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ABSTRACT

KINEMATIC DESIGN AND ANALYSIS OF DEPLOYABLE VAULT
AND PSEUDO-DOME STRUCTURES BASED ON ORIGAMI
TECHNIQUES

In recent years a need for more adaptable and flexible structures have been
observed due to the changing spatial and functional needs. One of the solutions for an
adaptable space in architecture is deployable structures. These kinds of structures
provide flexible solutions to the functional and spatial necessities of an environment.
There are different kinds of deployable structures such as bar and foldable plate
structures, membrane, inflatable, cable/strut etc.

This study presents a method of designing a pseudo-dome flat-foldable and
deployable plate structure (rigid origami) based on origami patterns that have a polar
rotation deployment axis. To achieve this objective, first a method of designing flat-
foldable and linearly deployed barrel vault structures have been created by analyzing
their geometrical properties. This analysis along with a workspace analysis provided
knowledge on the geometrical relations between the cross-sections and deployment
parameters. These relations allowed the design of a flat-foldable rigid origami structure
based on the geometry of the cross-section using a pattern-generator.

The method of using a pattern-generator to create an origami pattern has been
modified to achieve a polar rotated deployable pseudo-dome structure. The design
method allows the designer to calculate all the relevant parameters to create an origami
structure by modifying three parameters for barrel vault foldable structures and two
parameters for pseudo-dome structures. The created origami pattern is then transformed
to a foldable deployable plate structure with the intended design requirements. The

design processes for both design methods have been explained with case studies.



OZET

ORIGAMI TEKNIKLERI TEMEL ALINARAK ACILIR KAPANIR
TONOZ VE KUBBEMSI STRUKTURLERIN KINEMATIK TASARIMI
VE ANALIZI

Son yillarda mimarlik alaninda degisim gosteren mekansal ve fonksiyonel
gereklilikler, esnek ve uyarlanabilen striiktiirlere ihtiya¢ duyulmasina neden olmustur.
Mimarlikta uyarlanabilir mekéanlara ¢oziimlerden bir tanesi acilir-kapanir (katlanabilir)
strilktiirlerdir. Bu tiir striiktiirler ¢evre nedeni ile ihtiyag duyulan fonksiyonel ve
mekansal gereksinimlere esnek ¢oziimler sunmaktadir. Acilir-kapanir striiktiirler cubuk
veya plakalardan olusabilmektedir.

Bu ¢alisma merkezi donme ekseni etrafinda agilan, yassi-katlanan (flat-foldable)
acilir kapanir diizlemsel -rijit origami- bir kubbemsi striiktiir i¢in bir tasarim yontemi
sunmaktadir. Bu amaca ulagsmak i¢in dnce ¢izgisel eksen ile agilan, yassi-katlanan agilir
kapanir diizlemsel besik tonoz striiktiirlerin geometrik 6zellikleri incelenmistir. Bu
analiz ve caligma alani analizleri sayesinde striiktiiriin arakesit ve agilma parametreleri
arasindaki bagintilar ortaya ¢ikmustir. Bu bagintilar, arakesit geometrisi temel alinarak
olusturulan Oriintii-liretici (pattern-generator) kullanilarak yassi-katlanan rijit origami
striiktiirlerin tasarimini saglamistir.

Origami Oriintlisii yaratmak i¢in kullanilan Oriintii-liretici yontemi merkezi
acilim donme ekseni olusmasi i¢in gelistirilmistir. Tasarim yontemi tasarimcinin besik
tonoz striiktiirler i¢cin ii¢, kubbemsi striiktiirler i¢cin ise iki parametreyi degistirerek
origami Oriintlisiinii  olusturmak i¢in gerekli tiim parametrelerin hesaplanmasini
saglamaktadir.  Belirlenmis parametreler tarafindan olusturulan origami Oriintiisi,
uygulamanin  gereklilikleri  dogrultusunda  agilir-kapanir  plaka  striiktiire
doniistiiriilmektedir. Calismanin sonunda her iki yontemin tasarim siireci birer drnek

inceleme ile sunulmaktadir.
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CHAPTER 1

INTRODUCTION

Origami is a Japanese word which means “folding paper”. Paper folding is an
ancient art, which is believed to have developed simultaneously in eastern and western
civilizations (Hatori, 2011; Lister, 2005b). The art of paper folding has evolved rapidly
starting from the end of 19th century. Today origami is not only a primarily field of art, but
also a topic in research of mathematics, engineering and architecture (Fei & Sujan, 2013).

In the field of engineering and architecture the application of origami’s
geometrical properties are studied under two main topics: folded plate structures and
deployable structures. Folded plate structures have the static advantage created by the
geometrical principle of the origami pattern allowing its application with different
construction materials like timber and steel (Buri & Weinand, 2008).

In recent years; the need for a more flexible space organization has risen in
architecture, leading to researches in the field of kinetic architecture. The kinetic
properties (developability and flat-foldability) of certain origami patterns allow the
design of a multitude of different deployable structures. There are different kinds of
deployable structures within the field of kinetic architecture which use origami
principles; the most studied kinds are bar structures created with scissor mechanisms
and textiles allowing structures to be light weighted, deployable and transportable
(Thrall & Quaglia, 2014; De Temmerman et al, 2007b). There are also foldable plate
structures, called rigid origami (Tachi, 2009b), created with rigid materials allowing the
structure to still be deployable and transportable but also more resistant and durable.
The use of an origami principle is different for both types of structures: the bar
structures uses the crease lines as bars and the vertexes as the joints of the mechanism,
while the rigid origami structures uses the crease lines as joints and the polygons as
rigid material to create the mechanism.

This research proposes a novel design method for a pseudo-dome deployable,
developable and flat-foldable structure based on the geometrical principles of an
origami pattern. In this study, first, the Yoshimura pattern, also named diamond pattern,

is geometrically analyzed to determine the parameters required to design a barrel vault



deployable rigid origami structure with different arch types as cross-sections. Then a
geometrical method to create a pseudo-dome structure has been demonstrated based on
the study conducted on the barrel vault rigid origami structures. Furthermore the
mobility calculations, for both barrel vault and pseudo-dome rigid origami structures,
are provided to give insight to the deployability of the structure.

The results of this study allows the designer to manipulate the parameters
according to the needs of the designed space for both the barrel vault structures and

pseudo-dome structures.

1.1. Aim and Scope of the Research

Many different rigid origami designs have been proposed based on different
origami patterns, like Miura-ori, Yoshimura, and Waterbomb patterns. Many of these
researches are concentrated on the linearly deployed, single curvature structures, like
barrel vaults and tubular structures. Few studies are conducted on structures with double
curvature that deploy radially, like domes. One of the reasons for this is the complexity
of designing a pattern that allows both flat-foldability and developability.

The aim of this research is to propose a novel method of designing pseudo-dome
rigid origami structures that is flat-foldable and developable and also provide insight on
the movement during the deployment process and the mobility of the created pattern. To
achieve this objective an analysis of barrel vaults with different cross-sections will be
conducted which shares similarities with dome structures. The design process starts by
the choice of suitable geometrical parameters, follows by a workspace analysis, and end
with a mobility analysis to understand the kinematics of the created pattern.

A brief history and classification of origami is also presented to be able to
understand and determine which types of patterns are used in this research. A review is
presented on the previous studies about origami inspired deployable structures,

alongside the theorems and principles used in the design of these structures.

1.2. Outline of the Thesis

The second chapter begins with a presentation of the history of origami starting

from eastern origins to the present applications of this art, then follows a classification
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of origami types, created by the author, to identify the types of patterns that will be used
within the context of this research. The origami terminology and the mathematic
theorems about folding are given. The chapter ends with a review about general origami
applications where origami inspired applications, deployable structures, fold types,
pattern creation methods, patterns used in the research fields, and mechanisms are
presented.

The third chapter is divided into two sections: single centered and double
centered barrel vaults. Single centered barrel vaults have semicircle and horseshoe
arches as cross-sections, double centered barrel vaults have pointed equilateral, pointed
obtuse and lancet arches. For both section a method of designing a MV-Pattern is
presented under the geometrical properties title, where geometrical properties and the
relations between parameters are explained. It is followed by the workspace analysis
where the properties of the deployable structure, like the span, height, and volume, are
put in relation with other parameters. Each section end with a mobility analysis that
provide insight to the kinematics of the pattern created.

The fourth chapter presents a novel method of creating a flat-foldable
developable pseudo-dome rigid origami deployable structure. A segmentation method is
presented in the first section allowing the design of the MV -Pattern. It is followed by a
geometrical analysis which explains each step of the design of the pattern and the
relation between the parameters. The chapter continues with a workspace analysis
where the structure’s motion is analyzed during its folding process. Analysis reveals the
relation between the parameters and the structure’s properties. This chapter ends with a
mobility analysis allowing to understand the changes of kinematic properties when the
design parameters changes.

The fifth chapter presents two case studies where the design steps for specific
emplacements are presented. The first case study is the design of a barrel vault rigid
origami structure over an archeological site, which will provide cover when needed. The
second case study is the design of a semi-pseudo-dome rigid origami structure to be
used as a concert enclosure.

The sixth chapter concludes the study by discussing the possible further studies

and an evaluation of the proposed method.



CHAPTER 2

REVIEW OF PREVIOUS WORKS

This chapter presents the history of origami, a classification of types of origami
and a section about the terminology and theorems about folding. It is followed by
origami application section where a review is given about deployable structures, rigid
origami, a general presentation of most used origami patterns in this field, and a brief

review on studies on the mechanism of rigid origami structures.

2.1. History of Origami

The word “origami” is a Japanese word composed of two different roots, the verb
“Oru” (F15) which means “to fold” and “kami” (#%) which means “paper”. There are
different views about the origins of origami, some believe that its “invention” coincides
with the invention of paper in 105 A.D. in China by an officer of the imperial court T’sai
Lun, while others believe that it originates in the Heian period (794-185) in Japan. But
there are also different views about the invention of the origami’s medium: paper. Hatori
argues that the invention of paper (bark paper) dates back to 5000 B.C. to Meso-America,
Hawaii and Southeast Asia (Hatori, History of Origami in the East and West before
Interfusion, 2011).The papyrus paper which is believed to have been invented around
3000 B.C., is also a kind of paper used by ancient Egyptians (Lister, 2005a). To be able to
determine the origins of the creation of paper a precise definition of it is required.

However, it is known that the knowledge of paper making travelled from China
to Japan in 610 A.D. via Korea thanks to a Buddhist monk. Chinese traders transmitted
the knowledge to Central Asia. In 751 A.D. Arabs occupying Samarkand took Chinese
paper makers as hostages and learned the craft (Smith, 2005). Paper making was
introduced to Egypt during the 10th century and from there it spreaded to Spain in the
12th century and to Italy during the 13th century (Smith, 2005).

As mentioned before the origins of paper folding are ambiguous, some attribute
it to Chinese funerary art (Kenneway, 1987; Smith, 2005) where papers were folded to
replicate the objects that should have been buried with people. This Chinese tradition of
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replacing paper folded objects with real ones emerged from the increasing grave
robbing theft (Kenneway, 1987). Others attribute the origin of origami to Japanese
ceremonial wrappers (Hatori, History of Origami in the East and West before
Interfusion, 2011), and finally some others to ancient Egypt map folding of papyrus
paper (Lister, 2005a). David Lister believes that the most ancient example of paper
folding dates from around 1150 B.C., an old Egyptian map found in the Nubian Desert
which has a folding style resembling today’s road maps (Lister, 2005a).

It 1s believed that the art of folding paper emerged simultaneously in the West and
East. There are contradictory views about in which period, origami emerged in Japan.
Some believe that folding started right after the introduction of paper in Japan during the
6th century (Kenneway, 1987). Others believe that folding ceremonial wrappers are part
of samurai warrior’s etiquette, which goes back to Muramochi period (1333-1573)
(Hatori, History of Origami in the East and West before Interfusion, 2011). And there are
also those believing that origami originates from the Heian period (794—1185) based on
an anecdote from Abe no Seimei (Hatori, History of Origami in the East and West before
Interfusion, 2011). Whether folding paper started during the Edo period or Muramochi
period one thing is an accepted knowledge: the first origami examples had a ceremonial
purpose. “Ocho Mecho” which are wrappers for sake bottles representing male and
female butterflies, and “Noshi” which are ornaments attached to gifts, are examples of

ceremonial origami which also had a religious purpose (Figure 2.1).

Figure 2.1. Mecho (female, left) and Ocho (male, middle) (Source: Origami resource
center (n.d.). Noshi (right) (Source: Abranera (2012).

It is believed that there existed also an “utilitarian paper folding” between the
ceremonial folds and recreational paper folding (Lister, 2005b). “Tato” which is a small
paper container and paper “medicine balls” are examples to this style of origami (Lister,

2005b). By the Edo period (1603—1868), the paper folding had become recreational as
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well as ceremonial. It was a part of the Japanese oral culture transmitted from mother to
daughter (Kenneway, 1987). Sadatake Ise detailed thirteen different wrapping methods,
ceremonial origami models, in his book “Tsutsumi-no Ki” published in 1764 (Smith,
2005). The first written instructions, for recreational purposes, appeared in Akisato
Rito’s “Sembazuru Orikata” (thousand crane folding) in 1797 (Smith, 2005; Lister,
2005b) (Figure 2.2). During the same year another book “Chushingura Oritaka”
appeared. According to Lister these two books represent a division between two
different types of origami, one is for adults with complex models requiring cutting, the

other for children with almost no cutting (Lister, 2005b).
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Figure 2.2. Page from Sembazuru Orikata.
(Source: Sembazuru Orikata, 1797)

Another book appeared in 1801 titled “Toryu Orikatachi Taizen” (Encyclopedia
of Contemporary Origami) written by Hokyu Ogani (Smith, 2005). A more broad
compilation was published in 1845 by Adachi Kazuyuki titled “Kayara-gusa” (Hatori,
History of Origami in the East and West before Interfusion, 2011).



In western civilizations at the beginning, as in Japan, origami was used for
religious purposes: baptismal certificates are examples of ceremonial origami from 17th
and 18th centuries (Hatori, History of Origami in the East and West before Interfusion,
2011). In the play “the Duchess of Malfi” by Webster there is evidence of the origami
model of paper fly-trap known today as “water bomb” (Lister, 2005b). During the 19th
century the recreational origami model known in Spanish as “pajarita” and “cocotte” in
French appeared (Lister, 2005b), it can also be considered as a typical model of western
origami (Hatori, History of Origami in the East and West before Interfusion, 2011)
(Figure 2.3).

Figure 2.3. European traditional origami models (starting from left top corner; pig,
house, sofa, waterbomb (balloon), paper plane (arrow), salt cellar, pajarita
or cocotte, and windmill (Source: Hatori, 2011, p. 7).

Around the middle of 19th century, the founder of the first modern kindergarten,
Friedrich Wilhelm August Froebel, introduced origami as an “occupation” to his
educational system (Hatori, History of Origami in the East and West before Interfusion,
2011). This educational system introduced three different foldings, the first, “Folds of
Truth” is a way of teaching mathematics, the second “Folds of Life” is a recreational
folding of objects, and animals, the third “Folds of Beauty” is a decorative patterns
(Lister, 1998).

The analysis of the Japanese and European origami models shows an important
difference between the crease patterns: while Japanese models’ crease patterns have
arbitrary angles, European models use square grids (Hatori, History of Origami in the
East and West before Interfusion, 2011; Lister, 2005b). Based on these differences, both
Hatori (Hatori, History of Origami in the East and West before Interfusion, 2011) and



Lister (Lister, 2005b) believe that origami developed independently in Eastern and
Western civilizations.

With the end of the self-imposed isolation around the end of the 19th century
(1870) Japanese conjurers travelled around to world bringing traditional Japanese
origami models with them (Lister, 2005b). Around the same time Froebel’s
kindergarten educational system was introduced to Japan which led to the blending of
the two different folding styles (Lister, 1998).

Starting from the creation of paper till around 1950, there was a handful of
designs of origami figurines because it was mostly an oral tradition. In 1955 the
exhibition of paper folding in Amsterdam by Akira Yoshizawa marks the “beginning of
modern origami” (Lister, 2005¢). Around the same time Yoshizawa also created a set of
simple symbols - diagrams - that “transcends language boundaries” (Lang, 2003, p. 4),
allowing the worldwide spread of the art. Slowly origami societies started to open
around the world the first one being the Origami Center in New York in 1958 by Lillian
Oppenheimer (Lister, 2005b). According to Lister, Oppenheimer named the paper
folding art as “origami” to differentiate it from paper craft (Lister, n.d.).

During the last sixty years, origami developed rapidly and, with the help of new
computer based design methods, figurines became more complex and realistic. The art of
paper folding became more than figurine design; today alongside new classical origami
models we can observe new geometrical types, like modular origami, tessellation and
Golden Venture Folding (3D origami), which is presumed to be an ancient type of paper
folding from China. But the principles behind the paper folding art intrigued scientists,
primarily the mathematicians, which led to a second field occupied with origami. Today
we can not only see different type of artistic origami but also different applications of the
folding principals in both the fields of architecture and engineering (rigid origami,

foldable structures), and biomedical research (origami stent) (Fei & Sujan, 2013).

2.2. Origami Classification

It is difficult to classify all the existing types of origami firstly because it is
difficult to access to all origami models made around the world and secondly, it is an art
form which has developed rapidly in recent years and has become a focal point for

mathematicians, engineers, and architects as well as for many other science fields.



Some attempts have been made by different authors like David Mitchell (Mitchell, n.d.),
Oksana Chorna (Chorna, 2012), Lee and Leounis (Lee & Leounis, 2011) to classify
different types of origami.

Mitchell differentiates the origami styles not by their folding techniques, but by
whether the paper is folded or designed. There are different kind of origami designers,
some, like Eric Joisel improvise, create their model while folding (Gould, 2008) while
others like Robert J. Land design the pattern to achieve a desired model (Lang, 2008).
The origami family tree (Mitchell, n.d.) is primarily divided into eight different styles.
As seen in the Table 2.1, craft origami can be divided into four: representational, play,
abstract, and functional origami. The representational origami deals with, the
representation of animals, humans and objects. In representational origami field some
designers try to reach a perfect representation of the modeled animal with all its detail,
while some designers seek a close resemblance. In play origami, models should
function as a toy. In functional origami, models must have a utility, like gift boxes or
ornaments. In abstract origami, models have geometric qualities.

The patterns used in most architectural and engineering studies fall under the
abstract origami models. The abstract origami models can be divided into four:
geometric origami, abstract sculpture, mathematical modelling, and origami
tessellations. Geometric origami, are models that replicate geometric forms. These
models can be created by a single sheet of paper or multiple sheets. Abstract sculpture,
is a style that pursues an aesthetic appeal. Mathematical Modelling, is folding tiles or
polyhedra (Mitchell, n.d.). Origami Tessellations, is the style where multi-layered
models are created with the help of the twist folding technique.

