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Head of the Department of Dean of the Graduate School of
Molecular Biology and Genetics Engineering and Sciences



ACKNOWLEDGMENTS

I would like to express my thanks to Assoc. Prof. Dr. Jens ALLMER, for his

guidance throughout my graduate education including the preparation of this thesis. I feel

that it is a great privilege to work with him.

I am grateful to my thesis committee members Prof. Dr. Anne FRARY and Assist.
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ABSTRACT

COMPUTATIONAL ESTABLISHMENT OF MICRORNA METABOLIC NETWORKS

MicroRNAs (miRNAs) are single-stranded, small, non-coding RNAs, that con-

trol gene expression at the post transcriptional level through various mechanisms such as

translational inhibition, degradation and destabilisation of their target mRNAs. Despite

the fact that thousands of miRNAs have been reported in various species, most still re-

main unknown. Due to this, the identification of new miRNAs is an essential process for

analysing miRNA mediated post transcriptional regulation mechanisms. Moreover, many

biological approaches suffer from limitations in their capacity to reveal rare miRNAs, and

are further restricted to the state of the organism under examination. Such limitations

have resulted in the construction of sophisticated computational tools for identification of

possible miRNAs in silico. However, these programs suffer from low sensitivity and/or

accuracy and as a result they do not provide enough confidence for validating all their

predictions experimentally. In this study, the aim is overcoming these challenges by cre-

ating a new and adaptable machine learning based method to predict potential miRNAs

in any given sequence. The efficiency of proposed method is shown by comparison with

available tools on various data sets. By using this approach, miRNAs from the genomes

of various organisms like human (Homo sapiens), fly (Drosophila melanogaster) and

tomato (Solanum lycopersicum) are identified. Moreover, networks between the possible

miRNAs of virus and human genes as well as the communications among nuclear and

organelle genomes of Solanum lycopersicum through miRNAs are investigated.
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ÖZET

MİKRORNA METABOLİK AĞLARININ BİLİŞİMSEL KURULUMU

MikroRNAlar (miRNAlar) tek diziden oluşan, küçük, kodlayıcı olmayan, hedef

mRNAlarının translasyonel inhibisyonu, bozunması ve kararsızlaşması gibi çeşitli meka-

nizmalar aracılığıyla transkripsiyon sonrası seviyesinde gen ekspresyonunu kontrol ede-

bilen RNAlardır. Farklı türlerde binlerce miRNA rapor edilmesine rağmen çoğu hala bi-

linmemektedir. Bu nedenle, yeni miRNAların belirlenmesi, miRNA aracılı transkripsiyon

sonrası düzenleme mekanizmalarını analiz etmek için önemli bir işlemdir. Ayrıca, birçok

biyolojik yaklaşım nadir miRNAları ortaya çıkarma kapasitesindeki sınırlamalardan muz-

dariptir ve inceleme altındaki organizmanın durumuyla daha da kısıtlıdır. Bu tür sınırlama-

lar olası miRNAların in silico olarak tanımlanması için karmaşık bilişimsel araçların

yapımıyla sonuçlanmıştır. Ancak, bu programlar düşük duyarlılık ve/veya doğruluktan

muzdariptir ve bunun sonucu olarak da tüm tahminlerin deneysel olarak doğrulaması için

yeterince güven vermemektedir. Bu çalışmada amaç, verilen herhangi bir dizideki potan-

siyel miRNAları tahmin etmek için yeni ve uyarlanabilir makine öğrenme temelli bir

yöntem oluşturarak bu zorlukların üstesinden gelmektir. Önerilen yöntemin verimliliği

çeşitli veri kümeleri üzerinde uygun araçlar ile karşılaştırılarak gösterilmektedir. Bu

yaklaşımı kullanılarak insan (Homo sapiens), meyve sineği (Drosophila melanogaster)

ve domates (Solanum lycopersicum) gibi çeşitli organizmaların genomlarından miRNAlar

tanımlanmıştır. Ayrıca, hem olası virüs miRNAları ve insan genleri arasındaki ağlar

hem de Solanum lycopersicum nükleer ve organel genomları arasındaki miRNA vasıtalı

iletişim incelenmiştir.
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CHAPTER 1

INTRODUCTION

MicroRNAs (miRNA) are single-stranded RNAs of approximately 22 nucleotides

(nt) in length, that control gene expression through post transcriptional regulation by using

either translational inhibition or destabilization of the target mRNAs (Piast et al., 2005;

Filipowicz et al., 2008). The first example of miRNAs was discovered in C. elegans, as a

regulator of the developmental timing (Lee et al., 1993).

In diverse organisms ranging from viruses to higher eukaryotes, important and

various processes are regulated through miRNAs’ action. many links have been estab-

lished between miRNAs and human diseases such as cancer and neurodegenerative dis-

eases (Table 1.1) and still many more are under investigation (Bushati and Cohen, 2007;

Hébert et al., 2009; Wang et al., 2008).

It has been estimated that miRNAs control activities of about 30% of all protein-

coding genes in mammals (Filipowicz et al., 2008). This situation is valid not only in

higher eukaryotes, but also in simple multicellular organisms like poriferans (sponges)

and cnidarians (starlet sea anemone) since they also possess miRNAs (Kim et al., 2009).

In addition, most of the animal miRNAs appear to be phylogenetically conserved suggest-

ing that these miRNAs are carried throughout evolution due to their important actions, e.g.

around 55% of C. elegans miRNAs have homologues in humans (Ibáñez-Ventoso et al.,

2008). On the other hand, there are certain differences between biogenesis pathways of

animal and plant miRNAs suggesting that there might be alternative evolutionary paths

(Chapman and Carrington, 2007; Millar and Waterhouse, 2005).

Around half of the mammalian miRNAs seem to have a tendency to locate close to

other miRNAs forming clusters and be transcribed as a single polycistronic transcription

unit (TU) (Lee et al., 2004). Nevertheless, it has also been observed that specific miRNAs

might be originated from distinct genomic locations (Figure 1.1) (Kim et al., 2009). In

addition, depending on alternative splicing events, it is likely to find some mixed miRNA

genes that can be classified into either intronic or exonic miRNA types.

