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Abstract We renormalize the model of multiple Dirac delta potentials in two and three dimensions by regulariz-
ing it through the minimal extension of Heisenberg algebra. We show that the results are consistent with the other
regularization schemes given in the literature.
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1 Introduction

In quantum field theory, we encounter ultraviolet di-

vergences and a well-known procedure, called renormal-

ization is used to remove these infinities.[1] This is es-

sentially based on two-step procedure, and the first step

is known as regularization. There are many different

regularization schemes, such as cut-off regularization,[2]

Pauli–Villars regularization,[3] Schwinger’s proper time

regularization,[4] and dimensional regularization.[5−7] Af-

ter regularization, the bare parameters in the given model

are redefined in such a way that they cancel all the diver-

gences.
The divergences also occur in quantum mechanics for

some singular potentials, namely, Dirac delta potentials in

two and three dimensions. These infinities can be removed

by following the idea of renormalization in quantum field

theory[8−13] with different regularization schemes. One

regularization scheme in real coordinate space is to mod-

ify the point-like Dirac delta potential δ(r) by a ring-type

Dirac delta potential so that the singularity at the ori-

gin is removed.[12−13] Moreover, Dirac delta potentials

have been studied from the self-adjoint extension point

of view[14] and have many applications in various areas of

physics (see Ref. [15] the references in Ref. [14]).
Quantum mechanics based on a generalized uncer-

tainty relation has recently attracted a great deal of atten-

tion and it implies the existence of a minimal observable

length.[16−26] The idea of deforming the usual canonical

commutation relations between position and momentum

operators is first introduced in the context of string the-

ory, which restricts that the uncertainties in the position

can not be smaller than some minimal length.[27−28] This

is necessary since strings cannot probe distances below the

Planck scale. Moreover, it has been shown that this min-

imal length may regularize the divergences in quantum

field theory.[29−30]

The point-like Dirac delta potentials in the context of

the minimal extension of Heisenberg algebra has been very

recently discussed in Ref. [31]. The deformation param-

eter introduced through the extended Heisenberg algebra

provides a natural cut-off and the bound state energies of

the problem are finite without introducing any condition

(renormalization condition). The main aim of this arti-

cle is to renormalize finitely many Dirac delta potentials

in D-dimensions by regularizing it through the modified

minimal Heisenberg algebra. We show that this new regu-

larization method is actually similar to the one where the

pointlike Dirac delta interaction is modified with a finite

range interaction. After the regularization of the Hamilto-

nian, we compute the resolvent (Green’s functions) associ-

ated with it and then apply renormalization condition by

appropriately choosing the coupling constants. We show

that the result at the end is consistent with the one ob-

tained by different regularization schemes.

The paper is organized as follows. In Sec. 2, we shortly

review the minimal extension of Heisenberg algebra. Then

we discuss the renormalization of the model by first reg-

ularizing it through the minimal extended Heisenberg al-

gebra in Sec. 3.

2 Minimal Extension of Heisenberg Algebra

The modified Heisenberg algebra is

[X,P ] = i~(1 + βP 2) , (1)

where β is a positive parameter. This leads to the fol-

lowing uncertainty relations for position and momentum

operators[16]

∆X∆P ≥ ~
2
(1 + β(∆P )2 + β⟨P ⟩2) . (2)

This implies that

∆Xmin ≥ ~
√
β , (3)
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and there is no minimal momentum uncertainties (so that

momentum space representation exists). InD-dimensions,

we have[18]

[Xi, Pj ] = i~(δij + βδijP
2) + β′PiPj , (4)

where β′ > 0. If Pi’s assume to commute with each other,

then the Jacobi’s identity implies that the commutation

relations for Xi are uniquely determined (up to possible

extensions):

[Xi, Xj ]= i~
(2β − β′ + β(2β + β′)P 2

(1 + βP 2)

)
(PiXj −PjXi).(5)

For simplicity, we assume that β and β′ are small and

β′ = 2β. Then, [Xi, Xj ] = 0. This is known as the min-

imal extension of the Heisenberg algebra.[16,18,29] In the

first order in β, a representation of the operators Xi and

Pi satisfying the commutation relations (4) is given by

Xi = xi , Pi = (1 + βp2)pi , (6)

where xi and pi are the usual position and momentum

operators satisfying standard commutation relations in

quantum mechanics. In this new representation,[17] the

Schrödinger equation becomes(p2 + 2βp4

2m

)
ψ + V (x)ψ = Eψ , (7)

where the terms of the order β2 are neglected.