Table 2.1. Origami Family Tree by David Mitchell.
(Redrawn based on source: Mitchell, n.d.)

Origami
1
| I I I I | I I

Everday Ceremonial Performance Conceptual Craft Virtual Exploratory  Origami

puzzles

I | |
Representational  Play Abstract Functional

Minimalist  Pictorial Model-making Geometric Abstract  Mathematical Origami

sculpture modelling  Tesselations



According to Lee and Leounis (Lee & Leounis, 2011), origami can be classified
under four main types: (1) traditional origami, (2) corrugations, (3) tessellation, and (4)
modular (Table 2.2). Figurative models like the crane are under the title of traditional
origami while models with geometric pattern are under the corrugation title. The third
type, tessellation, is divided in to as 2D and 3D tessellations. The final type, modular

origami, is origami models created by using multiple modules.

Table 2.2. Origami Classifications and architectural speculation by Lee and Leounis.
(Source: Lee & Leounis, 2011)
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In the third classification Chorna, from the point of view of art history, tried to
analyze different styles and types, to determine different criteria to be able to classify
origami models, and according to the criteria detected, to be able to establish origami as
an art (Table 2.3) (Chorna, 2012).

Chorna defines ten different types of origami: conventional origami, plastic
origami, origami tessellations, pleat origami, Tachi’s origami (3D Origami), origami
corrugations, curvilinear origami, crumpling origami, synthesized origami and modular
origami. She subdivides origami tessellation and modular origami into two-dimensional
and three-dimensional tessellations and homomodular and heteromodular respectively
(Chorna, 2012). She also categorizes them according to their genres - animalistic,
portrait, still life, teratological, geometrical and other -, to their content and function -

applied, easel and monumental -, to their spacing - open or closed -, to their historical
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features - whether the author is known or unknown -, and finally as an analogy to

miniature (Chorna, 2012).

Table 2.3: Systematization attempt of origami art by Chorna.
(Source: Chorna, 2012)

|
<l
a4
| 3
L]

1o historical features
Author's  Traditional
=)

Opaned

W - B SR - D

mm.,.
=)

~

-

D+ BEEE - B
w) '

=~

Easel ‘ [—

to its content and its function

o~

+H-0-0-OBLER

L
sl
B~ ~H - BES

]

| R -
0 ? ?

il |

i o ? | ?

2 |

! R ?

I 2? - 2
i - | |
y ? ?2 2?2 2

| &
?

?

Others

-
-~

In this new attempt of classification, the four main types by Lee and Leounis
(Lee & Leounis, 2011) are used but they are subdivided into categories based on their
folding technique - folding and wet folding - for traditional origami, or based on their
final form - two-dimensional or three-dimensional - for origami tessellation, and
corrugations. And modular origami is subdivided based on the modules - homomodular
and heteromodular - used in the creation of the model.

The properties of four different types of origami can be classified under three main
titles: sheet number, patterns, and movement. Origami models can be differentiated by the
number of sheets they are using while creating a model; the sheet number property under

this definition can be subdivided into single sheet and multiple sheet usage (Table 2.4). As
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it has been pointed out by Lister in his study of origami history, there are different kinds of
crease patterns used (Lister, 2005b). Crease patterns are the second property suggested for
this classification which is subdivided as geometric patterns and grid patterns. A
generalization has been made under the title of geometric patterns, which classifies patterns
with mixed patterns - grid and radial together - under this title. Some are central while
others have multiple central dispersions. The grid patterns are then subdivided into
tessellation patterns and corrugation patterns. The last property is movement which
differentiates whether the origami model is designed to be static or kinetic.

Animal, plant and human figurine origami models alongside utilitarian ones, like
containers, are placed under the title of traditional origami. A volumetric division has
not been proposed for traditional origami but it should be pointed out that some are two-
dimensional, which means they are flat-folded, while others are three dimensional
models, like containers. The difference between the subcategories of folding and wet
folding lies in the ‘how’ the paper is used, and ‘how’ it is folded to achieve the final
model. Folding refers to the models folded with sharp edges while wet folding refers to
curved/smooth edge folding which is achieved by moistening the paper before starting
the folding process. The wet folding technique has been developed by Akira Yoshizawa
(Lister, 2005¢). The unwritten rule of pure origami defines that the model has to be
achieved only by folding, using glue or cutting paper are inacceptable. In traditional
origami, most of the models are pure origami thus they are created using of a single
paper. There are other figurine models where we can see the use of two or three pieces
of paper in the creation. Most of the crease patterns have radial properties, but as
indicated before, it is not possible to locate and categorize all the existing origami
models. Some traditional models like the flapping bird or seller origami models,
designed as toys or entertainment purpose, are kinetic models. The world known
traditional crane model or the pajarita models are static origami models.

“Origami tessellations are geometric designs folded from a single sheet of paper,
creating a repeating pattern of shapes from folded pleats and twists.” (Gjerde, 2009).
Tessellation can also be described as a tilling of a surface using one or more polygons
with no overlaps or gaps between them. There are two types of origami tessellations: the
first one is the two-dimensional ones where the pattern is created by folding, twisting
and locking the paper, which make the model a static one, and the second type is the
three-dimensional ones where the paper is folded and twisted but not locked. Models

like Reschs’s pattern (Tachi, 2013), and Huffman’s patterns (Davis et al., 2013) are
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example to three-dimensional tessellations, where the models expands and retracts
when force is applied. Two-dimensional tessellations’ final states are flat surfaces but
the three-dimensional tessellations have thickness in all three directions. Thus it can be
said that in this subdivision the models do not create volume but are different in being
planar or non-planar surfaces. This volumetric subdivision can also be noticed in the
classification by (Chorna, 2012). The patterns for both types of tessellations, are
tessellation patterns under the grid pattern category. In both types regular and irregular
tessellation patterns can be observed.

On the other hand, modular origami is subdivided into two parts: homomodular
and heteromodular (Chorna, 2012). Homodular origami models are composed of a
single unit folded the same way, while heteromodular origamis are composed of
different units folded differently. Both homomodular and heteromodular are subdivided
according to their volumetric properties. The three-dimensional homomodular origamis
are again subdivided into polyhedral and 3D origami, the later one being a Chinese
folding technique of a single triangular module, also known as Golden Venture Folding.
As the name suggests, the final model of all the models under this category use multiple
number of sheets. Two-dimensional homomodular origami models are created when
multiple planar modules are interlocked to create a surface, like origami quilts.
Polyhedra created by multiple modules fell under the three-dimensional homomodular
or heteromodular origami models depending on the module used. In the book “Modular
Origami Polyhedra”, there are examples of the creation of polyhedrons using
homomodules, like a 30-module dodecahedron (Simon, Arnstein, & Gurkewitz, 1999).
Patterns of this type of origami models fell under radial patterns, but it should be
pointed out that, especially for polyhedra creations, modules are geometrically created
to form, when interlocked, a specific angle required for the vertex or edge of the
polyhedron. There are few examples of kinetic modular origami; flexibola and curlicue,
both can be seen in Table 2.4.

“Origami Corrugation” is a technique of alternating mountain and valley folds in
an arrangement that allows movement in a folded model” (Lee & Leounis, 2011).
Corrugations are also subdivided into two volumetric properties. The two-dimensional
origami models in this type have thickness in z-direction - Miura-ori pattern - but do not
create a volume, while the three-dimensional corrugated origami models — Yoshimura

pattern - final state creates volumes.
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Table 2.4. Origami Classification done by the author.
(Sources: Wet folding, Dreamer (Dinh, n.d.), Christmas tree (Guarnieri, 2010), all other
are folded by author.)
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2D

WET FOLDING

TRADITIONAL ORIGAMI

FOLDING

There are various models of origami making difficult to create a classification

but patterns used in this study need to be placed within this vast universe of origami.

Corrugated origami with three-dimensional properties are patterns used in this study to

create foldable and deployable structures.
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2.3. Origami Terminology

Starting from the medium of origami, the paper is defined as a flat surface; it is
the initial state before starting the folding process. The next step is to fold the crease
which can be defined as a line segment (Demaine & O'Rourke, 2007) or a trace left after
the paper is folded and unfolded. There are two different ways to create a crease
mountain fold and valley fold (Figure 2.4) which “can be considered as dual to each
other” (Dureisseix, 2012). Generally the mountain fold is represented by dash-dot-dash
line while valley fold is represented as a dashed line (Lang, 2004). But origami
designers have their own system of representing the types of folds which is generally
explained in their books.

Origami models vary from one-fold models (Jackson, 2011) to complex models
composed of multiple creases. Crease pattern [CP] is the network of creases on the
surface of the paper. The designation of which creases will be mountain fold or valley
fold is called mountain-valley assignment [MV-assignment] and when CP and MV-
assignment are represented together the network of the creases became a mountain-
valley pattern [MV-Pattern] (Demaine & O'Rourke, 2007). Some creases are created to
be used as references for other creases, these reference creases are left as solid lines in
the MV-Pattern of the origami model. For example, the diagonal drawn from the right
top corner to the left bottom corner on the MV-Pattern of the traditional crane (Figure

2.5b) is a reference crease.

Mountain Fold

Valley Fold

Figure 2.4. Mountain and Valley folds — drawn by the author.
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(a)

Figure 2.5. (a) CP of the traditional crane origami, (b) the MV-Pattern of the same
model- drawn by the author.

During the creation of an origami model there is a motion which starts from the
flat surface and end as a folded model. The model starts as a plane [flat surface] called
initial state (Figure 2.6a) and when the model is finished it reaches its final folded state
(Figure 2.6¢) (Demaine & O'Rourke, 2007, p. 169); between these two states there is the
partially folded state (Figure 2.6b), which is important while designing an origami

inspired kinetic structure.

(a) (b) (c)

Figure 2.6. (a) MV-P initial state, (b) partially folded state, and (c) final folded state.
Dotted lines represent hidden lines — drawn by the author.

The intersection of two or more creases in the interior of the surface is called a
vertex. The vertexes are named according to the number of edges or plates joining to

form that particular vertexes, as an example a vertex created by four edges coming
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together is called a 4-edge vertex (Buri H. , Origami - Folded Plate Structures, 2010) or
a degree-4 vertex (Weisstein). In this study the annotation to precise the type of vertexes
will be v* and read as degree-k vertex, where k is the number of edges coming together
to form the vertex; thus a degree-4 vertex will be annotated as v*and a degree-6vertex
as v°.

Flat-foldable is a model that can be folded flat on the ground without adding
new creases, in other words the final folded state of the model can be put between the
pages of a closed book. The question of flat-foldability is studied under two angles: the
first is the local flat-foldability, LF-F, which regards the flat-foldability of a single
vertex on a MV-Pattern. The second is the global flat-foldability, GF-F, which considers
the flat-foldability of the whole model. While there are theorems like the Kawasaki-
Justin theorem or the Maekawa theorem for local flat-foldability, the question of global
flat-foldability is still unsolved (Demaine & O'Rourke, 2007, p. 170; Hull T. , 2002).

In the field of engineering and architecture the term developable surface refers
to a surface which can be open completely to a flat surface. And the term non-
developable surface means that when the structure is completely unfolded the surface is
not flat (Gattas & You, 2013; Gioia, Dureisseix, Motro, & Maurin, Design and Analysis
of a Foldable/Unfoldable Corrugated Architectural Curved Envelop, 2012). In the same
fields of study the word rigid-origami (Tachi, 2010b) is used as reference to origami
inspired structures created by plates with thickness (Tachi, 2011). Most of the
engineering or/and architectural studies on this subject assume the deployable structure
uses perfect hinges, while the thickness of the plates is neglected (Gattas & You, 2013;
Gioia, Dureisseix, Motro, & Maurin, Design and Analysis of a Foldable/Unfoldable
Corrugated Architectural Curved Envelop, 2012).

2.4. Origami Theorems

There are different theorems on origami. The first one is Huzita-Justin axioms
which define how lines can be drawn using points and lines. The other theorems
presented in this section are on the flat-foldability conditions of single vertexes, LF-F,
of patterns and guidelines that can be used to create a globally foldable, GF-F MV-

Pattern.
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2.4.1. Huzita-Justin Axioms

Huzita’s axioms “describes a set of six basic ways of defining a single fold by
aligning various combinations of existing points, lines, and the fold line itself” (Lang,
2003b).

The seventh axiom was described by Hatori (Alperin & Lang, 2009), but later it
has been found that all the seven axioms had already been presented by Jacque Justin in
1989. That is the reason of the name Huzita-Justin axioms (Lang, 2003b; Alperin &
Lang, 2009). These axioms describe how to create a crease by the combination of points

and lines (Figure 2.7).
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f-/ P2 a line connecting them : L\\**\\ and P2 and a line L1, by
e can be created. ! connectingPltoLl aline
S - T —— 1‘\" - can be created passing
Plo” \ through P2.
F 0@
N 2.With two points P1 ~_ 6.With two points P1 and
S e and P2, the points can be P P2 and two lines L1 and
/ connected to create a line = ﬁﬁ— L2, aline can be created
" between them. T by placing the two points
2 Sy oo \’\ P1 and P2 to the lines L1
g n® and L2,
3.With two lines L1
and L2, the lines can be 3 7.With a point P1 and two
__ connected to create a third o | lines L1 and L2, a line
line. T perpendicular to L2 can be
created by connecting P1
N and L1.
4. With one point P1

perpendicular to L1
passing though P1 can be
created.
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Figure 2.7. Huzita-Justin Axioms drawn by the author based on representation from
Alperin and Lang. (Source: (Alperin and Lang, 2009))

2.4.2. Flat Foldability

As explained before, a model is flat-foldable when its final folded state is flat.
LF-F is the flat-foldability condition of a single vertex on the surface of a CP while the
GF-F is the general flat-foldability condition of the CP. There are two theorems
regarding the LF-F and two methods/guidelines to achieve a GF-F model.
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Local Flat-Foldability, LF-F
There are two theorems on LF-F: the Mackawa theorem, the Kawasaki-Justin
theorem. Both are explained and described in the analysis of the central vertex of the

crane’s MV-Pattern, which is a flat-folded pattern.

Maekawa’s Theorem

The theorem is based on the number of mountain folds and valley folds
connected to a single vertex. The value of the subtraction of number of mountain folds
and valley folds should be absolute 2 for the vertex to be flat-foldable (eq. (2.1)). For
this condition to be satisfied the number of crease lines that are connecting to the vertex

needs to be of an even number (Mitani, 2011).

M —V|=2 2.1)

When the central vertex of the traditional crane pattern (Figure 2.8a) is analyzed
and eq. (2.1) is applied, it is proven that the degree-6 vertex is flat-foldable. L are the
lines connected to the vertex and the M or V denotes whether the line is mountain or
valley fold. L1 and L4 are mountain folds and L2, L3, L5, and L6 are valley folds
(Figure 2.8b).

|2 —4| =2 (2.2)

Kawasaki-Justin Theorem

Kawasaki-Justin theorem approach is based on the value of the angles
surrounding a single vertex. For a vertex to be flat-foldable the sum of alternating
angles has to be 180° (Figure 2.9). But there are some crease patterns where each
vertex are flat-foldable based on this equation that do not fold flat globally, some

examples of these type of patterns will be analyzed in the section about GF-F.

al + a3 + a5 +--+a2n—-1 =a2+ad4+ ab+--+ a2n = 180° (2.3)
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(a) (b)

Figure 2.8. (a) traditional crane MV-Pattern, (b) closer view of the central vertex of the
traditional crane - drawn by the author.

The central vertex of a traditional crane MV-Pattern is again used to test the
theorem (Figure 2.8). The central vertex is flat-foldable based on both Maekawa and

Kawasaki-Justin theorems.

al=45° a2=45° a3=90° (2.4)
a4=45° a5=45° a6=90° (2.5)
45° 4+ 90° + 45° = 45°+45°+ 90° = 180°. (2.6)

From this, it can be assumed that all sector angles sum to 360° (2m) which can
also be defined as the developability condition (Gioia et al., 2012). If the sum of all the
angles surrounding a vertex is more or less than 360° then that model is non-

developable because it cannot open flat without a gap or overlap.

Global Flat-Foldability

As described before, a flat-foldable model is when the final folded state can be
closed (neglecting the thickness of the paper) flat without adding new creases or cuts. If
the final model is flat then the CP is globally flat-foldable. The conditions for GF-F
have not been mathematically described yet (Hull T. , 2002; Demaine & O'Rourke,
2007, p. 170). There are CPs and MV-Patterns that satisfy Kawasaki-Justin and
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Macekawa theorems but are not globally flat-foldable (Hull T. , 2002). Figure 2.9
presents two different CPs that satisfy the LF-F condition but do not satisfy the global
flat-foldability because, when patterns are folded, the surfaces cross each other creating
an obstacle to accomplish the folding motion. Both CP’s vertexes are analyzed and

calculated according to local flat-foldability theorems.

i 0 :
T T
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Figure 2.9. (a) CP-1 (b) CP-2. Both CPs are not globally flat-foldable.
(Source: Hull, 2002)

The first analysis has been conducted on the CP-1 of Figure 2.9. First, each
vertex is calculated according to both Maekawa theorem and Kawasaki-Justin Theorem
to verify the local flat-foldability condition (Figure 2.10).

Maekawa Theorem: for a vertex to be flat-foldable, the value of the subtraction
of mountain folds and valley folds should be £2 as stated in eq. (2.1) (Figure 2.10a). All
vertex equations satisfy the condition of Maekawa theorem but when the model is
folded it can be observed that the paper does not fold flat because the surfaces cross

each other.

Vertexa:3M -1V =2 (2.7)
Vertexb:3M -1V =2 (2.8)
Vertexc:3M -1V =2 (2.9)
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Figure 2.10. CP-1 — (a) MV-assignment done for the purpose (b) degree of the angles.
Dashed dot lines are mountain folds and dashed lines are valley folds —
redrawn by the author.

Kawasaki-Justin Theorem: for the vertex to be flat-foldable the sum of
alternating angles has to be 180°, eq. (2.3) (Figure 2.10b). All vertex equations satisfy

the Kawasaki-Justin condition but again the paper is not flat-foldable.

Vertex a : 120° + 60° = 90° + 90° = 180° (2.10)
Vertex b : 120° + 60° = 90° + 90° = 180° (2.11)
Vertex ¢ : 120° + 60° = 90° + 90° = 180° (2.12)

The second analysis has been conducted on CP-2 in Figure 2.9b to verify the
local flat-foldability of the CP using both LF-F theorems.

Macekawa Theorem: for a vertex to be flat-foldable the value of the subtraction
of mountain folds and valley folds should be +2 as stated in eq. (2.1) (Figure 2.11a). All
vertex equations satisfy the condition of Maekawa theorem but the model does not fold

flat.

