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ABSTRACT 

 
ENHANCEMENT AND VALIDATION OF CURRENT HUMAN 
GENOME ANNOTATION VIA NOVEL PROTEOGENOMICS 

ALGORITHMS 

 
Proteogenomics includes the transfer of knowledge from proteomics to 

genomics and vice versa. To have high confidence in the information transferred it is 

essential that it be based on experimental results. Genomics is currently fueled by high 

throughput techniques involving next generation sequencing. Proteomics is based on 

mass spectrometry (MS) which is also a high throughput approach. Both fields are 

generating a wealth of data which needs to be correlated and annotated to generate 

knowledge. 

Publicly available human blood plasma mass spectrometric data exist for 

samples in data repositories such as PeptideAtlas, PRIDE. We acquired high-quality 

collections from this data and stored it in a custom database developed by us. First, we 

aimed to amend this data by employing a proteogenomic pipeline PGMiner developed 

in this study against a custom sequence database which includes all predicted alternative 

open reading frames as well as the six-frame translation of the human genome and 

exosome. Then, we correlated the existing annotations with the available mass 

spectrometric measurements. The human genome in tandem with currently available 

genome annotations from HAVANA and ENSEMBL enabled us to validate and 

enhance current gene annotations. 
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ÖZET 

 
VAR OLAN İNSAN GENOM ANOTASYONUNUN YENİ 

PROTEOGENOMİK YÖNTEMLER İLE DOĞRULANMASI VE 
GELİŞTİRİLMESİ 

 
Proteogenomik protemikten genomik alanına veya genomikten proteomik 

alanına bilginin transferini içerir. İki alanda bilgi üretmek için kimliklendirilmesi ve 

ilişkilendirilmesi gereken büyük sayıda veri ortaya koyar. Genomik çalışmalarla 

üretilen verilerin kimliklendirilmesi amaçlanır ve bu kimliklendirmede yüksek 

güvenilirlik elde etmek için deneysel tekniklerle translasyon düzeyinde doğrulama 

yapılması şarttır. Genomik yeni nesil dizileme yöntemini içeren yüksek-ölçekli 

yöntemlerle elde edilirken, proteomik verileri yine yüksek-ölçekli veri üreten bir 

yöntem olan kütle spektrometreden elde edilir.  

PeptideAtlas, PRIDE gibi çeşitli veri bankalarında açık kaynak insan kan 

plazma dokusuna ait kütle spektrometre verisi mevcuttur. Bu veriler arasından elde 

edilecek yüksek kaliteli koleksiyonlar geliştireceğimiz veritabanında depolanmıştır. Bu 

proje kapsamında ilk gerçekleştirilen amaç spektral verileri bu çalışma kapsamında 

geliştirilen PGMiner akış algoritması kullanarak insan genomunun 6-çerçeve 

translasyonu, eksozom ve tüm tahmin edilmiş alternatif açık okuma çerçevelerini 

kapsayan veritabanlarına karşı aranmış ve spektral verilerin hangi peptitlere ait 

olduğunu anlamlandırılmıştır. Daha sonra var olan gen ve protein anotasyonları ile ilk 

aşamada peptit tanımlaması yapılan kütle spektrometre ölçümleri ilişkilendirilmiştir. 

HAVANA ve ENSEMBL’dan elde edilen var olan genom anotasyonları ile mevcut gen 

anotasyonları doğrulanmış ve geliştirilmiştir.  
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CHAPTER 1 

MASS SPECTROMETRY-BASED PROTEOMICS AND 
PROTEOGENOMICS 

1.1. Introduction 

The proteome of an organism is the entirety of proteins and their isoforms that 

can be generated from the underlying genome. Proteomics deals with the identification, 

sequencing, quantification, and other issues related to the proteome. In proteomics, 

mass spectrometry has become the tool of choice for many areas of proteomics such as 

peptide identification and sequencing. Recent advances in mass spectrometry-based 

proteomics have resulted in n increasing amount of freely available mass spectrometric 

data in public databases. The general focus of the data in these MS-databases is protein 

identification from known protein databases. With the aid of rapid improvements in 

NGS technology, custom sequence databases can be built by using six- or three-frame 

translated DNA or RNA sequences. Additionally, available protein sequences predicted 

gene models and their derivatives such as alternative spliced forms, exon-exon junction 

peptides, alternative translation products and single-nucleotide polymorphic sequence 

variants can be used as databases for computational proteomics search.   

Searching MS/MS spectra against custom sequence databases generated using 

genomic and transcriptomic data, and their variants enable refinement of gene models 

and provide quantitative information on protein expression. This research field is so-

called proteogenomics. Within proteogenomics proteomics findings feed annotation of 

the genomic data while findings in genomics generate possible proteins that can be 

composed a large search space in proteomics. 

 
1.2. Mass Spectrometry-Based Proteomics 

 
The goal of proteomics is to identify and characterize proteins in a given sample 

to clarify their sequences, structures, functions, interactions, and subcellular 
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localizations (Aebersold and Mann 2003). In recent years, mass spectrometry (MS) has 

become the tool of choice, enabling high throughput measurement of peptides and 

proteins with much accuracy and sensitivity (McHugh and Arthur 2008). In a typical 

MS-based proteomics experiment, peptides are obtained via enzymatic cleavage from 

proteins isolated from the sample to be analyzed. The resulting peptides are subjected to 

liquid chromatography coupled mass spectrometer (LC-MS) (Derrick and Patterson 

2001). Here, peptide molecules are ionized and subjected to gas phase; hence ionized 

peptides are separated according to their mass to charge (m/z) ratios. This first step 

produces information on the molecular weights of the peptides and is called as MS level 

1. However, the molecular weight is not sufficient enough to identify a peptide, 

therefore proteins and in turn a protein. Therefore, selected ions are subjected to a 

fragmentation process followed by the second stage of MS. This process is called 

tandem mass spectra (MS/MS, MS level 2). During fragmentation, peptide bonds 

between amino acids and/or side-chain residues of amino acids are broken. As a result, 

different fragment ion types (Domon and Aebersold 2006) are produced as seen peaks 

having m/z ratios and intensities. The mass difference between peaks in a tandem mass 

spectrum is used to infer the peptide sequence. Automated mass spectrometry 

procedures produce high-throughput data meaning that in one run of the machine 

millions of spectra can be obtained. In addition to peptide-protein identification, mass 

spectrometry is used to quantify proteins under different conditions of the proteome. 

These issues lead the development of computational methods or pipelines to perform 

analysis of tandem mass spectra (Käll and Vitek 2011). In the next section, these 

analysis strategies will be explained.  

 
1.2.1. Data Analysis Strategies 

 
The peptide identification strategy via computational methods described here 

can be classified into two main approaches, database search, and de novo sequencing. 

While database search algorithms search MS/MS spectra against an amino acid 

database or spectral libraries that were identified previously assigned to peptides, de 

novo sequencing aims to find peptide sequences by utilizing only the information 

provided in a tandem mass spectrum without additional sequence information. 
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1.2.1.1. Database Search 

 
Database search algorithms are based on a general procedure as illustrated in 

Figure 1. This procedure requires an amino acid sequence database and set of MS/MS 

spectra in a special file format depending on the algorithm. The amino acid sequence 

database can be originated from six- frame translation of genomic database or three- 

frame translation of transcriptome data or protein database. The database is in silico 

digested into peptides according to the enzyme which is used in the wet-lab experiment 

of MS data preparation process. Most of the available algorithms provide a list of 

enzymes; however, trypsin is the enzyme which is often used in enzymatic cleavage of 

protein sequences into peptides. Among generated peptide candidates, ones that match 

to experimental peptide mass within a user-defined error tolerance are selected for 

further process. The peptide mass error is often called as precursor mass tolerance (PM). 

For each candidate theoretical MS/MS spectrum is generated according to user-defined 

or algorithm pre-defined ion types and user-defined post-translational modifications. 

The correlation between experimental MS/MS spectrum and theoretical spectrum of 

each candidate peptide is calculated according to the scoring function of the algorithm. 

Some of the available algorithms employ multiple scoring functions.   

 

Figure 1. The general concept of database search approach in computational mass 
spectrometry was illustrated.  
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There are many commercial and open-source database search algorithms 

available. MSGF+ (Kim et al. 2010), OMSSA (Geer et al. 2004), Myrimatch (Tabb et 

al. 2007), Inspect (Tanner et al. 2005), MSAmanda (Dorfer et al. 2014), X!Tandem 

(Craig and Beavis 2004) are available open-source algorithms. On the other hand, 

Mascot (Perkins et al. 1999), Sequest (Eng et al. 1994) and PEAKSDB (Zhang et al. 

2012) are commercially available products.  

 

1.2.1.2. De novo Sequencing 

 
Many de novo sequencing tools (Allmer 2011; Hoopmann and Moritz 2013) 

with different algorithmic principles have been published so far. First attempts for de 

novo sequencing of MS/MS spectra was performed by generation of all possible peptide 

sequence and evaluation of them by allowing precursor and fragment mass error of the 

MS instrument. Instead of generating all sequences, optimization approaches like 

genetic algorithm or ant colony optimization (Has et al. 2012) can be used to explore 

the vast search space. Many advanced de novo sequencing approaches have been 

established, but most current solutions employ spectrum graphs (Taylor and Johnson 

2001; Frank and Pevzner 2005).  

 
1.2.1.3. Scoring Peptide-Spectrum Matches 

 
The quality of peptide assignment is defined by a scoring function both in de 

novo sequencing and database search. Many algorithms provide multiple scoring 

systems with a default score. Best n peptide-spectrum matches (PSMs) per spectrum are 

sorted by default scoring system and reported. However, it is not guaranteed that best n 

hits are in all correct. Different scoring systems of an algorithm might rank best n hits in 

different order. Therefore even manual validation of peptide assignments becomes 

error-prone. The scoring scheme varies between algorithms, therefore, do not present a 

common-sense to interpret and integrate the results. Therefore, algorithm independent 

general statistical assessment methodologies to assign significance to PSMs have been 

developed.  

In the general concept of reporting a statistical assessment of PSMs relies on 

evaluation based on empirical thresholds. The idea behind that is to differentiate PSMs 
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whose scores are greater and equal than a user-defined threshold from PSMs whose 

scores are less than the threshold. The PSMs above the threshold score are considered 

as true-positive (TP) while others are regarded as false-positive (FP) hits. The 

sensitivity of discrimination in TP and FP hits is dependent on how the threshold is set 

well. High thresholds cause involving more FP hits while low thresholds result in loss 

of more TPs. For each PSM hit, besides scores assigned by database search algorithm, a 

comparable and consistent statistical score is assigned at the end of statistical 

assessment analysis. There have been many statistical validation methodologies 

published so far (Choi and Nesvizhskii 2008), however, in this section, only a few 

methodologies will be explained in the chronological order.  

The first statistical measure used in computational mass spectrometry-based 

proteomics is the computation of p-value. p-value definition, in general, is the 

probability of an event which occurs due to chance. The calculation of p-value is done 

by calculating the ratio of PSMs with a score above a threshold to all false-positive 

PSMs. This ratio is called as a false positive rate (FPR) and takes into account variance 

and sample size.  Therefore, a low p-value of a PSM addresses the low probability of 

being incorrect. As an example, 0.05 p-value threshold indicates that a PSM is FP with 

5% chance. Although low p-value scores are considered as significant, the real 

significance is dependent on the number of PSMs. Therefore, multiple testing needed to 

validate the significance of the threshold to fitness level. There are many techniques to 

perform multiple trials, and the simplest and earliest well-known technique is 

Bonferroni correction (Napierala 2012). 
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Figure 2. Score distribution (black) of correct (green) and incorrect (red) PSMs. PSMs 
that are the above-defined threshold (dashed line) point all accepted PSMs 
(shaded blue region= A) and incorrect PSMs according to the threshold are 
found as overlapping (red region=B). False positive rate (FPR) and false 
discovery rate (FDR) formulation derivations, as well as posterior error 
probability (PEP), are shown. (Source: Brosch et al. 2011) 

Bonferroni correction does not provide a balance between false positive and 

false negative (FN) hits. Therefore false-negative hits might be considered as FP. To 

overcome this limitation of Bonferroni correction, false discovery rate (FDR) 

(Benjamini and Hochberg, 1995) method has been developed. FDR is described as the 

expected proportion of incorrect PSMs among all PSMs above pre-defined score 

threshold (Figure 2). An example can be given as following: in a set of 100 PSMs with 

a score above threshold x, 10 PSMs are incorrect, thus calculated FDR would be 1%. 

The FDR threshold, for instance, 1% as in given an example, can be adapted to a 

different value depending on the goal and perquisites of the experiment. To calculate 

FDR level, q-value (Käll et al. 2008) is computed. q-value is a local score which defines 

the significance of an individual PSM as called as minimum FDR threshold. q-value is 
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sensitive to database size, database search algorithm settings, instrument settings so on. 

Thus the same PSM would differ in q-value under two different search sets. q-value 

lead to computation of global FDR as representative of all PSMs therefore, it does not 

reflect a significance measure of single PSM. By Kall et al. (2008) posterior error 

probability or in other words local-FDR (PEP) measure has been developed to compute 

PSM specific score (Figure 2). The fact that the sum of the PEPs greater than set 

threshold score divided by the number of PSMs is also alternative FDR calculation 

(Keller et al. 2002).  

In FDR and PEP calculation, the accepted strategy in general is target-decoy 

search (Elias and Gygi 2007). Target-decoy approach is defined as usage of decoy 

version of the target database in addition to standard target database search. Decoy 

database can be prepared as reversed, random or shuffled version of target database 

(Reidegeld et al. 2008). Decoy database can be concatenated with target database, or 

separate search can be conducted (Elias and Gygi 2007). It is expected that PSMs hit to 

decoy sequences produce a score threshold which can be later used to estimate the 

number of FP hits. This enables the calculation of the FDR by simply counting the 

number of the decoy and target PSMs that meet the chosen acceptance criteria. The 

dependency of some candidates in decoy database; database size impact; unrealistic 

assumption of normal score distribution in target-decoy databases as limitations of the 

target-decoy approach based FDR were addressed by Gupta et al. (2011).  

Another statistical method is PeptideProphet (Keller et al. 2002) which is a 

machine learning method based on features defined to discriminate correct-incorrect 

PMSs and the score of PeptideProphet is based on Sequest scoring systems such as X-

corr, deltaCn. Unlike from FDR, PeptideProphet does not accept target and decoy score 

distributions as same.  

A Recent methodology based on target-decoy database usage is named as 

Percolator (Käll et al. 2007), which has been adapted to many database search 

algorithms such as Mascot, OMSSA, and MSGF. Percolator requires a training set of 

correct and incorrect PSM scores and uses semi-supervised learning methodology to 

discriminate FP and TP hits.  

 

 



8 
 

1.3.  Genome Annotation 

 
Different from proteomics, genomics is a well-established field with the ability 

to determine the complete genome of an organism. Next generation sequencing 

techniques enable cheaper and faster high-throughput genome sequencing of many 

organisms, leading to data inflation, making data storage and analysis the current 

bottleneck in genomics (Anderson and Schrijver 2010). The main and final goal of 

sequencing is to determine genomic elements such as protein coding regions, non-

coding regions including longRNAs, miRNAs, alternative splicing products, alternative 

translation products, regulatory sequences. Therefore, the concept that is called 

“Genome annotation” has been emerged to provide genome-wide insights into these 

DNA elements. Genome annotation can be classified into two sub-concepts: structural 

annotation and functional annotation. Structural annotation aims to identify genes, 

exon/intron structures, regulatory elements, repeats and variants regarding their 

localization manner. On the other hand, functional annotation seeks to elucidate the 

biological function of these items and how they are being expressed. Both annotation 

types are challenging due to the complexity of genomes, different transcription, 

translation mechanisms among the various organisms, and structural differences of 

elements for instance length and nucleotide content effect. Genome annotation in 

prokaryotes is considered less complex than eukaryotic genome annotation process. 

Moreover, from simple to higher eukaryotes due to differences in genome structure and 

organization, setting up a general annotation process is not feasible. Therefore, there are 

many attempts have been done so far to achieve accurate annotation of the genome. 

Accurate genome annotation leads better understanding of roles of proteins in biological 

processes. How structural changes such as variations, the existence of repeats or 

changes in post-transcriptional and translation mechanisms in DNA affect structures 

and functions of proteins and later phenotype of the organism through proteins can be 

enlightened. Genome annotation is achieved either via manual in other words expert-

curated process or automated processes (Frishman 2007). In the following section, these 

two approaches will be explained.  
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1.3.1. Expert Curation 

 
Manual genome annotation is based on decisions made by human experts. The 

curated gene models are created by experts in the respective fields using a variety of 

computational methods but mostly relying on published experimental results. Although 

manual annotations are considered more trustworthy since experts generate them, they 

are prohibitively time-consuming. According to a study by Collins et al. (2003), the 

manual annotation of the human chromosome 22 (1% of human genome) took more 

than a year for six expert bioinformaticians. The cost of manual annotation and the 

required high-level expert knowledge have directed researchers to pursue automated 

annotations techniques. Therefore, this led to the rise of the computationally automated 

process to perform genome annotation. 

 
1.3.2. Computational Annotation 
 

Automated genome annotation includes the utilization of sequence homology to 

transfer annotation from known sequences to new ones. In addition to that, application 

of ab initio gene prediction can be done during automated genome annotation. Although 

there are improvements in well-known genome annotation tools such as HAVANA, 

National Center for Biotechnology Information (NCBI) and ENSEMBL (Flicek et al. 