3 Renormalization of Delta Potentials

We now consider the problem where the point parti-

cle interacts with the finitely many Dirac delta potentials

in two or three dimensions. The formal Hamiltonian in

standard quantum mechanical formulation is given by

H = − ~2

2m
∇2 −

N∑
i=1

λiδ(x− ai) . (8)

Let us consider the Schrödinger equation for the above

Hamiltonian (8) in the following form

⟨x|H|ψ⟩ = ⟨x|H0|ψ⟩ −
N∑
i=1

λiδ(x− ai)ψ(x)

= ⟨x|
(
H0 −

N∑
i=1

λi|ai⟩⟨ai|
)
|ψ⟩ = E ψ(x) , (9)

where H0 is the free part of the Hamiltonian and the kets

|ai⟩ are the eigenkets of the position operator with eigen-

value ai.

We first find the regularized resolvent for the regular-

ized version of the above Hamiltonian. Instead of regular-

izing the Hamiltonian by modifying the point interaction

with the finite range one, we regularize the Hamiltonian

by modifying the Heisenberg algebra introduced above.

Hence, we have

Hβ = Hβ
0 −

N∑
i=1

λi(β)|ai⟩⟨ai| , (10)

where

Hβ
0 ψ̂(p) =

(p2 + 2βp4

2m

)
ψ̂(p) . (11)

Note that we recover the original Hamiltonian when the

parameter β goes to zero. The parameter β is interpreted

as the cut-off parameter.

In order to find the regularized resolvent Rβ(E) =

(Hβ − E)−1, we will solve the following inhomogenous

equation(
Hβ

0 −
N∑
j=1

λi(β)|aj⟩⟨aj | − E
)
|ψ⟩ = |ρ⟩ . (12)

Let |fβ
i ⟩ =

√
λi(β)|ai⟩ or ⟨x|fβ

i ⟩ =
√
λi(β)δ(x − ai).

Then, acting the operator (Hβ
0 − E)−1 on both sides of

Eq. (12) from left, we get

|ψ⟩ =
N∑
j=1

(Hβ
0 −E)−1|fβ

j ⟩⟨f
β
j |ψ⟩+(Hβ

0 −E)−1|ρ⟩ . (13)

If we take the inner product of this with ⟨fβ
i |, we obtain

N∑
j=1

Tij(β, k)⟨fβ
j |ψ⟩ = ⟨fβ

i |(H
β
0 − E)−1|ρ⟩ , (14)

where

Tij(β,E) =

{
1− ⟨fβ

i |(H
β
0 − E)−1|fβ

i ⟩ if i = j ,

−⟨fβ
i |(H

β
0 − E)−1|fβ

j ⟩ , if i ̸= j .
(15)

By acting the inverse of the matrix Tij on Eq. (14), we can

find ⟨fβ
j |ψ⟩ and then substituting back this into Eq. (13),

we find the regularized resolvent

Rβ(E) = (Hβ
0 − E)−1 + (Hβ

0 − E)−1
( N∑

i,j=1

|fβ
i ⟩[T

−1(β,E)]ij⟨fβ
j |
)
(Hβ

0 − E)−1 . (16)

If we now return to the original variables and define

Φij(β,E) =


1

λi(β)
− ⟨ai|(Hβ

0 − E)−1|ai⟩ , if i = j ,

−⟨ai|(Hβ
0 − E)−1|aj⟩ , if i ̸= j ,

(17)

we get

Rβ(E) = (Hβ
0 − E)−1 + (Hβ

0 − E)−1
( N∑

i,j=1

|ai⟩[Φ−1(β,E)]ij⟨aj |
)
(Hβ

0 − E)−1 . (18)
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By inserting the completeness for the momentum eigen-

states, it is easy to see that the diagonal term of the matrix

Φij

⟨ai|(Hβ
0 −E)−1|ai⟩ =

∫
dDp

(2π~)D
(2m)

p2 + 2βp4 − 2mE
(19)

is divergent as β → 0. In order to remove the diver-

gence from the model, let us first consider the one-center

case (N = 1) for simplicity. Suppose that i-th center is

isolated from all other centers. Then Φij(β,E) is just a

single function for the i-th center and reads

Φii(β,E) =
1

λi(β)
−
∫ ∞

0

dp

(2π~)D
2mpD−1

p2 + 2βp4 − 2mE
(20)

for any i = 1, . . . , N . Note that this integral is divergent

for large values of momentum if β = 0. As long as β ̸= 0,

it is finite for D < 4, as emphasized in Ref. [31]. If we

choose the bare running coupling constants

1

λi(β)
=

1

λR
i (Mi)