Vertexa:3M -1V =2 (2.13)
Vertexb:3M -1V =2 (2.14)
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Figure 2.11. CP-2 - (a) MV-assignment done for the purpose (b) degree of the angles.
Dashed dot lines are mountain folds and dashed lines are valley folds —
redrawn by the author.

Kawasaki-Justin Theorem: for the vertex to be flat-foldable the sum of
alternating angles has to be 180°, eq. (2.3) (Figure 2.11b). All vertex equations satisfy

the Kawasaki-Justin condition but again the paper is not flat-foldable.

Vertex a: 135°+45°= 90°+90° = 180° (2.15)
Vertex b : 110°+ 70° = 90° + 90° = 180° (2.16)

Both CPs on Figure 2.9 are locally flat-foldable for each of their vertexes but not
globally flat-foldable. Even though global flat-foldability has not been stated yet
mathematically, Schneider (Schneider, 2004) and Mitani (Mitani, 2011) offers methods
for creating globally flat-foldable CP by satisfying precise conditions.

Schneider describes the required conditions for flat-foldable crease pattern as

(Schneider, 2004):

“1. All crease lines must be straight line segments.

2. All interior vertices in the crease pattern must be of even degree.

3. At each interior vertex, the sum of every other angle must be 180°

4. There must exist a superposition ordering function that does not violate the non-

crossing condition.”

Schneider’s first condition specifies that all creases should be straight lines, not
curved, for the model to fold flat. The second and third conditions defines the

Kawasaki-Justin theorem where alternating angles sum needs to be 180°. The last

23



condition defines a folding order so that the planes do not intersect in any given state of
the folding, also defined as the noncrossing condition by Justin (Hull T. , 2002, p. 33).
For the noncrossing condition to be satisfied, a folding sequence and order is required
so that the folded planes do not intersect with each other. Figure 2.12 illustrates the

noncrossing condition achieved at the central vertex of the crane MV-Pattern.

P6

P1

P2 P5 F’1)(P4

P4
P3

Figure 2.12. Noncrossing condition. Central vertex of the traditional crane MV-
Patternleft, non-crossing representation of the folded central vertex on the
right - drawn by the author.

Mitani offers a numerical optimization method to design globally flat-foldable
crease patterns (Mitani, 2011). He offers two conditions, which are Maekawa and

Kawasaki-Justin theorems, followed by a five step method (Mitani, 2011):

“Condition 1.1. The number of lines connecting to a single inner vertex is even.
Condition 1.2. The sums of alternating angles are 180 degrees.

Step 1. Place vertices on edges and inside a sheet of paper.

Step 2. Generate lines that connect two vertices.

Step 3. Adjust the number of lines so that condition 1.1 is satisfied.

Step 4. Move the positions of the vertices so that condition 1.2 is satisfied.

Step 5. Validate that the pattern is globally flat foldable.”

These conditions allow the creation of a globally flat-foldable origami CP where,
the MV-Pattern still needs to be folded physically or digitally to control the GF-F.
Because it is not mathematically proven after the creation of the CP and the MV-

Assignment has been done based on the theorems explained above.
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2.5. Origami Applications

Origami is still an art form growing rapidly and in the last decade a rise in the
use of its principles has been observed in various fields of study due to the advances on
computer sciences which transformed origami into a science subject. Origami principles
have been used in industrial design to create both foldable and static furniture (Rogers)
and also to create packages with both functional and/or decorative purposes. Examples
of origami principles can also be found in fashion industries using cloth or textile (De
Ruysser, 2014; Dureisseix, 2012).

Origami principles can be found in many forms from the smallest scale as a stent
graph (Kuribayashi et al., 2006) in biomedical disciplines to a larger scale structure. In
space applications, origami principles can be found in form of a lunar base, solar panels,
and foldable telescopic lens (Fei & Sujan, 2013; Dureisseix, 2012; Gruber et al., 2007).
In robotics, origami can be found as a self-folding structure (Peraza-Hernandez, Hartl,
Malak Jr, & Lagoudas, 2014; Gray, Zeichner, Yim, & Kumar, 2011) or as oribotis
which has a commanded folding and unfolding process (Gardiner, 2009). In automotive
industries, its principles are used to design airbags (Cromvik & Eriksson, 2009).

Other engineering applications are in material design as a morphing sandwich
structure (Gattas & You, 2014; Gattas & You, 2015), a sandwich trusscore panels for
sound insulation (Ishida, Morimura, & Hagiwara, 2014), a sandwich core material
(Klett & Drechsler, 2011), a metamaterial (cellular materials) which is deployable and
flat-foldable in two directions and stiff in one direction (Cheung, Tachi, Calisch, &

Miura, Origami Interleaved Tube Cellular Materials, 2014) .

2.5.1. Origami Structures

Applications and studies are also conducted in the fields of architecture, and
engineering in correlation with each other. In recent years, architectural needs have
changed; more flexible forms are required to fit to the new functional needs which can
be provided by an origami CP generating both structural properties and spatial qualities
to a space. The form generated by an origami CP produces spatial structures, kinetic or
static, that can be altered by modifications to the CP, which provides designers with a

tool to accomplish various spatial forms (Gonen¢ Sorgu¢, Hagiwara, & Arslan Selcuk,
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2009). Searches toward new adaptable forms in architecture led to the creation of
deployable and kinetic structures using origami principles. According to Schenk,
structures inspired by origami can be classified under three different types: (1) folded
plate structure, (2) deployable structures and (3) transformable/kinetic structures
(Schenk, 2012).

Folded plate structures are static applications of origami principles and can be
constructed with different materials like timber, glass alongside concrete and metal
composite sheets. According to Sekularac et al. folded plate structures can be divided in
three types based on their load transmission and direction of relying (Figure 2.13):
linear, radial and spatial folded plate structures (Sekularac, Ivanovic Sekularac, & Ciric
Tovarovic, 2012). While most seen architectural examples are linear (Figure 2.14) and
radial folded plate structures (Figure 2.15), a combination of two of these types can also
be constructed. The Church St. Paulus, Neuss, in Germany is an example of the

combination of linear and central folded plate structures (Figure 2.14 (c)).

(a) (b) (©)

Figure 2.13. (a) Linear folded plate structures (b) Radial folded plate structure (c)
Spatial folded plate structure (Source: Sekularac, Ivanovic Sekularac, &
Ciric Tovarovic, 2012).

Geodesic domes can be considered as spatial folded plate structures even though
they are generally classified as shell structures. But there are no constructed
architectural examples of domes created based on origami principles, only research
examples are available. Falk et al. presented a form of exploration for folded plate
domes based on timber where “Using a combination of geometry generation and
performance optimization, parameters of folds, depth of folds, height of dome and the
effect of perforations on structural efficiency, interior lighting and acoustics are
explored” (Falk, Von Buelow, & Khodadadi, 2015) (Figure 2.15(a)). There is another

ongoing research, an initiative, on origami domes called flexidome, consisting in
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creating domes using origami principles lead by Dr. Susan Taylor, Mr. Andrew Clancy

and Mr. Colm Moore (Flexidome, n.d.) (Figure 2.15(b)).

Figure 2.14. (a) Temporary chapel for the Deaconesses of St-Loup (Source: Keller,
2008), (b) The US Air Force Academy Chapel, Colorado (Source:
Highsmith, 2007), (c¢) The Church St. Paulus, Germany (Source: Limburg,
2012).
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Figure 2.15. (a) Diamatic folded plate dome (Source: Falk, Von Buelow, & Khodadadi,
2015), (b) Origami dome (Source: Flexidome, 2012) and (c) Hexagonal
Dome (Source: Sierra, 2006).

(b)

Figure 2.16. (a) Al Bahr Tower Facade Detail (Source: Laylin, 2014) and (b) Kiefer
Technic Showroom (Source: Ott, 2007).
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Transformable and/or kinetic structures are planar applications, like facades, of
origami principles. Their application can be a foldable/deployable plate fagcades like Al
Bahr Towers’ facades (Figure 2.16(a)) and Kiefer Technic Showroom (2.16(b)).

2.5.2. Deployable Structures

Deployable structures utilizing the origami principles can be analyzed under two
types: the bar structures and foldable plate structures, the latter can also be called rigid
origami. In rigid bar structures [pin-jointed bar framework] the creases are replaced by bars
and vertices by joints (Figure 2.17(b)). According to Tachi “Rigid-foldable origami (or
rigid origami) is a piecewise linear origami that is continuously transformable along its
folds without deformation by bending or folding of any facet. Therefore, rigid origami can
realize a deployment mechanism using stiff panels and hinges, which has advantages for
various engineering purposes, especially for designs of kinetic architecture.” (Tachi, 2011).
In rigid origami the creases are replaced by hinges and the polygons by a rigid material
(Figure 2.17(c)). Applications like De Temmerman’s foldable mobile shelter system is an
example of the bar structures (Figure 2.18 (a)), while Tachi’s rigid origami (Figure 2.18(b))
is a foldable plate structure example for deployable architecture. According to Tachi,
deployable and transformable structures that are rigid-foldable and flat-foldable have the

following advantages from an architectural point of view.

“1. The existence of a collapsed state enables compact packaging of the structure.

2. The synchronized complex folding motion produced by constrained rotational hinges
can be controlled with simple manipulation.

3. The transformation mechanism that does not rely on the flexibility of materials can be
made out of thick rigid panels and hinges.

4. The watertightness of the surface maintained throughout the transformation is

potentially suitable for the envelope of a space, a partition, and the fagade of a building.”

(Tachi, 2010a)
(b) (©)

Figure 2.17. (a) Origami pattern (b) Bar structure (c) Rigid origami structure

()
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(a) (b)

Figure 2.18. (a) De Temmerman’s Foldable Mobile Shelter (Source: De Temmerman et
al., 2007b) (b) Tachi’s Rigid origami structure (Source: Tachi, 2010b).

In contrast to folded plate structures, deployable structures, whether they are bar
or foldable plate structures are generally small scaled applications, like emergency
shelters (Thrall & Quaglia, 2014) (Figure 2.18(a)) due to the complexity of the
application. Research conducted on origami-inspired deployable structures are mostly
based on pure geometry which makes the real life application difficult. The thickness of
the material is one of the difficulties to consider while designing an origami-inspired
foldable plate structure. Another difficulty is, as the scale increases, the kinematics and
the structural behaviors, like load bearing, becomes more complex to calculate and to
realize. Oricrete (Figure 2.19) is an example that approaches these problems with a
different perspective. Concrete is cast on a reinforced fabric with spacers placed as
crease lines of the pattern, once the concrete is hardened the spacers are removed and
the structure is folded to its shape; once the desired shape is obtained, the fold lines are
fixed by filling them with epoxy grout (Chudoba, van der Woerd, & Hegger, 2014a;
Chudoba, van der Woerd, & Hegger, 2014b; Lebée, 2015). This method renders the
creation of multiple spatial folded plate structures such as barrel vaults and domes. This
structure type can be called a developable structure till it reaches its intended 3D form,
and its joints are fixed at which point it has been transformed into a folded plate

structure.
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Figure 2.19. Oricrete creation process.
(Source: Chudoba R. et al., 2014a)

2.5.2.1. Fold and Pattern Types

There are two basic fold types that can be observed in patterns used in
architectural and engineering applications. The first is the parallel fold where parallel
lines are alternated folding of mountain and valley creating an accordion like form
(Figure 2.20(a)); the second is the reverse fold which is created by reversing the
direction of a mountain fold to a valley fold by creating a vertex, adding 2 diagonal
mountain, as in this example (Figure 2.20(b)) or valley fold. According to Buri (Buri,
2010) the angle B is in close relation with the fold angle & and the angle o between the
main fold and the diagonal line.

At the initial state of the fold, when it is deployed both the fold angle & and the
dihedral angle B are equal to 180°. At the final folded state where the fold angle o is
equal to 0°, the dihedral angle f is equal to 180° minus 2 times the angle a (eq. (2.17))
(Buri & Weinand, 2008).

B =180°—2a (2.17)
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Figure 2.20. (a) Parallel fold and (b) Reverse fold - redrawn based on Buri.
(Source: Buri H. , 2010)

This relation between angles is used to create the CP using a generator line -
generatrix (Buri, 2010). The application of this method can be observed in the study of
rigid folding structures by Stavric and Wiltsche (Stavric & Wiltsche, Investigations on
Quadrilaterral Patterns for Rigid Folding Structure, 2013). In this study the curved
cross-section generatrix controls polygons to approximate the curve’s shape. Then the
dihedral angle B is calculated for each vertex, and then based on the formula presented
by Buri, the angles a are calculated (Figure 2.21) (Stavric & Wiltsche, Investigations on
Quadrilaterral Patterns for Rigid Folding Structure, 2013).

According to Buri and Weinand using the combination of parallel folds and
reverse folds patterns like Yoshimura and Miura-ori and patterns can be created (Buri &

Weinand, 2008).
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Figure 2.21. Pattern generation by Stavric and Wiltsche.
(Source:Stavric & Wiltsche, 2013)

Another method of generating patterns has been presented by Jackson (Jackson,
2011); corrugated patterns can be created by the simple congruence transformations
[translation, rotation, reflection, glide reflection] (Figure 2.22). A single unit is repeated
using congruence transformation to create the CP. The design and transformations
applied define the CP and then the MV-assignment is done, which gives the MV-Pattern.
Patterns created using the Jackson’s method are developable but some of them may not
be flat-foldable like the example of rotation (Figure 2.22).However, patterns created
using Buri’s method can be considered as flat-foldable because they are created by the

desired cross-section.
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Figure 2.22. Pattern creation by Jackson.
(Source: Jackson, 2011)

There are many existing patterns that can be designed by following the
presented methods, but in engineering and architecture some corrugated patterns are
used more than others because of their properties.

Most studied corrugated patterns are: Miura-ori, Yoshimura/Diamond,
Quadrilateral, Water Bomb, and Ron Resch 3D tessellation patterns. Tessellation can be
described as a tilling of a surface using one or more polygons with no overlaps or gaps
between them. According to Lee and Leounis corrugation in origami “is a technique of
alternating mountain and valley folds in an arrangement that allows movement in a

folded model” (Lee & Leounis, 2011).

Miura-ori Pattern

Miura-ori pattern, also called Herringbone pattern (Buri, 2010; Stavric &
Wiltsche, 2013) (Figure2.23), created by Miura for solar panels, is a flat-foldable
pattern. It is a quadrilateral pattern where there are 4 crease lines meeting in a vertex
(degree-4 vertex). Miura-ori pattern - originally called developable double corrugation

(DDC) - designed by Koryo Miura is one of the most studied and analyzed origami
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pattern in engineering, architecture and mathematics (Miura, 2009). According to Miura

the reason behind this intense research on this pattern is the deployability property:

“s It is deployed simultaneously in orthogonal directions and is homogeneous in each
direction.
* It possesses a single degree of freedom of motion no matter how large the array.

* Its deployment and retraction follow the same path.” (Miura, 2009)

Figure 2.23. Miura-ori pattern / Herringbone pattern — drawn based on (Source: Miura,
2009) and folded by the author.

Gattas alternated the pattern using a piecewise geometry method to create derivative
patterns which allows the construction of different forms (Gattas & You, 2013b). The
different patterns created by this method can connect with each other to respond to various
needs in architecture. But some of the derivated patterns created are not developable, they
do not fully open to become a flat surface (Gattas, Wu, & You, 2013a) . Gioia et al.
proposed “foldable corrugated meshes” of non-developable foldable /unfoldable surfaces
based on Miura-ori pattern to create corrugated architectural curved envelops (Gioia et al.,
2012). Tachi, analyzed and generalized rigid foldable quadrilateral mesh origami to be able
to create a free-formed developable, flat-foldable, and rigid-foldable patterns (Tachi, 2009b).
Schenk and Guest, proposed a folded textured sheet for structural applications based on
Miura-ori and Eggbox patterns (Schenk & Guest, 2011). Cai et al. (Cai et al., 2015) studied
the geometry and motion of pyramidal deployable structures inspired by leaf’s movement

which shows similarities to the Miura-ori pattern.

Yoshimura Pattern
Yoshimura pattern also called Diamond pattern, (Buri, 2010; Stavric & Wiltsche,

2013) is a triangular pattern where six crease lines are joined in a vertex (degree-6
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vertex). Yoshimura pattern is also called triangular pattern due to its polygon’s shapes.
Yoshimura pattern (Figure 2.24) has been developed by Yoshimura who observed thin
cylinder’s behavior when exposed to compression forces (Miura & Tachi, 2010). It is a
developable pattern with multiple degree of freedom (DOF). The diamond shape of the
CP allows a cylindrical shape to emerge. This shape allows the creation of vault-like
structures when the CP is modified to the need of the form.

The geometrical analysis of this particular pattern has been presented by Foster
and Krishnakumar (Foster & Krishnakumar, 1986/87) and expanded by Tonon (Tonon,
1991) who presented the creation of a variety of forms such as barrel vaults and surfaces
with double-curvature. This method did not particularly present patterns that are
developable and/or flat-foldable and/or deployable. By modifying this method De
Temmerman proposed barrel vaults and dome-like circular shaped deployable bar
structures (De Temmerman, 2007a) and foldable plate emergency shelter structures (De
Temmerman et al., 2007b). The structure’s pattern is created by congruent triangular
modules, which can be divided into two to create the edge modules. In the method created
by De Temmerman, the parameters required to create a deployable, flat-foldable pattern
are the number of triangular plates in the span, the number of half-modules and the apex
angle of triangular module. Cai et al. (Cai et al., 2016b) presented a motion analysis of
regular and irregular Yoshimura pattern based barrel vault, which also presented a
geometric analysis of a single unit. The method used in this research is also an adaptation

of the geometrical principles proposed by both Tonon and De Temmerman.

Figure 2.24. Yoshimura pattern / Diamond pattern — drawn and folded by the author.

Quadrilateral patterns
Quadrilateral patterns, also called reverse fold frame (Schramme, Boegle, &

Ortolano Gonzalez, 2015), are corrugated patterns composed of tetragons (Figure 2.25).
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Miura-ori is also a quadrilateral pattern but, because of its properties demonstrated by
Miura (Miura, 2009), it has been differentiated from other patterns. These patterns have
degree-4 vertexes and their unit’s shapes varies from parallelogram to trapezoids.
Nojima (Nojima, 2002) presented multiple quadrilateral patterns to fold cylinders. In
this study the way of positioning the major fold line of a pattern changes the
deployment motion. When modules are multiplied along an inclined major fold line the
final model has a spiral shape (Figure 2.26(b)), but if the modules are multiplied along a
non-inclined major fold line the final model becomes a cylinder (Figure 2.26(a)). The

same properties are presented for triangular patterns (Nojima, 2002).