1



Table 1.1. Human diseases related with miRNAs. Numbers in column “Unique” indi-
cate number of all unique diseases associated with related miRNAs. (Data
obtained from HMDD v2.0 (Li et al., 2014).

miRNA Disease Unique

hsa-mir-21 Carcinoma (Hepatocellular), Diabetes Mellitus (Type 2),
Lupus Erythematosus (Systemic), Fibrosis, Multiple Sclerosis 125

hsa-mir-155 Leukemia (B-Cell), Tuberculosis (Pulmonary),
Down Syndrome, Behcet Syndrome 89

hsa-mir-146a Influenza (Human), Alzheimer Disease, Creutzfeldt-Jakob Syndrome,
Gerstmann-Straussler-Scheinker Disease 71

hsa-mir-17 Lymphoma (T-Cell), Toxoplasma, SARS Virus, Obesity,
Schizophrenia, Hypertension 65

hsa-mir-125b-1 Dermatitis (Atopic), Breast Neoplasms, Huntington Disease,
Glioblastoma, Myocardial Ischemia 61

hsa-mir-20a Pulmonary Disease (Chronic Obstructive), Hodgkin Disease,
Pre-Eclampsia, Polycystic Kidney Diseases 60

hsa-mir-34a Muscular Disorders (Atrophic), Lymphoma (B-Cell), Fatty Liver (Alcoholic),
Arthritis (Rheumatoid), Cardiovascular Disease 59

hsa-mir-145 Hepatitis (Chronic), Sarcoma (Ewing’s), Adrenocortical Carcinoma,
Stroke, Heart Failure 57

hsa-mir-221 Sarcoma (Kaposi), Lymphoma (Primary Effusion), Hyperglycemia,
Marek Disease, Carotid Artery Diseases, Asthma 54

hsa-mir-125b-2 Dermatitis (Atopic), Leukemia (Myeloid), Nevus (Pigmented),
Lung Diseases (Interstitial), Myotonic Dystrophy 53

hsa-mir-126 Hepatitis (Chronic), Myeloproliferative Disorders, Ischemia,
Medulloblastoma, Parkinson Disease, Crohn Disease, Inflammation 51

hsa-mir-16-1 Polycythemia Vera, Spinal Cord Injuries, Patau Syndrome, Liver Failure,
Odontogenic Tumors, Sepsis, Acute Lung Injury 50

hsa-mir-92a-1 Scleroderma (Systemic), Autistic Disorder, Burkitt Lymphoma,
Eosinophilic Esophagitis, Polycystic Kidney Diseases 50

1.1. MicroRNA Biogenesis

The current version of miRBase (Release 21, http://www.mirbase.org) lists miR-

NAs from more than 200 organisms. Although there are certain differences in terms of

proteins or paths followed for canonical miRNA biogenesis, three steps are usually essen-

tial; transcription of primary miRNAs (pri-miRNAs) from the miRNA genes (Lee et al.,

2002), initial processing of precursor miRNAs (pre-miRNAs) in nucleus (Hutvágner et al.,

2001) and the further processing and generation of mature miRNAs in the cytoplasm (Fig-

ure 1.2). Human miRNA biogenesis pathway can be summarized in five main steps:

2



Figure 1.1. Possible genomic locations of miRNAs. a) Intronic miRNA cluster in
non-coding transcripts, b) Exonic miRNAs in non-coding transcripts, c)
Intronic miRNAs in protein-coding transcripts, d) Exonic miRNAs in
protein-coding transcripts. The blue boxes indicate the protein-coding re-
gions.(Source: (Kim et al., 2009))

1. Transcription: Most of the known miRNAs are transcribed by RNA polymerase II from

various genomic locations (Figure 1.1). This pri-miRNA structure includes a double-

stranded region with a hairpin loop and longer sequence extensions from the 5’ and 3’

ends of the hairpin in which other double-stranded regions might be found.

2. Microprocessor complex processing: The RNA-binding protein DGCR8 and DROSHA

nuclease form the Microprocessor complex which results in removal of 5′ and 3′ ends of

the pri-miRNA through endoribonucleolytic cleavage by the DROSHA (Lee et al., 2003).

The cleaved RNA sequence also known as pre-miRNA has a structure of a short hairpin

of about 60 to 70 nt.

3. Export from nucleus: Since miRNAs find their target mRNAs in cytoplasm, the pre-

miRNA should be translocated from nucleus to cytoplasm in a complex with Exportin-5

and Ran-GTP. Binding of pre-miRNA to Exportin-5 needs at least 16 bp in the stem of the

miRNA and the 3’ overhang variations could affect the efficiency of this binding (Zeng

and Cullen, 2004). It has also been demonstrated that pre-miRNA and Exportin-5 binding

3



Figure 1.2. MiRNA biogenesis. RNA polymerase II transcribes pri-miRNA. The stem
loop structure is recognised and cleaved by the microprocessor (MPC)
resulting in pre-miRNA (1) which is then exported to cytoplasm by Ex-
portin5 and Ran-GTP through nuclear pore complex (2). In cytoplasm,
the pre-miRNA is further processed by Dicer and incorporated to RISC
(3). RISC bound single stranded mature miRNA would be guided to target
mRNA (4). The miRNA:mRNA interaction would lead either repression
of protein expression (5a) or mRNA decay (5b).

is not only required for nuclear export but also for preventing the degradation of nuclear

pre-microRNA (Zeng and Cullen, 2004).

4. Cleavage by DICER: Once in the cytoplasm the pre-miRNA is released from Exportin-

5 through the hydrolysis of GTP and transfomed into mature miRNAs by RNase III en-

zyme, DICER cleavage (Lee et al., 2003). Different domains of DICER are responsible

for the recognition and the cleavage of the pre-miRNA by removal of the loop structure

and 3′ overhang in an ATP independent manner (Zhang et al., 2002).

5. Strand selection and targeting: After DICER processing, one strand of the miRNA du-

plex, the passenger strand, will be degraded while the other strand, the guide strand, will

be guiding the Argonaute:miRNA complex, the RNA inducing silencing complex (RISC)
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to target mRNAs. The selection of one strand over the other depends on thermodynamic

properties of the duplex and in most of the cases the strand with the less thermodynamical

stability at the 5′ end is selected (Khvorova et al., 2003).

1.2. MicroRNA Detection

There are many experimental and computational approaches to study and analyze

miRNAs, ranging from classical molecular biology laboratory techniques like forward ge-

netic screening to newer and high technology methods like Next Generation Sequencing

(NGS).

1.2.1. Experimental Identification

The researchers who worked on a C. elegans mutant by application of forward

genetics encountered intriguing findings. The mutation was in lin-4 which is a small

noncoding RNA gene and its RNA had very interesting characteristics such as having a

larger form with a stem-loop secondary structure (hairpin) and a smaller form originated

from the stem-loop (mature sequence) (Lee et al., 1993). After this initial study, another

similar RNA, let-7, was detected also in C. elegans which had a huge influence on miRNA

area, since it was conserved among various organisms indicating that miRNA based post-

transcriptional gene regulation is a general method (Reinhart et al., 2000).