2012), the accuracy can only reach up to 80% (Harrow et al. 2009). Nonetheless, 

ENCODE project aims to analyze functional regions of genomes by using both 

experimental and computational techniques. According to the study of Guigo et al.  

(2006), only 3.2% of predicted exons could be confirmed by experimental techniques.  

Computational genome annotation workflows are based on two broad 

categories: ab initio based and experimental evidence gene predictions. Experimental 

evidence based methods utilize cDNA (Imanishi et al. 2004), EST (Parkinson and 

Blaxter 2009). The bottleneck with the usage of cDNA and EST libraries to determine 

genes is related to low sequence coverage since an only certain portion of genes is 

transcribed in the cell. In addition to that, sequencing errors, contaminant sequences 

during the experimental step, truncated cDNAs, the existence of single nucleotide 

polymorphism (SNP) decrease the quality of EST and cDNA sequences (Nagaraj et al. 
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2006) and thus might lead to wrong sequence alignments. Besides cDNA and EST 

sequences, sequence homology-based experimental evidence among evolutionarily 

related organisms are also used to predict genes. It has been known that exonic regions 

undergo sequence mutation with slow rate to preserve the functionality of proteins 

through organisms (Parra 2003). In case usage of homology-based methods species-

specific genes are be skipped (Knowles and McLysaght 2009). 

The second approach in gene prediction is called ab initio gene prediction which 

utilizes information hidden in DNA sequence. The information which such predictors 

use is gene signaling sequences such as regulatory regions, promoters, enhancers, and 

silencers, GC content, statistical features such as length, position. GENSCAN (Burge 

and Karlin 1997), AUGUSTUS (Stanke et al. 2006) are widely known ab initio 

approach based gene predictors. Although ab initio methods are faster than 

experimental evidence based methods, they are error-prone in compare to 

experimentally based methods due to low sensitivity and specificity. These algorithms 

are usually used in case lack of experimental data of organism interest. In addition to 

that, these algorithms are also used to generate all possible candidates and then validate 

these candidates on protein level to increase accuracy.  

Genomic, EST, cDNA, protein sequences, as well as gene predictions, are 

deposited in public repositories. ENSEMBL is the one of the first comprehensive 

repository established to provide this information and high-quality genome annotation 

of many organisms (Aken et al. 2016). ENSEMBL exploits experimental data such as 

cDNA and protein data to annotate the genome. In addition to that GENSCAN 

predictions are also available in ENSEMBL. EST sequences are not included in genome 

annotation due to high sequencing errors lowering quality. ENSEMBL includes many 

organisms from vertebrates, plants to bacteria (Kersey et al. 2010). ENSEMBL enables 

users to analyze data via PERL scripting and SQL querying. It also provides a web-

interface which researchers can display existing gene models at all levels as well as 

custom data loaded by the user. While ENSEMBL provides experimental and 

computational genome annotation service, HAVANA group at the Welcome Trust 

Sanger Institute provides manual genome annotation on clone based manner using 

cDNAs/ESTs and protein sequence data with sequence homology support if any. 

HAVANA also provides ab initio gene predictions by GENSCAN and AUGUSTUS. 

Another manually done genome annotation repository associated to HAVANA is the 

Vertebrate Genome Annotation (VEGA) database (Wilming and Harrow 2012). 
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Currently, HAVANA annotated transcripts are also merged into ENSEMBL repository 

(Aken et al. 2017) and ENSEMBL -HAVANA consensus models are also presented per 

gene. 

 
1.3.3. Experimental Confirmation 
 

The 40-50% accuracy of computational methods in genome annotation shows 

that experimental data must confirm results of computational techniques. Early attempts 

in this aspect include using of cDNA/EST libraries to predict and confirm gene models. 

However, it does not seem to be possible to determine all transcripts at the moment due 

to number of cases such as intron-spliced variants (Allmer et al. 2004), alternative 

translational event (Kochetov 2008). In  addition, the underlying sequence assemblies 

and the mappings of sequences to their corresponding assemblies are not precise so that 

errors are also transferred during annotation especially when relying on homology. 

Besides that, it is hard to determine whether a predicted genomic region is protein 

coding or not since not all RNA transcripts are translated into proteins (Ansong et al. 

2008) and ESTs cover not all genes. Therefore, utilizing high-throughput experimental 

techniques to confirm gene annotation is currently gaining importance in genome 

annotation strategies (Yates 2000). 

 
1.4.  Proteogenomics 

 
Tandem mass spectrometry is one of the state-of-the-art tools, which allows 

direct, sensitive and high-throughput measurement of proteins, and thus verification of 

gene models at the translational level. The proteogenomics field emerged from this 

interplay of genomics, transcriptomics, and proteomics. In this strategy, gene prediction 

techniques have also exploited tandem mass spectrometric data (Yates et al. 1995). The 

general workflow of proteogenomic studies starts with the identification of peptides by 

running database search algorithm(s) on protein database and/or translated genome and 

transcriptome as well as splice variants, pseudogenes, long-non-coding regions and 

gene predictions. Identified peptides are then compared with gene models according to 

genomic locations of peptides and gene models to which the peptides were mapped. 
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First studies in proteogenomics encompassed confirmation of regions annotated to be 

protein coding and correction of wrong gene models (Renuse et al. 2011). In addition to 

that, by performing searches against translated genome or transcriptome, determination 

of new genes or transcripts has been achieved (Castellana and Bafna 2010). Also, gene 

annotation of unsequenced or partially sequenced (Jaffe et al. 2004; Castellana et al. 

2010) eukaryotic (Choudhary et al. 2001; Collins et al. 2003; Desiere et al. 2005; 

Fermin et al. 2006; Merchant et al. 2007; Bitton et al. 2010; Brosch et al. 2011; Helmy 

et al. 2011) and prokaryotic ( Himmelreich et al. 1997; Shmatkov et al. 1999; Dandekar 

et al. 2000; Wang et al. 2009; Wilkins et al. 2009; Venter et al. 2011) organisms can be 

achieved. A study done by Merrihew et al. (2008) showed the benefits of 

proteogenomic analysis on the Caenorhabditis elegans genome annotation by detection 

of various errors in 151 gene model and proposing 429 new gene models. In another 

study, Castellana et al. (2008) reported that 13% of the Arabidopsis thaliana genome 

annotation was erroneous, and 659 gene models were corrected with the help of protein 

data. Also, many research labs have been working on detection of biomarkers against 

diseases (Helmy et al. 2010; Alfaro et al. 2014), environmental response of biological 

systems aclarification of metabolic pathways such as bioenergetics pathways by using 

proteogenomic studies (Allmer et al. 2006; Baerenfaller 2008; Wilkins et al. 2009; 

Tanca et al. 2013). The utilization of proteogenomics can also lead to the confirmation 

of transcripts which are a product of alternative open reading frames (Castellana et al. 

2008; Ning and Nesvizhskii 2010). As shown by de Souza et al. (de Souza et al. 2011) 

proteogenomics studies can focus on SNPs. In addition to that proteogenomics, studies 

can be focused on particular problems such as facilitating gene annotation of 

unsequenced organisms (Yilmaz et al. 2016) and newly sequenced organisms (Gupta et 

al. 2008). Recent studies in proteogenomics also specialized to meta proteogenomics 

which involve studies of multiple microbial species found in soil, water, and host 

environments. Meta proteogenomics which bridges metaproteomics of microbial 

communities with metagenomics to investigate changes among microbial species in 

various environments (Seifert et al. 2013). Improvements in mass spectrometry 

technology and next generation sequencing, development of more specialized sample 

preparation protocols lead to the production of the tremendous amount of data with high 

quality. Therefore, the demand for more sophisticated bioinformatics methods at 

proteomics and genomics side becomes apparent. Therefore, the efforts should be spent 
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to develop more accurate and fast data processing, identification, annotation, and 

visualization bioinformatics tools by utilizing experimental evidence.  

 
1.5. Thesis Outline 

 
This thesis study is composed of two main objectives. The first objective is to 

develop fully automated, user-friendly, modular and sustainable proteogenomics 

pipeline addressing some of the limitations in the current status. A standard 

proteogenomics bioinformatics pipeline is built of data processing, assignment of 

peptides to MS/MS spectral data, confidence assignment to found PSMs, mapping of 

peptides back to genomic data and assessment of gene annotations by comparing 

genomic locations of the peptide to existing locations and visualization of outcomes. In 

Chapter 2, limitations at peptide identification step related to database size which effect 

proteogenomics outcomes were addressed. Proteomics involves the identification of 

proteins from complex mixtures which is performed using mass spectrometry (MS) 

followed by computational data analysis. MS/MS spectra can either be sequenced de 

novo if no sequence is available for the proteins in the mixture or by using database 

search algorithms when the genomic, transcriptomic or protein sequences are available. 

The usage of database search algorithms comes along with some limitations regarding 

database size. Some of the currently used database search tools cannot utilize large 

databases like the non-redundant protein database or even as small databases as the 

human chromosome one. Therefore, especially in proteogenomics studies, large 

databases need to be run independently in smaller chunks, but results from a database 

having various sequence redundancy and different sizes cannot easily be compared. A 

new methodology was introduced in Chapter 2 providing proper integration of results 

from databases different in size and sequence redundancy by equalization of databases 

to overcome these problems,. In Chapter 3, an accurate and fast exact string matching 

algorithm, Wu-Manber based peptide mapping tool, Peppig was introduced. Peptide 

mapping is the crucial step of proteogenomics which finds genomic locations of 

peptides to enable comparison of locations of peptides against existing genomic 

features. Database search algorithms do not provide genomic start and end locations of 

identified peptides. Moreover, consensus peptide identification performed due to its 

higher confidence is a lack of location information. Therefore, an external tool is 
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needed. Existing peptide mapping tools employing exact string matching algorithms 

including Peppig were tested against all possible peptide mapping scenarios. In addition 

to that runtime comparison with increasing, query and database size was performed. 

Finally, the importance of peptide mapping was shown with a use case study on TCGA 

Breast cancer data. By using these two tools, with additional novel features, a 

proteogenomic pipeline, PGMiner was introduced in Chapter 5. PGMiner covers all 

main steps of proteogenomics and novel features including automated data retrieval 

from data repositories, equalization of databases, employment multiple database search 

algorithms, consensus PSM computation, FDR computation, peptide mapping via 

Peppig, alternative open reading frame prediction, gene annotation comparison. In 

Chapter 6, PGMiner was tested with human blood plasma MS datasets retrieved from 

PRIDE and PeptideAtlas repositories. Validation of genes and gene structures, i.e. exon, 

CDS, as well as correction of existing annotations were shown. A set of novel genes 

and novel isoforms as a product of alternative translation process were proposed with 

experimental MS data to compensate currently lacking further experimental data.
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CHAPTER 2 

IMPACT OF DATABASE SIZE AND DATABASE SEARCH 
ALGORITHM PARAMETERS ON PEPTIDE 

IDENTIFICATION 

2.1. Introduction 

 
In proteogenomic studies, database search algorithms play an important role to 

identify peptides to determine novel proteins and their variants. The accuracy and 

efficiency of peptide identification step via database search algorithms are highly 

affecting the following steps of proteogenomics studies. As described by Helmy et al. 

(2012) database search based peptide identification step has bottlenecks in 

proteogenomics research. The first issue is related to the database features. Databases 

used in proteogenomics studies can be grouped into three classes. Upon availability of 

genome and protein database, MS/MS spectra are searched against these databases and 

if genome annotation is available mapped peptides are compared against the genome 

annotation. In case genome is newly sequenced and there is no sufficient protein 

database and genome annotation, translation of genome or transcriptome (RNA-seq) is 

used as a database. In addition to these database sources, ab initio gene predictions 

performed by gene prediction algorithms such as AUGUSTUS, GENSCAN are also 

involved into search space. For unsequenced or partially sequenced organisms, genome 

annotations are often lacking and protein databases are incomplete. Therefore in 

proteogenomics of such organisms, homology-based database search coupled with de 

novo sequencing are getting prominent. In both cases, database size and redundancy are 

at large-scale different than ones used in typical bottom-up proteomics studies. As 

mentioned in Chapter 1, proteogenomics aims to confirm and improve genome 

annotations by known and novel peptides. For this reason, genomic and transcriptomic 

sequences are used to build databases in proteogenomics workflows. Six-frame 

translation of genomic sequences and three-frame translation of RNA-seq data yield an 

enormous amount of sequences and often in many proteogenomics studies both data 

sources are used together with other database sources pseudogenes, cDNA/ EST 
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libraries etc. It has been shown that database search time is highly dependent on 

database size and MS/MS data size in a linear manner (Edwards 2007). This requires 

not only a huge demand for computational power but also problems regarding some 

false negative hits due to non-existing protein sequences, data integration on database 

and algorithm levels. It has been shown by us and other groups that some of the 

database search tools used in proteogenomic pipelines cannot utilize databases in large 

size or including large size database elements. In Table 1, eight database search 

algorithms were tested to determine minimum database element size in megabytes that 

can be processed by the algorithm. Among these algorithms, Myrimatch, MSGF+, and 

OMSSA have no restriction on database element size. However, X!Tandem, Inspect, 

MSAmanda, pFind, and PEAKS algorithms cannot handle a database element having 

size 1MB, 5MB, 10MB, 24MB and 260MB respectively.  

Table 1. Database search algorithms X!Tandem, Inspect, MSAmanda, pFind, PEAKS, 
MSGF+, Myrimatch and OMSSA and their maximum size limit on handling 
FASTA elements in MB.  

Algorithm FASTA Section Size Limit (MB) 

X!Tandem 1MB 

Inspect 5MB 

MSAmanda 10MB 

pFind 24MB 

PEAKS 260MB 

Myrimatch No limitation 

MSGF+ No limitation 

OMSSA No limitation 

 

Six-frame translation of human genome yields approximately 6~ GB database.  

Involving other databases and considering multi miscleavage number inflates a number 

of candidate peptides by 10 to 100 fold according to Zhou et al. (2010).  This leads to 

increase in the runtime of database search algorithms. To show the relationship between 

database size and runtime of database search algorithms, we searched randomly selected 

5000 spectra against 1MB, 10 MB, 50 MB, 100 MB, 250 MB, 1000 MB databases by 

MSGF+, X!Tandem, MS Amanda, pFind, OMSSA, Myrimatch, PEAKS, Inspect on 64 

GB Ubuntu desktop computer. In Figure 3, log transformed runtimes in MB/s of each 
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algorithm on increasing size databases were shown. Runtimes of Inspect and MS 

Amanda could not be measured for database size after 10 MB. On the other hand, it has 

been demonstrated that there is a logarithmic increase in runtimes when database size 

gets larger. To overcome this problem, either powerful computer needs to be used, or 

databases need to be chunked.  

 

 

Figure 3. Speed comparison of database search algorithms OMSSA, X!Tandem, 
MSGF+, PEAKS, pFind, Myrimatch, MSAmanda, Inspect on increasing 
database size from 1 MB to 1000 MB with fixed number of spectra size as 
5000.  

Instead of using large size whole genome databases, there are some database 

pre-processing methods have been developed such as exon-graph, exon-skipping, exon-

junction databases, filtering candidates by biochemical properties such as isoelectric 

point to reduce search space in proteogenomic studies. Without a reduction in the 

database, six-frame of translation of chromosomes can be searched individually (Bitton 

et al. 2010). Instead of running chromosomes individually but without reducing the 

search space into exon level, Fermin et al. (2006) created a library of potential ORFs 

out of six-frame translated human genome. Branca et al. (2014) presented a method, 

HiRIEF, based on high-resolution isoelectronic focusing to achieve search space 

reduction by generating an enzymatic peptidome for the given genome. Utilizing RNA-

Seq data also provides knowledge of expressed genes, thus eliminates the complexity 



18 
 

related to splicing and masking event occur in the genomic search. Translation of longer 

assembled RNA-Seq fragments reduces the search space in compare to genome 

translation. However, it gets along with shortcomings such as the existence of multiple 

isoforms derived from same reads and difficulty in assembly of multiple RNA-Seq 

datasets. Woo et al. (2013) introduced a new method named which constructs a splice 

graph based database from RNA-Seq reads including splicing and mutation events 

while increasing sensitivity and compression. While these methodologies facilitate 

runtime of a database search, proper integration of multi-database results remains a 

problem. As explain in Chapter 1, target-decoy based FDR is not only used a statistical 

assessment methodology but also as an integration method to find final TP hits. The 

assumption here that same score distribution will be found in both target and decoy 

database hits. However, TP hits can be available in decoy database by chance, or 

isobaric peptides of expected TP hits can be found in decoy database. These two cases 

might violate the same score distribution assumption of target-decoy approach. Of the 

11065 spectra were run against Escherichia coli, yeast, pig, mouse and human protein 

databases that are in size increasing order and their decoy versions by MSGF+, 

X!Tandem and OMSSA algorithms to test the effect of database size on a number of 

identifications and score distribution on database search algorithms, In this run, multiple 

precursor mass tolerance and fragment mass tolerance setting-pairs were used, and 

optimum results were found for 1.4Da precursor mass tolerance and 0.3Da fragment 

mass tolerance settings. As shown in Figure 4, some of the predictions OMSSA 

depends heavily on database size meaning that smaller databases yield a higher number 

of predictions. In addition to that in X!Tandem showed a slight difference in a number 

of predictions through increasing database size trend. MSGF+ does not show any 

significant change. When the scores of target and decoy hits were compared, it was 

observed that in small databases score distribution between target and decoy version is 

significant. Therefore some of the retained TP hits will be higher. However, with the 

increase in size, score distribution between target and decoy databases overlap 

indicating the higher chance of finding true peptides or isobaric versions of them in 

decoy database by chance. When small target database to large target database was 

compared, a significant difference was observed which leads us to consider hits 

obtained in the small database would surpass hits obtained in a large database when 

results of multiple databases are integrated to find final hit list. These findings confirm 

the hypothesis presented by Gupta et al. (2009) that target-decoy approach is not 



19 
 

compatible with all database search algorithms to assign statistical significance and to 

integrate multiple database results.  