Figure 2.25. Quadrilateral pattern — drawn and folded by the author.

There are multiple examples of tubular/prismatic structures created with
quadrilateral patterns. Tachi (Tachi, 2009¢) presented a cylindrical deployable structure
with thick material and single degree of freedom using quadrilateral patterns. Miura and
Tachi (Miura & Tachi, 2010) presented a family of collapsible and rigid-foldable
cylindrical polyhedra. Liu et al. (Liu, Lv, Chen, & Lu, 2016) also presented deployable
tubular structures using quadrilateral patterns. Lee and Gattas (Lee & Gattas, 2016)
presented new accordion-type shelters with structural stability and stiffness using
quadrilateral patterns. All designed shelters are deployable but not all types are flat-
foldable.
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Figure 2.26. Nojima’s (a) non-inclined quadrilateral pattern (b) inclined quadrilateral
pattern (Source: Nojima, 2002).

Water Bomb Pattern

Water bomb pattern (Figure 2.27) is also a corrugated pattern created by Shuzo
Fujimoto, which is flat-foldable and developable. Compared to Miura-ori pattern, this
CP is more flexible because it possesses multiple DOF (degree of freedom). This
pattern is a triangular pattern, where the triangles vary in size, consisting of both
degree-4 vertexes and degree-6 vertexes. Origami stent is the applied example of this
pattern (Kuribayashi, et al., 2006). Parametric design and a structural analysis has been
conducted on this pattern for rigid foldable origami structures by Curletto and

Gambarotta (Curletto & Gambarotta, 2015).

Figure 2.27. Water Bomb pattern — drawn and folded by the author.
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Resch’s 3D Tessellation pattern

Ron Resch pattern is a 3 dimensional tessellation with multiple DOF and
flexible. The pattern is tessellated by different types of triangles. This pattern is
developable but not flat-foldable. The final folded stage allows the creation of a smooth
surface and creates a freeform structures because of its flexiblity. Tachi (Tachi, 2013)
created new origami tessellations (Figure 2.29(a)) and also proposed designing free-
form structures (Figure 2.29(b)) by generalizing the Resch’s pattern. Freeform shapes
can be created using the method of generalization presented by Tachi with tessellated
origami patterns. Figure 2.28 presents one of the variation of Resch pattern, consisting

of triangles and squares joining at degree-5 vertexes and degree-8 vertexes.

(a) (b)

Figure 2.29. Resch patterns by Tachi (a) Variations of Resch’s pattern (b) freeform
shapes of patterns. (Source: Tachi, 2013).
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2.5.2.2. Kinematics of Origami-inspired Mechanisms

All these patterns have their own deployment direction during a folding process
which has been catalogued by Schamme et al. (Schramme, Boegle, & Ortolano
Gonzalez, 2015). According to Schamme et al. there are three directions of deployment
for origami patterns: translational, rotational and a combination of both (Schramme,
Boegle, & Ortolano Gonzalez, 2015) (Figure 2.30). According to this study; Miura-ori
has a bi-directional deployment with translational motion, Yoshimura patterns, referred
as Diamond pattern, have a combination of translational and rotational motion during
the folding process, Quadrilateral patterns, depending on the tessellation of the pattern
can be translational like eggbox pattern or a combination of translational and rotational
like herringbone and reverse fold frame patterns during their folding process. Resch’s
pattern can have different types of motion (translational and/or spherical bending)
because of multitude of degree of freedom. This study also reveals that Yoshimura
pattern can have a different deployment motion: axial bending which demonstrates that
the pattern has multiple degree of freedom.

These presented motions are due to a mechanism existing in these patterns
allowing the movement. It should be stated that even though developable and flat-
foldable patterns are considered as structures from an architectural point of view, they
are mechanisms because of their continuous movement starting from the initial state to
their final folded state (Lebée, 2015).

Greenberg et al. (Greenberg et al., 2011) using graph theory observed that
origami inspired mechanisms contained interconnected linkages forming a network of
loops (Figure 2.31). Depending on the pattern the origami inspired mechanisms showed
to be composed of interconnected 6-bar spherical linkages systems or 4-bar spherical

linkage systems.
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Figure 2.30. Deployment motion of patterns by Schmme et al.

(Source: Schramme, Boegle, & Ortolano Gonzalez, 2015)
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Kinematic Representation Graph Kinematic Representation Graph

1. Four-Bar Double Slit 3. Square Twist

2. 45-degree-fold Twisting Mechanism 4. Water Bomb Base Tessellation

Figure 2.31. Origami inspired mechanisms (Source:Greenberg, Gong, Magleby, &
Howell, 2011) — graphs redrawn by author based on (Greenberg, Gong,
Magleby, & Howell, Identifying Links Between Origami and Compliant
Mechanisms, 2011, p. 222).

The number of loops in a mechanism are calculated using Euler’s equation
(eq.(2.18)): where L stands for the number of loops, j for the number of joints, and / for

the number of links.

L=j—-1+1 (2.18)

Origami patterns are a network of crease lines and vertexes, and in rigid origami
crease lines are replaced by hinges which allows only rotational movement ® (Cai et al.,
2016a), making a degree-4 vertex, a spherical 4R linkage (Figure 2.32(a)) and a degree-
6 vertex, a spherical 6R linkage (Figure 2.32(b)). According to Schulze et al. (Schulze,
Guest, & Fowler, 2014) a “mechanical linkage is called body-hinge structure if every
joint of the linkage is a hinge”. These vertexes regardless of their degree, are assumed to
be the central point of a spherical linkage making the pattern an assembly of spherical

loops (Bowen et al., 2013; Greenberg , 2011).
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(b)

Figure 2.32. Spherical joints (a) 4R spherical linkage (b) 6R spherical linkage - drawn
by the author.

Rigid origami deployable structures are often modeled with zero thickness and
perfect hinges which causes a problem when an application is required. The material,
which should stay stable during the folding process requires to have a thickness which
may change the panel’s dimensions or the placement of the hinges (Figure 2.33(b)) or
the joints’ properties like in Figure 2.33f where the joints are rolling joints not hinges
(Cai, 2016c). Tachi’s study about thick origami (Tachi, 2011) presented two flat-
foldable models: the axis-shift method (Figure 2.33(b)) where the joints were placed in
different locations and tapered method (Figure 2.33(c)) where the material geometry
have been tapered so that the mechanism closes. Edmondson et al. also proposed two
other methods to compensate the thickness problem in rigid origami structures (Figure

2.33(d)(e)).

42



zero-thickness model

s /®\ /
\\@// \\@//
?
o
(2)
_____ S A ——
I N N N Y S

(d)

e aye—"s — p——

(e)

I
I
I
1

€

L8]

.

Figure 2.33. Joints (a) Zero-thickness model (b) Axis-shift method (Source: Tachi,
2011) (c) Tapered panels (Source: Tachi, 2011) (d) Membrane folds
method (Source: Edmondson et al., 2014) (e) Offset panel technique
(Source: Edmondson et al, 2014) (f) Rolling joints connection method
(Source: Cai, 2016c¢) - redrawn by the author based on the sources.
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CHAPTER 3

RIGID ORIGAMI BARREL VAULT STRUCTURES

The MV-Pattern creation of a foldable plate structure can be generated from the
cross-section of the selected geometry, based on a geometrical relation proved by Buri
(Buri, 2010). In Buri’s dissertation we can observe that a MV-Pattern can be generated
by a single line called “generatrix” (Buri, 2010). This method is also observed in the
study of Stavric and Wiltsche, where a convex and concave generatrix was used to
generate a folding pattern for rigid folding structures (Stavric & Wiltsche, 2013).

In this study the method of using a generator line “generatrix” is applied to
create MV-Patterns for some types of foldable barrel vaults with different cross-section.
The generator line is referred to as pattern-generator in this study. Various types of
arches, as the cross-section of the foldable barrel vault, has been selected to demonstrate
different parameters that affect the creation of a crease pattern.

In this chapter geometrical properties of different arch types, used as cross-
section, are analyzed. Five types of arches have been selected for this study, they can be
grouped under two categories: single centered arches and double centered arches.

Single centered arches are the semicircle and the horseshoe arches. Their
geometrical properties have been analyzed and because they share common properties
their parameters have been combined. Double centered arches, which are pointed
equilateral, pointed obtuse, and lancet arches, also have common geometrical properties.

Firstly geometrical properties are analyzed for both categories, starting from the
final folded state, partially folded state and initial state which defines the design
parameters. Secondly a workspace analysis is carried on to understand the relation
between the folding angles and the height, span, and depth of the foldable barrel vault.
And then a mobility analysis is carried out to understand the mechanism of the foldable

barrel vault structures. Finally a conclusion about each category is presented.
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3.1. Single Centered Barrel Vaults

Single centered arches are created by a single circled cross section. There are
different types of single centered arches but only the semicircle arch and horseshoe arch
types are analyzed in this section of the study. The difference between the arches is
defined by the value of the central angle €.

In this section first geometrical properties of single centered rigid origami barrel
vault structures are analyzed starting with the final folded state, followed by the
partially folded state and then an MV-Pattern is created using the calculated parameters.

Secondly a workspace analysis is conducted and finally a mobility analysis is presented.

3.1.1. Geometrical Properties

This section presents the geometrical properties of single centered arches, and
the required parameters to create a MV-Pattern. The pattern is created by reverse
engineering. The process starts with the final folded state, continues with the partially
folded state and ends with the creation MV-Pattern based on the parameters, which is

the initial state.

3.1.1.1. Final Folded State

The creation of a single centered folded plate structure starts by defining a radius
r, the segment number n, and the value of the central angle Q. Figure 3.1 represents the
parameters of both horseshoe (Figure 3.1a) and semicircle (Figure 3.1b). The central
angle © defines whether the cross section arch will be semicircle or horseshoe. If the
central angle is equal to 180° the arch is a semicircle arch, but if the value of the central
angle exceeds 180° then it becomes a horseshoe arch. The horseshoe arch is named
according to the value of the central angle, for example Horseshoe 200° arch.

The radius defines the height and width of the structure, and as the number of
segments increases an approximation to a curve shape is reached as it can be observed
in Figure 3.2. The pattern-generator is created by dividing the circle into equal

segments.
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Figure 3.1. (a) Horseshoe arch and (b) Semicircle arch parameters’ representations.
Bold dashed lines: pattern-generators

Figure 3.2: 3 segments, 4 segments, 6 segments, 9 segments semicircle arches (from left
to right).

The required parameters to be able to create the crease pattern is the length of
the pattern-generator s;, the folding angle a, and the edge angle 4. After defining the
values of the parameters; r, n, and Q, the first step is to calculate segments’ angle 6

using eq. (3.1).
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310

(3.1)

Then using the value of the segment’s angle, the length of a segment s can be

calculated using eq. (3.2).

s = 2rsin (%) (3.2)

2

The length of the pattern-generator s; can be calculated by multiplying the
segment’s length with the number of segments (eq. (3.3)).

Sg=n-Ss (3.3)

The interior angle f# of the pattern-generator need to be calculated alongside the
edge angle 1. To be able to calculate these two angles, 4, B, and C angles need to be
calculated. The angle A is one of the base angles of an isosceles triangle thus calculated
using eq. (3.4). And the angle B is the complementary angle of the central angle which
is calculated using eq. (3.5).

A=— (3.4)

B=2r-0 (3.5)

The angle C is one of the base angles of an isosceles triangle thus calculated
using eq. (3.6). It should be stated that this angle is equal to zero for a selected central

angle equal to m.

=" (3.6)

To be able to calculate angle g the calculation for regular polygon need to be
applied: the radii of the circumference circle of a regular polygon bisect the interior

angles. Thus we can calculate angle # by multiplying angle A by 2 (eq. (3.7)).

ﬁ:ZAzZ-(—)zrr—H (3.7)

47



The edge angle 4 can be calculated by the addition of angles A and € (eq. (3.8)).

This calculation presents the value of the edge angle at its final folded state.

~
Il
o Y
+
(%

(3.8)

The fold angle @ depends on the angle g (Buri, 2010; Stavric & Wiltsche, 2013).

The equation to calculate the angle a is;
a=— (3.9)

The last value is the height of a single row 2A, which is the multiplication of the
half-row’s height & (eq. (3.10)) with two. Figure 3.3 shows how the parameters are used
in the creation of a single row of a crease pattern. Figure 3.4 shows the final folded state

of a semicircle folded plate structure.

h = tana G) (3.10)

Figure 3.3. Single row CP and the parameters for the six segmented semicircle arch.

3.1.1.2. Partially Folded State

The second step in understanding the geometrical properties of a single centered
foldable barrel vault is to define the relations between the parameters while the pattern
is moving from its initial state to its final folded state. The vertex points of the pattern-
generator does not coincide with the vertexes of the crease pattern when the final folded
state of a single crease pattern row (Figure 3.4) is analyzed. The pattern-generator line
in Figure 3.4 has 5 vertexes while the final folded state has 6 vertexes. The final folded
state of a semicircle rigid origami barrel vault has been created with the parameters r:

2 mn: 6 Q: 180° to demonstrate the geometrical relations on each vertexes (Figure 3.4).
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The interior angle g is in relation with the folding angle a, as the value of the
angle f# decreases the value of a increases (eq. (3.9)) and vice versa. Similar relation can
be observed, while the pattern moves from the initial state to the final folded state,
between the folding angle & and the angle 4’ (eq. (3.11)) and also the bending angle u
(eq. (3.12)) (Figure 3.5).

As it can be observed in Figure 3.4 the vertexes v; and vy are degree-4
vertexes, v* and vertexes from v, to vs are degree-6 vertexes, v®. A reverse fold as
explained in section 2.3 (Origami Terminology) is a degree-4 vertex, same as vertexes
v{ and vg. The calculation of the degree-4 vertexes’ bending angle 4’ on both vertexes
v{ and vg is perform using eq. (3.11) provided by the research of Buri (Buri, 2010, pp.
72-76).

AMN=m-2a (3.11)

The work of Buri (Buri, 2010) has been extended to be able to calculate the
bending angle u for degree-6 vertexes. In v° the bending angle g is in relation with
more than two fold angle, as it is in reverse fold (eq. (3.11)). There are four fold angles

a that defines the bending angle thus the equation is modified accordingly (eq. (3.12)).

U=m—4a (3.12)
V3 3 va
._’_,;;/_, - e %
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Figure 3.4. (a) Elevation and (b) double row CP of a rigid origami barrel vault structure
with 6 segments, created using the maximum value of A.
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Figure 3.6. Vertex v$ ’s parameters.
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As it can be observed in Figure 3.4 the vertexes are not on the same line thus
point a is v§ and d; is v$ in Figure 3.6.

The bending angle # depends on the dihedral angle ¢. As the dihedral angle’s
value increases toward the value 7 the bending angle’s value also increases. On the initial
state of the crease pattern both angles are equal to m. The isosceles triangle Ad;bid:
demonstrate the relation between the dihedral angle ¢ and the inclination angle &, as the
dihedral angle increases both inclination angles decreases. In Figure 3.6 the line abs is the
initial place of the crease line which moves toward the position ab; which creates an xz-
plane. The line ac is the bisector of the angle bszab; creating two equal angles o. The angle
o 1s the projected angle of the folding angle a on to the xz-plane. Eq. (3.12) can be
modified by substituting the folding angle a by its projected angle d (eq. (3.13)).

The relation between the angles can be explained as follows:

U=m—495 (3.13)
— -1 (¢h1
§ = tan (abl) (3.14)
cb; = sino-dib; (3.15)
dib
ab, = talné (3.16)

Substituting eqgs. (3.15) and (3.16) in eq. (3.14), eq. (3.14) becomes:

sino -d{by-tana

§ = tan~1( —
171

) = tan"!(sin o - tan a) (3.17)

Substituting eq. (3.17) in eq. (3.13) the relation becomes:

u=m—4tan"1(sino - tan a) (3.18)

The same relation exists on v* where the bending angle 4’ is given by eq. (3.19)

based on the relation in eq. (3.11) (Buri, 2010, p. 76).

A =m—2tan"1(sino - tan a) (3.19)

Both types of vertexes have two positions; initial state and final folded state,

which are considered as the limits of the crease pattern. The dihedral angle ¢ initial state
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is equal to & because the pattern is flat and as the pattern closes the value decreases to
its final folded state where it is equal to 0 (zero). The isosceles triangle Ad;b;d> defines
the limits for the inclination angles ¢ as: 6,,;, = 0 for the initial state and 0,4, = 7/2
for the final folded state. The relation between the dihedral angle ¢ and the inclination

angles ¢ can be defined as;
¢ =mn—20 (3.20)
The association of the angles of degree-6 vertexes, ¥° in their initial and final

folded state can be described as: for & = 0 eq. (3.21) for the initial state and for ¢ = /2
eq. (3.22) for the final folded state.

Umin =T —4tan~I(sing-tana) = (3.21)

Umax = T —4tan"(sino ‘tana) = m — 4a (3.22)
For the degree-4 vertexes’, v* bending angle A’ (v, and v) the relation can be
described as: for ¢ =0 eq. (3.23) for the initial state and for ¢ = /2 eq. (3.24) for the

final folded state (Buri, 2010, p. 76).

MNppin =T — 2tan"(sino " tana) = =« (3.23)

MNopax =T —2tan"(sino -tana) = m — 2a (3.24)

Table 3.1 presents all the values of the v* bending angle 4, v® angle u, dihedral

angle @, and inclination angle ¢ for their initial and final folded states.

Table 3.1. Maximum and minimum values of the angles u, 4°, ¢, and o.

angles Initial state (min) Final folded state (max)
i (v® bending angle) T T —4a
A" (v* bending angle) T T —2a
¢ (dihedral angle) T 0
o (inclination angle) 0 /2
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The required partially folded state for v® can be obtained either by defining the
value of the dihedral angle ¢, and then using eq. (3.20) the inclination angle ¢ can be
solved, and finally substituted in eq. (3.18) to be able to calculate the bending angle u. Or
by defining the value of the inclination angle ¢ and substituted in eq. (3.18) to calculate
the bending angle. Figure 3.7 shows the relation between the inclination angle and both
bending angles for a semicircle arch with 6 segment and a radius of 2 m. As the

inclination angle increases the bending angles decreases to reach their final folded state.

—&o—bending anglep  —M—bending angle \'
180
170
160
150
140
130
120

Bending Angles (°)

110

100
0 10 20 30 40 50 60 70 80 90

Inclination Angle - ¢ (°)

Figure 3.7. Relation between angles # and 4 with & for an n:6, r:2 semicircle arch.