Although a few other miRNAs have also been identified by forward genetics ap-

proaches, they are quite ineffective for miRNA gene detection due to numerous reasons

(Berezikov et al., 2006):

- the small size of miRNAs

- further challenges in spontaneous or induced mutagenesis methods because of miRNAs’

ability to tolerate mutations provided that the “seed sequence” is not involved

- it is still possible to fail to spot a miRNA mutant even though the miRNA gene is suc-

cessfully hit and knocked out, since researchers usually focus on protein-coding regions

to map a mutation but - miRNAs might be located in non-coding regions too (Figure 1.1)

-a phenotype-driven investigation will most likely fail to identify mutants due to redun-

dancy (a mRNA can be targeted by many different miRNAs).
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Other experimental techniques used for detection and/or validation of miRNAs

include; Northern blotting, microarray and qRT-PCR. Each of these methods have some

advantages and disadvantages (Table 1.2). Most of the experimentally detected miRNAs

are identified through sequencing of size-fractionated cDNA libraries (Berezikov et al.,

2006). There are many protocols developed by different groups and shown to be success-

ful. Essentially the same principle is followed with differences in the details (Berezikov

et al., 2006). Cloning approach for miRNA identification also suffers from limitations

such as:

- tissue, stage, time specific and low level expressed miRNAs

- post-transcriptional modifications increasing the difficulty in cloning

- sophisticated bioinformatics methods required to analyze data.

Table 1.2. In vitro miRNA detection strategies. (Source: (Dong et al., 2013; Chugh
and Dittmer, 2012; Baker, 2010))

Method Good for Suffers from

Northern blotting

requires a large amount of total RNA
used for novel and known miRNAs detecting miRNAs with low abundance
gold standard for validation low-throughput and low-sensitivity

relatively time consuming

Microarray less expensive lower sensitivity and dynamic range
screening tool not for quantitative assays

qRT-PCR the widest dynamic range and highest accuracy normalization and specificity
provide absolute miRNA quantification throughput issues

NGS
can easily detect sequence variation of miRNAs very complicated bioinformatics
used for novel miRNAs time consuming
high sensitivity more expensive

1.2.2. Computational MicroRNA Prediction

Due to high cost and laborious steps of experimental detection as well as men-

tioned limitations, computational miRNA prediction has become an essential part of

miRNA studies. One of the main and straightforward approaches is using already known

miRNAs to search for their homologs in other organisms also known as “homology based

search”. Although the system works well for widely conserved miRNAs, since it is not

possible to predict non-conserved and/or species specific miRNAs by using this approach,

ab initio methods become the only choice for a comprehensive search.
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Independent from the choice of computational method used for miRNA identifi-

cation, all predicted candidate miRNAs require experimental validation to be considered

as a true miRNA. This means, we need a sensitive, highly accurate and specific method

so that we will not have many false positives or false negatives.

1.3. Machine Learning Approaches for MicroRNA Analysis

Machine Learning (ML) is based on the idea that an algorithm can mimic human

learning processes and extract rules to generate models. ML has become a popular method

in various bioinformatics applications (Saçar and Allmer, 2013) since there are numerous

biological fields such as genomics, systems biology, evolution, microarray and proteomics

where ML can provide knowledge extracted from data (Larranaga, 2006).

While there are cases where unsupervised approaches on miRNA target prediction

are applied (Heikkinen et al., 2011), ML for miRNA gene prediction is almost exclusively

based on supervised learning in which a classification algorithm is trained for learning

(Zhang and Nam, 2008).

In general, ML methods begins with obtaining data involving the sequence, struc-

ture and thermodynamic features characterising miRNAs such as minimum free energy

(mfe) required for the secondary structure formation, number of A nt, length of hairpin

sequence. Next, a classifier is trained by a set of known input data so it can generate rules

based on these examples (input data; positive (known miRNAs) and negative (known

non-miRNA examples)) (Lindow and Gorodkin, 2007). Then, the model generated by the

classifier will be used on unknown samples to label them as miRNA or not.

There are many factors influencing the accuracy of the system but the most im-

portant ones include proper data analysis and the efficient selection of features, since data

quality has a big impact on the overall process (Saçar et al., 2013) and calculation of

features for the sequences is not an automatic process (Ding et al., 2010; Lindow and

Gorodkin, 2007). At any rate, there are two main obstacles with the available machine

learning based miRNA gene identification processes. The first one is the imbalance be-

tween positive and negative examples (Saçar and Allmer, 2013). Since the total number

of actual miRNAs in a genome is not exactly known so far, it is assumed that there are

only a few miRNA hairpins in any randomly chosen groups of hairpins obtained from

the genome (Ding et al., 2010). In addition, the amount of positive examples is usually
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smaller than that of negative ones. For example, one of the most common negative data

sets used in miRNA classification analysis include around 9000 pseudo hairpins (Table

1.3) while miRBase lists less than 2000 human miRNA hairpins (Ng and Mishra, 2007).

In our previous works, we showed that the imbalance problem between data sets can no-

tably lead to reduction in the performance of machine learning approaches (Saçar and

Allmer, 2013). The second major obstacle is that majority of the machine learning based

methods makes assumptions about the features defining the data sets e.g., the length of

the stem, the loop size and mfe. Consequently, if a sequence is found to be outside of

these fixed limits, it is not treated as a possible miRNA thus cannot be identified by those

methods which would cause an increased false negative ratio (Ding et al., 2010).

Table 1.3. List of published studies for ab initio miRNA prediction. Listed are the
number of features that were effectively used, the training data that was
employed and whether an implementation is available. Table is sorted by
number of citations in Google Scholar. Use: + means it exists, - means
there is no implementation, * means we experienced problems with the
implementation.

Study ML
Algorithm

Feature
Number

Positive
Data

Negative
Data Use Year Cited

Xue SVM 32 MiRBase 5.0 pseudo * 2005 354

Jiang RF, SVM 34 MiRBase 8.2 pseudo * 2007 314

Ng SVM 29 MiRBase 8.2 pseudo * 2007 174

Batuwita SVM 21 MiRBase 12 pseudo and other
human ncRNAs + 2009 142

Xu SVM 35 MiRBase 2007 fragments from
human genome * 2009 70

Ding SVM 32 Known miRNAs UTRdb and ncRNA
from Rfam 9.1 - 2010 44

Burgt L score
classifier 18 MiRBase 9.0 - * 2009 25

Bentwich - 26 hairpins from
human genome non-coding regions - 2008 19

Gudys
NB, MLP,
SVM, RF,
APLSC

28 MiRBase 17 genomes and mRNAs + 2013 19

Ritchie SVM 36 MiRBase 17 non-Dicer transcripts - 2012 17

Lopes SVM, RF,
G2DE 13 MiRBase 19 pseudo * 2014 11

Gao SVM 57 MiRBase 20 exones, ncRNAs (rFam) * 2013 4

Chen LibSVM 99 MiRBase 2013 pseudo and Zou + 2016 -
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There are various supervised machine learning algorithms such as Support Vector

Machine, Naı̈ve Bayes (NB), Multi Layered Perceptron (MLP), Random Forest (RF),

Asymmetric Partial Least Squares Classification (APLSC), Generalized Gaussian Density

Estimator (G2DE) and most of them have been used in miRNA analysis (Table 1.3).

1.3.1. Data Sets

While using classification algorithms for miRNA gene prediction, selecting pos-

itive examples seems considerably easier since almost exclusively known miRNAs are

used as positive data, while finding or creating negative samples are highly challenging

(Lindow and Gorodkin, 2007).

