropy−kBpu log pu
in place of the loglog entropy in (8). In consequence, the entropy formula (8) is specific to the tunneling
region and gives a statistical description of its imaginary-time and evanescent dynamics.

In this statistical formulation, the energy E of the particle functions as the total internal energy.
The thermal energy, on the other hand, equals the entropy rate of change of the internal energy. This
is so because tunneling involves a single particle with quantum probabilistic qualities, and the energy
rate of change of the tunneling entropy in (8) gives

1
kBT

≡
1
kB

∂S(pm)
∂E

= −
2τc
h̄

e−2Φ
[

1
1 + 2Φ

+ log
1

1 + 2Φ

]
(9)

where τc is the classical tunneling time in (2) and is τc = −h̄∂Φ/∂E. It is not surprising that the
temperature T is proportional to the reciprocal of τc [65]. This temperature, defined for a single particle
owing to its quantum indeterminacy, involves both the Boltzmann constant kB and Planck constant h̄.
In a true thermodynamical system there can exist no h̄ sensitivity in the classical limit. The specialty
of tunneling is that it is a pure quantum phenomenon having no classical limit. Thus, the statistical
description of tunneling we are presenting necessarily involves both kB and h̄.

In quantum tunneling, particle’s energy E stays constant throughout the barrier, and particle
ionizes to continuumwith the same energy E at the end of tunneling. (In experimental environments,
time measurement after ionization can alter energy E. Such effects do not influence tunneling time
definitions as they all refer to the barrier region. This is valid also for the ETT.) In contrast to E,
however, the thermal energy kBT varies with barrier shape as in (9) and, physically, it sets a finite time
interval ∆t in the philosophy of the energy–time uncertainty product. This time interval, as insured
by construction of the probability pm in (5), must be nothing but the time elapsed while the particle
gets from xL to xR. One here notes that these turning points vary with E and, in general, lower the E
larger the xR − xL and longer the tunneling duration. Its dependence on pm suggests that ∆t can be
related to tunneling duration. In this sense, let us assume that this is some sort of a tunneling time,
and study the consequences of this assumption. Thus, one defines tunneling time as

∆t =
h̄

2∆Ether
(10)

which is no different than the energy–time uncertainty relation. In here,∆Ether is the thermal energy
needed for completing the tunneling, and it can be written as

∆Ether = pt (2πkBT ) (11)
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in view of the finite-temperature quantum fluctuations. Here, pt is the tunneling transmission
probability (computed from solution ψe of the Schroedinger equation). The thermal energy 2πkBT
might be interpreted as the splitting betweenMatsubara levels [67,68] in finite-temperature quantum
theory. At last, the tunneling time in (10), after replacing kBT values from Eq. (9), takes the general
form

∆t =
h̄

2pt (2πkBT )
= −

τc

2πpt
e−2Φ

(
1

1 + 2Φ
+ log

1
1 + 2Φ

)
(12)

valid for any particle and any smooth potential. The tunneling time formula (12), will be hereon called
entropic tunneling time (ETT) to distinguish it from other tunneling time definitions like phase time Eq.
(17) and dwell time Eq. (18), which exist in the literature.

Before closing, it proves complementary to discuss the nature of the ETT. In the classification of
Busch [69,70], it is an intrinsic dynamical time. The reason is that it is controlled by particle’s under-
barrier momentum ℘(x), which is integrated over the barrier region to form Φ . However, one must
pay attention that the energy–time uncertainty relation in (10) is defined between∆t and the thermal
energy∆Ether in (11) (not the fluctuations in the true energy E of the particle, which is held constant
during the entire tunneling dynamics). In this sense, though it is an intrinsic dynamical time, the ETT
can be contrasted with external time measurements (as in Section 4 below) as it does not necessitate
any fluctuations in E under the barrier [69,70].

3. Comparing ETT with other times

There are already manifold time definitions in the literature [28–31]. They vary in their origins,
formulations and predictions. Two of them, the Larmor and Buttiker–Landauer times, are special in
that they are defined via not the potential V (x) alone but with its purposivemodifications. The Larmor
time is based on the Larmor precession of spin when the classically forbidden region is covered by
an external magnetic field [36–38]. The Buttiker–Landauer time is defined via an oscillating barrier
[32–34]. These two times have been argued [35,71] to be not themeans but deviations of the tunneling
time distributions. They have obviously nothing in common with the ETT, which is based on the
potential barrier V (x) alone. On the other hand, two well-known time definitions, the phase time
[28–31,40–42] and the dwell time [28–31,36], which, just like the ETT, are based on the potential
energyV (x). They donot involve any external agents like themagnetic field used in Larmor time. These
three time definitions: ETT, phase, and dwell, having a common setup, can thus be directly contrasted
to determine their physical relevance. To this end, as a simple setup, one can consider a rectangular
potential barrier. (Onemust, however, keep inmind that a rectangular barrier does not quite fit to the
WKB criteria. Nevertheless, it provides a viable framework to compare the time definitions. In case
of worry, it can be approximated through a steep tanh potential.) Then, for a barrier of height V0 and
width L, one derives the tunneling transmission probability

p□
t =

1

1 +
V2
0 sinh

2Φ

4E(V0−E)