 

 

Figure 4. A number of identifications (black bars; left vertical axis) and distribution of 
E-value scores of algorithms (box-whisker plots, right vertical axis) for 
MSGF+, OMSSA, and X!Tandem. Results are ordered according to ascending 
order of database sizes. Score distributions are limited to 10 maximum. In this 
analysis fragment tolerance and precursor mass tolerance were adjusted to 
0.3Da and 1.4 Da respectively.  

The second factor that affects the accuracy of database search step is related to 

developments in mass spectrometry technology (Eng et al. 2011). Database search 

algorithms require users to set parameters related to the accuracy of mass measurement 

and sample preparation such as enzymatic cleavage. Since the assignment of peptides to 

spectra is solely dependent on these parameters, it is important to evaluate algorithms 

regarding parameter sets to prove which one is better performing in compare others on 

specific datasets. So far some studies investigated the performance of these algorithms 

(Kapp et al. 2005; Shadforth et al. 2005). However, few issues are arising in the 

evaluation step. The first problem is a lack of ground-truth benchmark datasets from 

known peptides. The second issue is to measure samples in various conditions to assess 

perturbation effect of analysis. The definition of ground-truth benchmark dataset was 

recently reported by Allmer et al. (2012). Availability of few benchmark datasets 

(Keller et al. 2002) and properties of these datasets become a limiting factor in this case. 

In the literature analysis of specific biological samples (Tabb et al. 2008), complex 

synthetic samples (Marx et al. 2013) were also measured to evaluate analysis 

workflows. Although these datasets simulate the real case scenario, peptides available 
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in the sample are unknown due to miscleavage and post-translational modifications or 

chemical reactions during measurement. In these datasets, peptide-spectrum 

assignments are based on another algorithm. Therefore assignments cannot be 

categorized truly due to lack of confidence. In addition to that, the tool used for PSM 

assignment to evaluate other tools is not the gold standard algorithm. The paper 

described benchmark dataset as known peptide samples are measured by a set of mass 

spectrometers, fragmentation methods and measurement settings and correct sequence 

annotations need to be specified. It is also reported that six measures need to be owned 

by benchmark datasets. These metrics can be listed as relevance, solvability, scalability, 

accessibility and independence. In the case of availability of a benchmark dataset, 

parameters which influence the perturbations can be measured as different combinations 

of them can be generated.  

Precursor mass tolerance and fragment mass tolerance are these parameters 

which rely heavily on mass analyzer of MS instrument. These tolerances change a 

number of candidates and scoring of candidate PSMs to find the best PSM. Database 

search engines compare only the candidate peptides that have similar masses to 

measured precursor mass within precursor mass tolerance allowed by the mass analyzer. 

Moreover, the activation method used to fragment peptides into fragment ions also 

determines types of expected ions. For instance, a-, b- and y- ions are expected in 

collision-induced dissociation (CID) and higher collision-induced dissociation (HCD) 

fragmentation techniques, while c- and z- ions are highly expected in ETD 

fragmentation. Thus, database search algorithms must consider these ion types as well 

as precursor mass and fragment mass tolerances determined according to the MS 

instrument and fragmentation method to generate theoretical spectra which are 

compared against experimental spectra.  

In this section, the impact of these two factors on database search step in 

proteogenomics pipelines will be discussed by using synthetic peptide generated 

benchmark spectra datasets. A new methodology, called database equalizer, will be 

introduced to overcome size limitation and integration of different size and redundancy. 

Algorithm parameter adjustment on example benchmark datasets done via in-house 

genetic algorithm, which is not part of this thesis, will be explained.  
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2.2. Methodology 

 
2.2.1. Sample Preparation and MS Analysis 

 
The total of 45 peptide sequences was derived from five different proteins which 

are cytochrome c (ACN: P00004), bovine serum albumin (ACN: P02769), oval albumin 

(ACN: P01012), myoglobin (ACN: P68082) and lysozyme c (ACN: P61626). Peptide 

sequences were synthesized (GL Biochem Ltd, Shanghai, China). Peptide samples for 

direct-syringe pump measurements were dissolved with 25% ACN in up H2O to reach 

1mM. The 1mM stocks were diluted 5 fold under 10% ACN+ 0.1% formic acid. The 

peptides which contain cysteine and methionine were used in alkalized and non-

alkalized form before preparation of stocks. Following that five mix samples were 

prepared to be analyzed by liquid chromatography coupled tandem mass spectrometers 

(LC-MS/MS). Each mix was prepared from peptides originated from same protein and 

in each mix 10 ul from 1mM stock for each involved peptide was added.  

The direct-syringe measurements and LC-MS/MS measurements were carried 

out at ETH Functional Genomics Center (FGC) Zurich Proteomics Facility. Thermo 

Scientific QExactive instrument with high energy collision dissociation (HCD) 

fragmentation, Thermo Scientific FUSION instrument with ETch, electron transfer 

dissociation (ETD) and HCD fragmentations, Thermo Scientific LTQ Orbitrap Velos 

instrument with collision-induced dissociation (CID) and HCD fragmentation, AB 

Sciex 5600 TripleTOF instrument at ETH FGC Zurich were employed for direct-

syringe pump measurements and LC-MS/MS to simulate real experiment case. A 

number of spectra generated in this benchmark dataset was shown in Figure 5. 

Activation time and energy for direct injection and gradient for LC coupled 

measurement were changed during measurement to achieve varying quality spectral 

dataset. For CID fragmentation, activation energy was varied as 15eV, 20eV, 30 eV and 

45 eV. For HCD fragmentation, activation energy was set as 18eV, 25eV, 35eV and 

45eV. In addition isolation width was set to 2, first m/z was set to 50.  
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Figure 5. Distribution of benchmark spectra dataset per measurement type-instrument-

fragmentation method. 
 
 
2.2.2. Database Equalizer Algorithm 

 
Database equalizer algorithm was implemented in Java and pseudocode of the 

algorithm is given in Figure 6. The algorithm is composed of two sections.  
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Figure 6. Pseudocode of database equalizer is given. 

The first part processes each input database file to generate smaller fragments 

from each database element. Overlap regions which include the end of the former 

fragment at o length and the beginning of latter fragment at o length are also generated 

not to skip fragment cut endings. The illustration Figure 7 shows this process. By 

default, although fragment length and overlap length are set by users, these sequences 

are extended until encountering R/K amino acids for protein databases. The reason is 

that not to lead absence of potential enzyme cleavage products.  

Input: A number of sequence files F1, F2, ..., Fn;  a positive 
integer l setting the desired  length of sequence elements;  
a positive integer o setting the length of overlapping sequences; a 
positive integer m giving the desired number of equalized  
files to be produced. 
Output: m number of equalized sequence files (E1, E2, ... Em). 
Procedure: 
1.  get m, l, o 
2.  get Files F; n = size(F) 
3.  initialize files E[0 .. m]  
4.  e = 1 
5.  for i = 0 to n 
6.    foreach S in Fi // S represents a sequence 
7.      p=0 
8.      while p < len(S) –l 
9.        E[e++] <- store subsequence(S,p,l) 
10.       p += o 
11.       if e == m 
12.         e = 0 
13.     end while 
14.   end foreach 
15. end for 
16. return E 
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Figure 7. The first step of database equalizer splits long database elements into 
fragments up to length l. Overlap regions with between any two fragments are 
generated at length o.  

In the second part of database equalizer, database elements of different size or 

origin databases are integrated into same size m number databases. This step is 

illustrated in Figure 8. With the help of this step, multiple databases become equal 

regarding redundancy and sequence content. It enables us to compare results from 

multiple databases.  

 

Figure 8. The second step of database equalizer is to merge database elements of 
different databases into equal size databases. 
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The hypothesis that scores difference among hits of equalized databases versus 

different size databases and how a number of candidates effect assigned scores were 

aimed to be tested. Therefore, six-frame translated human chromosomes 1 and 2 as 

large, chromosomes 11, 22 as medium size and mitochondria and human protein 

databases as small size databases were retrieved from ENSEMBL repository. Each 

database element, i.e. each reading frame in genomic databases and each protein entry 

in the protein database, were split into 1000 character length fragments and overlap 

length was set as 100. These databases were integrated into six equal size files. In all 

database files, proteins of measured peptides were included.  

 
2.2.3. Peptide Identification 

 
The database size effect of all reported scoring functions of eight database 

search algorithms was compared. Open-source algorithms; Inspect, OMSSA, MSGF+, 

X!Tandem, Myrimatch, MSAmanda, pFind and commercial algorithm PEAKS were 

run against six different size databases and six same size databases. Inspect, pFind, 

X!Tandem,  MSAmanda, PEAKS have database element size limitation. Thus, six 

different size databases were only split into fragments to overcome this limitation. 

Algorithm settings wereused with default values according to vendor recommendations.  

To show whether how scoring functions of algorithms are sensitive to a number 

of candidate peptides in given database, we also removed competing candidate peptides 

of expected peptides, which are seen among best 10 hits. After the initial run, best 

incorrect hits were replaced to A(n), i.e. n times Alanine, sequences through in each 

sequence database. By removal of incorrect hits, we aimed to put correct and expected 

peptides into the first rank. Competitive peptide removal step was repeated two times.  

 
2.2.4. Database Search Algorithm Parameter Adjustment 

 
Parameters of database search algorithms need to be adjusted according to MS 

instrument and fragmentation model which were used during measurement. In the 

study, by using the in-house genetic algorithm, X!Tandem and OMSSA algorithms 

were tested with different parameter settings to influence of algorithm parameters on the 
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number of correct identifications of each algorithm on tested datasets. MSGF+ does not 

allow parameter optimization since error tolerances as main parameters are set through 

MS instrument and fragmentation model. Myrimatch, MSAmanda, and Inspect were not 

tested since the runtime of these algorithms takes so long which is a limiting factor for 

multiple generations in the genetic algorithm. pFind and PEAKS do not provide 

executables but only GUI implementation, therefore it was not possible to iterate with 

multiple settings generated by the genetic algorithm. 

The main working principle of the genetic algorithm can be summarized as 

following. The algorithm starts with default settings represented as an initial 

chromosome. According to population size set as 100 and number of generations as 20, 

the random population is generated. For each individual meaning that each parameter 

setting serial, each algorithm is run on selected spectra against the database. The result 

of each individual is collected. Afterward, the selection algorithm, crossover, and 

mutation are respectively applied to the individual. By checking the termination 

condition, the decision of termination or continuation of iteration is decided. After 

termination, best individuals are determined. In this study, at max 1500 difficult spectra 

for LC-Fusion ETD, LC-TripleTOF, Direct Infusion QExactive, and LC-LTQ CID 

dataset respectively were used. The prominent feature of these spectra is that the 

datasets were solved by at least three algorithms except OMSSA and X!Tandem 

algorithms.  



27 
 

2.3. Results and Discussion 

 
DeltaScore (Sdatabase1-Sdatabase2) of human chromosome 1 and mitochondrial 

chromosome and two equal size merge databases were computed to assess the 

dependency of scoring functions of different database search algorithms to size, In 

addition to that delta score obtained between initial run and the run after removal of 

incorrect but candidates as the effect of candidates were plotted as well to show the 

influence of a number of candidates on score change. For each algorithm, these two 

delta scores were computed for all reported scoring functions by the algorithm. Here, 

results of E-value scores of X!Tandem, MSGF+, and OMSSA algorithms were shown 

as these three algorithms were intended to be used in the last study presented in Chapter 

5. 

 

Figure 9. Delta OMSSA E-value score difference between large and small size 
databases (human chromosome 1 versus human chromosome mitochondria) 
(blue) and two equal size databases (all merged) (red) were shown in the y-
axis. Delta score difference after competitive candidate removal for large-small 
and equal size databases was shown in the x-axis. 
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As shown in Figure 9, OMSSA default score type, E-value showed no score 

difference between split-merge databases (red dots). However, delta difference between 

human chromosome 1 and the human mitochondrial chromosome is scattered from zero 

to 30000 (blue dots). This supports the fact that a number of candidates have a big 

impact on OMSSA E-value scoring function. As stated in the manuscript of OMSSA, 

E-value described as a score which is the expected number of random hits from a pool 

of candidates assigned to a spectrum. Here it is expected that random hits should have 

an equal or better than the actual hit. Therefore, a number of candidates are an important 

determinant of the value of E-value. However, as shown by the linear line, candidate 

removal has no significant effect on the E-value scoring of OMSSA. Although the exact 

numbers of possible candidates in human chromosome 1 and mitochondrial 

chromosome for expected peptides are not computed, it is seen from the figure that a 

number of candidates in chromosome 1 is higher than mitochondrial chromosome. 
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Figure 10. Delta X!Tandem E-value score difference between large and small size 
databases (human chromosome 1 versus human chromosome mitochondria) 
(blue) and two equal size databases (all merged) (red) was shown in the y-axis. 
Delta score difference after competitive candidate removal for large-small and 
equal size databases was shown in the x-axis. 

X!Tandem algorithm returns two scoring types: Expect value (E-value) and 

hyper score. The first scoring assessment is based on a calculation of dot product by 

using ion intensities and the number of matching ions according to a comparison of the 

theoretical spectrum generated from candidate peptide and experimental spectrum. 

According to the frequency distribution of dot products, survival function is defined. It 

is a function for discrete stochastic score probability distribution. Here it is defined that 

the correct matches have greater value than random matches. With this survival 

function, E-value is computed to indicate the number of PSMs which are expected to 

have better scores than random matches. Therefore, a number of sequences is a key 

factor which influences E-value scoring type. On the other hand, hyper score as the 

other scoring scheme of X!Tandem, is a factorial based on hypergeometric distribution 

for matches of product ions. The log transformation of the score is returned as 
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hyperscore. The results of X!Tandem matches are ranked according to E-value. 

Therefore, the comparison of E-values for the given spectra for PSMs obtained from 

chromosome 1 and mitochondrial chromosome and two equal size and redundancy 

databases were used. As shown in Figure 10, delta E-values computed from results 

obtained from different size and redundancy having chromosomes (blue dots) were 

scattered highly up to 10. On the other hand, delta E-values computed from the equal 

size and redundancy having databases (red dots) also showed variance, in fact, it is 

limited between zero to +/- 2.  

The last algorithm in this study is MSGF+. MSGF+ algorithm scores peptide 

spectrum matches based on three main scoring functions; E-value, DeNovo score and 

MSGF score. E-value scoring is inferred to evaluate the statistical significance of every 

individual PSM. The computation of these scores is also based on dot product scoring 

as in X!Tandem. Since E-value is the suggested scoring function by developers of 

MSGF+ for FDR computing, the impact of candidate number, database size and 

redundancy were computed for E-value. In Figure 11, candidate removal and database 

size effects were not observed (red dot). However, candidate removal and database size 

difference were found as significant for different size databases on MSGF+ E-value.  
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Figure 11. Delta MSGF E-value score difference between large and small size databases 
(human chromosome 1 versus human chromosome mitochondria) (blue) and 
two equal size databases (all merged) (red) were shown in y-axis. Delta score 
difference after competitive candidate removal for large-small and equal size 
databases were shown in x-axis.  

As a conclusion results obtained for OMSSA, X!Tandem, MSGF+ pointed that 

the database equalizer algorithm usage will not only enable users to speed up the search 

by parallelization, but also the score difference occurring due to different size will be 

discarded. The advantage of this will be on the data integration step as in the case of 

proteogenomics studies.  

Another impact factor on database search algorithms is parameter settings before 

search process. Earlier attempts tested few combinations (Quandt et al. 2014) of 

parameters in proteomics workflows to determine optimum settings for various MS 

instrument-fragmentation method based spectra datasets. However, these studies were 

limited due to a number of combinations used. In this study, OMSSA and X!Tandem 

algorithms were fed with multiple various combinations more than 1000 by using a 

genetic algorithm. The main settings which were adjusted for both algorithms were 
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precursor mass tolerance (0 to 4Da), fragment mass tolerance (0 to 2Da), ion types (-a, -

b, -c, -x, -y, -z), number of miscleavages (1 to 4 with one interval ). In addition to that, 

minimum ion count (from 1 to 12 with one interval), the total number of peaks (from 0 

to 50 with 10 interval), usage of noise suppression (yes or no), model refinement 

parameters (yes or no) were changed for X!Tandem. For OMSSA, number of peaks 

allowed in single charge window (from 1 to 4 with one interval), number of peaks 

allowed in double charge window (from 1 to 4 with one interval), number of m/z values 

corresponding to the most intense peaks that must include one match to the theoretical 

peptide (from 1 to 20 with one interval), the hit to the peptide to be recorded (from 1 to 

10 with one interval), maximum E-value allowed in the hit list (from 10 to 100000 with 

10 interval)settings were changed. Due to limited computational sources, only limited 

number of spectra up 1500 were used and two algorithms were used. Each algorithm 

was set to default settings for the first run.  

For both algorithms, parameter optimization showed a significant impact on 

benchmark dataset in terms of accuracy. By considering the dataset which is not 

solvable with default algorithm settings, it was observed that 0.0 accuracy was 

increased to 70% for OMSSA algorithm and 61% for X!Tandem algorithm on the LC-

LTQ-CID dataset.  