In general, positive data are obtained from miRBase (Kozomara and Griffiths-

Jones, 2011), despite the fact that some of the entries in miRBase which are claimed to

be miRNAs, do not have the required characteristic properties (e.g., having one terminal

loop) to be labelled as true miRNAs. In various studies, it has been shown that when

positive controls are taken from miRBase, further steps are necessary to produce efficient

high-confidence positive controls (Xue et al., 2005). We also analysed this problem and

showed that removing arguable miRNAs from miRBase increases prediction accuracy

(Saçar and Allmer, 2013). Furthermore, in this study we found out that using filtered

miRBase hairpins for mouse would produce higher true prediction scores (Figure 3.4).

A well-designed negative data set is one of the crucial prerequisites for an efficient

classifier generation. If negative data are very artificial and do not have any similarity

to positive data, there is an increased probability that the classifier will not be trained

adequately to differentiate among real biological unknown sequences (Wu et al., 2011).

Contrarily, in the case of negative data set being very similar to the positive data set, the

classifier will have trouble discriminating between negative and positive (Wu et al., 2011).

For any RNA sequence to be classified as miRNA, it should be recognized and

processed by the enzymes Drosha and Dicer (Figure 1.2). During construction of high

quality negative samples, it is important to select sequences that are expressed in the

same or similar manner as true miRNAs but are not recognized by Dicer. Since this

is a very complex method to create negative samples, many tools use random genomic

sequences and/or intronic, exonic sequences (Brameier and Wiuf, 2007; Xue et al., 2005).

Nonetheless, these approaches produce weak negative data because there is no guarantee
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that these randomly selected small RNAs would not be turned into functional mature

miRNAs (Xue et al., 2005).

There are various negative data sets used in many studies (Table 1.3) and all avail-

able ones are included in this work (Section 2.1) in addition to new negative data sets

designed by us. Their performances are compared and analysed showing that some of the

negative data sets are more challenging than the others (Figure 3.5)

1.3.2. Feature Selection

While using machine learning for pre-miRNA detection, it is required to define

features describing a miRNA and examples of such features have been suggested in the

literature (Table 1.3). The common features that have been used for pre-miRNA analysis

can be grouped into four major categories; sequence-based, structural, probability-based,

and thermodynamic (Figure 1.3). All of the features that are used in this work can be

found and calculated by using the website (http://jlab.iyte.edu.tr/software/mirna). Some

examples for these features are:

Sequence based features; 16 dinucleotide frequencies %NN (%AA, %AC, %AG, %AU,

%CA, %CC, %CG, %CU, %GA, %GC, %GG, %GU, %UA, %UC, %UG, %UU), regular

internal repeat (dr), GC content (%GC), etc.

Structural features; 32 triplet elements i.e. A(((, U(((, U(.(, U.((, G(((, C(((, C(.(, hairpin

length (hpl), hairpin loop length (hll), maximal bulge size (mbs), etc.

Thermodynamics based features; ensemble free energy (efe), ensemble frequency (efq),

melting temperature (Tm), enthalpie (dH), entropy (dS), etc.

Probability based features derived from dinucleotide shuffling (dns); adjusted base pairing

propensity (dP), adjusted minimum free energy of folding (dG), MFE index 1 (MFEI1),

degree of compactness (dF), etc.

As it has been argued and demonstrated in various cases, one of the biggest hurdles

that makes classification analysis drastically difficult is the increase in the dimensionality

of the data. In addition, the data might not only be big in size but also sparse in the space

it occupies. Such situations could cause huge troubles for ML, this phenomenon is also

known as the curse of dimensionality (Powell, 2011). Consequently, using a lot of fea-

tures can result in lower classification accuracy with a high computational cost.
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Figure 1.3. MiRNA hairpin structure. Some of the features of hairpin structure: G-U
matches, symmetric and asymmetric bulges, stem length, mfe etc. Sec-
ondary RNA structure and mfe value are obtained by using RNAShapes
(Steffen et al., 2006).(Source: (Saçar et al., 2014)

When dealing with real biological data sets, important features are mostly un-

known a priori. Hence, to properly cover and represent the data sets, a very high number

of features are designed and calculated. However most of these features tend to be not

informative/beneficial. In cases like miRNA precursor analysis where data set size can

be large, it is essential to remove irrelevant/redundant features to have a better learning in

less time.

Two main methods are usually preferred for reducing the feature size: Feature

subset selection (FS) approaches like filtering and dimensionality reduction (DR) strategy

like Principal Component Analysis (PCA). Since DR based algorithms achieve dimen-

sionality reduction through creating new features as combinations of the original ones, it

is not possible to assess the value of a single feature with these methods, so for the rest of

the section we will focus on FS approaches.

There are various definitions by many authors for FS based on the content of the

analysis (Dash and Liu, 1997):

1. Idealized FS: it is based on searching for the minimum number of adequate feature

subset.
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2. Classical FS: where N is greater than M, selecting a subset of M features from a set of

N features, so that the value of a criterion function is optimized over all subsets of size M

(Dash and Liu, 1997).

3. Increasing prediction performance: it is based on selecting a subset of features either

for improving prediction performance (accuracy, sensitivity etc.) or without any signifi-

cant decrease in the classification performance decreasing the amount of the features.

4. Approximation based FS: selecting a small feature subset which keeps the class distri-

bution as close to the initial value as possible.

The main categories of FS algorithms include filtering, wrapper, and embedded

approaches. Unlike the first two, embedded FS is a process performed as a part of a ML

algorithm. Filtering techniques are classifier independent and comparatively computa-

tionally simpler and faster (Saeys et al., 2007). Moreover, a feature ranking score such

as Fisher score, Pearson correlation and information gain is calculated, and features with

lower scores from the set thresholds are removed (Janecek et al., 2008).

Wrapper algorithms benefit from including a ML method for FS through a feed-

back mechanism. In other words, they depend on the classifier to make a discrimination

among sets of features (Janecek et al., 2008). Feature subsets’ space is searched and

for each feature subset a measure of classifier performance like accuracy is calculated

(Kohavi and John, 1997). Differently from filtering techniques wrapper approaches take

feature dependencies into consideration (Saeys et al., 2007). However, the disadvantage

of wrapper approach against filtering is that it has a higher probability of overfitting and

more computational cost (Janecek et al., 2008; Saeys et al., 2007).

When a FS method is designed to find the very best subset of features, it must

perform an exhaustive search meaning that all possible 2N candidate subsets need to be

considered and evaluated based on some evaluation function (Dash and Liu, 1997). The

problem is that although this is the only way to make sure the best feature subset is se-

lected, such exhaustive search, also known as NP-hard, is too time consuming, expensive

and complex (Dash and Liu, 1997; Guyon and Elisseeff, 2003). There are many search

strategies including best-first, branch-and-bound, simulated annealing, genetic algorithms

and it seems greedy search methods; forward selection and backward elimination seem

to be especially beneficial with less computational cost and robustness against overfitting

(Guyon and Elisseeff, 2003).