(13)

where □ symbolizes the rectangular potential. With this transmission probability, the ETT takes the
form

(∆t)□ETT = −
τ□
c

2π (V0 − E)

(
(V0 − E) +

(V0 sinhΦ□)2

4E

)
e−2Φ□

×

(
1

1 + 2Φ□
+ log

1
1 + 2Φ□

) (14)

in which

Φ□
=

√
2m(V0 − E)

h̄
L (15)
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is the abbreviated action in the classically forbidden region as follows from (6), and

τ□
c =

mL2

h̄Φ□
(16)

is the traversing time −iτ□ of the particle obeying classical motion laws as follows from its definition
in (2), and L = xR − xL is the barrier width.

The phase time (designated by ϕ), deriving from the stationarity of the phase of the transmission
amplitude [28–31,40–42], takes the form

(∆t)□ϕ =
(τ□

c )(p□
t )

2(Φ□)2Φ3
E

[
Φ□Φ2

E

(
(Φ□)2 −Φ2

E

)
+

(
(Φ□)2 +Φ2

E

)2
sinhΦ□ coshΦ□

]
(17)

where ΦE =
√
2mEL2/h̄. In this phase time, the hyperbolic functions arise from the phase of the

transmission amplitude.
The dwell time, expressing how long the particle stays in the barrier region [28–31,36], is given by

(∆t)□D =
(τ□

c )(p□
t )

2(Φ□)2ΦE

[
Φ□

(
(Φ□)2 −Φ2

E

)
+

(
(Φ□)2 +Φ2

E

)
sinhΦ□ coshΦ□

]
(18)

where, compared to the phase time, lower powers ofΦ□ andΦE are involved.
The three tunneling times the ETT (denoted by (∆t)□ETT ), the phase time (denoted by (∆t)□ϕ ) and the

dwell time (denoted by (∆t)□D) are seen to be distinct functions. They lead thus to different predictions
for time spent during tunneling. Nevertheless, to reveal their physical relevance it is convenient to
compare them for wide potentials (L → ∞):

(∆t)□ETT → ∞ (19)

(∆t)□ϕ →
h̄
E

√
E

V0 − E
(20)

(∆t)□D →
h̄
V0

√
E

V0 − E
(21)

where the ETT is seen to diverge as expected of a potential barrier of infinite width. The phase and
dwell times, however, give the unphysical result that it takes a finite time to traverse an infinitely
wide potential barrier. These two times suffer fromsuperluminality.More strikingly, those finite times
vanish as V0 → ∞, meaning that the particle tunnels through an infinitely wide and infinitely high
potential barrier instantaneously. This effect, the Hartman effect [72], renders the phase and dwell
times unphysical. Needless to say, the ETT is subluminal and suffers from no unphysical aspects like
the Hartman effect. Moreover, relationship of tunneling time to particle’s dynamical transport has
been verified for electrons in [73] and discussed by Kullie in [74].

Furthermore, apart from tunneling time definitions above, the complex tunneling times are hard
to make sense [75]. The path integral averages of the classical time [43–45] and of the Larmor
time [76,77] give rise to complex times. They also arise via scattering-theoretic formulation [39]. Their
real and imaginary parts are related to other tunneling times in specificways [28–31,35]. Unlike them,
the ETT is purely real and bears no relation to complex times.