 

Figure 12. Comparison of OMSSA and X!Tandem algorithm parameters against 
defaults, first individual and best settings after genetic algorithm 
optimization on the LC-LTQ-CID dataset.  
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In Figure 13 and Figure 14, X!Tandem and OMSSA accuracy results on direct 

infusion Orbitrap-HCD dataset, LC-TripleTOF dataset and direct infusion Fusion-ETch 

dataset after parameter optimization via performing genetic algorithm have been given 

respectively.  X!Tandem results show that there is a direct correlation between LC and 

direct infusion measurement types and accuracy obtained via parameter optimization. 

The reason here is that during peptide measurement fragmentation efficiency was forced 

for fluctuation to get the varying quality of spectra. Nevertheless, the same peptide were 

measured under different settings. Hence spectral annotation was known. On the other 

hand, varying fragmentation efficiency might have affected some of the peptides in the 

mixture. Therefore wrong annotations due to missing ions could have been obtained. 

While a significant increase was observed in direct infusion Orbitrap HCD dataset and 

direct infusion Fusion-ETch dataset, LC-TripleTOF dataset did not yield a significant 

accuracy through generations.  
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Figure 13. X!Tandem algorithm executed on selected spectra for each instrument-
fragmentation method benchmark datasets. The spectra used for this 
comparison was at max 1500 spectra and are labeled as hard dataset since they 
are solved at least three algorithms excluding X!Tandem algorithm. In the plot, 
only three significant datasets were shown as direct infusion-HCD, LC-
TripleTOF and direct infusion- ETch datasets.  

OMSSA algorithm resulted in major changes in accuracy for all datasets by 

generations. This tells us that the parameters of OMSSA have the higher impact on 

scoring functions therefore accuracy. The accuracy increased approximately 25-30% in 

all datasets. When the results were inspected individually, it was shown that precursor 

mass tolerance, fragment mass tolerance, ion types, the number of singly and doubly 

charged peaks in the windows, the number of highly intense peaks and the E-value 

threshold are the settings which are mostly affecting the accuracy.  

This pilot study underpins the importance of training of algorithms according to 

the MS dataset in use during development and usage. For the different instrument-

fragmentation method, different sub datasets with different quality and difficulty level 
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need to be executed on database search algorithms even on de novo sequencing 

algorithms.  

 

 
Figure 14. OMSSA algorithm executed on selected spectra for each instrument-

fragmentation method benchmark datasets. The spectra used for this 
comparison was at max 1500 spectra and are labeled as hard dataset since 
they are solved at least three algorithms excluding OMSSA algorithm. In 
the plot, only three significant datasets were shown as direct infusion-
HCD, LC-TripleTOF and direct infusion- ETch datasets. 
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CHAPTER 3 

 
ACCURATE PROTEOGENOMIC PEPTIDE MAPPING 

 
3.1. Introduction 

 
One task in this area is to map proteomic data back to the underlying genome. 

Database search algorithms establish a PSM, but may not report all locations of the 

assigned peptide in the underlying database (Table 2). Although some database search 

tools provide all peptide mappings for the PSMs they establish, they fail to reach a large 

intersection with other database search tools which require the use of multiple database 

search tools to generate consensus peptide identifications followed by peptide mapping. 

All peptide mappings to all relevant databases need to be known in proteogenomic 

studies to enable proper gene model assessment. Therefore, assigning genomic locations 

of identified peptides is a necessary step, and it has been implemented within 

proteogenomics pipelines and three standalone tools are available. Peptide mapping in 

this manner is a non-heuristic process and affords complete correctness. Errors affect 

the following steps in proteogenomics pipelines such as proposing new gene models 

with respect to peptide mappings. 
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Table 2. A non-comprehensive list of database search algorithms with features 
regarding PSM report. All of them must report PSMs, but there is no 
requirement for detecting all their occurrences in our opinion. Additionally, 
genomic databases and thus genomic locations are rarely used, and translation 
to genomic locations via the use of annotation files is complicated and not 
performed by database search tools. Four questions define whether and how 
database search tools report PSMs with multiple locations in a database. 

Algorithm Are all 
proteins 
found? 

Are all peptide 
locations in 
proteins found? 
 

Do parameter 
settings 
influence 
search 
outcomes? 
 

Does result in 
output format 
effect report 
peptide 
localization? 
 

OMSSA Yes  
 

Yes  Yes1 No 

Masswiz No No location 
information 

No No 

Myrimatch Yes No location 
information 

No No 

Tandem Yes Yes No Yes 
MSGF+ Yes No No Yes2 
1In case of changes in parameters such as number of returned hits and E-value threshold; OMSSA returns all start 
& end locations of a peptide in all matching amino acid sequences in the given database (changes may lead to a 
large increase in runtime).  
2MSGF+ is intended to return all start & end locations of found peptides in respect to all matching amino acid 
sequences in the database. However semi-tryptic rule setting or initial scoring system of MSGF+ would affect the 
reported locations as well as reported amino acid sequences. The scoring system considers flanking amino acids of 
queried peptides. Therefore for a peptide which is found in two locations of protein A, location 1 is be reported 
while location 2 is not.  

 
For this reason, software which maps the identified peptides to all their locations 

within sequence databases (e.g.: genome, transcriptome, proteome) is needed 

(Menschaert 2015). Furthermore, database search tools in general search only one 

database at a time and cannot report multiple occurrences when they are spread over 

multiple databases. Two standalone tools for the purpose of peptide mapping have been 

published. In addition to these standalone tools, several proteogenomic pipelines 

(Kumar et al. 2013; Risk et al. 2013; Jagtap et al. 2014; Nagaraj et al. 2015; Has and 

Allmer 2016) contain peptide mapping as a step and we are aware that there are many 

more in-house scripts performing this function. The proteogenomics mapping tool 

(PGM) offers an implementation of the Aho-Corasick algorithm (1975) for mapping 

peptides to genomes with some additional functionality such as finding expressed open 

reading frames (Sanders et al. 2011). PGx (Askenazi et al. 2015) has recently been 

proposed as an alternative method to PGM, performing 2-step indexing to achieve a 
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faster mapping of peptides to protein database and returning corresponding genomic 

locations of mapped peptides according to given BED file. The problem of peptide 

mapping can also be solved by non-targeted algorithms like BLAST (Altschul et al. 

1990) and BLAT (Kent 2002). Moreover, Allmer et al. (2016) published a set of exact-

pattern matching tools which can be used for peptide mapping purpose.  

As part of this thesis, a new exact peptide mapping implementation inspired by 

the Wu-Manber algorithm, called Peppig, has been implemented. Exact pattern 

matching should lead to correct algorithms which must solve all instances of the peptide 

mapping problem properly. The correctness of results were ensured by establishing a 

comprehensive test-set consisting of 245 cases. These test cases address all possible 

mapping scenarios such as overlapping peptides, multiple occurrences, and tandem 

repeating peptides in the sequence database. Peptide sequences were designed as tryptic 

peptides, and they do not contain any unknown characters. PGM, Peppig and PGx were 

tested on these cases and runtime comparison between Peppig and PGM and one 

heuristic algorithm BLAT were measured to show a significant difference in the 

completion of the mapping process. While Peppig was able to solve all test-cases 

correctly, PGM and PGx only solved 79% and 100% of cases respectively without 

counting systematic errors. All test-case are available through jlab.iyte.edu.tr/software 

so that developers can test their in-house tools. Peppig is provided as a standalone tool 

for proteogenomic peptide mapping through http://jlab.iyte.edu.tr/software.  

 

3.2. Methodology 

 

3.2.1. Peppig Implementation 

 
Peppig algorithm is a modified and fast version of the Wu-Manber algorithm 

and implemented in Java. The fundamental idea of the Wu-Manber algorithm is to 

utilize hashing strategy on prefix and suffixes to shift the words according to that. Wu-

Manber algorithm is composed of two main phases: preprocessing and scanning. In 

preprocessing step, smallest length having patterns is found. Afterward, SHIFT table, 

HASH table, and PREFIX tables are generated. SHIFT table contains maximum shift 

when a mismatch is encountered. In HASH table holds values which are used when 

SHIFT table has zero value. PREFIX table, on the other hand, contains matchings of 

http://jlab.iyte.edu.tr/software
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first B characters of patterns. The existence of PREFIX table speeds up the scanning 

step. In scanning step, first n characters of the text are taken from the array, which is 

called window. Last B characters of the window is compared to the pattern, and 

according to the shift value in SHIFT table, the window is shifted. In case the shift 

value is zero, the corresponding value in the HASH table is used. When there are 

multiple values in the HASH table, PREFIX table is used, and prefix of the pattern is 

compared. When a prefix match is encountered, then the whole pattern is compared 

against text by one –character at a time. The pseudocode of Wu-Manber implementation 

is given in Figure 15. Hashing strategy in Wu-Manber algorithm brings an advantage to 

less space and less number of comparisons due to large shifts.  

 

 
Figure 15. Pseudocode of Peppig is given. 

 
 

Peppig takes a list of peptide queries and sequence database in FASTA format. 

Peppig accepts nucleotide and amino acid databases. Via automatic sequence type 

detection, Peppig determines the database type and translates sequences into six- or 

three frames. The translation of all frames is done at the same time by reading the 

 

Input:  t, char array representing sequence database; c, sequence type 
(nucleotide or protein); p, char array representing patterns (query peptide 
sequences); w, a positive integer representing word size 

Output : result, GFF3 file containing locations of patterns within t 

 
Procedure:  
1.  n = len(t)  
2.  Initialize and construct SUFFIX hash, SHIFT map, and PREFIX hash 
3.  s = len(shortest pattern) 
4.  tp = s - 1 
5.  while (tp < n) 
6.    word = get w size char array ending at tp 
7.    pats = SUFFIX(word) // returns all patterns with word as suffix 
8.    if(pats) 
9.        foreach pat in pats 
10.             pref = get first word from pattern 
11.             if pref in PREFIX 
12.     compare p with t //given constraint tp 
13.        if pattern equals to text ending at position tp 
14.            if c equals to “nucleotide” 
15.                add genomic location to result 
16.            else if c equals to protein 
17.                 add protein location to result 
18.            end foreach 
19.       tp += SHIFT(word)    
20.  end while 
21. return result 
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sequence at once which accelerates this process. When queried peptides are found in the 

database, genomic locations of these peptides are computed if database source is 

nucleotide. Mapping results are returned in GFF format.  

 

3.2.2. Test Scenarios 

 

3.2.2.1. Implementations and Inputs 

 
In order to assure algorithm correctness, the underlying assumptions need to be 

tested ensuring that input is correctly transformed into the expected output. For testing 

peptide mapping or exact pattern matching in general, seven broad test scenarios were 

devised. Peppig and PGM (Release date: Stand-alone jar executable 2011-03-29) are 

able to translate the given nucleotide sequence database. However PGx (Release date: 

2016-03-29) has no such feature. Hence, we used six-frame translated sequence to 

involve PGx into comparison.  

The algorithms were tested against a database with a single element and one 

with multiple ones. In this respect, as the single database element example nucleotide 

sequence of human (Homo sapiens) pleckstrin homology like domain family member B 

was used. In multiple database element test case, in addition to human pleckstrin 

homology like domain family member B, those of homologous sequences in gorilla 

(Gorrilla gorrila), rhesus macaque (Macaca mulatta) were included. Query peptides 

were selected as tryptic peptides that do not contain any common amino acid symbols 

or "*" symbolizing stop codon. In order to test the effect of foreign symbols existence to 

query finding in database files, we created two versions of database files; 1) stop codons 

were symbolized as "*" 2) stop codons were translated to "F", phenylalanine. 

 

3.2.2.1.1. Test Scenario One 

 
Tests in this scenario evaluate whether peptides can be retrieved when they are 

at the beginning, in the middle, or at the end of a sequence for the six possible 

translation reading frames of a nucleotide sequence. While this may seem trite, indexing 

or other transformation of query set or sequence database may introduce errors.  
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3.2.2.1.2. Test Scenario Two 

 
Pattern matching may retrieve the first match, only; but in proteogenomic 

peptide mapping, it is essential to detect all matches. Therefore, this scenario tests 

whether the query peptides are matched to all expected locations in the sequence and 

whether the locations are correctly reported since shifts in locations can easily occur due 

to wrong assumptions or calculations. Six queries were created for this scenario. The 

first one is expected to be found at the beginning and at the end of first-forward reading 

frame of the six frame translation of the sequence. The second query is expected to be 

found at the beginning and at the end of the second-forward reading frame of the six 

frame translation of the sequence. The third query is expected to be found at the 

beginning and at the end of the third-forward reading frame of the six frame translation 

of the sequence. The fourth, fifth and sixth queries were expected to be found at the 

beginning and at the end of the first-reverse reading frame, second-reverse reading 

frame and third-reverse reading frame respectively.  

 

3.2.2.1.3. Test Scenario Three 

 
Either the queries and/or the sequence database may be transformed for more 

efficient pattern matching and, therefore, it is important to test whether that was done 

correctly. To inquire this, queries which contain shared prefixes, infixes, or suffixes 

were constructed. Three different peptides of varying length, ranging from 10-25 amino 

acids, which contain shared prefixes, infixes, and suffixes, were selected as queries. 

 

3.2.2.1.4. Test Scenario Four 

 
Tests in this scenario check whether tandem sequence repeats which can occur 

for low-complex peptide sequences are appropriately mapped to the sequence multiple 

times. 

 

 

 



42 
 

3.2.2.1.5. Test Scenario Five 

 
Due to miscleavages, peptides might overlap. This scenario checks whether 

overlapping tryptic peptides can be mapped properly by all tools. Single and four amino 

acid longer overlapping regions were created.  

 

3.2.2.1.6. Test Scenario Six 

 
Proteogenomic peptide mapping may involve tens of thousands of peptides and 

it is important to check whether the algorithms support this use-case. The scalability of 

the implementation is tested with varying number of queries: 50, 100, 500, 1000, 5000, 

10k, 50k, and 200k respectively. These peptide queries were distinct randomly 

generated tryptic peptides. For proteogenomic peptide mapping, we would expect less 

than 10000 peptide queries in current real world application, but checking whether 

methods scale well for future implementation when more peptides can be retrieved from 

MS analysis, seems necessary. Due to the construction of the query set we can only 

guarantee that at least one match must exist but cannot exclude multiple matches for 

some of the generated queries.  

 

3.2.2.1.7. Test Scenario Seven 

 
It is often the case that large sequence databases are used in proteogenomic 

studies. Therefore, it is crucial that peptide mapping algorithms are able to handle large 

sequence files to search for peptides. In this test scenario, four databases with sizes 

100MB, 500MB, 1GB, 5GB, respectively, were used to test whether algorithms scale 

well in respect to database size. 

 

3.3. Results and Discussion 

 
Functionality and correctness of an algorithm need to be tested against 

benchmark standards to instill trust in its implementation. Proper benchmark datasets 

cover the envisioned input and expected wrong input with their associated expected 
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outputs. A test framework is useful, but not always easy to setup when algorithms work 

in different software environments, for example. 

We developed a benchmark dataset encompassing 7 different scenarios with a 

total of 245 tests. The three peptide available standalone mapping algorithms, PGM, 

PGx, and Peppig were benchmarked on the developed test cases manually, and the 

results are presented on a per scenario basis in the following. 

Scenario one tests whether the genomic locations of matches are properly 

reported (Table 3). Peppig solves all test cases correctly which was confirmed by 

manually validating them in the Artemis genome browser (Rutherford et al. 2000). 

PGM, on the other hand, had 1 shift in 36% of scenario 1 cases. 33% of cases were not 

returned by PGM due to implementation error.  
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Table 3. Test outcomes for scenario one. Matches as a beginning, middle and end 
locations are tested for the three peptide mapping tools against the expectation 
provided. Scenario one tests the outcomes for the three available algorithms 
and presents quantification of detected errors.  

  Exactly 
correct hits 1-shift hits 1> shift hits Missing hits Total 

Single Element - Star 
DB 

Peppig 17 
   17 

 
PGM 4 8 

 
5 

PGx 
 

15 2 
 

Multi Element - Star 
DB 

Peppig 34 
   

34 PGM 14 15 
 

5 

PGx 
 

29 5 
 

Single Element –  

Non-star DB 

Peppig 20 
   

20 PGM 4 6 
 

10 

PGx 
 

18 2 
 

Multi-Element – 

Non-star DB 

Peppig 33 
   

33 PGM 10 9 
 

14 

PGx 
 

29 4 
 

 

PGx found all matches, but the locations of the matches in the databases were 

incorrect and were shifted by one (88%) or more (12%) bases. The large part of that 

problem could be due to a different reporting paradigm (shifted by 1 base) which could 

be accounted for in the downstream analysis, but for larger shifts (mostly in reading 

frame 2) we expect it to be an implementation error or preparation of BED file. 

Scenario two tests whether all matches of a query that locates at the beginning 

and at the end of the sequence databases are correctly returned. In this test case, the 

expectation is that an algorithm must scan the complete database starting from the first 

character to the last character. According to Table 4 PGM reports only the first 

occurrence of the queries on all four databases, thus failed solving of 41% cases. Thus, 

it was concluded that it is a bug that not all locations are reported. Peppig and PGx, 

however, returned all peptides in all locations. However, we observed 1 shift in hits 

found by PGx.  
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Table 4. Test outcomes for scenario two. Matches as front and end positions of same 
queries are tested for the three peptide mapping tools against the expectation 
provided.  