Methods using heuristic or random search applications are designed for reducing

computational complexity (Dash and Liu, 1997). To avoid eventual exhaustive search of
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subsets, these algorithms require defined stop criteria. Nevertheless, there are at least four

essential steps in a regular FS method: (1) a generation method to create the following

candidate subset; it can start with (i) no features, (ii) with all features, or (iii) with a

random subset of features; (2) an evaluation function/measure to evaluate the current

feature subset; (3) a stopping condition to figure out when to stop searching and (4) a

validation procedure to analyse if the obtained subset is valid (Dash and Liu, 1997).

Genetic Algorithm (GA) can be considered as computational model of evolution.

The algorithm searches a set of possible solutions; each candidate solution for the given

problem is named as a “chromosome”, and the complete set of solutions is known as a

“population”. GA algorithm works in an iterative movement, passing from one popula-

tion of chromosomes to the next one and each of these iterations is called a “generation”

(Chtioui et al., 1998). In each generation, the population is ranked based on the fitness

score of each chromosome and two well-adapted chromosomes are survived/selected as

parents for reproduction (Chtioui et al., 1998). The chromosomes are traditionally repre-

sented as n-bit binary vectors (Vafaie and Jong, 1992; Shahamat and Pouyan, 2015). If

there are 1000 features then each chromosome is a binary vector of dimension 1000; a

bit value of 0 means that the corresponding feature is not selected, and if the bit is 1, the

feature is selected (Shahamat and Pouyan, 2015).

The main parts of GA construction are listed (Figure 1.4):

1. Randomly generated initial population: The setting of number of chromosomes present

in the initial population is an essential part for GA performance; while a large population

produces more genetic diversity, it has slower convergence and a small population has the

risk of converging to a local extreme (Xuan et al., 2011).

2. Fitness function calculation: The fitness scores are required for ranking, deciding qual-

ity of chromosomes and making selection for further steps.

3. Genetic operators: for producing the next population, a set of well-adapted feature

subsets should be selected for crossover and mutation.

3a. Selection: In general, roulette wheel selection is applied to select individuals since it

is known to decrease the probability of the reaching local optimal resolution (Shahamat

and Pouyan, 2015; Xuan et al., 2011). While higher fitness score indicates greater chance

of survival it does not eliminate the chance of the weaker ones to survive (Xuan et al.,

2011).

3b. Crossover: A crossover operator such as single-point crossover is applied randomly

to parents. The offspring will be created using parts from one parent and the remaining
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parts from the other parent based on the location of crossover. The defined crossover rate

will define how many individuals would be affected e.g., crossover rate of 20% means

that 20% of individuals would be taking part in the crossover (Xuan et al., 2011).

3c. Mutation: For maintaining the diversity in a population a mutation operation can be

applied. At a randomly chosen point (P), the value of bit is reversed; if it is 1 it would

become 0 and the vice versa (Shahamat and Pouyan, 2015; Xuan et al., 2011).

4. Stop criteria: For ending the genetic iteration process a stop condition must be defined.

There are many different criteria that can be used for this purpose such as defining maxi-

mum number of iterations, analysing fitness score trend; e.g. if the average fitness of the

population remains stable for consecutive N iteration or if the difference is smaller than a

threshold (Shahamat and Pouyan, 2015; Xuan et al., 2011).

Figure 1.4. Basic GA workflow. The main constituents of GA are represented.

GA is mostly acknowledged for its ability to successfully search large spaces for

finding an optimal or near optimal feature subset when not much information is known a

priori (Vafaie and Jong, 1992; Shahamat and Pouyan, 2015). Moreover, as GA is compa-

rably insensitive to noise in the data, it becomes a good choice for robust feature selection

to increase the performance of classification applications (Vafaie and Jong, 1992).
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1.4. MicroRNA Metabolic Networks

As already mentioned in previous sections, miRNAs take part in a wide range

of networks due to their post-transcriptional regulatory function. In addition, their own

biogenesis pathway is regulated at many steps (sometimes by miRNA itself). Moreover, in

some cases while a miRNA can target hundreds of distinct targets (one to many), it is also

observed that a miRNA-target interaction might be an one to one relation. Furthermore, a

mRNA might be targeted by numerous different miRNAs as well. All of these possibilities

combined with the tissue and time specific expression of both miRNA and target make a

complete miRNA network analysis a very challenging task. Consequently, many of the

published work regarding miRNA networks focus on a specific condition like conserved

miRNA interactions in a disease phenotype (Zafari et al., 2015)

Figure 1.5. Simplified network for hsa-mir-21-5p. Data and image are obtained from
miRTarBase (Chou et al., 2016). Note: not all of the targets are included
(>500), only interactions with strong experimental evidence are shown.
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1.4.1. Viral MicroRNAs

Various research outcomes indicate that many disease phenotypes are linked to

activities of miRNAs (Table 1.1). Most of such links are discovered in cases where a

miRNA and its targets are co-expressed in the same cell from the same genome. MiRNAs

have also been associated with the sophisticated cross-talk between host and pathogen

(Saçar et al., 2014) and are shown to be play a major role in viral pathogenesis (Got-

twein and Cullen, 2008). Despite the fact that more research is needed to comprehend

overall host-miRNA communications, recent studies indicate that viral miRNAs might

have effects on the host cell (Grundhoff and Sullivan, 2011; Skalsky and Cullen, 2010).

Nevertheless, given the fact that by encoding miRNAs, viruses can modulate the type

and quantity of host genes to generate an environment suitable for viral replication makes

miRNAs powerful and beneficial tools. In addition, high evolution rates of miRNAs pro-

vide the opportunity of easier adaption to new host targets. Finally, the most important

advantage of using miRNAs for viruses would be escaping immunogenic response since

the host itself produces miRNAs through similar pathways (Skalsky and Cullen, 2010).

Most of the viral miRNAs listed in miRBase are based on DNA viruses. Whether

RNA viruses can generate functional miRNAs is a hot discussion topic. Some researchers

find the idea not plausible due to various facts; if the RNA viruses under question are

the ones replicating exclusively in the cytoplasm they would not be able to access to

nuclear Drosha and more importantly, for a nuclear RNA virus excision of miRNA would

eventually mean the cleavage and destruction of the viral genomic RNA which is not a

favourable outcome for the virus (Skalsky and Cullen, 2010). Due to these hypotheses,

one would expect for nuclear RNA viruses to skip the evolution step leading to miRNA

production but growing evidence suggests that viruses with RNA genomes like Human

Immunodeficiency Virus (HIV) can express miRNAs (Ouellet et al., 2008).