4. Confronting ETT with experiment

In this section, we shall perform numerical analysis to test the ETT against certain experimental
results.
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4.1. Laser-driven He ionization

Electric fields of high-intensity lasers reshape Coulomb potential in atoms to form a potential
barrier through which electrons can tunnel to continuum [26,27]. At the peak value E of the electric
field, one of the electrons in He possesses the effective potential energy

V (x) = −
Zeff
x

− Ex (22)

which is parametrized in terms of an effective nuclear charge Zeff . The transmission probability takes
the form [78,79]

pHet =
1

cosh2Φ
(23)

after solving (7) and matching the solutions at each of the turning points xL,R. With this transmission
probability, ETT (12) becomes

(∆t)He = −
τc

2π
cosh2Φ e−2Φ

(
1

1 + 2Φ
+ log

1
1 + 2Φ

)
. (24)

On the other hand, advancements in ultrafast science, where strong laser fields are used to ionize
atoms by quantum tunneling, are capable of observing tunneling transition and measuring the
tunneling time [15–21]. In spite of various factors affecting the experiments [22–25], improving on
previous single-particle tunneling time measurements [20] by using attoclock in strong laser fields
[21], in 2013 the research team of Ursula Keller at ETH Zurich have performed a refinedmeasurement
of the tunneling time of electrons in He atom [51]. Moreover, their measurements have been shown
to be stable [80] (see also the simulation study [81]) against non-adiabatic effects [22,23]. As a result,
using the effective potential (22) enables us to use this experiment as a testbed for the ETT. The
limiting factor here is validity of the WKB solution. The WKB approximation holds good for smooth
potentials. The same is not true for steep potentials with sharp edges. For such potentials, beyond-
the-WKB effects can be significant. For the He ionization problem at hand, the WKB approximation
hardly works at large laser field strength E for which potential is steep (see the potentials in [82]).
In such regions, agreement with experiment can require beyond-the-WKB effects to be incorporated.
Besides, one keeps inmind that the laser field, depending on its strength, can cause eithermultiphoton
or tunneling ionization. And a sensible comparison of the ETT with experiments is possible only in
tunneling regime corresponding to the Keldysh parameter [26,27] range γ ≲ 1.

In the experimental setup, laser intensity 3.478 × 1016 W/cm2 E2 is varied from 0.730 × 1014 to
7.50×1014 W/cm2 by varying the peak electric field E from 0.04 to 0.11 in atomic units. The electron
energy E = −0.904 a.u. is the first ionization potential of the He atom. Momentum distribution of
the liberated electrons are obtained by cold-target recoil-ion momentum spectrometer (COLTRIMS)
and by velocitymap imaging spectrometer (VMIS) (see the experiment section of [51] for details). The
VMIS is used particularly at low laser intensities. Quantum tunneling is ensured to be the dominant
ionization mechanism by keeping the Keldysh parameter small (γ ≲ 1). The experimental results are
given in Fig. 3 of [51]. Depicted in Fig. 3(a) of [51] are different tunneling times [32,36,39,40,43–45]
contrasted with experiment’s own results. Similarly, given in Fig. 3(b) and (d) of [51], are tunneling
times as functions of the peak electric field E and barrier width (approximated as E/E a.u. in the
experiment). The experiment (as well as [80]) also indicates that among all widely-used tunneling
time definitions only the FPI time comes closest to its measurements (see Fig. 3(b) and (d) of [51]).
Additionally, [83] also indicates that the phase and dwell times both overestimate the experimental
result [51].

For confronting the ETT (24) with experiment, it suffices to replace the potential energy (22) inΦ ,
and τc , and evaluate them with the turning points xL and xR > xL satisfying

xL(R) =
E − (+)

√
E2 − 4Zeff (xL(R))E
2E

(25)

which are the roots of the vanishing kinetic energy condition V (x) − E = 0. It is clear that better the
knowledge of Zeff better the prediction of tunneling time (through the turning points and hence Φ).
Following the literature, three different Zeff :
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1. SAE potential [84]

Zeff = Z + a1e−a2x + a3xe−a4x + a5e−a6x (26)

in which Z = 1, a1 = 1.231, a2 = 0.662, a3 = −1.325, a4 = 1.236, a5 = −0.231, and
a6 = 0.480 in atomic units.

2. Kullie constant [52,85] Zeff = 1.375, and
3. Clementi et al. constant [86] Zeff = 1.6875.

were usedhere. The turning points in (25) are directly evaluated for constant Zeff . For the SAEpotential,
however, it is necessary to find a self-consistent solution for xL,R. This is done by startingwith a random
x value and iterating it N times until V (xN ) − E < 10−4. We list down xL and xR values and the
corresponding classical time τc and the ETT in Table 1 by considering twopeak values for the laser field.
The ETT for different Zeff are plotted in Fig. 3 as functions of the peak electric field E and experiment’s
barrier width E/E (which is not the true barrier width xR − xL). It is superimposed on Fig. 3(b) and (d)
of [51]. The figure manifestly shows that ETT exhibits good agreement with the experimental data for
all three potential models. They, nevertheless, start differing at large laser field E values. This can be
understood as follows:

1. At small E , the potentialV (x), away from thenucleus, is smooth in all three cases (SAE, Kullie and
Clementi). It supports theWKB solution. This is confirmed by the fact that ETT(SAE), ETT(Kullie)
and ETT(Clementi) fairly agree at low laser field values E (see Fig. 3 below E ≃ 0.08).