  Exactly correct 
hits 1-shift hits 1> shift 

hits Missing hits Total 

Single Element 
Star DB 

Peppig 4 0 0 0 

4 PGM 2 0 0 2 

PGx 0 4 0 0 

Multi Element - 
Star DB 

Peppig 4 0 0 0 

4 PGM 2 0 0 2 

PGx 0 4 0 0 

Single Element - 
Non-star DB 

Peppig 6 0 0 0 

6 PGM 3 0 0 3 

PGx 0 6 0 0 

Multi Element - 
Non-star DB 

Peppig 10 0 0 0 

10 PGM 7 0 0 3 

PGx 0 10 0 0 

 
As shown in Table 5 we assume that some problems might occur during the 

query tree construction leading to errors in 1 out of 11 test cases. We ran into similar 

problems with PGM when creating larger query sets with 1000 or more queries 

randomly extracted from the human chromosome 1. PGx, on the other hand, was able to 

return peptides according to gene locations given in BED file, but as in other test cases, 

all locations had 1 index shift. Peppig solves all tests correctly. 
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Table 5. Results for test cases in scenario three. Peptides having partial similarities 
(infix, suffix, and prefix) among each other were queried with PGM, Peppig, 
and PGx and the outcomes compared to the expected results. 

  Exactly 
correct hits 1-shift hits 1> shift 

hits Missing hits Total 

Single Element 
Star DB 

Peppig 11/11 0 0 0 

11 PGM 10/11 0 0 1/11 

PGx 0 11/11 0 0 

Multi Element Star 
DB 

Peppig 11/11 0 0 0 

11 PGM 10/11 0 0 1/11 

PGx 0 11/11 0 0 

Single Element  
Non-star DB 

Peppig 11/11 0 0 0 

11 PGM 10/11 0 0 1/11 

PGx 0 11/11 0 0 

Multi Element 
Non-star DB 

Peppig 11/11 0 0 0 

11 PGM 10/11 0 0 1/11 

PGx 0 11/11 0 0 

 
Peppig successfully maps queries of tandem repeated amino acid as well as a 

query of larger sequence randomly located in databases multiple times as tested in 

scenario four (Table 6). PGM return all expected locations correctly on star symbol 

containing single and multiple element containing databases. However, in no star 

symbol containing single and multiple databases, 34% of total cases were returned with 

one shift. As in other scenarios, PGx returned all expected peptides with single index 

shift in all databases.   
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Table 6. Results for the test cases from scenario four. Tandem repeats and multiple 
occurrences of large peptides needed to be mapped to matches which overlap 
within the database sequence. 

  Exactly 
correct hits 

1-shift hits 1> shift 
hits 

Missing hits Total 

Single Element Star 
DB 

Peppig 5 0 0 0 

5 PGM 5 0 0 0 

PGx 0 5 0 0 

Multi Element  Star 
DB 

Peppig 6 0 0 0 

6 PGM 6 0 0 0 

PGx 0 6 0 0 

Single Element 
Non-star DB 

Peppig 9 0 0 0 

9 PGM 4 5 0 0 

PGx 0 9 0 0 

Multi Element  Non-
star DB 

Peppig 9 0 0 0 

9 PGM 4 5 0 0 

PGx 0 9 0 0 

 

In scenario 5, the ability of mapping overlapping peptides was tested for all 

algorithms against all databases. In this scenario, 1 and 4 amino acid overlapping 

sequences were selected to check sequence overlap length effect returned outputs. 

Peppig and PGM returned an exact number of expected peptides with correct locations. 

However, PGx failed to return peptides with 4 amino acid overlaps (Table 7), however, 

after reporting this bug to the developers of PGx, the bug is fixed. PGx returns all 

expected peptides.  
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Table 7. Results for the test cases from scenario five. Overlapping peptides needed to be 
mapped to the database.  

  Exactly correct 
hits 1-shift hits 1> shift 

hits Missing hits Total 

Single Element 
Star DB 

Peppig 8 0 0 0 

8 PGM 8 0 0 0 
PGx 0 7 0 1 

Multi Element 
Star DB 

Peppig 8 0 0 0 

8 PGM 8 0 0 0 
PGx 0 7 0 1 

Single Element  
Non-star DB 

Peppig 8 0 0 0 

8 PGM 8 0 0 0 
PGx 0 7 0 1 

Multi Element 
Non-star DB 

Peppig 8 0 0 0 

8 PGM 8 0 0 0 
PGx 0 7 0 1 

(fixed after report) 
 

In addition to reporting correct results, another concern should be query size and 

database size that a peptide mapping tool is able to process. First of all, we tested upper 

limits of given database size for each algorithm in scenario six (Table 8). For given 

query number 10, four databases with sizes 100MB, 500MB, 1GB and 5 GB were run 

on 32 GB RAM Windows7 installed workstation. Results showed that Peppig and PGM 

were able to translate databases up to 5 GB and to search queries. On the other hand, 

PGx was not able to process databases files larger than 100MB.   

Table 8. Results for the test cases in scenario six. Different size databases respectively 
100MB, 500MB, 1GB, and 5GB were searched by all algorithms with 10 
tryptic peptide queries. 

Database size PGM Peppig PGx 

100 MB + + + 

500 MB + + - 

1 GB + + - 

5 GB + + - 

 

Upper bound on a number of queries that a tool can map to sequence file was 

tested in scenario 7. All tools were tested with increasing number of queries from 50 to 
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200k against 100 MB database. 100MB database was chosen due to being lower 

database size bound for all tools. 

Table 9. Results for the test cases from scenario seven. The ability of mapping 
increasing query size was checked for PGM, Peppig, and PGx. The upper 
bound for the number of queries was determined for each of them. Due to 
unacceptable large runtime, PGM was not tested beyond 1000 queries. 

Query size PGM Peppig PGx 

50 + + + 

100 + + + 

500 5 days runtime + + 

1000 10 days runtime; 300 GB 
results + + 

5000 Not tested + + 

10000 Not tested + + 

50000 Not tested + - 

200000 Not tested + - 

 

According to results shown in Table 9 Peppig could finish processing large 

queries; however, PGM took several days to finish even 500 queries whilst PGx failed 

extreme query sizes such as 50k and 200k.  

In order to establish runtime difference between Peppig, PGM, and BLAT three 

different sized sequence databases were used. PGx was not included in the comparison 

since it was designed as three separate Python scripts. Human chromosome 1, 10 and Y 

are containing 247MB, 134MB, and 57.5MB of bases, respectively, were used as 

nucleotide sequence databases. Peppig, PGM, and BLAT performances were compared 

for both translation process and search process. Query sets consisted of 50, 100, 500, 

1000, 5000 (normal use case), 10000 and 50000 peptide sequences that were randomly 

extracted from the six-frame translation of each chromosome. Run times were measured 

on a workstation with the following specifications: 40 GB RAM Intel Core i7 3.07GHz 

x. The mint flavor of Ubuntu Linux was installed on the PC, and most competing tasks 

were disabled during performance measurement. Additionally, where possible, any but 

the search module was disabled. Note, that searching consumes the largest part of the 
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runtime. For a fair comparison, the measurements were repeated 5 times, and the 

averages are reported. 

 

 

Figure 16. BLAT, Peppig, and PGM were executed on 247MB sized human 
chromosome 1. BLAT was only tested for 1000 queries due to its long runtime. 
Runs for each algorithm were repeated 5 times, and run times in seconds were 
averaged. They are plotted with standard deviations for each peptide query 
size. 

For the largest human chromosome, BLAT shows good performance for few 

queries, but it quickly degrades, and it becomes evident, that the algorithm was not 

designed for this kind of task. We chose BLAT over BLAST since BLAT was shown to 

be faster. Peppig is fastest for normal use cases, and its growth is linear, whereas the 

growth rates of BLAT and PGM seem exponential. 
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Figure 17. BLAT, Peppig, and PGM were executed on 131MB size human chromosome 
10. BLAT was only tested for 1000 queries due to excessive runtime. Runs for 
each algorithm were repeated 5 times, and run times in seconds were averaged. 
They are plotted with standard deviations for each peptide query size. 

Peppig algorithm is fastest for normal use cases, and its growth is linear, 

whereas the growth rates of BLAT and PGM seem exponential. Similar results are 

found for medium (Figure 17) and small chromosomes (Figure 18).  

 

 

Figure 18. BLAT, Peppig, and PGM were executed on 57.5MB size human 
chromosome Y. BLAT was only tested for 1000 queries due to long runtime. 
Runs for each algorithm were repeated 5 times, and run times in seconds were 
averaged. They are plotted with standard deviations for each peptide query 
size. 
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In order to compare runtime performances of Peppig against BLAT and iPiG 

(Kuhring and Renard 2012) in translated databases, human chromosomes 1, 10 were 

translated into six frames with following file sizes: 492MB, 268MB respectively. Query 

files were built from 50, 100, 500, 1000, 5000 peptide sequences due to long run time.  

 

 

Figure 19. BLAT,  Peppig, and iPiG were executed on 492MB sized six-frame 
translated human chromosome 1. Runs for each algorithm were repeated 5 
times, and run times in seconds were averaged. BLAT and iPiG were shown in 
the second vertical axis. Peppig is on the primary vertical axis. 

For the comparison performed on translated databases as shown in Figure 19 

and Figure 20, Peppig performed better than BLAT and iPiG in terms of runtime. 

However, it should be noted that iPiG provides different features than Peppig, for 

instance, visualization. Moreover, BLAT is intended to perform approximate string 

matching which cannot be conducted by Peppig.  
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Figure 20. BLAT, Peppig and iPiG were executed on 268MB sized six-frame translated 
human chromosome 10. Runs for each algorithm were repeated 5 times, and 
run times in seconds were averaged. BLAT and iPiG were shown in the second 
vertical axis. Peppig is on the primary vertical axis. 

Overall, when the average measurements for all databases including the 

translation step done by algorithms were taken, compared to PGM (7min/GB), Peppig 

(~ 70s/GB) is 6 times faster. BLAT is 190, and 30 times slower than Peppig and PGM, 

respectively. 
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CHAPTER 4 

 
PGMINER: PROTEGENOMIC PIPELINE ANALYSIS 

TOOL 
 
4.1. Introduction 

 
In proteogenomic studies, the general workflow is composed of steps as 

database generation, a database search of mass spectrometric data to identify peptides 

with a level of confidence, mapping of identified peptides to databases or existing gene 

models and visualization of the mapping results. 

In previous studies, different sequence sources at genomic (Desiere et al. 2005; 

Fermin et al. 2006; Gallien et al. 2009; Branca et al. 2014) or transcriptomic level 

(Jagtap et al. 2013; Woo et al. 2013; Zickmann and Renard 2015) have been used as 

sequence database. These sequences can be listed as a six-frame translation of genomic 

DNA sequence, three-frame translation of cDNA, six-frame translation of EST, RNA-

Seq data. Database generation step took main attention in previously reported methods 

since size and content of sequence database influence the time needed for peptide 

identification and accuracy of PSMs (Castellana et al. 2010; Wang et al. 2012; Jagtap et 

al. 2013).  

In peptide identification step of a general proteogenomic workflow, MS/MS 

spectra are searched against generated sequence databases. Many existing solutions use 

multiple database search algorithms to assign peptides to spectra. In order to assign a 

confidence level to PSMs, there are various approaches employed such as False-

discovery rate (FDR), Percolator (Wright et al. 2012), second-round search ( Jagtap et 

al. 2013). With the aid of false-positive PSM elimination techniques number of true-

positive PSMs are saturated. 

In addition to that fast and accurate exact or tolerant mapping of peptides to 

genomic databases and genomic annotations is a crucial step which influences 

proposing new gene models and correction/ validation of existing ones. Although 

database search algorithms return peptide location, not all algorithms return all 

enzymatic cleavage rule fitting positions are available. In addition to that, when 

consensus prediction is performed on multiple tool results it is inevitable to perform 
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peptide mapping. In this step, peptides are categorized as exonic, intronic, overlapping 

or intergenic (Fermin et al. 2006; Khatun et al. 2013). 

Another step in proteogenomic studies is protein inference which is described as 

correlating peptides which are above a certain threshold with protein sequences 

(Claassen 2012). The peptides can map to several proteins ambiguously. Therefore 

there are different algorithms to solve this problem (Serang et al. 2010; Zickmann and 

Renard 2015). 

Therefore, confirmed or proposed gene models with mapped peptides need to be 

formatted in special formats like General Transfer Format (GFF), Browser Extensible 

Data (BED) format so that they can be visualized on genome browsers such as Ensembl 

or UCSC. There are also tools developed for this specific purpose (Kuhring and Renard 

2012). 

Accomplishing  all aspects of proteogenomic, there are also platform-based 

tools which couple all steps into one framework (Fenyö and Menschaert 2015). For this 

purpose, GenoSuite (Kumar et al. 2013) was developed as an automated proteogenomic 

pipeline for prokaryotes which fulfills this need. GenoSuite translates given prokaryotic 

genome and performs a database search on six-frame translated genome by employing 

multiple algorithms. 

In 2014, the BPP (Bacterial Proteogenomic Pipeline) was developed as an 

alternative to Genosuite (Uszkoreit et al. 2014). The main features of BPP are to enable 

users to load and use different database search tool results and to visualize pseudo-

peptides rising in various experimental conditions. 

Peppy (Risk et al. 2013), on the other hand, was the first tool which 

demonstrated ENCODE Human Tier 1 cell line data analysis as an example for 

proteogenomic analysis on eukaryotic data. The novelty of algorithm was shown as fast 

processing in the database generation step. On large genomes, the biggest problem is 

that computers with moderate RAM cannot handle large databases as eukaryotic 

organisms typically have. Therefore, Peppy creates first segments from input genome 

then generates possible peptides from segments in a multithread manner. The MS/MS 

spectra are searched against generated peptide list via scoring system proposed in 

Morpheus algorithm (Wenger and Coon 2013). However, Peppy does not map FDR 

filtered and confidence assigned peptides to annotations with further visualization.  

PGTools (Nagaraj et al. 2015) has several features in genomic part (Phase II) 

and proteomics part (Phase I). In proteomics part, spectra file conversion module, 
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multiple-algorithm supporting database search module, FDR calculation module, 

protein inference and functional annotation on protein-protein interaction level modules 

are available. In addition to that PGTools provides visualization of intermediate steps as 

Venn diagrams to display unique and overlapping peptides, bar charts to display 

MS/MS search result distribution, TreeMaps to display protein groups, chromosome 

distribution plot to display annotated peptides on genomic coordinates via visualization 

module. In genomic part, peptides identified in proteomics part are queried against a 

sequence database. The sequence database can be established from different genomic or 

transcriptomic level data sources. ExtractFeature module of this section suggests 

corrected gene annotations, novel genes, and exons. PGTools was written as command-

line and some modules have GUI version as well. The modularity of the program allows 

users to configure modules and to execute them independently or in assembly to 

generate different workflows on command-line.  

Open source PGalaxy (Jagtap et al. 2014) was designed on Galaxy framework to 

perform the proteogenomic analysis. The tool provides opportunities sequence assembly 

as a source to sequence database generation which is used to perform MS/MS analysis.  

The tool has 4 modules which are listed as peak list/database generation module, 

database search module which performs two-round database search by using 

ProteinPilot search tool, data filtering module which maps peptides by using a BLAST-

P algorithm to filter unmatched peptides in order to further evaluation of those PSMs. 

Evaluated peptide-spectrum matches with their genomic locations are presented in GFF 

which can be integrated into genome browsers.  

In this thesis, a new proteogenomic workflow, PGMiner, has been proposed 

which can be executed in KNIME workflow management platform including  

(i) spectral and sequence data acquisition 

(ii) six-frame translation of given databases and generation of multiple 

database chunks to allow parallelization of remaining workflow  

(iii) generation of alternative translation products, i.e. alternative open 

reading frames 

(iv) multiple database search algorithm support for peptide identification   

(v) decoy database generation and database formatting according to 

algorithm requirements 

(vi) statistical assessment of peptide-spectrum matches by target-decoy based 

FDR   



57 
 

(vii) consensus peptide assignment by the rank-weight approach 

(viii) mapping of peptides to sequence databases  

(ix) enzymatic rule filtering of mapped peptides 

(x) proteotypic and locotypic peptide determination 

(xi) classification of peptides as exonic, intronic, 3’ /5’ overlapping, 

intergenic to perform an assessment of genome. 

(xii) visualization of mapped peptides on the genome.  

PGMiner is customizable with further core data mining nodes of KNIME as well 

as Python and R scripting options available in KNIME or user-developed nodes.  

 

4.2. Methodology 

 

4.2.1. Data Acquisition 

 
Mass spectrometry data are deposited in two main publicly available 

repositories: PeptideAtlas (Deutsch et al. 2010) available at 

http://www.peptideatlas.org/ or PRIDE (http://www.ebi.ac.uk/pride/archive/).  There are 

other repositories such as ProteomeXChange (http://proteomexchange.org), 

ProteomicsDB (https://proteomicsdb.org) which include data from no-longer-existing 

Tranche repository. These repositories include RAW data of each submitted mass 

spectrometry data collection/project including additional information regarding sample 

preparation, measurement details and search results by database search algorithms if 

any. In some data collections, additional file formats such as such as MGF (Mascot 

Generic Format), mzML (Deutsch et al. 2010), and mzXML (Pedrioli et al. 2004) are 

available. These file formats are called as peak file formats which are in a readable 

format that is converted from binary RAW files. Peptide identification and quantitation 

tools usually accept spectral inputs in these formats.   