3.1.1.3. Initial State, MV-Pattern

In this step, based on the calculated parameters, a single row of a CP is created.
As presented in the previous step, the required parameters to be able to draw a single
chain are the folding angle «, the edge angle 4 and the total length of the pattern-
generator S;. Table 3.2 shows all the parameters calculated in the previous step for a six
segmented 2 m radius semicircle arch, and for a horseshoe 200° arch with five segments
and 2 m radius.

The lines A and B in Figure 3.8 are parallel to the pattern-generator and the
distance between the pattern-generator and the lines is defined by the parameter A. The
distance between lines A and B is the total height of a single row 2h. The value for the

parameter h can be changed for the creation of a different CP. If the maximum value of
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the A is used to create 2h the CP will be a triangular pattern where edge vertexes are v*
but all others are v®, but if a smaller value of & is used then the pattern will be a

trapezoidal pattern where all vertexes are v*.

Table 3.2. Parameters for r: 2, n: 6 semicircle and r: 2, n: 5 horseshoe 200° arches.

7 (m) n Q° 6° s (m) s (m) A°

Semicircle 2 6 180 30 1,035 6,21 75

Horseshoe 2 5 200 40 1,368 6,84 70
B° ce p° A° a’ h (m) 2h (m)
Semicircle 180 0 150 75 15 0,138 0,277
Horseshoe 160 10 140 80 20 0,248 0,497

The crease line created by the folding angle a is placed on the edge of the first
segment and then extended to both lines A and B. Assuming line 1 is placed first to the
end of the first segment, to be able to create a convex form using reverse fold the
second line 2 need to be placed in the opposite direction of line 1, as a reflection, and so
on for the third, fourth and fifth lines. Lines 6 and 7 are placed based on the edge angle
/. Both lines 6 and 7 need to have the same direction with the adjacent lines if the

structure needs to touch the ground from the edges.

Figure 3.8. Unfolded crease pattern for the six segmented semicircle arch.

The reproduction of the row into a pattern is done by a simple congruence
transformation: reflection by the line B, then the two rows together is translated in y-
direction (Figures 3.9 and 3.10).

The created pattern needs an application of MV-Assignment to be applied to
create the MV-Pattern. The MV-Pattern is applied based on Maekawa’s theorem where
the difference of the number of mountain folds and valley folds should be equal to 2 at
each vertex (Figures 3.9 and 3.10). For both figures full lines are mountain folds and

dashed lines are valley folds.
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The triangular pattern has both v* and v® (Figure 3.9). As it can be observed in
Figure 3.9 for a single row the number of vertexes are equal to the number of segments
n. As the number of segments increases the number of vertexes also increases, but only
the number of v® increases because the v* are only positioned in the edge of the single

row, and the additional segment does not change the conditions of the pattern.

Table 3.3. Number of degree-4 and degree-6 vertexes on triangular patterns.

n vt v v total
3 2 1 3
4 2 2 4
5 2 3 5
6 2 4 6

Figure 3.9. MV-Pattern created by using maximum value of A& for a m: 6, semicircle
arch. Triangular pattern (Y oshimura pattern)

The trapezoidal pattern has only v* (Figure 3.10). As it can be observed in

figure 3.10 for a single row the number of vertexes are not equal to the number of
segments n, as it is in the triangular pattern. Because the maximum value of 4 has not
been used, the diagonal lines created using the folding angle @ do not intersect on the
edge, thus no v® is created which leads to an all v* CP. The relation between the

number of segments and the number of vertexes can be observed in Table 3.4.

Table 3.4. Number of degree-4 vertexes on trapezoidal patterns.

n vt vt v total
3 4 0 4

4 6 0 6

5 8 0 8

6 10 0 10
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Figure 3.10. MV-Pattern created by using & as 0,104 m, for a n: 6, semicircle arch.
Trapezoidal pattern

3.1.1.4. Conclusion

In this section rules and limitations are discussed. While creating a pattern, some
parameters need to be specified by the designer: the radius r, the number of segments n
which defines the approximation of the form of the structure, and the central angle 2
which defines the type of arch required. The properties of these parameters are
discussed together with the rigid foldability of the patterns created using the method of
creation. The rigid foldability of the created MV-Pattern has been tested on both Rigid
Origami Simulator and Freeform Origami softwares created by Tachi (Tachi, 2009a;
Tachi, 2009c).

It should also be stated that the process of creating a crease pattern and assigning
mountain and valley folds to the crease lines do not differ for a semicircle arch barrel
vault MV-Pattern and Horseshoe arch barrel vault MV -Pattern.

If the structure needs to have a temporary stop point while reaching the final
flat-folded state, the inclination angle ¢ needs to be specified by the designer. Also the
edge angle 4 needs to be recalculated so that the edges touch the ground at the desired
dihedral angle.

Height of a single row: The value of 2A has been calculated as the maximum

value for the parameter which allows its manipulation. All values under the maximum
value of h will create a trapezoidal pattern (Figure 3.10) while the use of maximum
height for A will create a triangular pattern which has similarities with Yoshimura

pattern (Figure 3.9).

Central angle Q: the value of the central angle defines the type of arch that will

be used as the cross-section of a rigid origami folded plate structure.
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If Q=mn  Semicircle cross-section
If 2n>Q>mn Horseshoe cross-section

All single centered arches’ trapezoidal and triangular MV-Patterns’ rigid
foldability have been tested on Rigid Origami Simulator (Tachi, 2009¢), and all created
patterns have folded without problems. Same patterns have been tested on the Freeform
Origami software (Tachi, 2009a); in this software, while all pattern flat-folded without
deformation, the software suggested additional creases to the pattern created, which can
be observed on Figures 3.11 and 3.12 as gray lines.

When the suggested grey lines are applied to the triangular MV-Pattern the
pattern become composed of v%, as it can be observed in Figure 3.13. As it can be
observed while the dimensions do not change the form of the parts that touches, the
ground change both in form and in geometry.

Both trapezoidal and triangular MV-Patterns are developable and flat-foldable if
the medium is assumed a surface with no thickness. Models using thick cardboard have
been created to be able to understand the changes suggested by the Freeform Origami
software. Models have showed that v do not flat folds without tearing the material

while the v¢ folds flat without resistance with axis-shift method (Figures 3.14 and 3.15).

|
[
\
[
\
[
\
{
\

o ._.-.__,-J

AN

ME2e 15

Figure 3.11. Triangular pattern rigid origami horseshoe 200° barrel vault tested on
FreeformOrigami software (Tachi, 2009a).
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Figure 3.12. Trapezoidal pattern rigid origami horseshoe 200° barrel vault tested on
FreeformOrigami software (Tachi, 2009a).
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Figure 3.13. Rearranged triangular pattern rigid origami horseshoe 200° barrel vault
tested on FreeformOrigami software (Tachi, 2009a).

Figure 3.14. Models of trapezoidal pattern (left) and triangular pattern (right) for a
semicircular cross-section.
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Figure 3.15. Models of trapezoidal pattern (left) and triangular pattern (right) for a
horseshoe cross-section.

3.1.2. Workspace Analysis

The workspace analysis is first carried by analyzing the geometrical properties
of the depth and then followed by the analysis of the span and height based on the cross-
section of the rigid origami barrel vault structure. Both arch types demonstrated
translational and rotational motion while folding (Figure 3.16). While the structure takes
its single centered final folded state its depth and span decreases, but the height

increases.

Figure 3.16. r: 6m n:8 €:220 horseshoe arch motion - xz-plane (left) and yz-plane
(right).

3.1.2.1. Depth

The relation between the inclination angle ¢ and the depth can be explained by
analyzing the vertexes. As it has been stated before in the partially folded state of the
pattern, the inclination angle ¢ is equal to zero, and the dihedral angle ¢ is equal to z

(Table 3.1). The depth of the mechanism depends on the number of rows R, used to
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create the pattern. The calculations start with a double row where the relation between
the inclination angle and distance between two vertexes is analyzed. The lines d;b; and
d>b; and are equal to the height of the pattern 2h: dib; = d2b; = 2h (Figure 3.17).

The depth of the pattern depends on the length of line d;d> named D;, which in
turn depends on the inclination angle . The relation is as the follows, based on the

isosceles triangle rule:

D, =2-(2h)-coso (3.25)

N

¥
o

L, bl

Figure 3.17. Side view showing the relation between inclination angle ¢ and depth.
Dashed lines are the pattern-generator, bold full lines are the section lines.

As stated before, values of the inclination angle ¢ are g,,;,, = 0 for the initial
state and 0,4, = /2 for the final folded state. As the distance D; increases the value

of the inclination angle decreases and thus the distance D, is equal to:
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Dimax = 2 (2h) - cos oin = 4h (3.26)
and

Dimin = 2+ (2h) - cOS Oppgr = 0 (3.27)

The total depth TD; depends on the number of rows R, in a pattern and the
distance D, calculated by eq. (3.28). D; is the distance between two rows so, to be able

to calculate the value for each additional row, the value of D, is divided by 2.

D, = 2R, (3.28)

Substituting eq (3.25) in eq (3.28), the relation between the inclination angle and
the total depth is obtained:

TD, =2h-coso-R, (3.29)
The relation between the inclination angle and the total depth of a horseshoe n: 8

r: 6 m, : 220° pattern with 10 rows and 2Ah: 0,697m can be observed in Figure 3.18

where, as the inclination angle increases, the total depth decreases.

TDI (m)

0 10 20 30 40 50 60 70 80 90
Inclination angle - 6 (°)

Figure 3.18. Relation between the inclination angles o and the total depth, TD; of a 10
row single centered barrel vault pattern.
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3.1.2.2. Span and Height

The span and height are affected by the cross-section of the type of the rigid
origami barrel vault. The geometrical analysis is carried out on the pattern-generator’s
properties during the folding process. The central point of the pattern-generator line has
been fixed to be able to calculate the span and height differences occurring during the
process. As it can be observed in Figure 3.19 as the MV-pattern folds the central point
of the structures changes, the value of the inclination angle & are: 0°, 10°, 30°, 50°, 70°,
90°, where 90° is the final folded state of the MV-Pattern. Changes occurring to the
span and the height are analyzed in this section in relation to the inclination angle &. To
carry the analysis, some parameters’ properties need to be put in relation with the
inclination angle o. These parameters are denoted with a d next to them to differentiate
them (Figure 3.20). The calculations differs when the number of segment n is an even
or odd number thus span and height for even numbers are denoted Sk and Hg and So

and Hyo for odd numbers.

Horseshoe 200 n:5 Horseshoe 200 n:6 Semicircle n:5 Semicircle n:6

TTE TP 75D

Figure 3.19. (left) Horseshoe arch pattern-generator with even and odd number
segments, (right) Semicircle arch pattern-generator with even and odd
number of segments.

Parameters required to calculate the span .S and height H are the segments’ angle
during the development process @4 and the angle ¢ - projected angle of the folding angle a.
Both parameters need to be in relation with the inclination angle o to be able to calculate the
differences of span and height during the development process. The relation between the

projected angle é and inclination angle ¢ has already been explained in eq. (3.17).
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sino 'd{b;'tana
diby

8 = tan™1( ) = tan~!(sin o - tan @) (3.17)

The relation of the segments’ angle #; can be explained by expending the
geometrical relations presented in the previous section where eq. (3.7) is the value of the
interior angle f in relation to segment’s angle @, and eq. (3.9) where the relation of the
folding angle a with the interior angle f is presented. By substituting eq. (3.7) in eq. (3.9)
a relation between the folding angle @ and segments’ angle @ can be achieved eq. (3.30).

mf _m-(r=0) _ 6

aA=—=
2 2 2

0 =2a (3.30)

Because the angle ¢ is the projected angle of the folding angle @ and defines the
relation between the inclination angle ¢ and the folding angle a, the eq. (3.30) can be
modified to calculate the value of the segments’ angle during the development process

64 (eq. (3.31)) by substituting the folding angle a by its projected angle 6.

0, =26 (3.31)

In Figure 3.20 the parameters for both even and odd numbered horseshoe arch
with central angle equal 200° can be observed. The pattern-generator noted as 1 is the
final folded state where the inclination angle & is equal to 90°, and the number 2 is the
position of the pattern-generator when the inclination angle is equal to 30°. The central
point of the pattern-generator is assumed fixed in order to calculate both the span and

height of the rigid origami barrel vaults.

Span: The span is calculated by adding each segments’ length projected to the x-
axis sq7 for both types of arches. The calculations differ if the number of segment is an
even or odd number.

Starting from the apex, for even numbered segmented arches, the deployment starts
with the projected angle 0 and with each segment the angle increases by the segments’
angle @4. Thus, the segment’s projected length is calculated using eq. (3.32) where i is equal

to 0 (zero) for the first segment, 1 for the second, 2 for the third, and so on.

Spq1 = S - cos(6 + i6,) (3.32)

63



Hor;eshoe 200 n:6 \ | f / /

Figure 3.20. Parameters for (above) Horseshoe 200 arch pattern-generator with even
number of segments, (below) Horseshoe 200 arch pattern-generator with
odd number of segments.
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For patterns with an odd number of segments, which can be observed in Figure 3.20,
calculation start from the central point of the pattern-generator and not the apex. The
folding starts with the segments’ angle #; and with each segment the angle increases by the

value of the angle #4. The projected segment’s length is calculated using eq. (3.33).
Spa1 = S+ cos(if,) (3.33)

The span for both types of single centered arches are calculated by eq. (3.34) for
even numbered segments and by eq (3.35) for odd numbered segments. For the even
numbered arch the sum of the segments’ projected length is multiplied by 2 to have the
total span of the arch. For the odd numbered arch, a segment’s length s is added to the

sum of the projected lengths.

Sg = 25(XM2 cos(8 + i64)) (3.34)

So = s+ 25(T1/? cos(iby)) (3.35)

The required parameters to calculate the span are the projected angle é and the
segments’ angle in development process #4. Figure 3.21 shows the relation between the
inclination and the span. As the inclination angle increases the span decreases. The

maximum span of the pattern is obtained in its initial state.

A U0 N I 0 O
o O O o o O
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inclination angle - ¢ (°)
—_ w
(e} S

(e

7 8 9 10 11 12 13 14
Span (m)

Figure 3.21. Relation between the inclination angle and the span of a horseshoe arch r:
4 n: 6 Q: 200.
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Height: The height is calculated by adding each segments’ length projected to
the z-axis sq42 for both types of arches, eq. (3.36) and eq. (3.37) again the calculations

differs if the segment number # is an even or odd number.

Spap = 5 - Sin(8 + i6y) (3.36)
Soaz = S+ sin(ify) (3.37)

As it was with the span calculations each projected segments length sq2 is added
to each other resulting in the eq. (3.38) for an even numbered arch, and eq. (3.39) for an

even numbered arch.

Hg = s(X/2sin(8 +i6,)) (3.38)
Ho = s(X7-*sin(i6,)) (3.39)

The required parameters to calculate the height are the same as the span. Figure
3.22 shows the relation between the inclination angle ¢ and the height H. As the

inclination angle increases, the height increases too.

90
80
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40
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20
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inclination angle - o (°)

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5
Height (m)

Figure 3.22. Relation between the inclination angle and the height of a horseshoe arch
r:4 n: 6 Q:200.
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3.1.2.3. Volume

The volume is calculated by multiplying the cross-section area with the total
depth TD; (eq. (3.29)). Calculations for the volume are conducted using the arc of the
pattern-generator. To be able to calculate the area of the cross-section changes occurring
to the central angle’s €y, its complementary angle’s By and radius rs during the
deployment are required. All these angles have a relation with the inclination angle
which will lead to the relation between the inclination angle ¢ and the volume V.

The radius during the deployment is calculated by the following equation.

N
2 sin(GTd)

g =

(3.40)

The central angle €y is calculated by multiplying the number of segment n with
the deployment state segments’ angle 84 (eq. (3.41)). The value of the segment’s angle
has been calculated using eq. (3.31).

The complementary angle Bs of the central angle is calculated with the
following equation:

By =2mr—Qq4 (3.42)

The area is calculated by the segment area equation which is valid for a central

angle value equal or less than © (=<m) which present a problem when the cross-section

is a horseshoe arch. For the semicircular cross-section the following equation is used to

calculate the area:

Area = %rf (Q4 —sin(Qy)) (3.43)
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Figure 3.23. Single centered barrel vaults’ volume parameters.

The center point of the arch moves during the deployment process as it has been
showed in Figure 3.19, for horseshoe arches, after a certain point, the central angle’s
value becomes more than n (Figure 3.24 situation 3). In these cases the area of the

cross-section is calculated by subtracting the sector area by the circle’s area (eq. (3.44).

Areay = mri — érj (B; —sin(By)) =13 (TL’ — (m)) (3.44)

\__e///

Figure 3.24. Single centered pattern-generator positions according to the inclination
angle values (1) 10°, (2) 50°, and (3) 90° during folding process.
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These changes appear during the deployment process; for this problem a solution

has been incorporated in a Microsoft Excel 2013® calculation sheet (Appendix A).

The volume V is calculated with the following equations depending on the

condition.

If Qi<m
If Qi>=n

V =TD,-Area
V =TD,-Areay

(3.45)
(3.46)

Table 3.5. Parameter of figure 3.23 for a horseshoe arch n:6 r:4 €:200 R,:10

horseshoe n:6 r:4 Q:200

¢ (°) Q4 (°) Ba (°) ra(m) | Area(m?) | TDi(m) V (m®)
0 0,00 360,00 0,00 0,00 6,87 0,00
5 17,94 342,06 43,98 4,92 6,84 33,67
10 35,71 324,29 22,10 9,66 6,76 65,37
15 53,17 306,83 14,85 14,07 6,64 93,32
20 70,16 289,84 11,26 18,00 6,45 116,20
25 86,53 273,47 9,14 21,39 6,23 133,15
30 102,16 257,84 7,75 24,19 5,95 143,87
35 116,92 243,08 6,78 26,40 5,63 148,55
40 130,71 229,29 6,07 28,07 5,26 147,72
45 143,43 216,57 5,54 29,27 4,86 142,15
50 155,00 205,00 5,13 30,06 4,42 132,73
55 165,35 194,65 4,82 30,54 3,94 120,33
60 174,42 185,58 4,57 30,79 3,43 105,74
65 182,17 177,83 4,38 30,87 2,90 89,63
70 188,55 171,45 4,24 30,86 2,35 72,51
75 193,55 166,45 4,13 30,80 1,78 54,76
80 197,13 162,87 4,06 30,73 1,19 36,66
85 199,28 160,72 4,01 30,68 0,60 18,37
90 200,00 160,00 4,00 30,66 0,00 0,00

Table 3.5 presents the values of a horseshoe arch with n:4, r:4, Q:200 and 10

rows. The condition presented occurs when the inclination angle ¢ increases from 60° to

65° and the central angle’s value surpasses the condition: Q4 < m for the volumetric

calculations made using eq. (3.45). After this point eq. (3.46) is used for the area

calculations. Figure 3.25 represent the data presented in Table 3.5. As it can be

observed as the inclination increases the volume increases rapidly till reaching its peak

when the inclination angle’s value is around 35°. From its peak as the inclination angle
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increases the volume of the barrel vault shows a slow decreases until it reaches its final

folded state where the volume is equal to zero.