2. At large E , the three times start differing significantly. The reason for this is that potential V (x)
is no longer smooth, and depending on the potential parameters the ETT values diverge. The
potential takes a right-triangular shape with smaller and smaller depression angle for larger
and larger E . TheWKB solution hardlyworks for this potential (see the detailed analysis in [82]).
To have a quantitative understanding of the ETT curves at large E , it suffices to consider a right-
triangle potential V (x) = V0 − Ex extending from x = 0 to L (having the same width as the
rectangular potential in Section 3) for which one gets

Φ△
=

2
3
(V0 − E)

EL
Φ□ (27)

and

τ△

c =
2(V0 − E)

EL
τ□
c (28)

so that p△

m > p□
m and p△

t > p□
t . Using these in the general ETT formula in (12) one can compute

tunneling time for the triangular potential. It is clear that Φ△ < Φ□ and τ△

c < τ□
c under

sufficiently strong laser fields i.e. large E . This means that the ETT curves in Fig. 3 will be pushed
down depending on the laser field strength. In fact, the classical time (28) is already sufficient
to understand this. The simple triangular potential, though different than the actual potential
in (22), is powerful enough to reveal the essential features of the ETT curves in Fig. 3.

3. All might seem fine, but one must still keep in mind that the triangular potential (like the He
ionization at large E) is sensitive to beyond-the-WKB effects. The WKB-based ETT predictions
may not therefore be accurate. Indeed, the ETT(Clementi), for instance, takes smaller values
than expected (though Zeff = 1.6875 is reasonable in the large E domain). This can be
understood as an artifact of the beyond-the-WKB effects. This problem, as discussed also in
detail in [82], is a characteristic feature of large E region.

These properties help interpreting the ETT curves in Fig. 3 as a transition from smooth to steep
potential regions.

Of all the time definitions available, as shown in Fig. 3, only the FPI time [43–45,50] comes closest
to the experimental data. Indeed, it exhibits good agreement with the experimental data in both
panels. Yet, in the top panel, its predictions diverge from the data as the peak electric field increases.
In the bottom panel, it matches with the COLTRIMS data at low barrier widths while it diverges at
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Fig. 3. Tunneling times as functions of peak electric field E (top panel) and experimental barrier width (E/E) (bottom panel).
The entropic tunneling time (ETT) is depicted by filled square, star and plus representing SAE, Kullie and Clementi et al. models,
respectively. It is seen to agree with the experimental data throughout. Both panels explicitly show how the entropic time
adheres to the experimental data [51]) while the FPI time diverges away from data at the asymptotics.

Table 1
Contrasting the three Zeff models, after setting E = 0.04 a.u. (E = 0.11 a.u.), in terms of their predictions for the turning points
xL,R , classical time τc and the ETT.

xL (a.u.) xR (a.u.) τc (as) ETT (as)

SAE 1.24(1.39) 21.43(6.90) 833.82(312.24) 113.08(22.20)
Kullie 1.64(2.02) 20.96(6.20) 850.73(322.72) 111.75(16.85)
Clementi 2.05(2.87) 20.55(5.35) 856.49(326.50) 109.14(6.54)

larger barrier widths. In contrast to these divergent behaviors in the FPI time, ETT stays congruent to
experimental data for a fairly wide range of potential parameters.

As a result, it would not be unrealistic to conclude that the ETT shows good agreement with
experiment, and furthermore, outperforms the widely-used tunneling time models among those
shown in Fig. 3(a) of [51] and the FPI time.

4.2. Electron transfer reactions

Rectangular potential barriers, apart from their direct solubility, prove useful in modeling tun-
neling systems whose potential barriers are nearly constant. Even though WKB approach does not
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Fig. 4. Electron transition time as functions of tunneling distance given for different ∆EEff values (top panel) and ∆EEff given
for different tunneling distance values (bottom panel) calculated in terms of both classical time and ETT. Energy of an electron
E is taken as 1 eV.

work properly for this potential barrier shape, as already mentioned, one can still expected to obtain
corroborative results. As an example, efficient tunneling barrier (∆EEff = V0 −E) proves to be a useful
approach in the case of long-range electron transfer reactions [87]. The transmission probability and
ETT of this simple case is given in Eqs. (13) and (14) respectively. Notice that, the exact transmission
probability (13) reduces to the WKB result in (23) only when E = V0/2.