1.4.2. MicroRNAs of Mitochondria and Chloroplasts

Due to canonical miRNA biogenesis (Figure 1.1), almost all of the effort for iden-

tifying and analysing miRNAs is spent on nuclear DNA originated miRNAs. There are

only a few works dealing with mitochondrial miRNAs. Interestingly one of these studies

confirmed the localisation of pre-miRNA and mature miRNA in the mitochondria but the

16



authors could not determine the origin of these miRNAs; whether they are imported from

the cytosol through a translocation system, and/or they could be processed in the mito-

chondria (Barrey et al., 2011). The presence of pre-miRNAs might suggest that at least

some of the miRNA biogenesis machinery could be found in mitochondria so that these

pre-miRNAs would be transformed into mature miRNAs. This hypothesis later proven to

be true by two papers; the first one showing the presence of Ago2 in mitochondria (Das-

gupta et al., 2015) and the second one explaining how miRNAs enhance mitochondrial

translation during muscle differentiation with Ago2 (Zhang et al., 2014). Nevertheless,

these results demonstrate the translocation of nuclear genome encoded miRNAs into the

mitochondria but whether mitochondrial genome encoded miRNAs exist is still a question

under investigation.

The presence of miRNAs in chloroplast is still far from being generally accepted.

Wang et. al. reported functional and heat responsive chloroplast derived small RNAs

in Chinese cabbage (Brassica rapa) which may suggest a miRNA-like regulation inside

chloroplasts (Wang et al., 2011).

1.5. Aim

MiRNA mediated post-transcriptional regulation mechanisms have been an essen-

tial research topic for past years. Therefore, it is essential to have an effective approach

for analysing miRNAs to be able to use them in various applications such as disease

markers and treatment for human diseases. Such methods should be designed in a way

that it would be able to detect the miRNAs in a given genome sequence. In this work,

current literature is scanned and among all the studies using machine learning based ab

initio miRNA identification, the most promising 13 are compared. In addition, new con-

sensus models are generated to have a more accurate system which would make further

experimental validation steps easier due to lower false positive and false negative ratios.

Here the developed workflow is constructed not only to increase the accuracy

of prediction, but also to work well in other organisms. It is tested if the models cre-

ated by using learning data specific for human miRNAs, will have high true prediction

rates for almost all of the organisms’ miRNAs listed in miRBase. Moreover, for miRNA

precursor identification, a genome wide approach covering all candidate miRNA repos-

itory of any genome is designed and used in distinct organisms like viruses, Drosophila
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melanogaster, Homo sapiens and Solanum lycopersicum. Further network analysis be-

tween the predicted miRNAs of retro-transcribing viruses and human genes and cross-talk

search among the nuclear, mitochondrial and chloroplast genomes located in Solanum ly-

copersicum cells would provide new insights regarding miRNA actions.
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CHAPTER 2

METHODOLOGY

In this study, classification for model generation, predictions on data sets and all

the data analysis were performed using KNIME (Berthold et al., 2009) which is a work-

flow management and data analytics platform. The created workflows were named as

izMiR with subparts such as izMiR prediction, izMiR learning and izMiR models. The

data sets and izMiR workflows are further explained in detail on Nature Protocol Ex-

change (https://www.nature.com/protocolexchange/protocols/4919).

2.1. Data Acquisition

Positive examples were obtained from miRBase (release 21), the standard data

source for positive data used in many ab initio pre-miRNA prediction (Table 1.3). For

learning, human miRNAs from miRBase were used as positive data after certain filtering

steps like excluding hairpins with identical sequences. At the end, 1828 human pre-

miRNAs were used for the human training data set. However, for prediction analysis

unfiltered miRBase data were used.

In the Drosophila melanogaster analysis additional models are generated by using

256 hairpins from miRBase as the positive data set.

For Solanum lycopersicum analysis miRNAs of Solanum lycopersicum (77 hair-

pins), Nicotiana tabacum (162 hairpins) and Solanum tuberosum (224 hairpins) were used

as positive data. As negative data, 980 plant specific negative hairpin examples were ob-

tained from http://nclab.hit.edu.cn/PlantMiRNAPred/.

As mentioned in Section 1.4.1, the quality of data sets have a huge impact on over-

all performance. Therefore, to be able to have a better understanding on the performance

of our miRNA detection approach, various positive and negative data sets were retrieved

and created to use in prediction. Apart from the data sets downloaded from miRBase, the

remaining data sets are listed as:

Pseudo: data set was generated by Xue (Xue et al., 2005) but downloaded from

Ng (Ng and Mishra, 2007), used for learning (as negative) and prediction (8492 hairpins)
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Shuffled: created by shuffling sequences of human positive data from miRBase,

used for prediction (1423 hairpins)

NotBestFold: created by not using the best fold proposed by RNAFold for human

hairpins from miRBase, used for prediction (1881 hairpins)

NegHsa: previously published by Gudys (Gudyś et al., 2013), used for prediction

(68048 hairpins), the original data set (http://adaa.polsl.pl/agudys/huntmi/huntmi.htm)

had many duplicate identifiers and we filtered them by keeping only one and removing

the rest, thereby reducing the amount of data from 87000 to 68000 examples

Zou: previously published by Zou (Wei et al., 2013), used for prediction (14246

hairpins)

Chen: previously published by Chen et al. (Chen et al., 2016), combination of

examples from Pseudo and Zou, used for prediction (3054 hairpins)

hsaFR: created by generating random numbers between minimum and maximum

values of each feature in human miRNA data set based on miRBase, used for prediction

(5000)

hsaBQ: created by generating random numbers between lower quartile and upper

quartile values of each feature in human miRNA data set based on miRBase, used for

prediction (5000)

hsaAM: created by generating random numbers between 40 quantile and 60 quan-

tile values of each feature in human miRNA data set based on miRBase, used for predic-

tion (5000)

pseudoFR: created by generating random numbers between minimum and maxi-

mum values of each feature in pseudo data set, used for prediction (5000)

pseudoBQ: created by generating random numbers between lower quartile and

upper quartile values of each feature in pseudo data set, used for prediction (5000)

pseudoAM: created by generating random numbers between 40 quantile and 60

quantile values of each feature in pseudo data set, used for prediction (5000)

2.2. Feature Selection

For our previous studies, more than 1000 features including the ones used or pro-

posed in the 13 studies compared here (Xue et al., 2005; Jiang et al., 2007; Ng and Mishra,

2007; Batuwita and Palade, 2009; Xu et al., 2009; Ding et al., 2010; van der Burgt et al.,
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2009; Bentwich, 2008; Gudyś et al., 2013; Lopes et al., 2014; Gao et al., 2013; Chen

et al., 2016) (Table 1.3) and the new features designed by us have been implemented and

tested. In the literature, some of the proposed features were not explained clearly so they

were implemented to the best of our understanding. There are various ways to calculate

features in pre-miRNA analyses (Yones et al., 2015) and our approach is available on our

group web page: http://jlab.iyte.edu.tr/software/izmir.