In current proteogenomic pipelines, mass spectrometry data files are loaded by 

the user. To the best of our knowledge, available proteogenomic pipelines do not 

provide modules for data fetching from mass spectrometry repositories mentioned 

above. PGMiner allows users to provide as files and it provides two data acquisition 

nodes to retrieve spectral data from PeptideAtlas and PRIDE repositories. In both 

modules, the user needs to query keywords such as collection name, organism name or 

http://proteomexchange.org/
https://proteomicsdb.org/
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study related words. After query search, all relevant collections with available details 

are listed. Subfiles related to the collection, for instance, RAW files, aforementioned 

formatted peak files, search results, are displayed. Selected files are downloaded to pre-

set output directory. The current version of PGMiner does not support file conversion 

from RAW files to other file formats accepted by many algorithms. Therefore, it is 

suggested to download files in peak file formats. One of widely used mass 

spectrometry-based proteomics data analysis library, OpenMS (Sturm et al. 2008) is 

available as community nodes in KNIME. By using file conversion nodes of OpenMS, 

file formats can be converted to each other.  

Sequence data used in proteogenomics studies are genome, transcriptome and 

protein originated. There are many repositories that deposit sequence information which 

is widely used in mass spectrometry-based proteomics studies. As mentioned in Chapter 

1, ENSEMBL is one of the repositories, which includes data from multiple sources to 

provide multi-level support for manual annotation by HAVANA and automated 

predictions made by ENSEMBL predictions.  

Protein sequences and their extensive annotations are collected in the UniProt 

Knowledgebase (UniProtKB). Core data structure of UniProtKB is composed of protein 

name, accessions and cross-references, sequence information, taxonomic data, related 

publication citations, biological ontologies, protein classification and indicators of 

annotation quality. UniProtKB contains two sub-repositories. Unreviewed 

computationally generated proteins and their functional annotations under 

UniProtKB/TrEMBL, whilst manually reviewed, and annotated proteins are stored in 

non-redundant UniProtKB/Swiss-Prot. 

Another source for sequence databases is provided by NCBI. Reference 

sequence database (RefSeq) stores manual genome curation of many organisms 

generated based on cDNA sequences. From RefSeq, genomic DNA, transcripts, and 

proteins can be downloaded. NCBI also provides Entrez protein database which is a 

composition of RefSeq protein, UniProtKB/SwissProt protein database and translated 

GenBank transcripts.  

PGMiner currently supports sequence retrieval from RefSeq and Ensembl 

repositories. In addition that user can provide pre-downloaded sequence files. However, 

it must be noted that sequence files must be in FASTA file format. PGMiner does not 

support of sequence file conversion and resolving ambiguities in provided sequence file.   
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Another sequence data source in PGMiner is predicted alternative translation 

products, i.e. altORFs. Hereby, PGMiner amends to enable prediction of alternative 

start sites for selected gene models when CDS sequences are available. For this, 

PGMiner mostly follows the linear scanning mechanism where a 40S ribosomal subunit 

binds to a capped 5’-end of a translation start codon located in an appropriate context 

(Jackson et al. 2010; Malys and McCarthy 2011; Aitken and Lorsch 2012; Alekhina and 

Vassilenko 2012). Reinitiation and leaky scanning mechanisms are also considered.  

 

4.2.2. Database Processing 

 
As mentioned previously, genomic, transcriptomic and protein sequence data are 

used as sequence sources to build custom databases to peptide identification from 

MS/MS spectra data. Genomic databases are translated into six reading frames. Six-

frame translations lead to massive increase in total file size. Nesvizhskii (2014) reported 

that translation of human results in approximately 3.2 gigabase database. This number is 

70 fold more than ENSEMBL protein database which is 50Mb. In addition to genomics 

databases, RNA-Seq and ribosome profiling technology provide usage of transcriptomic 

data to improve annotation of the genome (Woo et al. 2013). RNA-Seq reads 

nevertheless does not provide information about proteins that are translated and splicing 

event and translated reading frame. Therefore, there have been many efforts have been 

presented to reduce search space and to increase sensitivity. GenoSuite, Peppy, 

pGalaxy, ProteoAnnotator, and BPP enable the translation of genome and assembled 

RNA-Seq data. PGMiner accepts both, genomic and protein sequence files. The 

database preprocessing node determines the type of sequence as nucleotide or amino 

acid automatically, and if it is a nucleotide, the node translates nucleotide sequences. 

The node performs six-frame translation by default; however, in case, it can be set to 

three-frame prior. 

As mentioned in Chapter 2, many database search algorithms have limitations 

on handling large size sequence databases and large database elements in a sequence 

database. This results in termination of pipelines at peptide identification step. 

Therefore, reduction of search space by different methods such as extraction of potential 

open reading frames (Fermin et al. 2006), creation of exon junction graphs (Mo et al. 

2008), generation of all possible peptides filtered according to enzymatic rule, length or 
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isoelectric focusing (Branca et al. 2014) have been developed. Current proteogenomics 

tools allow data preprocessing by overcome size limitation. Peppy generates candidate 

proteins by digesting six-frame translated genome by stop codons. In silico enzymatic 

digestion is applied to generated proteins and all theoretical peptides are produced. On 

the other hand, pGalaxy filters sequence database according to HiRIEF (Branca et al. 

2014) technique. 

PGMiner uses an approach introduced in Chapter 2 to equalize databases to 

enable database search tools to perform a database search and to integrate results from 

multiple sources in a coherent manner. In addition to that equal size, databases will 

allow parallelization of database search step on distributed computing systems.  

 

4.2.3. Peptide Identification 

 
Proteogenomic pipeline tools involve multiple database search algorithm tools. 

However, Peppy employs only Morpheus database search algorithm and BPP does not 

include peptide identification step, but it outsources pre-produced peptide 

identifications results. 

PGMiner is also designed to perform analysis using multiple database search 

algorithms. OMSSA, X!Tandem, MSGF+ database search algorithms have runner 

nodes available in PGMiner. These algorithms can be configured via configuration file 

provided on PGMiner website. In configuration file most of the settings are available. 

However, for instance for OMSSA, only one output file type is currently supported. 

Therefore output file setting does not exist. Output directory is set by the user and 

original output files and .SER file which is accepted input file type by following nodes 

is produced into that directory.   

 

4.2.4. Scoring Peptide-Spectrum Matches 

 
Statistical score assignment to PSMs for discrimination of FP PSMs from TP 

PSMs is one of the necessary steps in proteogenomics studies since it influences the 

accuracy of remaining steps. Peppy, BPP and GenoSuite use a target-decoy approach 

based FDR while PGTools employs PEP in addition to target-decoy based FDR. 

PGalaxy performs a two-round database search for reducing the number of FP hits and 
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then it executes ProteinPilot algorithm to determine the confidence level of protein 

identifications. Details about these methods were given in Chapter 1. PGMiner also 

allows users to employ target-decoy based FDR although it has been shown that this 

approach is not compliant to all database search algorithms, for instance, X!Tandem. 

Currently, PGMiner only supports separate target and decoy database search. Therefore 

q-values (Käll et al. 2009) are computed for each PSM. The q-value formulation  used 

in this node is: 

 

𝑞 − 𝑣𝑎𝑙𝑢𝑒 = �
𝐹𝑃

𝐹𝑃 + 𝑇𝑃
� 

PSMs below a set threshold are considered as FP hit and they are removed from 

the pool.   

𝑇𝑃 =  (𝑇𝑎𝑏𝑜𝑣𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝐹𝑃 ) 

 

4.2.5. Consensus Prediction 

 
Although there is a general algorithmic framework for database search tools, 

each algorithm employs a different scoring scheme to determine best matching peptide 

candidates to searched MS/MS spectra. Many factors affect scoring function and 

therefore accuracy of peptide identification. MS instrument, measurement type, 

fragmentation methods use in measurement, fragmentation efficiency, properties of 

peptides, peak intensities can be given as examples which are in factors affecting 

peptide identification accuracy. Accuracy distribution of eight database search 

algorithms was previously shown by us on synthetic peptide benchmark dataset that was 

introduced in Chapter 2. 

As shown in Figure 21, PEAKS, pFind, MSAmanda, X!Tandem, Inspect, 

OMSSA, MSGF+ and Myrimatch were run on direct infusion Orbitrap data set 

subjected to CID fragmentation against a protein database. While PEAKS, pFind, 

MSAmanda, and X!Tandem yielded ~50% correct identifications, OMSSA, MSGF+ 

and Inspect resulted in approximately 43-45% correct identifications. Myrimatch 

yielded 39% correct predictions. All algorithms except OMSSA and PEAKS resulted in 

a low number of unidentified spectra. In fact, they yielded high incorrect predictions. 
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OMSSA and PEAKS returned less incorrect identifications but a high number of 

unidentified spectra.  

 
Figure 21. The accuracy of eight database search algorithms; MSAmanda, PEAKS, 

Inspect, X!Tandem, MSGF+, Myrimatch, OMSSA, and pFind were given on 
direct infusion Orbitrap CID benchmark dataset. 

In Figure 22, accuracy distributions of PEAKS, pFind, MSAmanda, X!Tandem, 

Inspect, OMSSA, MSGF+, and Myrimatch on LC-Orbitrap CID dataset were shown. In 

this dataset, some of the peptides in the mixed sample were While PEAKS, pFind, 

MSAmanda, and X!Tandem yielded ~50% correct identifications, OMSSA, MSGF+ 

and Inspect resulted in approximately 43-45% correct identifications. Myrimatch 

yielded 39% correct predictions. All algorithms except OMSSA and PEAKS resulted in 

a low number of unidentified spectra. In fact, they yielded high incorrect predictions. 

OMSSA and PEAKS returned less incorrect identifications but a high number of 

unidentified spectra.  
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Figure 22. The accuracy of eight database search algorithms; MSAmanda, PEAKS, 

Inspect, X!Tandem, MSGF+, Myrimatch, OMSSA and pFind were given on 
LC-Orbitrap CID benchmark dataset.  

Overall database search algorithms results were pulled down and shown per MS 

instrument-fragmentation method dataset in Figure 23. It can be concluded that direct 

infusion datasets were assigned to expected peptides more than LC datasets by all 

database search algorithms. However, maximum cumulative accuracy can reach up to 

50%. The reason here could be related to varying quality of spectra as well as different 

criteria are taken into account by database search algorithms.  
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Figure 23. Cumulative % identification distribution of all algorithms per benchmark 

dataset is shown. According to the results, database search algorithm accuracy 
results increase in direct infusion dataset in compare to LC dataset. The highest 
accuracy of database search algorithms reaches at most to 50% accuracy in 
direct infusion CID dataset. On the other hand, the highest accuracy obtained 
in LC datasets is around 25%.  

As shown previously in the literature (Sultana et al. 2009; Dagda et al. 2010; 

Nahnsen et al. 2011), consensus identification of multiple tools increases the number of 

correctly identified spectra. In our datasets, we also tested this observation (Figure 24). 

Consensus predictions for each dataset were computed according to the first hit based 

consensus scoring described in Figure 25. In this formulation, for each spectrum, best 

PSM hit of each algorithm are taken and majority vote peptide is assigned to spectrum.  
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Figure 24. Exclusive consensus predictions from tool support two to tool support eight 

are given. 

Tool support distribution in % correct identifications was shown exclusively in 

Figure 24. According to the results, we concluded that any tool integration for quality 

ranging datasets, integration of algorithms’ results to form a consensus assignment 

outperforms all individual algorithm predictions. In direct infusion Orbitrap CID dataset 

while maximum correct prediction yielding tool reaches to 51%, inclusive best-hit 

majority vote consensus method reached to 54%. On the other hand, for LC-Orbitrap 

CID dataset, the best tool gives 12% correct identifications, consensus prediction results 

in 11% correct predictions with increasing confidence rather than using a single tool. 
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Figure 25. Pseudocode of best-hit majority vote based consensus prediction calculation 

is given. 

Another consensus prediction calculation approach would be weighting ranks of 

best n hits of a spectrum for all algorithms. The idea here is some algorithms might 

assign similar scores to different peptides and report them in a different order. 

Therefore, we hypothesized that instead of taking a first best hit of each algorithm for a 

spectrum, best n peptide hits would be scored. The idea of this consensus method is to 

pool down all peptides, and for each peptide summing up a rank score of each algorithm 

for the peptide. In case an algorithm has no hit for a peptide than the rank score is 

penalized as 100. For instance, peptide x is found by two algorithms out of three. 

Algorithm a ranks peptide x at first rank; algorithm b returns the same peptide at fifth 

rank. Algorithm c does not return the peptide, 100 is assigned as penalty score. 

Therefore, the cumulative weighted rank score becomes 1+5+100= 106. In this 

consensus method, the lowest score having peptide is considered as the best candidate 

hit.  

 

Procedure: 
1.  Initialize T, TreeMap(spectrum, consensus prediction)  
2.  Initialize H, hashmap(peptide,tool support) 
3.  foreach spectrum s in S 
4.         foreach identification file Fi 
5.                   peptide = get best peptide hit  
6.             if peptide is in H 
7.                increment tool support 
8.             else  
9.                add peptide with tool support 1 
10.         end foreach 
11.     if H is not empty 
12.        L = list(H.entrySet) //make list of hashmap entries 
13.        Sort L by value in descending order of tool support // values 
are toolsupports 
14.        p <- highest tool support having peptide as consensus prediction 
15.       T.add(p)  
16.     end foreach   
17.     return T 
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Figure 26. Pseudocode of ranking-weighted consensus prediction calculation is given. 

In PGMiner, since three algorithms are suggested to use, three would be the 

highest score. By default, we considered maximum best 10 hits per algorithm. 

Therefore the lowest acceptable threshold score is 120 which two algorithms assign 

peptide to 10th rank while the third algorithm does not include the peptide in best 10 

hits. Therefore, we ensure minimum tool support as two. The pseudocode of this 

algorithm was given in Figure 26. 

 

4.2.6. Peptide Mapping and Genome Annotation Assessment 

 
Mapping peptides to gene annotations is the central intersection of genomics and 

proteomics in the field of proteogenomics. Most proteogenomics pipelines employ 

some specialized tool for mapping identified peptides to the underlying genomic 

database. PGMiner involves Peppig (formerly Lelantos) algorithm described in Chapter 

3. As mentioned in Chapter 3, Peppig is a modified WuManber algorithm (Wu and 

Manber 1994) exact string matching algorithm implementation to achieve unequaled 

processing time on exponentially growing query numbers. Additionally, enzymatic 

cleavage rules of the enzyme used during sample preparation are checked following the 

mapping procedure in order to eliminate potentially false mappings, especially on 

protein database. Considering the alternative splicing event, some of the peptide 

mappings might be seen conflicting with the tryptic rule. 

 

Procedure:  
1.  for each spectrum s in S 
2.     create hashmap H to score consensus scores of peptides 
2.     for each peptide P in the hit set Atotal(hits) 
3.       consensus score Pcs = 0 
4.       for each algorithm A in hit set Ahits 
5.           if P in the Ahits 
6.                Pcs+= (rank RA) 
7.           else 
8.                Pcs+= (100 as penalty) 
9.        end for 
10.       store Pcs and P in H 
11.     end for 
12.     sort H by value  
13.     P with lowest consensus score is returned as consensus 
peptide-spectrum match 
14.  end for 
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As in proteomics studies, in proteogenomic studies listing proteins with unique 

peptides in a certain probability ratio is important to determine which proteins are 

unambiguously expressed by a particular gene under different conditions (Nesvizhskii 

2014). In this study, a protein inference algorithm was not employed to group proteins 

unambiguously related to a different level (genomic, transcriptomic) of support. Since 

the aim of this study is to show usage of peptide mapping tool to point release 

differences for a database, a coarse definition for “unambiguous” protein has been 

followed. Therefore proteins and genes which are mapped to more than 2 peptides with 

the rule of at least one of them are proteotypic are considered as unambiguous 

identifications.  

In the present analysis, peptide identification status was defined either as 

locotypic or proteotypic according to three fundamental rules; genome-wide location, 

the number of mapped gene identifiers and support of mapped database origin level 

such as genomic, transcriptomic and proteomic (Table 10). Peptides which have only 

one location throughout the genome but can map to multiple genes are named as 

locotypic regardless of origin support. The reason is that one exon can be shared by 

multiple genes. Therefore, one peptide can be related to several genes or variants. On 

the other hand single, genome-wide location in addition to single gene mapping would 

put a peptide into both the proteotypic and the locotypic category. A genome may 

contain additional sequences (e.g.: patches) which introduce artificial redundancy. 

Therefore, a peptide may be mapped to multiple versions of the same gene. In such 

case, if mapped gene number is one, however, reported locations are multiple; peptide is 

still named as proteotypic but not locotypic. Often it has been observed that a peptide 

cannot be mapped to a genomic database. However, mapping result against protein 

database can be reported (e.g.: due to introns (Allmer et al. 2004)). In case a peptide is a 

product of splicing and related to only one gene identifier, then the peptide is accepted 

as proteotypic. Consequently, peptides that are mapped to multiple locations in the 

genome and have relation to multiple genes cannot be accepted as proteotypic or 

locotypic. For unambiguous identification of proteins, at least two peptides including at 

least one proteotypic peptide were required. 
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Table 10. Peptide classification status is explained according to genome-wide location, 
a number of genes mapping to peptides, mapped sequence origin. Explanation 
of each status is also provided.  

Case 

Genome-

wide 

location 

Number 

of 

mapped 

Gene-

IDs 

Genome/Transcriptomic/Proteomic 

Origin 

Status Explanation 

1 

Single Multi Multi/Single Locotypic One exon can be shared by 

multiple genes and their 

transcripts and protein 

products. Such peptides 

identify a locus but cannot 

differentiate among 

variants. 