In the case of electron transfer reactions, typical range for an electron to transit from donor
to acceptor is in between 5 and 30 (Å) (the range of electron transfer in proteins from 15 to 30
(Å) [88]). Nuclear vibrations have typically<3000 cm−1 frequency range. Corresponding half-period
of vibrations are thus above the 5 femtosecond (fs) scale. Using ETT and classical time in (15),
electron transition times can be calculated. It is found that, classical time is comparable to the nuclear
vibrations in Fig. 4. On the other hand, ETT gives lower values compared to classical time, in both
cases. From this, one recalls that τc is the absolute value of the imaginary time spent during the
classical motion. The difference between the two tunneling times indicates how strong the quantum
effects are. Furthermore, it is seen that these values of tunneling time are even lower than half
period of the corresponding nuclear vibrations, whereby proving the predomination of the adiabatic
region [13]. However, it is for the ∆EEff < 0.1 eV and the tunneling distance > 15(Å) that the
tunneling time becomes comparable to the time scale of nuclear vibrations. Time scale compatibility
between nuclear vibrations and tunneling time allows overlap ofmolecular configuration changewith
the electron transition process while electron is tunneling. Due to energy conservation, configuration
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change during the electron tunneling leads to an energy exchange between electron and nuclei, which
entangles them. Therefore, in this restricted regionwith time scale comparability, it becomes possible
for an electron to make transition from BO to non-BO regime where acceptor–donor wavefunctions
collapse. Similar analysis was performed already in [14], where their tunneling time definition for
simple rectangular potential barrier equals to the classical time definition in (15). It follows the same
trend with classical time given in Fig. 4. It obviously lacks quantum contributions and proves thus
insufficient for having a clear picture of BO to non-BO transition regime. As a result, the conditions
determined by ETT set the range of energy difference and tunneling distance more accurately for long
range electron transfer reactions to take place.

5. Conclusion and future prospects

ETT, with its statistical conception, subluminal nature and experimental confirmation, works
through as a realistic model of the tunneling time. It provides a quantum theoretic framework by
which one can analyze all kinds of tunneling-enabled phenomena ranging from STM to DNAmutation
and flash memory to interstellar chemistry. This rather widespread role facilitates phenomenological
tests and possible improvements of the entropic formalism through variety of sources.

The tunnel effect, a manifestation of the evanescent wave behavior, can occur in all wave phenom-
ena. A generic wave equation

d2

dx2
W (x) = −k2(x)W (x) (29)

portrays a propagating wave for k(x) ∈ ℜ and evanescing wave for k(x) = iκ(x) ∈ ℑ. Pragmatically,
ETT formalism can be extended to this wave behavior with the identification

℘(x)
h̄

→ κ(x) (30)

as revealed by contrasting (29) with (7). To make sense of this formal equivalence, it is necessary to
determine first the origin of the imaginary, inhomogeneous wavenumber κ(x) in view of (1). Indeed,
monochromatic wave must have a frequency below the natural cut-off frequency of the medium for
evanescent behavior to occur. Next, it is necessary to construct the quanta corresponding to the wave
so that evanescing characterizes the tunneling phenomenon. Finally, it is necessary to establish an
analogy with the Schroedinger equation by taking into account the symmetries of the wave equation.

There are numerous wave phenomena. The probability waves of quantum theory, W (x) ≡ ψe(x),
govern electron tunneling in semiconductors, Hydrogen tunneling in biochemical systems andHelium
tunneling in nuclear systems. The electric waves,W (x) ≡ E(x), describe photon tunneling inmaterials
with imaginary refractive index (band gaps, dielectric gaps, air gaps) [89–91]. The photonic STM [92–
94], scanning of surfaces with a fiber optic tip, is a direct application of photon tunneling. The sound
waves, on the other hand, encode phonon tunneling through acoustic band gaps [95–98]. Tunneling of
the thermal vibrations of an STM tip to the sample is a direct realization of the phonon tunneling [99].
The optical and acoustic tunneling studies have been thoroughly reviewed in [100] experiment by
experiment. The photon andphonon tunneling processes, interpreted so far onlywith phase anddwell
times [100], need be analyzed and reinterpreted within ETT formalism, as is being planned to be done
in upcoming work.

The ETT is new. It is theoretically consistent and experimentally pertinent for smooth potentials. In
fact, one direction to improve on the present workwould be to include of subleadingWKB corrections
(involving derivatives of the potential). Besides, the ETT can be tested against experimental data on
appropriate physical, chemical and biological processes.
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