Previous analysis in the feature sets revealed that while some of the features have

high correlation with each other, some of them do not provide any information gain (Saçar

and Allmer, 2013). Considering the time and computational power required to calculate

features, an efficient feature selection methodology becomes an essential component of

the overall analysis.

In order to have a good feature selection process in a reasonable amount of time,

an in house distributed GA system was used in this study. The method developed by

Mustafa Toprak (IYTE, Computer Engineering) depends on distributing the evaluation

of feature subsets through HTCondor (Litzkow et al., 1988) and using KNIME platform

(Berthold et al., 2009) to measure the classification accuracy of each feature subset group.

GA parameters were adjusted as listed:

1) Population size: 1000

2) Number of generation: not predefined

3) Probability of crossover: 1

4) Probability of random mutation: 0.01

5) Crossover strategy: Random single point

6) Stop condition: the score of the best individual was not improved for five generation

2.3. Learning Workflows

While performing classification it is vital to make a design carefully to avoid

class imbalance problems that can affect the overall performance significantly (Saçar and

Allmer, 2013). Unfortunately, well-known methods such as k-fold cross validation and

leave-one-out have many problems (Kohavi, 1995; Varma and Simon, 2006) which lead

us to sample positive and negative data separately. From both data sets equal amounts

of data points were selected randomly and the selected samples were further divided into
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training (70%) and testing sets (30%) through random sampling, a system also known

as Monte Carlo Cross Validation (MCCV) (Figure 2.1). The training data were used to

train three classifiers NB, DT and SVM. For each classifier, their performance scores and

PMML models were obtained for each iteration. After 1000 iterations of the sampling and

learning procedure, the best PMML models for NB and DT but not for SVM since Weka

LibSVM (3.7) which did not provide PMML outputs, was used for the analysis because

it was much faster than other SVM classifiers available in KNIME. Thus, SVM models

were not saved, but for comparison with DT and NB, SVM scores produced during learn-

ing and testing were used. Model performances were evaluated by analysing measures

such as recall, precision, sensitivity, specificity, F-measure, accuracy, Cohen’s kappa, and

Youden’s index. The training workflow ensured that each study (feature set) and classifier

receives exactly the same data in each iteration for making a fair comparison.

Figure 2.1. Learning workflow. Each study (feature groups) were trained and tested
on exactly the same data sets with 1000 MCCV.
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For finding mature sequences in the predicted hairpin sequences of Solanum ly-

copersicum, 612 mature sequences from Solanum lycopersicum, Nicotiana tabacum and

Solanum tuberosum were used as positive data and negative data set was constructed by

shifting the mature sequences by half of their length in the hairpin sequences and using the

new extracted sequence. Various features were calculated such as: sequence length, num-

ber of matches and mismatches in the mature sequence region, single nucleotide counts

(4), dinucleotide counts (16), trinucleotide counts (64), distances of start and end posi-

tions to 3’ and 5’ loop start, loop end etc. These data sets were applied to Random Forest

learner through 1000 MCCV, 70% to 30% learning/testing ratio.

2.4. Prediction Workflows

For prediction, DT and NB models with the highest accuracy, and F-measure

scores for each study were loaded into another workflow in KNIME (prediction work-

flow). With 13 studies and 2 classifiers there were 26 models that could be applied to in-

put data for searching pre-miRNAs and providing scores to each predictions. In addition

to these 26 individual models, some consensus approaches were generated to benefit from

each studies’ performance for improving the overall classification performance. The con-

sensus models are also available in the izMiR framework provided (http://jlab.iyte.edu.tr/

software/izmir).

In total six consensus models were designed based on majority vote, rule based

prediction score evaluation, and a model generated from prediction scores:

(a) Majority vote: Equal weights were given to each model and a given sequence was pre-

dicted as miRNA by ConsensusDT and/or ConsensusNB models only if it was predicted

as miRNA in at least 6 studies.

(b) ConsensusRule: if average DT score or average NB score was larger than 0.89 (lower

quartile value of human data) for a given sample, then it was labeled as miRNA while

average DT score or average NB score was less than 0.5, it was labeled as negative. The

remaining samples were labeled as a candidate miRNA.

(c) Average of prediction scores: AverageDT and AverageNB were performed individu-

ally in the same manner to ConsensusRule with different thresholds; if the average value

of prediction scores was smaller than 0.5, it was labeled as negative, otherwise it was

predicted as miRNA.
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(d) ConsensusModel: 26 models from studies were applied on the learning data (human

miRNAs and pseudo data set) and the prediction scores, ranging between 0 and 1, were

used to train and test a MLP classifier through the same approach shown in Figure 2.1.

The model with the highest accuracy and F-measure was then used for predictions.

Any given input data for prediction were applied to all 32 described models and

the numbers of hairpins predicted as miRNA, negative, and candidate were calculated for

all of the models. True positive rates (TPR) and true negative rates (TNR) were provided

as performance measures:

TPR = (number of hairpins correctly classified as miRNA / number of all hairpins)*100

TNR = (number of hairpins correctly classified as negative / number of all hairpins)*100

For constructing ROC curves, the models were applied to human pre-miRNAs

from miRBase and pseudo negative data set.

For Solanum lycopersicum analysis, by using the mentioned data sets and selected

features from GA, models from various classifiers; DT, LibSVM, MLP, NB and RF were

trained and used for prediction.

2.5. Hairpin Extraction from Genomes

Before extracting hairpins, the genome was first divided into 500 nt fragments

with 250 nt overlaps, the sequence was converted to RNA by changing T as U (T -> U)

and by creating the reverse complementary for the template strand (Figure 2.2). RNAfold

(Hofacker, 2003) was used for all secondary structure generation. Regular expressions

were used to extract all structures that carry hairpin characteristics; e.g. a stem region

with at least three consecutive matches and a terminal loop with at least three nucleotides.

The extracted hairpins were filtered by removing duplicates and excluding hairpins which

did not fit into length distribution of human hairpins listed in miRNA hairpin. All re-

quired features for remaining hairpins were calculated and analysed with the prediction

workflow.

The human genome (GRCh38, DNA, primary assembly) contains 12,399,093

fragments from which 108,788,895 putative hairpins for one strand and 108,276,240 hair-

pins for the other were extracted. Filtering based on hairpin length (between 36 and

180; representing the smallest and the longest human stem loops in miRBase) was ap-

24



plied and after removing duplicate sequences from the 34,856,229 length-filtered hair-

pins, 27,932,492 putative pre-miRNA sequences remained. The same filtering approach

resulted in 28,074,667 hairpins for the other strand.

Figure 2.2. Genome wide search strategy for miRNAs.

On a personal computer, it would take several weeks calculating more than 800

features for all putative hairpins. Thus, instead of calculating 60000000 hairpins in human

genome, the 2L chromosome of Drosophila melanogaster was used to test the capacity of

proposed pre-miRNA detection method even for evolutionary distant species by employ-

ing both human data trained izMiR and drosophila trained izMiR model.