2 

Single Single Multi/Single Proteotypic, 

Locotypic 

The peptide uniquely 

identifies a single protein 

without known variants. 

3 

Multi Single Multi/Single Proteotypic, 

Not-

Locotypic 

Genome mapping can be on 

primary assembly and 

patch/scaffold. And two 

different regions might 

contain same geneID and/or 

transcript(s) and/or 

protein(s). Those multiple 

transcripts and proteins can 

be predicted and revised 

(validated), thus have the 

same sequence. 

4 

Multi Multi Multi/Single Ambiguous  

5 

- Single Only transcript and proteome level Proteotypic The peptide can be splicing 

product and cannot be 

found in a direct genome 

search. However, in case 

protein and transcript 

identifiers direct to the same 

location, it is proteotypic.  

 

Mapped peptides are intersected with known information such as gene models. 

Such annotations must be provided in GFF format. Annotations enable PGMiner to 

categorize peptide identifications into classes confirming known annotations or 
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conflicting with them. This information is one of the most important outcomes of any 

proteogenomics analysis and PGMiner further provides information whether conflicting 

peptide identifications are intergenic, intronic, overlapping with exons, etc. 

 

4.2.7. Visualization 

 
pGalaxy and GenoSuite allow the visualization of identified peptides and 

proteins in their genomic context. PGMiner also lets users view their output GFF on 

Integrative Genomics Viewer (Thorvaldsdóttir et al. 2013) within the genomic context. 

In addition to that Artemis Genome Browser (Rutherford et al. 2000) can be used to 

visualize annotated peptides in their genomic context. 

 

4.3. Discussion 

 
Proteogenomics field gains importance driven with the advent of high-

throughput technologies for next-generation sequencing and mass spectrometry-based 

proteomics. This enables generation of the tremendous amount of data and public share 

of these data through data repositories. The result of the availability of these data yield 

depth of information which requires sophisticated data analysis and mining techniques. 

However, accessibility and operability of these bioinformatics tools lagged behind of 

production of data by multi-omics technologies. The not only success of the available 

tools but also merging multiple tools responsible for different analysis steps heighten 

the challenge in proteogenomics studies. Many integrative pipelines are available to 

accomplish complete analysis. In this chapter, a new proteogenomic workflow, 

PGMiner (Figure 27), is presented. A list of comparison for existing features of 

available tools is given in Table 11.  



71 
 

 
Figure 27. Screen shot of the workflow designed in KNIME. Gray nodes were called 

meta nodes which in turn can contain smaller workflows where a specific 
subtask is carried out (e.g.: Peppig - formerly Lelantos), while single nodes 
were shown as yellow. As a result of successful execution, nodes were turned 
to green color.  

PGMiner was developed on KNIME Data Analytics platform. In this respect, 

pGalaxy and PGMiner have a shared property since pGalaxy was drawn up on Galaxy 

Data Analysis platform. This property becomes prominent and ideal since they are both 

supported in workflow management systems. Therefore, it is possible to extend these 

pipelines with further data analysis nodes for special purposes. Here the important thing 

is to continue accessibility, maintenance, and updates so proteogenomic pipelines can 

be supported in a time-independent manner. Notable is that these proteogenomic 

pipelines demand a combination of further omics fields, not only limited to genomics, 

transcriptomics, and proteomics: Lipidomics, metabolomics, cheminformatics need to 

be merged to existing pipelines. Such integrations will also require cross-omics 

visualization techniques which are currently not available in common.  
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Table 11. Comparison of currently available proteogenomic pipelines is given for basic 
steps of the proteogenomic workflow. 

Pipeline Organism Data 

acquisition  

Database 

preprocess 

Database 

search 

algorithms 

Statistical 

assessment 

Peptide 

mapping 

Extended 

features 

GenoSuite 

(2013) 

Prokaryotes User input 6-ORF 

translation 

 OMSSA 

 X!Tandem 

 InsPecT 

 MassWiz 

FDR 

-Peptide 

level 

-Protein 

level 

No 

algorithm 

mentioned 

 

 

Peppy 

(2013) 

Eukaryotes User input Generate 

peptide 

segments 

Morpheus 

algorithm 

FDR No 

algorithm 

mentioned 

 

BPP (2014) Prokaryotes User input - Outsource User 

dependent 

No 

algorithm 

mentioned 

Proteotypic 

peptides 

ProteoAnno

tator (2014) 

Prokaryotes

Eukaryotes 

User input  SearchGUI 

toolkit 

FDR Against in 

silico gene 

annotation 

 

pGalaxy 

(2014) 

Prokaryotes

Eukaryotes 

User input  ProteinPilot Two round 

searchProte

inPilot 

Blastp 

Ab initio 

proteins 

 

PGTools 

(2015) 

Prokaryotes

Eukaryotes 

User input  X!Tandem 

OMSSA 

MSGF+ 

Comet 

FDR  

PEP 

Blastp 

Ab initio 

proteins 

 

PGMiner Prokaryotes

Eukaryotes 

-Repository 

fetch 

-User input 

 OMSSA 

X!Tandem 

MSGF+ 

FDR 

Peptide 

level 

Wu-Manber 

All 

databases 

Proteotypic 

peptides 

AltORFs 
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CHAPTER 5 

ENHANCEMENT OF HUMAN GENOME ANNOTATION 
BY USING PGMINER PIPELINE 

5.1. Introduction 

First proteogenomic study on human genome was presented by Choudhary et al. 

(2001). Since the human genome was not completed yet by that time, it has been shown 

whether it is possible to examine current annotation with mass spectrometry data. LC-

MS/MS collection measured for 22 human proteins were searched against protein 

database, EST database, and template of International Human Genome Project draft by 

using Mascot database search algorithm. As a result, they observed that out of 169 

spectra 114 spectra were matched to human protein database originated peptides while 

11 spectra were hit to bovine trypsin. They could not get any results for 44 spectra. 

Exon-intron boundary matching peptides, peptides that are missing protein database, 

peptides missing in nucleotide database, N-terminal peptides were also identified.   

Desiere et al. (2005) performed a more detailed proteogenomic study on human 

genome annotation. In contrast to study by Choudhary et al., peptide-spectrum match 

quality has been considered. 52 proteome collections composed of proteins obtained 

from difference cell types such as T cells, B cells, lymphocytes, hepatocytes were 

searched by SEQUEST database search algorithm (Eng et al. 1994) against human IPI 

database. Resulting PSMs were recorded by the PeptideProphet algorithm to determine 

the statistical confidence of hits. As a result 224973 PSMs having p-value score greater 

than 0. 9 were kept. Among these PSMs, 26840 peptides were defined as proteotypic on 

the protein level. These peptides were searched against ENSEMBL human protein 

database by BLAST algorithm. 25754 peptides out of 26840 peptides were found in this 

database. For unfound 1086 peptides, it has been concluded that the reason could 

address the existence of single nucleotide polymorphism or novel splicing isoforms. 

Besides that non-parallel synchronization of IPI database and ENSEMBL human 

protein database could also lead to unfound peptides. Of the 9747 proteins in 

ENSEMBL human protein database matched to peptides. In addition to that many 
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peptides matched to many proteins with high scores leading to ambiguous protein 

identifications. When these proteins were further analyzed, it has been observed that 

some of those proteins are paralogs having shared domains. Of the 3718 proteins, on the 

other hand, included at least one proteotypic peptides. Genomic coordinates of 

matching peptides were calculated and examined. According to the results, 4800 

peptides were determined at exon-intron boundaries. Besides, that in this study tissue 

and disease specific proteins were detected.  

The first study targeting human blood plasma proteome was performed by 

Fermin et al. (2006). In this study, blood plasma and serum proteins were collected 

from donors belonging to different ethnical and geographical groups such as Africa, 

Asia. A total of 2,230,502 MS/MS spectra were searched against human genome by 

X!Tandem database search algorithm. However, the human genome was not used 

directly; instead, all possible open reading frames were generated out of the human 

genome. Spectra matching to multiple open reading frames were eliminated, spectra 

matching to proteotypic peptides were used in following steps. Open reading frames 

which contain proteotypic peptides and have high scores were analyzed. In this study, 

only intragenic peptides were analyzed. Peptides were categorized into three main 

groups as; exonic, exon-intron boundary matching and non-exonic peptides. In order to 

define exon-intron boundary matching peptides, EST libraries were used in the search 

and identified ESTs were annotated in UniProtKB database. This study is the first and 

the only proteogenomic study targeting human plasma proteome so far according to the 

best of our knowledge. However, in terms of data size and methodology, the study is 

limited. 

In this study, human blood plasma proteome collections available in 

PeptideAtlas and PRIDE repositories were searched against the whole human genome, 

CDS collection, protein database and GENSCAN predictions, alternative open reading 

frames as well as human microbiome collection including bacterial and viral proteins 

found in human.  
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5.2. Methodology 

 

5.2.1. Human Genome and Its Annotation 

 
Masked removed all human chromosomes and non-chromosomal and 

mitochondrial genome, CDS sequences and protein sequences were obtained from 

ENSEMBL repository as human database build 38 version 86. In addition to that 

GENSCAN predictions were retrieved from ENSEMBL database. Genome annotation 

in general transfer format (GTF) was downloaded from ENSEMBL annotation 

repository. These annotations include both HAVANA and ENSEMBL annotations of 

all genes, their transcripts, and exons present in these annotations. Alternative 

translation products were generated via AltORFEv module of PGMiner. Since blood is 

a tissue in which circulates many proteins including immune system proteins, we 

assumed that bacteria and virus originated peptides could be found in blood. Therefore, 

spectra matching to microbiome peptides need to be removed. Human host bacteria and 

virus originated proteins were retrieved from UniProtKB and Human Microbiome 

Project databases. All databases were formatted into FASTA file format.  

 

5.2.2. Mass Spectrometric Data (Human Mass Spectra Collection) 

 
The high-resolution instrument measured mass spectrometry data of human 

blood tissue were retrieved from PeptideAtlas and PRIDE repositories Table 12. These 

collections were collected from human blood plasma, serum and platelets from different 

donors having different health conditions and sample preparation protocols were 

different. All selected collections were measured in LTQ Orbitrap CID. We estimate the 

currently available data to be approximately 100 GB in size which is roughly equal to 3 

million MS/MS spectra. Of these 3 million spectra we estimate 50% to be of useful 

quality and will be assigned to peptides.  
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Table 12. Human blood plasma, serum and platelet proteome collections, their 
descriptions and MS instrument used in this study 

Collection  Source Collection Description 
PXD000766 PRIDE Blood plasma(corona plasma protein) 

PXD003666 PRIDE Blood plasma (MASP-3 protease inhibitor in lectin 
pathway) 

PXD001171 PRIDE Human serum proteome(hepatocellular carcinoma) 

PXD001794 PRIDE Blood serum(serpin family detection for colorectal 
adenoma) 

PXD002475 PRIDE Blood serum(HCV discovery) 

PXD002762 PRIDE Blood plasma(biomarker panel for chronic graft versus 
host disease) 

PAe003765 PeptideAtlas Blood serum proteomics survey 

PAe003762 PeptideAtlas Blood serum proteomics survey 

 

These spectra were obtained in RAW file format and converted to MGF file 

format by ProteoWizard-(Kessner et al. 2008) MSConvert module. MGF files further 

split into 2000 spectra having files to decrease runtime of peptide identification step. 

The scan numbers were renewed starting from zero to 1999. Since algorithms assign 

index numbers different from scan numbers, spectra having same scan and index 

numbers were ensured. 

 

5.2.3. PGMiner Pipeline 

 
By using database processing module of PGMiner, all genome origin databases 

were translated into the six-reading frame. More than 20 X (unknown amino acid) 

sequences were reduced to 20 X sequences to decrease file size. CDS sequences were 

translated into the three-reading frame. All FASTA elements were split into fragment 

by database equalizer module. 50 same size databases were generated.  

All spectra were searched against all 50 same size target databases. In this study, 

we did not perform target-decoy based FDR since we already showed in Chapter 2 that 

database search algorithms used in this study are not compliant to target-decoy based 

FDR. In addition to that consensus, prediction implementation ensured high confidence. 

Therefore, FDR computation was not considered as compulsory. Algorithms were 

configured to 10 ppm precursor mass tolerance and 0.8 Da fragment mass tolerance by 
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allowing 2 miscleavages. The settings were determined via genetic algorithm briefly 

described in Chapter 2. Carbamidomethylation of cysteine was set as fixed 

modification, while oxidation of methionine was set as variable modification.  

PGMiner peptide identification modules were executed on Amazon Web 

Services to save the runtime,. In this configuration, spectra and databases were stored in 

the S3 storage, and EC2 spot instances were purchased depending on the run and prices. 

For each spectral file, each database and each algorithm combination an SQS job 

message was created, one EC2 instance was purchased to execute the job in SQS. EC2 

instances were able to parse similar SQS messages and to retrieve spectra and database 

files from S3 bucket to copy them itself. Every worker instance has the ability to start a 

job, and each job is indexed with a number so that results of the corresponding number 

were able to be followed. After completion of each run, in other words, job, Simple 

Notification Service (SNS) reported the status of the job. In case there is no job to be 

executed, EC2 instance was able to shut down itself.  

For each MGF file, 50 database search results of each algorithm were merged to 

obtain maximum 50 hits per spectrum. One of the benefits of having multiple files is to 

collect multiple results from approximately equal size databases. For instance 

X!Tandem only returns one identification for a database, however in this case at max 50 

results for collected for X!Tandem.  These 50 PSMs of each spectrum were sorted by 

the E-value score for MSGF+, OMSSA, and X!Tandem. Maximum best 10 hits were 

selected per spectrum for each algorithm. Then weighted rank based consensus 

prediction calculation was performed. All consensus peptides were collected into a 

FASTA formatted file and mapped against original versions of all sequence databases 

by Peppig module in PGMiner. Enzymatic cleavage rule was applied to filter mapped 

peptides according to K/R (lysine-arginine ending rule) to eliminate spurious mappings.  

In order to store results, a relational database as shown in Figure 28 was created 

in MySQL, which integrated all types of data as spectra, PSMs and their all scores, 

algorithms, peptides, peptide-database mappings associated with the proteomic and 

genomic context. The reason for creation of this database results in many advantages as 

following: 

• The spectral information with descriptive details regarding the 

collections is available. 

• Algorithm settings are stored in the used databases. 

• PSMs identified by each algorithm, spectra and database combinations 
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can be linked in the database. PSMs are stored with all available scoring 

schemes returned by algorithms. 

• Non-redundant peptides can be reported, by then FASTA files can be 

generated, mostly identified peptides can be listed. 

• Peptide-protein matches are stored. Therefore a number of unique and 

proteotypic peptides for each protein can be computed easily, and 

identified proteins can be calculated. The protein-database relationship 

can be visualized. 

• Gene model-peptide associations per chromosome are stored. Therefore 

gene-centric view of results can be computed. Peptide genomic start and 

end locations are stored. Peptides which are unique to gene or gene 

isoforms can be reported efficiently. 

• The coverage for chromosomes or gene locus with a proteotypic set of 

peptides can be computed. 

The database connection and data analysis processing codes were written in 

JAVA by using JAVA SQL connector library. Initially, the database is populated with 

spectra files, and spectral information is represented in Spectra table and Source table. 

In the Source table, spectral collection code, MS instrument, data repository information 

and spectral count are stored. The table is connected to the Spectra table via foreign key 

as SourceID tuple. In the Spectra table, each spectrum is represented with the file name, 

charge information, scan identifier, retention time and spectrum peak file. In addition to 

that identification tool support and consensus, identification tuple is also included as 

initialized as null.  

Database search algorithms are introduced in the database in two tables; 

DatabaseEngine and EngineSettings. While DatabaseEngine table only stores primary 

key and name of the database engine, EngineSettings table is connected to 

DatabaseEngine via foreign key as EngineID. In EngineSettings table, the type/name of 

the database and algorithm settings are stored. Identified PSMs returned by each 

database search algorithm with given database and settings to searched spectra are 

stored in Identifications table. This table is a join table which includes identifiers of 

Spectra table, Peptide table, and Score table. Score scheme by each algorithm is stored 

in Score table which is linked to EngineSettings table via a DBEngineSettingsID 

foreign key. In Peptides table, peptide sequences are stored uniquely. Another 
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information stored regarding peptides is that genomic start and end locations and 

chromosome information that each peptide is mapped against. In case protein database 

usage for mapping, Proteins table is created. In Proteins table, the data repository, 

organism and protein accession number are kept. The connection between peptides and 

their origin proteins are stored in ProteinPeptideMatches table.  

 

 
Figure 28. Relational database schema. The database is composed of three main groups 

as identifications, annotation data and identification mapping to annotations. 
Notable is that this design is not entirely normalized for optimal performance 
and specialized usage.  

Chromosome annotations including gene, transcript level are represented in the 

DBLinkOut table. The start and end locations, strand and chromosome information, are 

stored in AnnotationLocations table. Mapped peptides were compared against these 

locations, and peptide genomic start and end locations were stored at PeptideLocations 

table.  

 

5.3. Results and Discussion 

 
By using eight spectral collections reaching to 3 million spectra up to +3 charge 

were analyzed by MSGF+, X!Tandem and OMSSA algorithms against all human 

chromosomes, exosome including human host bacteria and viruses, all gene predictions 

predicted by GENSCAN algorithm, all known human proteins and alternative 
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translation products. Of the 98.84% of spectra were assigned to a peptide at least by one 

of these algorithms.  