90

inclination angle - ¢ (°)
[U%] iy W N ~ ]
S S S S (e S

N
(==}

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Volume (m?)

Figure 3.25. Relation between the inclination angle and the volume of a horseshoe arch
r: 4 n: 6 Q: 200.

3.1.3. Mobility Analysis

Rigid origami barrel vault plate structures are obtained by the cross-section of the
desired shape and designed with the required parameters of the geometrical properties of
the selected cross-section arch type. This section only analyses the mobility of the single
centered arch types. Rigid origami structures are considered as a mechanism, constructed
by rigid panels and revolute joints allow motion. As discussed in previous chapters
(2.5.2.2.) the origami-inspired structures are comprise of spherical loops.

As it will be demonstrated, that when the kinematic diagram of a pattern is
analyzed, both triangular and trapezoidal patterns are comprised of multiple loops. To
be able to calculate the number of independent loops Euler’s equation (eq. (3.47)) is
used, where L stands for the number of loops, j for the number of joints, and / for the

number of links.

L=j—-1+1 (3.47)
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A rigid body in space has six parameters that allows motion: three coordinates [x,
y, and z] and three angles that define the rigid body’s position and orientation in space.
When the movement of a rigid body is restricted, it becomes part of a subspace where
the motion has been restricted by one or multiple constraints (Selvi, 2012). Spherical
mechanisms used in rigid origami foldable structures have three constraints, thus 4 = 3.
When multiple subspaces are combined (Alizade et al., 2014) the number of the new
subspace can be calculated by the eq. (3.48) presented by (Selvi, 2012, p. 52). The

number of subspaces combined is n.

Acombinea = ZZ=1 A + (1 —n) (3.48)

This section analyses the mobility of the created patterns using the Freudenstein

and Alizade’s equation (eq.3.49):

My =2l fi = Zkci e + 0 = Jp (3.49)

where M is the mobility, nr is the number of segments and rows in a pattern, fi is the
degree of freedom for i™ kinematic pair, A« is the degree of spaces or subspaces of k
loop, ¢ is the number of excessive links, and j,, is the number of passive joints. Since all
joints are revolute joints (2.5.2.2.) in origami mechanisms, and there are no excessive

links or passive joints the eq. (3.49) can be defined as:

M =Y fi =k A (3.50)

The patterns are analyzed first by calculating the number of independent loops
using the Euler’s equation (eq.(3.47)), then their mobility is calculated using the eq.
(3.50), finally the mobility is verified by the properties of structural group. “Structural
(Assur) group: Smallest kinematic chain which when added to, or subtracted from, a
mechanism results in a mechanism that has the same mobility as the original
mechanism.” (IFToMM online dictionary). Basic elements of structural groups can be
observed in figure 3.26. As one of the elements is added to a mechanism the mobility do

not changes.
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Figure 3.26. Element of structural group.
(Source: Li & Dai, 2012, p. 2)

The analysis starts with a double row of a six segmented pattern, then a single
row 1s added for each step to understand the mobility of the pattern. Since the row is
created with parameters, the pattern can grow in a single direction, so the pattern has
only additional rows and not columns. The number of segments is a parameter that is
specified by the designer to calculate all other parameters and even though it can be
perceived as a change in the number of columns in a pattern, in this study it is not

referred as such.

3.1.3.1. Triangular Pattern

In this section the mobility analysis is done first for a triangular pattern (A4: max),
with 6 segments and 5 segments. Multiple tables are presented to further understand the

mobility calculations, and their kinematic diagrams.

3.1.3.1.1. Six Segmented Pattern

Double row: First the crease pattern with the numbers of panels is presented, and
then the kinematic diagram with numbering for each link and joints are presented. As it
can be observed from Figure 3.27, in a double row of a crease pattern there are twelve
panels which can be considered as links. There are 14 joints for 12 links.

The number of independent loops, L, is calculated using eq. (3.47):
Ls>=14—-12+ 1 =3, there are 3 loops for a double row triangular pattern. The first
loop is a 4-bar spherical mechanism, and loops 2 and 3 are 6-bar spherical mechanisms.

For all three loops A = 3 because all the joints’ axis meet at a central point. The
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mobility calculation for the double row pattern M,is made by substituting the number
of joints and loops to eq. (3.50);

For 14 revolute joints and three A = 3 loops the mobility is equal to 5:
Ms>=14—-(3-3)=5.

Rigid origami deployable structures are often modeled with zero thickness and
perfect hinges which causes a problem when an application is required. The material,
which should stay stable during the folding process requires to have a thickness which
may change the panel’s dimensions or the placement of the hinges (Figure 2.33(b)) or
the joints’ properties like in Figure 2.33f where the joints are rolling joints not hinges
(Cai, 2016c). Tachi’s study about thick origami (Tachi, 2011) presented two flat-
foldable models: the axis-shift method (Figure 2.33(b)) where the joints were placed in
different locations and tapered method (Figure 2.33(c)) where the material geometry
have been tapered so that the mechanism closes. Edmondson et al. also proposed two
other methods to compensate the thickness problem in rigid origami structures (Figure

2.33(d)(e)).

//j1 j24 3 4B jAy 5 s
/1 2 4 N6
(b) joms (1) j7 = 2 8 — 3 /\- e
s
7\ 8 10 }/12
Nio 5 Njiz i385 Njs

Figure 3.27. Triangular double row semicircle arch r:3 n:6 Q:180° (a) crease pattern (b)
kinematic diagram.

The result can be verified by the properties of structural group; a loops of a 4-bar
mechanism has a mobility of 1. To preserve the mobility when a second loop is added, 2
more links need to be added because it is a loop of A = 3. But as it can be observed in
Figure 3.27, the second loop introduces 4 new links, because only 2 new links were

sufficient, the additional 2 links increases the mobility to 3. Then a third loop adds 4
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new links to the structural group, again increasing the mobility by 2 to 5. Thus the

equation is verified.

3 Rows: A third row is added to the double row crease pattern, which means that
6 new links and 9 new joints are added to the mechanism, up to 18 links and 23 joints
(Figure 3.28). Three new loops are also added with a new row, calculated using eq.
(3.47): Ls3 =23 — 18 + 1 = 6. With the third row, two 6-bar spherical loop and one 4-bar
loop are added. The mobility calculation for a 3-row six segments pattern Mgz is
calculated using eq. (3.50): Ms3 =23 — (6 - 3) = 5. For 23 joints and six A = 3 loops the
mobility is again equal to 5.

The mobility does not change when a new row is introduced to the mechanism.
As stated before, to preserve the mobility within a structural group of A = 3, 2 new
links need to be added (Figure 3.28). The 4™ loop introduces 2 more links [17 and 18]
which preserves the mobility. The 5" loop introduces again 2 more links and not 4 more
links like in the double row because the links 9, 10, 11 and 17 are already part of the
structural group; so the mobility is again preserved. The last loop, like the 5™ loop adds
2 more links [13 and 14] which preserve the mobility. Even after a new row is

introduced, the mobility is still equal to 5.

1 5
(a) 2 i 4 _ 6
7 8 9 10 1 12
s — — )
13 14 15 16 17 18

1= P 4 N6
" o (1) =j7 (2 *8 (3 Samjo
jlo/ 8 j12 £10 j14
7 N / N 12
i1 9 135 11
j15m== 6 J16mm 5) 17= (4 /-HS
1319 150, j21 170,023 45
7 \ / \ 7
14 j20 16 22

Figure 3.28. Triangular 3-row semicircle arch r:3 n:6 €Q:180° (a) crease pattern (b)
kinematic diagram.

4 Rows: One more row is added to the 3-row pattern, that is again 6 new links

and 9 new joints are added to the mechanism, increasing the number of joints to 32 and
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the number of links to 24 (Figure 3.29). 3 new loops are added to the mechanism
increasing the total number of loops to 9: Lss=32—-24 +1=09.

The mobility is still equal to 5: Mss =32 —(9 - 3)=15. after a new row is added,
making a 4-row pattern. 7" loop adds two more links [19 and 20] to the mechanism
preserving the mobility. The 8" and 9" loops also added 2 new links each; links 21 and
22 for the 8" loop, and links 23 and 24 for the 9" loop. The properties of structural
groups confirms the calculations.

For a pattern with 6 segments each time a row is added, the mobility is constant
and equal to 5. Each row adds 6 new links, 9 new joints, and 3 new loops with A = 3

spherical loops. (Table 3.6).

7 8 9 . 10— 11 . 12
} — — - J
(@) 13 2 14 ~ 15 16 17 18
19 20 — 1 2 =" 23 2%
: o = — ]
AL 3 B M 5 s
1 3/ 4 6
j6 - 1 -7 2 - j8 3 - j9
j10 4 g j12./4 10 j14
b N 7 N 7 N 12
(b) 7 11 9 ER N
j15 = 6) jlo= 5) 17 (4) Fjis
j19 15 j21 . j23
13 7 VAR N7 s
14 j20 16 j22
j24 w— 7 =25 8 -26 9 - j27
19728420 30 422 32 24
N\ \

4 N 7/
j29 21 j31 23

Figure 3.29. Triangular four rows semicircle arch r:3 n:6 ©:180° (a) crease pattern
(b) kinematic diagram.

3.1.3.1.2. Five Segmented Pattern

Double row: Patterns created by 5 segments and 6 segments are compared to
understand the difference in their mobility values. In double row the six segmented
pattern have a 4-bar loop and two 6-bar loops, and as it has been stated with each row a
4-bar loop and two 6-bar loops are added. In double row, the 5 segments pattern has

three loops, as the 6 segmented pattern, but they are composed of two 4-bar loops and
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one 6-bar loop (Figure 3.30): Ls»=12—-10+1=3, which creates the difference
between the numbers of joints and links. The mobility is equal to 3: Ms> =12 —(3 - 3) =5.

The result can again be verified by the properties of structural group: a loop of a
4-bar mechanism has a mobility of 1. When a 2" loop, a 6-bar loop, is added 2
additional links are introduced to the structural group which changes the mobility to 3.
Till here the calculations are the same as the 6-segment double row. But when a 3™ loop
added to the mechanism the mobility is preserved because only 2 new links are added [5

and 10] (Figure 3.30). The mobility of a 5- segments double row triangular pattern is

equal to 3.
1 . H“Hk 3 2 B \“‘m‘\ 5
@ ’/,_/ 2 \n\ - / 4 ‘\K
i j2 3 B3 j4
1 4 ! 5
(b) 1 j6 m— ) j7 w— 3
6 Y oo 10
j9 jtlo 8 in j12

Figure 3.30. Triangular double row semicircle arch 3 n:5 Q:180° (a) crease pattern
(b) kinematic diagram.

3 Rows: When a third row is added, instead of adding one 6-bar loop and two 4-
bar loops, following the same logic observed in 6-segment pattern, a new row only adds
two 6-bar loops. A 5 segments pattern with three rows has 5 loops, Ls3=19 —

15 + 1 =15, while the 6 segments pattern have 6 loops (Figure 3.31).

The 4™ loop adds 3 new links. Two links [14 and 15] are required to preserve the
mobility thus one link [13] is additional and increases the mobility to 4. The 5™ loop
adds two new links [11 and 12] therefore preserve the mobility equal to 4: Ms; =19 —

(5-3)=4.
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Figure 3.31. Triangular three rows semicircle arch r:3 n:5 Q:180° (a) crease pattern
(b) kinematic diagram.

4 Rows: the 4" row adds 3 more loops to the mechanism. It adds two more 4-bar
loops and a 6-bar loop adding up a total of 5 new links and 8 new joints (Figure 3.32).
There are 8 loops calculated using eq. (3.47): Ls4=27 —20 + 1 =8 and the mobility is
equal to 3: M5, =27 —(8-3)=3.

The 6 loop adds two new links [16 and 17] preserving the mobility equal to 4.
The 7™ loop adds two links [18 and 19] therefore preserve the mobility. The 8™ loop
adds only one new link [20] which is one less link then required to preserve the mobility,
thus the mobility decreases by one, making the mobility equal to 3. Therefore, the result

of the equation is verified.
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Figure 3.32. Triangular four rows semicircle arch r:3 n:5 Q:180° (a) crease pattern (b)
kinematic diagram.

The approximation of the arch is defined by the number of the segments n, it is
divided, thus the mobility analysis has been extended to observe if there are differences
when the segment number changes. As it can be observed in table 3.6 when the segment
number is an odd number the mobility changes and it is not constant when there is an
even numbered segments.

Table 3.6 presents the mobility calculations of patterns with different segments.
When patterns with 6 and 4 segments are analyzed in the Table 3.6 it can be deducted
that pattern with even number of segments the mobility is constantly preserved with
each row. But when patterns with odd number of segments are analyzed it can be
observed that the mobility is irregular. The irregularity have an order depending on the

number of rows.
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Table 3.6. Single centered triangular pattern mobility analysis with different number of
segments and rows.

r:3 Q:180 h: max Triangular Pattern

# of segment 2 Row 3 Row 4 Row 5 Row 6 Row increased by
# links 6 9 12 15 18 (+3)
# joints 7 1 16 20 25 ((;4)) tt;’ :Vdecr‘l
n:3 4 loops T{A=3|A=5 | T |A=3 |25 | T [A=3 |A=5| T |A=3 |A=5| T |A=3 | A=5 | (+1)to0dd
201210 |3]|3 0 |51 5 0 |6| 6 | 0 |8] 8 0 | (+2)toeven
(+1) to odd
il ! 2 ! 2 ! (-1) to even
# links 8 12 16 20 24 (+4)
# joints 9 15 21 27 33 (+6)
n:4 TIA3|A=5 | T |A=3|A=5| T [A3|A=5| T |23 |Aa=5|T |A=3]|Ar=5
# loops (+2)
2121 0 |4] 4 0 |61 6 0 | 8] 8 0 |10 10| O
M 3 3 3 3 3 0
# links 10 15 20 25 30 (+5)
# joints 12 19 27 34 42 ((jg))tf:ii
n:5 . T{A=3|A=5 | T A3 |A=5 | T |A=3|2=5| T [A=3|[2=5| T |23 | =5 | (+2)toodd
0oops
T3 [0 [5] s 0 [ 8| 8 0 |10/ 10| 0 [13] 13 | 0 | (+3)toeven
(+1) to odd
s 3 4 . 4 : (-1) to even
# links 12 18 24 30 36 (+6)
# joints 14 23 32 41 50 (+9)
n:6 T(A3[A=5 | T |A=3|A=5| T [A=3|A=5| T |A=3 |a=5| T |A=3 | A=5
# loops (+3)
313101616 0 |99 0 |12 12| 0 [15] 15| 0
M 5 5 5 5 5 0
# links 14 21 28 35 42 +7)
# joints 17 27 38 48 59 ((:1110)) :::Vdei
n:7 ‘1 T (A3 |A=5| T [A=3 | A=5 | T [A=3 | A=5 | T |A=3 |A=5 | T | A=3 | =5 | (+3)t0odd
0oops
P (o |77 0 [11| 11| 0 |14]| 14 | 0 |18| 18 | 0 | (4 toeven
(+1) to odd
a J g J g J (-1) to even

3.1.3.2. Trapezoidal Pattern

In this section trapezoidal pattern (h: 0.Im) created for a rigid foldable
semicircle cross-sectioned barrel vault are analyzed. Six segmented crease pattern is
analyzed; because the model tears during the folding process a different analysis has
been conducted as an attempt to modify the pattern along with each row’s analysis. The
analysis for an odd number of segments has not been presented because mobility

calculations showed that there was no significant difference with the analysis of the
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triangular pattern. But for a deeper understanding of mobility in trapezoidal patterns a

table has been presented with different number of segments.

Double row: The number of links is equal to the triangular pattern but the
number of joints increase from 14 to 16 (Figure 3.33). The number of loops, Lg,r for
the trapezoidal pattern is calculated using eq. (3.47): Lsor=16—12+1=15, so for a
double row trapezoidal pattern there are 5 loops. All loops are 4-bar spherical loops,

because all the joints axis meet at a central point for all five loops, 1 = 3.

- 1 ) 2 3 4 5 6
: 7 - 8 9 0 1 12
i 12\ J3, j4 \ j5
/I/l : ’ ¢ ° &6\
i6
(b) ’-\1 = (2) js= (3)jo= (4) jlo= 5 il
8 9 10 1 e
7 12
S N 7
12 i3 j14  jis i16

Figure 3.33. Trapezoidal double row semicircle arch r:2 n:6 Q:180° (a) crease pattern
(b) kinematic diagram.

The result can be verified by the properties of the structural group, a loop of a 4-
bar linkage has a mobility of 1: Msr=16—(5-3)=1. When a 2™ loop is added to
preserve the mobility, 2 more links need to be added because it is a loop of 4 = 3. Each
new loop add 2 additional links thus the mobility does not change and the equation is
verified.

Joints where tears appeared during the folding process of the physical model
have been removed. Joints 8 and 10 are removed from the mechanism, creating a
mechanism with 3 loops (Figure 3.34). The new loops’ subspace number needs to be
calculated using the eq. (3.48), where two A =3 mechanism are joined:

A=(3+3)+(1-2)=5.
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Figure 3.34. Modified Trapezoidal double row semicircle arch 2 n:6 Q:180° pattern
kinematic diagram.

The new loop B is created by the combination of loops 2 and 3 and its subspace
number is A = 5. The second new loop C is a combination of loops 4 and 5 and its
subspace number is as calculated A = 5. The new obtained 6-bar loop is called the
double spherical linkage (Bennett, 1905).

For a double row modified pattern the mobility is equal to 1 when calculated
using eq. (3.50): Ms2ry=16—((1-3)+(2-5))=1.

The removal of these joints does not modify the mobility of the pattern. The
properties of the structural group need to be reanalyzed since the modified mechanism
is a mixture of A =3 and A =5 loops. The 1% loop A is a A = 3 4-bar loop with
mobility 1. To preserve the mobility with loops that have A = 5 a structural group with
4 new links is required. So, the mobility is preserved because the new loop B introduces
4 new links [3, 4, 10, and 9] to the structural group. The last loop C also introduces 4

new links [5, 6, 12, and 11] again preserving the mobility as 1.

3 Rows: A third row is added to the double row crease pattern, that means 6 new
links and 11 new joints are added to the mechanism. As it can be observed the
additional row adds 5 more loops (Figure 3.35).

There are 10 loops: Ls3r=27 — 18 + 1 = 10.