+

∫ ∞

0

dp

(2π~)D
2mpD−1

p2 + 2βp4 − 2mMi
, (21)

where Mi is the renormalization scale and takes the limit

as β → 0+, we obtain a non-trivial finite expression for

the resolvent of a single delta potential problem:

R(E) = (H0 − E)−1 + (H0 − E)−1|ai⟩

× [Φ−1
ii (E)]⟨ai|(H0 − E)−1 , (22)

where the function Φii is

Φii(k) =
1

λR
i (Mi)

−
∫ ∞

0

dp

(2π~)D

× (2m)2pD−1(E −Mi)

(p2 + 2mµ2
i )(p

2 − 2mE)
, (23)

for all i. Since the poles of the resolvent correspond to

the bound state energies, and the resolvent formula (23)

includes the reciprocal of Φii(E), its zeroes determine

the bound state spectrum. The renormalization scale Mi

could possibly be eliminated in favour of a physical pa-

rameter by imposing the renormalization condition. For

instance, the renormalization scale can be chosen to be

equal to the bound state energy of the particle to the i-th

center, say −µ2
i , so that:

Φii(−µ2
i ) = 0 . (24)

Therefore, for bound state problems, it is very conve-

nient to choose the renormalization scale to be the bound

state energy by setting 1/λR
i = 0 so that we eliminate the

unphysical scale Mi.

If we apply the same argument to N -center case, we

obtain the following resolvent formula

R(E) = (H0 − E)−1 + (H0 − E)−1
( N∑

i,j=1

|ai⟩[Φ−1(E)]ij⟨aj |
)
(H0 − E)−1 , (25)

where

Φij(E) =


−
∫ ∞

0

dp

(2π~)D
(2m)2pD−1(E + µ2

i )

(p2 + 2mµ2
i )(p

2 − 2mE)
, if i = j ,

−
∫

dDp

(2π~)D
(2m) e(i/~)p·(ai−aj)

p2 − 2mE
, if i ̸= j ,

(26)

defined on the complex E plane. We call the matrix Φij(E) the principal matrix and it is simply the inverse of −T -
matrix in the standard formulation of scattering theory (R = R0 − R0TR0).

[32] The above formula can be extended

onto the largest possible subset of the complex plane by analytic continuation. Here it is important to note that the

principal matrix satisfies Φ†(E) = Φ(E∗) and the resolvent formula (25) that we have obtained is a kind of Krein’s

formula.[33] Let E = k2 ∈ C \ R and ℑk > 0. For D = 2, the principal matrix is then

Φij(k) =


m

π~2
log

(
− k

µi

)
if i = j ,

− im

4~2
H

(1)
0

(√2mk|ai − aj |
~

)
, if i ̸= j ,

(27)

where H
(1)
0 is the Hankel function of the first kind of order zero. For D = 3

Φij(k) =


−

√
m

2
√
2π~3

(ik + µi) , if i = j ,

− m

2π~2|ai − aj |
exp

( ik
√
2m|ai − aj |

~

)
, if i ̸= j .

(28)

Here we have used the integral representation of H
(1)
0

[34]

H
(1)
0 (z) =

2

iπ

∫ ∞

1

e izt

√
t2 − 1

dt . (29)

These results are completely consistent with the literature

obtained with the other regularization schemes[8−10,13−14]

for N = 1.

4 Conclusion

We have shown that the renormalization of the finitely

many Dirac delta potentials through the regularization

with minimal extension of the Heisenberg algebra is con-

sistent with the one obtained by different regularization

schemes. The advantage of using the Green’s function or
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resolvent for the renormalization procedure is that it in-

cludes all the information about the spectrum, e.g., bound

states and scattering states and it allows us to extend the

model to Dirac delta potentials supported by curves in

R3 and the Salpeter type Hamiltonians with Dirac delta

potentials.
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