MSGF+ identified 155,077 PSMs as discrete while the number of discrete 

peptides is 476 for OMSSA and 117,749 for X!Tandem. Among these three algorithms, 

2,841,667 spectra were identified at least by two algorithms (Figure 29). As mentioned 

in Chapter 4, prediction rank weighted consensus PSMs was used to compute consensus 

prediction, which has been considered as having higher confidence than single tool 

usage. From the spectra identified by at least two tools, 31% of total spectra, 946250 

spectra, were found as consensus prediction assigned spectra Figure 29.  

 

Figure 29. The identification of 3 millions of spectra and rank-weighted consensus 
identification computed from at least two tool support spectra. 

The spectral count is one of the measures which determines the estimate of the 

relative abundance of peptides/proteins in the sample. Here, the aim is not to compare 

the number of PSMs in each spectra collection. However, to have an idea of peptide 

spectral count relation, spectral count distribution was computed for consensus 

identifications. As shown in Figure 30, the total number of 137,527 unique consensus 

peptides spectral count distribution was calculated. The highest number of peptides as 
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131,085, spectral count varies between one to 10 spectral support. The next highest 

spectral count bin was found as 11-20 spectral support for 2478 peptides. Notable is that 

on the determination of novel gene models or suggestion of changes in existing models 

spectral count information for mapping peptides increases significance.  

 

Figure 30. Binned spectral count distribution vs a number of peptide frequency is given. 
Most of the peptides were found with one to 10 spectral support suggesting 
significant peptides that can be considered as biomarker candidates or one-hit 
wonders. 

The identified peptides were mapped against used databases individually. The 

first aim of peptide mapping, as explained in Chapter 3, is to find genomic locations of 

peptides by performing map against the genomic database to be able to compare 

genomic regions in terms of gene expression. The second aim is to determine proteins 

including identified peptides. However, it should be noted here that peptide sequences 

van be found in regions violating enzymatic cleavage rule. Although non-tryptic 

peptides or semi-tryptic peptides can occur during cleavage process, in this study only 

fully tryptic peptides were considered. In Figure 31, the distribution of tryptic mapping 

peptides in percentage per database was shown. It was investigated that 28 human blood 
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group system genes have been localized in 14 autosomal chromosomes as chromosome 

1, 2, 3, 4, 6, 7, 9, 11, 12, 15,17,18,19,22 and two blood group system genes have been 

found in X chromosome (Lögdberg et al. 2011). In addition to that, there are proteins 

encoded by other autosomal chromosomes which are circulating in the blood. On the 

other hand, there are peptides shared by different proteins which are not circulating 

blood. Therefore, in order to define a complete list of blood-related proteins, further 

serological, biochemical and molecular assays need to be set.  

 

 

Figure 31. A number of tryptic peptides in percentage per mapping to all databases used 
in this study. Each peptide is considered only once, so-called distinct. The 
databases include all human chromosomes, all known ENSEMBL human 
protein database, alternative translation products (AltORF), three-frame 
translated coding sequences (CDS), all gene prediction products by 
GENSCAN, human host bacteria and virus database (Microbiome).  
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Besides autosomal chromosomes, identified peptides were found in known 

ENSEMBL human protein database, isoform and proteins encoded via alternative 

translation process, coding site database, predicted proteins via GENSCAN algorithm 

and exosomal proteins in the microbiome. The highest percentage is found for 

microbiome and summed chromosomal databases.  

Of the 115,601 consensus peptides, 36565 peptides were shared by all databases 

(Figure 32). While 61936 peptides were genome specific, 211 peptides were a coding 

site (CDS) specific, 191 peptides were specific to predicted proteins via GENSCAN, 70 

peptides were found only in the database of alternative translation products and 16628 

peptides are specific to the microbiome. Peptides which were mapped to protein 

database were also found in other databases as well. Therefore, there is no protein 

database specific peptides were found.  

 

 

Figure 32. Database specific and shared peptides from the total number of 115, 601 
consensus peptides. Among these peptides, 36, 565 were found in all 
databases; 61,936 peptides were genome specific; 211 peptides were CDS 
specific; 16,628 of them were bacteria/virus specific; 191 of them were 
GENSCAN prediction specific and 70 of them were altORF specific. For 
protein database, there were no protein-database specific peptides found 
indicating that these peptides were shared in the genome or the CDS as 
expected.   
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The blood plasma, serum, and platelet proteome is composed of many proteins 

with top 22 proteins accounting for 90% of total protein content (Tu et al. 2010; Qian et 

al. 2008)This limits detection of medium and low abundance proteins which are present 

in 10 orders of magnitude in terms of protein concentration (Millioni et al. 2011). 

Human blood is known as a rich source of biomarker proteins which are found in low 

abundance. Many depletion protocols have been developed for the removal of the 

abundant proteins such as albumins, complement components, apolipoproteins etc. In 

order to analyze the found proteins, proteins having at least two peptides were listed 

with sequence coverage by merging overlapping peptides and spectral count. The 

protein atlas generated in this study (Figure 33) showed that most abundant blood 

proteins were not efficiently removed from the samples. In this study, it was observed 

that albumin, complement component protein types, serpin, fibronectin, keratin, 

plasminogen were some of most abundantly found proteins according to a high number 

of total spectral count. On the other hand, low abundant proteins such as RAS oncogene 

family, bone marrow stromal cell antigen responsible from rheumatoid arthritis, 

premature ovarian failure 1B protein playing role in early age menopause due to 

autoimmune disease POF , S100 calcium binding protein A14 responsible for delirium, 

synaptonemal complex protein playing role in cervical cancer and ret proto-oncogenes 

were observed with low spectral coverage but high-mid sequence coverage.  
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Figure 33. Protein atlas of this study is shown in three protein abundance categories as 
high, low and virus/bacteria proteins.  

Apart from human proteins, microbial proteins including viral and bacterial 

proteins have been detected in the samples. Infectious diseases via virus and bacteria 

and normal bacterial flora of human body indicate the importance of understanding the 

host-pathogen interaction and identification and detection of viral, bacterial pathogens 

in human blood and plasma. The detection of these pathogens has importance for blood 

supply. In literature, there are protocols based on the microarray, polymerase chain 

reaction techniques on the genomic and transcriptomic level (Duncan et al. 2015; 

Kourout et al. 2016). On the other hand, genomic and transcriptomic level detection 

does not provide insights on the protein level. Therefore, mass spectrometry based 

proteomics data would enable detection of pathogen proteins in blood with fast 

detection even real-time detection in the clinic during surgical operations. In this study, 

HIV, Hepatitis B, human papillomavirus, cancer-causing Epstein-Barr virus, lung 

infection causing streptococcus sp. microbes were detected via pulling down organism-

specific peptides. In total, 545 viruses and bacteria were identified with distinct 

peptides. On the other hand, it should be noted that these results do not yield 100% 

accuracy since there was no experimental validation test had been conducted.  

Another aspect of this study is to find novel genes or to refine existing gene 

models based on ab initio gene prediction. GENSCAN algorithm was performed to 
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predict genes based on genomic features which address features of typical protein-

coding genes in human genome. In total, 3468 GENSCAN predictions were mapped to 

peptides. Of the 10 predictions having at least one GENSCAN unique peptides and total 

greater and equal than two peptides were detected. Six of those cannot be resolved since 

they have same peptide set. However, four of predictions were unambiguously 

identified since they contain proteotypic peptides. In Figure 34, GENSCAN6003, 

immunoglobulin kappa V prediction, was shown. The gene has four mapped peptides 

with one as proteotypic which is the indicator of unambiguous identification. Three 

exons were verified by these peptides. However,  two exons did not have any mapped 

peptides. In addition to the existence of proteotypic peptide, another line of evidence 

was obtained by performing BLAST search against Mus musculus protein database. The 

peptide matching exons were aligned to M. musculus homolog gene. HAVANA gene 

model was not completely available for this gene model.  

In order to increase the accuracy of gene prediction tools, predictions verified 

via peptides need to be used as gold models.  

 

Figure 34. GENSCAN6003 prediction for IG Kappa V with proteotypic peptides and 
other mapped peptides. 

The early findings were suggesting one gene-one transcript-one protein model 

which is known as central dogma model. However, it was shown that most eukaryotic 

mRNAs have potential to encode several proteins due to the existence of several 

translation start sites (Ingolia 2014). These translation initiation sites lead to the 

expression of alternative open reading frames (altORFs). Ribo-Seq experiments 

revealed that many eukaryotic organisms including yeast (Ingolia et al. 2009), plants 
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(Liu et al. 2013), mammalians (Ingolia et al. 2011) have alternative translation initiation 

sites activated by different translation mechanisms. Previously, novel proteins have 

been detected via proteomics experiments. Mass spectrometry-based proteomics 

enables detection of altORF in a more accurate way since altORF products are expected 

to be shorter than known primary products. Previously, in different organisms, altORFs 

have been determined via proteogenomic methods. In human blood tissue, it was also 

shown that in total 1018 altORF proteins in serum and plasma had been detected 

(Vanderperre et al. 2013). The goal of this study is to detect altORFs in an exhaustive 

way by involving altORF predictions in the initial search space. These predictions were 

computed using altORFEv module of PGMiner by considering three major 

mechanisms; linear scanning mechanism (Kochetov 2008), leaky scanning model 

(Bazykin and Kochetov 2011; Van Damme et al. 2014), reinitiation model (Kozak 

2001). In this study, 16147 altORFs were supported by peptides. In order to increase the 

accuracy of predictions, altORF distinct peptides, i.e. proteotypic peptides, were 

considered. Considering that 23 predictions with at least one proteotypic peptide and in 

total, more than one peptide was reported. However, 21 of those proteins were 

immunoglobin variants. Therefore it was not possible to distinguish them. Of the four 

predictions were distinctly confirmed. These protein isoforms are IG_V gene 

(ENST00000626108.1) via leaky scanning mechanism, myosin heavy chain 7 

(ENST00000355349.3) via leaky scanning mechanism, feutin B (ENST00000420570.1) 

via leaky scanning and prostaglandin D2 synthase (ENST00000471521.5) via leaky 

scanning products. In Figure 35, an example for IG-V(ENST00000626108.1) was given 

indicating the peptides in the known protein product and the isoform. It should be noted 

that peptide MTQSPSSLSAS overlaps with second translation initiation site and the 

suffix amino acid of this peptide is not R or K. This indicates that this peptide cannot be 

produced in a fully enzymatic cleavage process. The exons of this gene are confirmed, 

however, due to the number of spectra analyzed, a high number of peptides could not be 

found and high sequence coverage could not be reached.  
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Figure 35. Alternative translation product prediction from IG-V (ENST00000626108.1) 
via leaky scanning mechanism. 

In the next step, HAVANA and ENSEMBL gene models were analyzed 

individually. For this analysis, matching models, i.e. transcripts, were classified into 

five categories according to the type of mapping peptides; exonic, intronic, distinct, 3’ 

overlapping, 5’ overlapping (Figure 36):  

 

 

Figure 36. Mapped peptides were categorized as exonic, intronic, UTR/exon 
conflicting, overlapping and distinct. Here, the number of peptides for each 
category was given for ENSEMBL and HAVANA models. 

 
The first type consists of confirmed models meaning that models are only 

having exonic peptides. Of the 230 HAVANA models were confirmed via only exonic 
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peptides, while 267 ENSEMBL models were confirmed with exonic peptides. Of the 

2021 HAVANA models also have intronic peptides. In contract, 293 ENSEMBL  

models were found with intronic peptides. Here these peptides were not further 

analyzed according to splice site existence around these peptides. However, further 

analysis of these models individually would lead to correction of models as suggesting 

new exon regions instead of intronic regions or splice site products that were not 

detected in this study. ENSEMBL automated models might be considered more 

accurate in terms of exon-intron prediction than HAVANA manual annotations. On the 

other hand, as stated earlier, these models were not validated via experiments or 

inspected further by considering splice models. Of the 2459 HAVANA genes have 

conflicting peptides meaning that a peptide P is considered as exonic for T1 of gene G, 

but intronic for T2of the same gene.  The number of conflicting gene models increased 

in ENSEMBL as 4887. In HAVANA models, there is only one gene model was found 

as having only 3’ exon overlapping peptide, however, in ENSEMBL, this number was 

found as three. Only 3’ exon overlapping peptide having model indicates exon 

boundary correction. Peptides matching to intergenic regions also take great interest to 

determine novel genes. In ENSEMBL, 1454 gene models include distinct peptides as 

outside of the open reading frames. In HAVANA, 313 gene models include distinct 

peptides therefore named as distinct models.  

In this study, a proteogenomics study on human blood proteome was presented. 

In total 3 millions of spectra were searched against human genome, known human 

proteins, coding sites, alternative translation products, gene predictions by GENSCAN 

algorithm and microbial proteins. It was demonstrated that these MS/MS spectra led to 

the identification of new gene models, validation, and refinement of existing gene 

models, protein isoforms, human contaminant proteins.  
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CHAPTER 6 

CONCLUSION 

It has been more than a decade that genome and transcriptome sequencing of 

model organisms such as human, mouse, yeast have yielded a vast amount of data with 

significant effort. Despite this fact that accurate genome annotation as the final and 

main aim of sequencing still remains challenging. The reason behind performing 

genome annotation is to determine protein coding genes and regulatory regions. Current 

genome annotation methods mainly rely on computational annotations supported by 

sequence homology and transcriptional evidence such as EST, CCDS regions. 

Nevertheless, the accuracy of genome annotation is correlated to experimental studies 

since it requires experimental validation. Sequence homology requires known sequence 

availability, while transcriptional evidence are not always verified on the protein level. 

Therefore, accurate experimental data should be collected from proteome data. Mass 

spectrometry-based proteomics method is state of the art for sequencing and 

quantification of peptides derived from protein samples. The idea behind the usage of 

proteomics is to validate translation of genes to confirm genomic regions such as exons. 

This defines the field proteogenomics, and proteogenomics enables not only validation 

of translation, but also a refinement of proposed gene annotations and identification of 

novel genes as well as new protein isoforms as products of alternative translation. There 

have been many efforts to perform high-throughput analysis of proteomics and 

genomics data in a sequenced manner to automate data processing, identification, 

genome mapping and assessment. This thesis is aimed to address some issues of the 

field proteogenomics.  

In Chapter 2, database size and database search algorithm parameters as factors 

affecting performance, the accuracy of peptide identification process via database 

search were analyzed. The reliability and sensitivity of following steps in bottom-up 

and top-down proteomics are dependent on this. In addition to conventional proteomics 

analysis, this also underpins proteogenomic analysis. Since proteomic data is applied 

for assessment of genome annotation, low sensitivity and specificity propagate to 

incorrect annotations.   
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In Chapter 3, a fast and accurate peptide mapping tool was introduced. Although 

database search algorithms identify peptides, before annotation of genomic data via 

proteomics data, a challenge arises through the finding of all occurrences of peptides on 

the genomic level. Besides, that location of peptides needs to be represented in a format 

which is recognized by genome browsers. In many proteogenomics studies, in-house 

scripts are in used, and they are not available publicly. Few tools have been announced 

to overcome these problems. However, these tools were not assessed with further tests 

to check whether they fulfill expectations of mapped peptides. Therefore, a new tool 

based on modified version of the Wu-Manber algorithm was developed, and it was 

assessed by expected peptide mapping scenarios. These scenarios were established to 

evaluate the accuracy of two available and the new tool and to determine processing 

capacity of these tools in terms database size and number of queries.  

In Chapter 4, a new proteogenomic annotation pipeline, PGMiner was 

developed to close the gap between proteomics data analysis and genome annotation 

assessment. Most of the proteogenomic tools have been presented in GUI version or as 

a platform plugin like Galaxy. However, these tools come along with installation or 

modularity problems. The available tools require external input data loading, one or 

multiple database search tool support and heuristic peptide mapping implementations. 

In addition to that tools have restrictions on usage of big size databases such as 

complete human genome translation. PGMiner, however, tackles external data upload, 

database size restriction issues and provides multiple database search tool usage support 

with further FDR and consensus prediction implementations. In addition to that exact 

peptide mapping algorithm with enzymatic cleavage, rule filtering was provided. The 

tool was developed on KNIME Analytics Platform to provide user-friendly, extendable 

with custom or readily available data analysis and scripting nodes. 

 In Chapter 5, PGMiner was applied to human blood plasma proteome MS 

dataset to demonstrate the usage of the tool. Here, it was shown that MS-based 

proteomics data facilitated the refinement and validation of existing genome annotation. 

Besides confirmation of existing models provided from HAVANA manual annotations 

and ENSEMBL automated pipeline, novel gene models were introduced and alternative 

translation products were determined. The confidence here was ensured via signature 

peptides which are known as proteotypic peptides. These peptides are specific to only 

one location through the genome or spliced form of a transcript. In addition to that 

homology information was used a complementary line of evidence. Human blood is a 
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source of biomarkers as well as a source for detecting pathogen-originated 

peptides/proteins. In this study, microbes which are responsible for certain infections 

such as HIV, hepatitis have been detected. These findings, on the other hand, need to be 

proven by further experimental studies or checking the donor information in particular 

samples. As a conclusion, this study demonstrated the importance and the value of 

exploiting proteomics data for genome annotations as a line of experimental evidence. It 

would be important to improve the current computational genome annotation pipelines 

with proteomics data and to bring the knowledge gained from features of proteomics 

data to newly developed computational annotation tools. Another outcome of this study 

addressed the issues related to wet lab part of MS experiments. Due to the inefficient 

removal of highly abundant blood proteins, low abundance proteins in the dynamic 

range were masked in a high level. In the future, more sophisticated experimental 

procedures will lead to the production of higher quality MS data to increase the 

sensitivity of proteogenomics outcomes. 
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