The double row’s mobility is equal to 1 as calculated, but with an additional row
the mobility decreased to -3: Ms37=27 — (10 - 3) = -3. The structural group properties
need to be analyzed to understand the new value of mobility. The 6 loop is added with
2 new links [18 and 17] preserving the mobility. The 7™ loop only adds 1 new link to
the structural group which decreases the mobility to 0. Each of the following loops, that
is the 8™, 9™ and 10™; introduce 1 new link instead of 2 new links each, which decreased

the mobility to -3, creating an overconstrained mechanism.
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Figure 3.35. Trapezoidal three rows semicircle arch r:2 n:6 Q:180° (a) crease pattern
(b) kinematic diagram.
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Figure 3.36. Modified Trapezoidal three rows semicircle arch r:2 n:6 ©:180° pattern
kinematic diagram.

As it was with the double row pattern some creases tear during the folding
process of the model. Additional to the joints [8 and 10] removed before, the joints 18
and 20 are also removed from the mechanism. This creates a total of 6 loops in the
mechanism instead of 10, but as before, when the specified joints are removed the loops’
[B, C, F, and E] subspace number becomes A = 5 instead of A = 3, calculated with the
eq. (3.48). (Figure 3.36)

The mobility of the modified pattern is equal: Ms3mr =23 —((2-3) +(4-5))=-3.

The value of the mobility does not change from the original trapezoid pattern.
When the structural group is analyzed the additional loop D has a A = 3 subspace which
requires additional 2 links to preserve the mobility which is satisfied by the addition of
links 18 and 17. On the other hand the loops E and F have A = 5 and as stated before

for such mechanisms, additional 4 links are required to preserve mobility. Both loop E
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and loop F adds 2 links each [15 and 16 for loop E, 13 and 14 for loop F], instead of

adding 4 links each which decreases the mobility to -3, confirming the equation.

4 Rows: One new row is added to the 3-row pattern, which adds 6 new links and
11 new joints to the mechanism. As it can be observed, the addition row adds 5 new
loops that are 4-bar spherical loops (Figure 3.37).

The 3-row pattern had 10 loops: and -3 mobility, the new loop introduced to the
structural group, loop number 11, adds 2 new links [19 and 20]. The number of loops is
15: Los7 =38 —24 + 1 =15, and mobility is equal to -7: Mss7 =38 — (15 - 3) =-7. After
this loop each loops add 1 new link instead of 2 new links to the structural group, thus
the value of the mobility became; -7, same value calculated as M¢gyr.

The joints removed from this pattern are joints; 8, 10, 18, 20, 30, and 32. By
their removal the number of loops decreases to 9 (Figure 3.38). The new loops B, C, F,
E, Hand I are A = 5 mechanisms (Table 3.8).

The mobility of the modified pattern is equal: Mssmr=32—-((3-3) +(6-5))=-7.
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Figure 3.37. Trapezoidal four rows semicircle arch r:2 n:6 £2:180° (a) crease pattern (b)
kinematic diagram.

The first loop G added with the 4™ row has a A = 3 subspace, adds 2 new links
[19 and 20], thus preserve the mobility equal to -3. The second loop H, required to add
4 new links to the structural group because it is a A = 5 loop, only adds 2 new links [21

and 22]. The last loop I, which has the same properties as the previous loop, also adds
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only 2 new links to the structural group. As a total the structural group lacks 4 links,

which decreases the mobility by four, making the value -7, as calculated.

i1 j2 i3 j4 i5
- \ 3 7 \ 2 .
S =~ 2 4 6\
J6 =" A j7 - B j8 == C j9 -
8 mn 12 10 13 j14
7 7 N\ 7/ N 12
j10 9 1
J1 S F j16 - E j17 - D j18 =
j19 15 j21 7 j23
13 /7 N ' 7/ 18
14 j20 16 j22
j20m- G) j25 == H j26 = ‘ J27. %=
To 20 75 4
N 4 N\ N4 .
j28 j29 21 j30 31 23 j32

Figure 3.38. Modified Trapezoidal four rows semicircle arch r:2 n:6 €:180° pattern
kinematic diagram.

Table 3.7 presents calculations for a trapezoidal pattern with different number of
segment. As it can be observed there are no differences between even and odd
numbered segment numbers as it was in the triangular pattern. Except the double row
pattern all other pattern’s mobility changes with each additional segment introduced to
the mechanism. But during the folding process of the trapezoidal pattern tear from some
of the joints, while the removal of the joints did not change the value of mobility it
changed the kinematic properties of the pattern.

As a conclusion there are differences between the mobility value of even and
odd numbered segmented triangular patterns. The mobility values has been compared to
a structural group analysis revealing the same value of mobility. The modified trapezoid
pattern’s joint and link numbers (Table 3.8) are the same as the triangular pattern’s
values (Table 3.7), but the comparison between the kinematic diagrams of the
trapezoidal and triangular patterns reveals that the subspace’s numbers are different
resulting in varied mobility. Lastly the joints removed from the trapezoidal patterns are
the ones that tear during the model folding. The tear creases showed a similarity which
suggest that the tearing did not occur randomly but, because no mobility changes have
occurred it can be assumed that the cause for these tears were the thickness in the
material. All tear appeared on the short creases forcing the pattern to be a 6-bar

spherical loop pattern rather than a 4-bar spherical loop pattern.
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Table 3.7.

Single centered trapezoidal pattern mobility analysis with different number
of segments and rows.

r:3 Q:180 Semicircle h < MAX Trapezoidal pattern

# of segment 2 Row 3 Row 4 Row 5 Row 6 Row mcrg;sed
# links 6 9 12 15 18 (+3)
# joints 7 12 17 22 27 (+5)
n:3 Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5
# loops (+2)
2 2 0 4 4 0 6 6 0 8 8 0 10 10| 0
M 1 0 -1 % 3 1)
# links 8 12 16 20 24 (+4)
# joints 10 17 24 31 38 +7)
n:4 Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5
# loops +3)
3 3 0 6 6 0 9 9 0 12 1210 15 1510
M 1 il 3 5 &7 (-2)
# links 10 15 20 25 30 (+5)
# joints 13 22 31 40 49 (+9)
n:5 Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5
# loops (+4)
4 4 0 8 8 0 12 1210 16 16 | 0 20 [ 20| O
M 1 2 5 -8 -11 (-3)
# links 12 18 24 30 36 (+6)
# joints 16 27 38 49 60 (+11)
n:6 Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5
# loops (+5)
5 5 0 10 10| 0 15 150 20 [ 20 | O 25 | 25| 0
M 1 -3 -7 -11 -15 (-4)
# links 14 21 28 35 42 +7)
# joints 19 32 45 58 71 (+13)
n:7 Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5
# loops (+6)
6 6 0 12 121 0 18 18] 0 24 [ 24| 0 30 | 30| 0
M 1 -4 -9 -14 -19 (-5)
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Table 3.8. Single centered modified trapezoidal pattern mobility analysis with different
number of segments and rows.

r:3 Q:180 Semicircle h <MAX Trapezoidal pattern -MODIFIED

# of segment 2 Row 3 Row 4 Row 5 Row 6 Row increased by
# links 6 9 12 15 18 (+3)
.. (+4) to odd
# joints 7 11 16 20 25 (+5) to even
n:3
# loops Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5 (+1) to odd
2 0 20lo |3 |21 ] 5 |41 6 |a]|2]38|6]2]|E2toeven
M 1 0 -1 % 3 1)
# links 8 12 16 20 24 (+4)
# joints 9 15 21 27 33 (+6)
n:4 Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5
# loops (+2)
2 1 1 4 2 2 6 3 3 8 4 4 10 5 5
M 1 -1 3 -5 -7 (-2)
# links 10 15 20 25 30 (+5)
. (+7) to odd
# joints 12 19 27 34 42 (+8) to even
n:5
#loops Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5 (+2) to odd
3 21| s [3|2|8 |alaliwo|a]e]|13]6]7|E3)toeven
M 1 0 -5 -8 -11 (-3)
# links 12 18 24 30 36 (+6)
# joints 14 23 32 41 50 (+9)
n:6 Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5
# loops (+3)
3 1 2 6 2 4 9 3 6 12 4 8 15 5 10
M 1 -3 -7 -11 -15 (-4)
# links 14 21 28 35 42 +7)
(+10) to odd
# joints 17 27 38 48 59 (+11) to
; even
n:
#1oops Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5 | Total | A=3 | A=5 (+3) to odd
4 227 |25 |1 |4|7|14|4]|10]18]6|12]|C4toeven
M 1 -4 -9 -14 -19 (-5)

3.1.4. Conclusion

For a designer it is fundamental to be able to manipulate all the parameters while

designing.

In this part of the study parameters for creating a single centered rigid

origami foldable barrel vault has been presented. The parameters that can be defined by

the designer are the radius, r, the number of segment, m» which defines the

approximation of the form, and the central angle  which defines whether the cross-
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section is a semicircle or horseshoe arch. These parameters defined, the designer can
create an MV-Pattern based on the calculations presented on the geometrical properties.
The designer can also control the foldable structure’s movement using the calculations
on both the geometrical properties and workspace analysis. There are limitations while
creating the MV-Pattern; the height of the pattern A cannot surpass the calculated value,
otherwise the diagonals created based on the fold angle, a will crisscross, which will
lead to a failed pattern. But the height of a single row A can be less than the calculated
value creating a trapezoidal pattern instead of a triangular pattern. Height, span, and
depth calculations are in relation with the inclination angle ¢ which facilitate the
understanding of the motion of the rigid origami foldable barrel vault. The depth
calculations do not differs if the number of segment »n is an even or odd number, but the
span and height calculations are different for each, which has been presented in the
workspace analysis. Because the span and height calculations are based on the
geometrical properties of the pattern-generator the calculation method do not changes
when the MV-Pattern is a triangular one or trapezoidal one. A calculation sheet has
been prepared in Microsoft Excel 2013® to facilitate the calculations is presented in
Appendix A. Mobility calculations present differences for a triangular pattern when the
number of segments are even or odd. Trapezoidal patterns tear during the folding of the
physical model which has been analyzed and results demonstrated that removing those
specific joints did not changed the mobility. For all three mobility calculation (tables 3.6,
3.7, and 3.8) a set of patterns and kinematic diagrams have been provided in Appendix

B.

3.2. Double Centered Barrel Vaults

Double centered arches are created by the intersection of two arcs’ cross section.
There are different types of double centered arches but in this study only the pointed
equilateral, lancet, and obtuse arch types are analyzed. The difference between these
arches is defined by the relation between the radii of the arcs r and the distance between
centers of the arcs a.

In this section the final folded state of the double centered rigid origami barrel

vault structure is analyzed first, then the geometrical properties of the partially folded
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state. The section continues with a workspace analysis and finishes with mobility

analyzes of the pattern created using the defined parameters.

3.2.1. Geometrical Properties

This section present the geometrical properties of double centered arches and the
creation of a MV-Pattern using these parameters. Using the reverse engineering, first
the final folded state of the pattern, followed by the partially folded state, and lastly the
initial state is analyzed. Then the creation of an MV-Pattern is explained based on the

presented parameters.

3.2.1.1. Final Folded State

The creation of a double centered folded plate structure starts by defining three
parameters: the distance between the centers of two arcs a, the radius r, and the number
of segment n for a single arc. Figure 3.39 represents the parameters for all three types of
double centered arches: (a) pointed equilateral arch, (b) lancet, and (c) obtuse arch. As
the number of segments increases an approximation to the curved shaped of the arches
is achieved, as it is for the single centered foldable barrel vaults.

Parameters required to create a double centered rigid origami barrel vault MV -
Pattern are: length of pattern-generator s;, folding angle a, and the angle 4. First step to
be able to create a crease pattern is to define the values of the parameters; a the distance
between the center points, r the radius of arcs and » the number of segment for a single
arc which in turn multiplied by 2 gives the total number of segments n;. While defining
theses parameters some properties of these arches need to be defined:

e [fthe required cross sectioned of the barrel vault is an equilateral arch: r =a

e [fthe required cross sectioned of the barrel vault is an obtuse arch: r > a

e [fthe required cross sectioned of the barrel vault is a lancet arch: (a/2) <r <a.

In case of the Lancet arch the radius r has higher and lower value limits
depending on the distance between the two centers a. If the distance between the centers
a is more than 2r the arcs do not intersect thus no arch is created. The parameter b is the
distance between r and a, it is required to calculate the distance between the edges of
the pattern, and it is calculated using eq. (3.51).
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(a)

(c)

Figure 3.39. Parameters for (a) Pointed Equilateral arch, (b) Lancet arch, and (c)
Obtuse arch. Bold dashed lines: pattern-generators.
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b=|r—al (3.51)

After defining these three parameters, the first step to be able to calculate the

other parameters is to calculate the angle A using eq. (3.52).

A= cost (%) (3.52)

2r

Then the segments’ angle @ is calculated using the angle A with eq. (3.53).

Sy

(3.53)

The length of the segment s and the pattern-generator’s length s; is calculated
using the same egs. (3.2) and (3.3) as in the single centered arches calculations.
Angles B, C, and D, need to be calculated to be able to calculated the folding

angles a and interior angles f# using the following equations:

B=n-24 (3.54)
A (e

¢=(=9) (3.55)
D=C-B (3.56)

The angle D, in case of a lancet arch, can have a minus sign which means that
the line between the center points and the apex is passing outside the pattern-generator
line (Figure 3.40). In Figure 3.40(a) the angle D has a positive value but in Figure
3.40(b) a negative one.

(b)
Figure 3.40. Different lancet arches.
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If Figure 3.39 is analyzed in contrast to single centered arches there are two
different interior angles f7 and f2. The interior angle > is the angle of the apex, and the
angle f; is the other interior angle of the pattern-generator. The interior angles f; and

J2 are calculated using eqgs. (3.57) and (3.58), respectively.

o

Il

o)

+
N

)

(3.57)
(3.58)

B
B>

Different interior angles signifies that there are two different folding angles
corresponding to these angles calculated using eq. (3.59) for the folding angle a7 and eq.

(3.60) for the apex’s folding angle a..

a, = P (3.59)

a, = £ (3.60)

The edge angle 4 is equal to the angle C.
A=C (3.61)

And last values to be calculated are the half-row’s height 4 and the total height
of the row 2h. Two different folding angles means two different half-row heights: A;
calculated with the folding angle a; (eq. (3.62)) and h; calculated with the folding angle

a2 (eq. (3.63)).

h, = tana, G) (3.62)

h, = tana, G) (3.63)

Only one of the half-row height can be used for the crease pattern. The smallest
value between h; or h; should be used if the bigger value is selected then the diagonal
lines created by the smallest folding angle will crisscross within the height of the single

row.
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All the parameters required to draw a crease pattern has been demonstrated.
Figure 3.41 demonstrates how parameters should be applied to draw a single row of a

CP for a double centered foldable barrel vault.

Figure 3.41. Single row crease pattern and the parameters for six segmented pointed
equilateral arch.

3.2.1.2. Partially Folded State

The second step is the geometrical properties of the partially folded state of
double centered foldable barrel vault. This section presents the relation between the
parameters while the structure moves from the initial state to its final folded state. The
geometrical relations between the folding angle & and inclination angle ¢ with the
bending angle 4 have been demonstrated on the previous section for both type of
vertexes; v*and v® with egs. (3.19) and (3.18). In double centered cross-section
foldable barrel vault structures there are two different folding angles a; and &> which
demand a modification to the previous equations.

For double centered cross-sectioned vaults the number of pattern-generator’s
vertexes are not equal to the number of vertexes of the pattern as it was in the single
centered cross-sectioned vaults (Figure 3.41). Except from vertexes v4 and vs all others
are created using the folding angle ;. Only the vertexes v, and v; are degree-6 vertexes
v and all other angles are degree-4 vertexes v*.

The vertexes vy and v are created using the folding angle a2 because this type
of arches are created using two arcs making an apex point on the general cross-section
which is different from the regular cross-section of single centered barrel vaults.

Firstly the degree-4 vertex equations are presented by modifying eq. (3.19) with
the correct folding angle parameters. The vertexes v{, vs, vg and vg are created using

the folding angle a; thus the equation for these vertexes’ bending angle 4’ is:

AN =m—2tan"!(sino - tana,) (3.64)
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The vertexes v; and v are created using a different folding angle a;, thus their

bending angle u; is denoted differently in the following equation.

U, =m— 2tan"1(sino - tan a,) (3.65)

Then the bending angle u; for the vertexes v$ and v is:

U, =m—4tan"1(sino - tan a,) (3.66)

As it can be observed in the Figure 3.42 the apex is constituted by two vertexes vy
and vz , this condition do not changes when the number of segment n changes because
the cross-section is constituted by two arcs. When the segment number »n is increased or
decreased only the number of v® changes, the geometrical properties of v¥ do not changes.
The apex will always be surrounded by four v the closest ones, in this example (Figure
3.42) v and v, are created using the folding angle a2 and the other two, v5 and v{, are
created using folding angle a;. And the first and last angles will always be v#, so when the

number of segment increases only the number of v® will increase.

Figure 3.42. (a) Elevation and (b) MV-Pattern of a six segmented obtuse arch, created
using maximum value of A;.
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Figure 3.43. Vertexes vi ,v8 , v and vy’s parameters.
1Y2 V3 4

The relation of these three different bending angles with the inclination angle &
and dihedral angle ¢ do not differs. The maximum and minimum values for these

bending angles can be observed in Table 3.9.

Table 3.9. Maximum and minimum values of the angles u;, uz2, 4°, ¢, and o.

angles Initial state (min) Final folded state (max)
i (v° bending angle) T T —4a,
12 (v* bending angle) T T —2a,
A’ (v* bending angle) T T—2a,
¢ (dihedral angle) T 0
o (inclination angle) 0 /2

Figure 3.44 shows the relation between the inclination angle and all bending
angles for an obtuse arch with 6 segments, a radius of 3 m, and a distance between the
centers a equal to 2 m. As the inclination angle increases the bending angles decreases

to reach their final folded state.
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Figure 3.44. Relation between bending angles and inclination angle ¢ for a n7: 6 r: 3
a:2 obtuse arch.

3.2.1.3. Initial State, MV-Pattern

In this step a single row of CP will be created using the calculated parameters
presented in the previous steps. The required parameters to draw a single chain for a
double centered cross-sectioned barrel vault are the angle a7 and az, the radius, r and a
the distance between the two centers. Table 3.10 shows all the parameters calculated in
the previous step for all three different types of double centered arches.

First the pattern-generator is drawn based on the parameter s, then two parallel
lines A and B (Figure 3.45) are drawn to both side in a calculated equal distance A. In
contrast to single centered arches, the double centered arches have two different height
parameters h; and h; because there are two different folding angles a; and az. As
explained on the previous step, the smallest value out of 4; and h> need to be used so
that there are no crisscrossing diagonal lines. The lowest value of half-row height also
means the lowest value out of folding angles a; and a; because the parameters h is
dependable on the folding angle. Analyzing Table 3.10 it can be observed that the
lowest half-row value is /#;. The row height 2A required to create the CP is the value of
h; multiplied by 2. As it was with the single centered barrel vaults, the use of the
maximum value of 2h; creates a triangular pattern and if a lesser value is used the CP

becomes a trapezoidal pattern.
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Table 3.10. Parameters for Obtuse, Pointed Equilateral, and Lancet arches.

7 (m) a (m) n 0° s (m) s¢(m) A°
Obtuse 3 2 3 23,51 1,222 7,33 70,52
Equilateral 3 3 3 20 1,047 6,25 60
Lancet 3 4 3 16,06 0,838 5,02 48,18
Bo éo pe Bi° £2° a° °
Obtuse 38,94 78,24 39,30 156,49 117,54 11,75 31,22
Equilateral 60 80 20 160 100 10 40
Lancet 83,62 81,96 -1,65 163,93 80,31 8,03 49,84
A° b (m) h; (m) h; (m) 2h (m) nr
Obtuse 78,24 1 0,127 0,370 0,254 6
Equilateral 80 0 0,091 0,437 0,183 6
Lancet 81,96 1 0,059 0,496 0,118 6

The first two diagonals [1 and 2] are placed on the intersection points of the
pattern-generator using the value of the folding angle a;. Then the 3™ diagonal is placed
using the folding angle a2, then the following two lines [4 and 5] are placed. All five
diagonals should be on opposite directions to each other to be able to create a convex
form when the CP is folded (Figure 3.45). Lastly the edge diagonals are placed using
the edge angle 4 parameter given by eq. (3.61).

line B

e e e S b T

line A

Figure 3.45. Unfolded crease pattern for the six segmented obtuse arch.

The creation of the pattern from a row is done by simple congruence
transformation, reflection by line B which creates the first double row, then the double
row is translated as many times as needed in y-direction (Figures 3.46 and 3.47).

The created CP need an MV-Assignment which will turn it into a MV-Pattern.
The MV-Assignment is done by following Maekawa’s theorem. For both Figures 3.46
and 3.47 the full lines are mountain folds and the dashed lines are valley folds.

The triangular pattern (Figure 3.46) created using the maximum value of 2h;
have a variety of vertexes because of the use of different folding angles on its creation

due to the geometrical shape selected as a cross-section. There are 8 vertexes: two are v
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and six are v¥. The number of v* do not changes as the number of segment increases,

only the number of v® increases, as it was in the triangular pattern of a single circled

barrel vault pattern.

Table 3.11. Number of vertexes on triangular patterns.

nr vt v° v total
4 6 0 6
6 6 2 8
8 6 4 10
10 6 6 12

As it can be observed the number of segments nr is always an even number
because the division of segment n is done to only one of the arc then the number is
multiplied by 2 to calculate the segment number nr for the whole cross-section. The

designer should take this property into account while deciding the segment number n.

Figure 3.46. MV-Pattern created by using maximum value of A for a nr: 6, obtuse arch.
Triangular pattern.

As it was with the single centered barrel vaults, the use of the maximum value of
2h; creates a triangular pattern and if a lesser value is used the CP becomes a
trapezoidal pattern. The trapezoidal pattern (Figure 3.47) has been created using a lower
value than the maximum value resulting only in v¥ type vertexes (Table 3.12), as it was

for the single centered trapezoidal pattern.

Table 3.12. Number of vertexes on trapezoidal patterns.

n vt vt v total
4 6 0 6
6 8 0 8
8 10 0 10
10 12 0 12
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Figure 3.47. MV-Pattern created by using value of 4 as 0,08 m for a nr: 6, obtuse arch.
Triangular pattern.

3.2.1.4. Conclusion

In this section the limitations used while creating a double centered barrel vault
have been discussed. As it is for the single centered barrel vault structures, some
parameters need to be specified by the designer for the double centered barrel vaults.
These parameters are the radius r, the distance between the two center points, a, of the arc
constituting the cross-section, and the number of segments n. The number of segment # is
the number of segments for only one of the arc, the value then is multiplied by two to
obtain the total number of segment nr. The properties of these parameters have been
discussed alongside the rigid foldability of the patterns created using the method of
creation. The rigid foldability of the created MV-Pattern has been tested on both Rigid
Origami Simulator and Freeform Origami softwares created by Tachi (Tachi, 2009a;
Tachi, 2009¢).

The process of transforming a CP into a MV-Pattern do not change between the
double centered barrel vault types: pointed equilateral, lancet and obtuse.

As it is in the single centered barrel vaults, if the structure needs to have a
temporary stop point within the folding process the inclination angle & can be specified
which will give the height, span, and depth of the desired point. The edge angle 4 need
to be recalculated for this specific point, which is explained in the following section.

Radius and the distance between centers: Whether the cross-section is a pointed

equilateral arch, a lancet arch or an obtuse arch depends on the values attributed to the
parameters r, radius and a, the distance between the two centers. The relations between

these two parameters are listed below.

For an equilateral arch: r=a
For an obtuse arch: r>a
For a lancet arch: (a/2) <r<a.
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If the value attributed to » is more that 2a the arcs will not intersect, thus no
cross-section will be created. It has been observed that as the distance between the
centers increases the folding angle a; becomes more acute, which decreases the height

of a single row.

Height of a single row: The double centered vaults possess two different half-
row heights, h; and h; because of the geometry of the cross-section creating two
different folding angle a; and a2. The smallest value between the two heights need to be
selected to be able to calculate the single row height 2A. Calculations showed that the
smallest value is always h; because the apex interior angle f> is more acute than the
interior angle f; resulting in a bigger folding angle a2 than the folding angle a; which in
return result in a higher height value h2. To use the higher half-row value A2 will result
in the crisscrossing of the diagonal lines created using the folding angle a;. Using the
maximum value of 2h; as the single row’s height will result in a triangular pattern,
while the use of a smaller value than 2h; will result in a trapezoidal pattern.

Specific angle: The angle D can have negative/minus sign: this is because the

lancet arch’s radius lines from the centers to the apex are outside the pattern itself as it
can be observed in Figure 3.40.

All arch types’ trapezoidal and triangular MV-Patterns’ rigid foldability have
been tested on Rigid Origami Simulator (Tachi, 2009¢), all patterns created have folded
without problems. Same patterns have been tested on the Freeform Origami software
(Tachi, 2009a) in this software while all pattern flat-folded without deformation, the
software suggested additional creases to the pattern created, which can be observed on
Figures 3.48 and 3.49 as gray lines.

When the suggested grey lines are applied to the triangular MV-Pattern the
pattern become composed of %, as it can be observed in the figure 3.50 while the
dimensions do not change the edge form change both in form and geometry.

Both trapezoidal and triangular MV -Patterns are developable and flat-foldable if
the medium surface is assumed to have no thickness. Models using thick cardboard
have been created to be able to understand the changes suggested by the Freeform
Origami software. Models have showed that v/ do not flat folds without tearing the

material while the v folds flat without resistance with axis-shift method (Figures 3.51)
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Figure 3.48. Triangular pattern rigid origami obtuse barrel vault tested on Freeform-
Origami software (Tachi, 2009a).

Freefonm ey Obtused3.cty fps33 s11T
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Figure 3.49. Trapezoidal pattern rigid origami obtuse barrel vault tested on Freeform-
Origami software (Tachi, 2009a).
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Figure 3.50. Rearranged triangular pattern rigid origami obtuse barrel vault tested on
Freeform-Origami software (Tachi, 2009a).

Figure 3.51. Model of trapezoidal pattern (left) and triangular pattern (right) for an
obtuse barrel vault.

3.2.2. Workspace Analysis

The workspace analysis for double centered rigid origami barrel vault is first
carried out by analyzing the geometrical properties of the depth and then by the analysis
of the span, height, and volume based on the cross-section. Translational and rotational
motions were observed in all types of arches while folding. While the structure takes its
final folded state its depth and span decreases, but the height increases, as it is with the

single centered structures.
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3.2.2.1. Depth

The same geometrical relation exists between the properties of the double
centered barrel vault and the single centered barrel vault, so eq. (3.29) for the depth
calculation can be used with a small modification for these mechanism. As stated before
the double centered mechanisms have two different folding angles a; and a: resulting in
two different single row height A. So, as it was in the previous calculations the lowest
value of single row’s height should be used, which is h;. This modification has been

added to eq. (3.29) to calculate the depth of the double centered barrel vaults (eq. (3.67)).

TDl = 2h1 *COSO - RTl (367)

The depth depend on the number of row R,, the design requires, the single row’s
height A;, and the inclination angle 6. As the inclination angle increases the depth
decreases as it can be observed in figure 3.52. Figure 3.52 has been created for a double

centered lancet arch with »: 3 m, n: 3, a:4 m, 2h;: 0,118 m, and 10 rows.

0 10 20 30 40 50 60 70 80 90
Inclination Angle - ¢ (°)

Figure 3.52. Relation between the inclination angles & and the total depth, TD; of a 10
row double centered barrel vault pattern.

3.2.2.2. Span and Height

The span and height are affected by the cross-section of the type of arch. The span
and height calculation are created by analyzing the geometrical properties of the pattern-

generator to understand parameters related to the deployment process. In double centered
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arches, as it was in the single centered arches, the pattern-generator’s apex is considered
fixed for the calculations. As the MV-Pattern folds from its initial state where inclination
angle o is equal to 0 (zero) to its final folded state where the inclination angle & is equal to
90°, the span and height changes in relation to this angle. In Figure 3.53 all types of arches
pattern-generators have been demonstrated, with inclination angle values of 0°, 10°, 30°,
50°, 70°, 90°, and the placement of each center during the folding motion.

In Figure 3.54 parameters valid for all types of double centered arches can be
observed on the drawing of the obtuse arch. The pattern-generator noted as 1 is the
final folded state, and the pattern-generator noted as 2 is its position when the

inclination angle is equal to 30°.

Lancet Pointed Equilateral Obtuse
. . L4 e . .
L] Ll
L] L]
L] L]
L] L]
L] L]

Figure 3.53. Lancet, Pointed equilateral and Obtuse arches’ development with #:3 and nr:6.

To be able to calculate the height H and span § the segments’ angles @ and o
values need to be in relation with the inclination angle o. The relation of the angle ¢
with the inclination angle o has already been explained in eq. (3.17). In double centered
arches, as explained in the previous section, there are two types of folding angles a; and
a; which created two different projected angle d; and o2 which are defined by the

following equations respectively:
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5§, = tan"!(sino - tan a,) (3.68)
5, = tan"!(sino - tan a,) (3.69)

Because both the span and height calculations are done using the pattern-
generator, the required angles to be able to calculate the segments’ angle # are the
interior angles B4 and f24. The relation of the interior angles with the inclination angle

o is achieved by the following equations:

Pra =T — 26, (3.70)
Bza = T — 26, (3.71)

Figure 3.54: Parameters for Obtuse arch’s pattern-generator with n:3 and nr:6.

The segments’ angle that is changing during the deployment is subscribed as @4
representing the value of the angle during the folding process. The segments’ angle is

calculated using the following equation:
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6y =m—2("4) =m - pug (3.72)

If eq. (3.70) is substituted in eq. (3.72) the value of the segment’s angle during
the deployment process @4 can be put in relation with the projected angle d; (eq. (3.73)).

0, =m— (m—28,) = 26, (3.73)

Span: The span is calculated by adding each segment’s length projected to the x-
axis sq7 to each other starting from the apex; it is calculated by eq.(3.74).

Sq1 = S - cos(8, +i6,) (3.74)

The span is calculated with eq. (3.75) because the calculations are done starting
from the apex to calculate the total span the sum of the projected segment’s length is

multiplied by 2.

S = 25X cos(8, +i6y)) (3.75)

As the inclination angle ¢ decreases the span S increases as it can be observed in

Figure 3.55.
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Figure 3.55. Relation between the inclination angle o and the span S of an obtuse arch
r:4m,a:2m, and n: 3.
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Height: the height H is calculated with the same method as the span (eq. (3.77));
by adding segment’s length s4 projected to the z-axis (eq. (3.76)).

Sg2 = S Sin(52 + l@d) (376)
H = s sin(8, +i6y)) (3.77)

Where i is a series of number starting from O till (n-/) — n as the number of
segments. Figure 3.56 shows that as the inclination angle & increases so does the height

H of the structure.
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Figure 3.56. Relation between the inclination angle ¢ and the height H of an obtuse
archr: 4 m, a: 2 m, and n: 3.

3.2.2.3. Volume

The volume is calculated with the same method used in single centered arches;
by multiplying the depth TD; with the cross-section area A. The cross-section area is
calculated by adding two segments’ areas to area of the triangle created between the
apex and the edges of the pattern-generator. The area are showed in Figure 3.57. The
area of the triangle Ar is calculated with eq. (3.78) where the parameters height H (eq.
(3.77)) and span S (eq. (3.75)) are used.

SH

Ap = (3.78)

2
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The segment area is calculated using the parameters radius rs and angle A4

which are the values during the deployment process. The angle A4 is obtained by

multiplying the deployment process segment’s angle @4 with the number of segments n

(eq.(3.79)).

Ag=n-6, (3.79)
S
Te = ——ma (3.80)
ZSII’I(T)

Eq. 3.80 calculates the radius during the development process, it is the same

equation as eq. (3.40) presented in the single centered barrel vault development radius.

"~ TDi

Figure 3.57. Double centered barrel vaults’ volume parameters.

The segments’ area Ags is calculated using the previous two parameters; eq.

(3.81):

As = %rj(Ad — sin(Ay)) (3.81)
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The cross-section area is calculated using the following equation where the
triangle’s area Ar is added to the sector area As, which is multiplied by two because

there are two arcs thus two sectors.

. . 200
a=212(1rk(a, - sin(a,))) = S 2aazsinGa) (3.82)

2

The volume is calculated by multiplying the depth (eq. (3.67)) with the cross-
section area (eq. (3.82)).

V =TD,-Area (3.83)

A calculation sheet has been prepared in Microsoft Excel 2013® for all the
parameters in both geometrical analysis and workspace analysis sections (Appendix C).

Figure 3.58 represent the volume of an obtuse arch with n:3 r:4m and a:2m
created with the volume equation (eq. (3.83)). As it can be observed the volume has a
rapid increase till it reaches its peak around the 35° of inclination angle, then it slowly
decreases to its final folded state, as it was in the single centered arches’ volume

calculations.
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Figure 3.58. Relation between the inclination angle ¢ and the volume V of an obtuse
archr: 4 m, a: 2 m, and n: 3.
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3.2.3. Mobility Analysis

This section analyses the mobility of double centered arch types using the same
method used in single centered arch types. The CP of different types of arches have the
same properties, so this analysis is conducted on only one type of arch’s CP. The
analysis starts with a double row of a six segmented obtuse arch CP, because the
pattern’s segment number #n is defined for only one arc composing the arch, and since
the defined number is multiplied by 2 to have the total number of segment n7, it creates
a CP with always an even numbered segments, thus no difference occurs to the mobility
when n increases as it existed in the single centered arch’s CP. Since the CP can grow
in a single direction the analysis will be conducted by adding 1 row to the previous one
starting from a double row. Firstly, triangular patterns and their modified versions, and
then trapezoidal patterns and their modified versions will be presented.

The CP is analyzed first by calculating the number of independent loops using
the Euler’s equation (eq.(3.47)), then their mobility is calculated using the modified
version of the Freudenstein and Alizade’s mobility equation (eq.(3.49)), and finally the

mobility is verified by the properties of structural groups.

3.2.3.1. Triangular Patterns

In this section the mobility analysis is conducted for a triangular pattern (h: max)
with 6 segments. The analysis starts with a double row CP analysis followed by an
attempt on modifying the pattern by removing joints based on the tears that appeared
during the folding process of the physical model. The analysis continues by adding a
single row each time to understand the changes occurring in the mobility. Multiple

tables are presented concerning the mobility calculations at the end of the section.

Double row: The panels of a rigid origami structures are considered as links. The
number of links in this mechanism is 12, and the number of joints is 15 (Figure 3.59). The
number of independent loops, L, is calculated using eq. (3.47) for a double row triangular
pattern there are 4 loops: Lss2 = 15— 12+ 1=4. The 1¥ loop is a 6-bar mechanism and all
the remaining three loops are 4-bar mechanism. All four loops are 4 = 3 because all joints’

axis meet at a central point. The mobility calculation for the double row pattern M,is made
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by substituting the number of joints and loops to eq. (3.50). For 15 revolute joints and 4
A = 3 loops, the mobility is equal to 3: Ms> =15 —(4 - 3) =3.

L4 j10

L 4
jn j12 j13 j14 11 ji15

Figure 3.59. Triangular double row obtuse arch mn:3 n7:6 (a) crease pattern (b)
kinematic diagram.

The result can be verified by the properties of structural groups: a loop of 4-bar
spherical linkage has a mobility of 1. When a second loop is added to a A =3
mechanism only 2 links are required to preserve the mobility. The 2™ and 3™ loops add
2 new links each preserving the mobility equal to 1. The 4" loops also adds 4 new links
[5, 6, 11, and 12] two of these links are additional links increasing the mobility by 2 to 3.

During the folding process of the physical model some tears developed
suggesting the mechanism has excessive joints. To analyse this, the joints where the

tears appeared are removed and a modified kinematic diagram is created. In this case of

the double row of double centered arch the joint 8 is removed from the mechanism

(Figure 3.60).

3 J3’, Ji‘ 5. 455
4 \6\
B j8 ) - - j9
. hd

L 4
j10 i1 9 j12 j13 11 14

Figure 3.60. Modified triangular double row obtuse arch n:3 nr1:6 pattern’s kinematic
diagram.

Selvi’s equation (eq. (3.48)) is used to calculate the new loop B subspace, created
by the combination of loops 2 and 3; which is equal toA =5: A=3+3)+(1-2)=5
(Selvi, 2012).
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By removing the joint number 8, the total number of joints within the mechanism
decreases to 14. The mobility for a modified: Ms2ny =14 —((2-3) + (1 -5)) =3.

Removing this joint did not change the mobility. The structural group properties
need to be reanalyzed since the mechanism became a mix of loops with different
subspace number. The first loop A is a 4-bar spherical mechanism with 4 = 3 with a
mobility equal to 1, the second loop B has A = 5, which requires additional 4 links to
preserve mobility. The second loop B adds 4 new links [4, 5, 10, and 11] to the
structural group preserving the mobility. The third loop C is a A = 3 6-bar mechanism
adding 4 new links [5, 6, and 11, 12] increasing the mobility to 3, which verifies the

new calculated mobility.

3 Rows: A third row is added to the mechanism which adds 6 new link