The Drosophila melanogaster (dme) genome (BDGP6 genome assembly) was

fragmented into overlapping (250 nt) fragments of 500 nt length (575,896 fragments)

and about 5 million hairpins per strand were extracted. Hairpins with less than 30 nu-

cleotides were filtered leaving around 2 million hairpins per strand. The Chromosome

2L contained about 360,000 hairpins per strand and after removing duplicates, all hair-

pin features were calculated for this subset of putative pre-miRNAs (about 290,000 per

strand). izMiR models generated using human (hsa model) and drosophila (dme model)
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hairpins paired with pseudo were used. As a representative for human models AverageDT

was used to analyse if the known hairpins for dme could be found.

Human T-lymphotropic virus 1 (NCBI Reference Sequence: NC 001436.1), Hu-

man T-lymphotropic virus 2 (NCBI Reference Sequence: NC 001488.1), Human immun-

odeficiency virus 2 (NCBI Reference Sequence: NC 001722.1), Human immunodefi-

ciency virus 1 (NCBI Reference Sequence: NC 001802.1), Hepatitis B virus (strain ayw)

(NCBI Reference Sequence: NC 003977.2) and Human endogenous retrovirus K113

(NCBI Reference Sequence: NC 022518.1) genomes contained 201 total fragments from

which after performing filtering based on hairpin length (between 36 and 180; represent-

ing the smallest and the longest human stem loops in miRBase) and removing duplicate

sequences, 412 hairpins from one strand and 480 hairpins from the other one were ex-

tracted. For these hairpins, features were calculated and prediction workflow was used.

The Solanum lycopersicum (https://solgenomics.net/organism/1/genome) genome

was fragmented into overlapping (250 nt) fragments of 500 nt length (3126673 frag-

ments). Genomes of chloroplast (NCBI Reference Sequence: NC 007898.3) and mito-

chondria (http://www.ncbi.nlm.nih.gov/assembly/GCA 000325825.1) produced 622 and

2405 fragments, respectively. About 26500000 hairpins per nuclear strand, 6000 hairpins

per chloroplast strand, 21000 hairpins per mitochondrial strand were extracted. After re-

moving duplicate sequences and hairpins below 40 or above 500 nucleotides long, around

6200000 hairpins per nuclear strand, 1200 hairpins per chloroplast strand and 4500 hair-

pins per mitochondrial strand were obtained.

For target prediction analysis, psRNATarget (Dai and Zhao, 2011) tool was used.

To generate mature miRNA sequences, hairpins predicted as miRNAs were fragmented

into 30 nt long sequences with 15 nt overlaps. Other than existing target pools in psR-

NATarget (Homo sapiens (human), transcript library and Solanum lycopersicum (tomato),

unigene library) chloroplast and mitochondrial genes of Solanum lycopersicum from NCBI

were also used.
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CHAPTER 3

RESULTS

3.1. Comparison of Available Tools

An overview of the accuracy distribution using 1000 fold MCCV for the three

classifiers’ combined performance can be seen in Figure 3.1.

Figure 3.1. The accuracy distributions from three classifiers for each study.

According to Figure 3.1, Chen has the highest accuracy in terms of maximum

value but Ng and Ding show a better overall performance since their accuracy distribution

is much less data and/or classifier dependent (Figure 3.2). Also, the differences between

their maximum values are not very large (ChenSVM: 0.913, NgDT: 0.899, and DingNB:

0.888, Figure 3.2). These results indicate that although all of the models perform better

than random guessing, none of them significantly outperforms others. Hence, six consen-

sus models are created by integrating the best models from all studies with equal weights.
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Figure 3.2. The accuracy distributions from each classifier for each study. DT (top),
NB (middle), SVM (bottom).

Furthermore, the consensus models are compared to the individual studies by

looking at area under curve values and their respective receiver operator characteristic

curves (Figure 3.3). The AverageDT model performed best reaching an AUC value of

0.993. While DT models shows some distinctive curve patterns, all of the NB model

curves followed similar lines.
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Figure 3.3. ROC graphs for DT and NB. For DT (top), AUC values vary among models
but for NB (bottom) it seems like all of the models follow a similar line
pattern.

3.2. Prediction Performance

The generated models are trained with human miRNA examples and considering

species specific miRNAs it is possible that these models may not perform well for any

other species listed in miRBase. In order to test this, the generated models and consensus

approaches are used to predict all available pre-miRNAs from all 223 species in miRBase

(Figure 3.4). Interestingly, the system works very well, even for plants like Malus do-

mestica (mdm, apple) and Arabidopsis lyrata (aly). Another intriguing outcome of this

analysis is that while TPR values of different models for some organisms are very similar,
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e.g. Malus domestica, some of them are highly dispersed like Canis familiaris (cfa, dog)

and Eptesicus fuscus (efu, big brown bat). Since this situation is also observed in filtered

Mus musculus (mmu*) vs. unfiltered (mmu), this scattering pattern is most likely related

to data quality.

Figure 3.4. TPR of hairpins from different organisms. mmu* stands for filtered mouse
hairpins from miRBase based on a minimum RPM value of 100 and mmu
shows all mouse hairpins with no filtering. Only organisms with a mini-
mum of 200 hairpins in miRBase are selected for this plot.

In most of the cases only TPR is considered as a performance measurement how-

ever finding true negative samples are equally essential. Therefore, TNR of various neg-

ative data sets explained in Section 2.1 are analysed (Figure 3.5). In general, models

generated by NB classifier performed better than DT models and JiangNB performed

best for the majority of all negative data sets, followed by AverageNB and Consensus-

Rule. The most challenging data set for most of the models is NotBestFold (Figure 3.5).

However since this data set is based on alternative structures of human miRNA sequences

it is indeed difficult for sequence based features because the sequences of positive and

negative data are the same, while it is comparatively easier for structural features based

studies like Jiang to differentiate between data sets. Pseudo data set is used during train-

ing so it is expected that all of models will perform well for its prediction. Zou data set is

created by using sequences from the coding region sequences (CDSs) (Wei et al., 2013)
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so it might actually include real miRNA sequences since miRNAs can be originated from

CDSs too (Figure 1.1) and this might be the reason why models showed decreased TNR.

Chen data set is combination of samples from pseudo and Zou so its performance as ex-

pected placed in between those two data sets’ performances. The performance of models

on PseudoFR data set might be explained by the way this data set is generated. Since it is

built by producing random numbers between minimum and maximum values of each fea-

ture in pseudo data set, it is expected that some of these minimum and maximum values

are outliers.

Figure 3.5. TNR of different negative data sets. (For further information about data
sets see Section 2.1)

3.3. Homo sapiens Analysis

Among 60000000 hairpins remained after filtering in human data set, for around

200000 (3%) of them features are calculated and prediction is performed. Out of 913

(-) strand Homo sapiens hairpins listed in miRBase, 9 of them are found (Table 3.1) and

only hsa-mir-3910-2 is identified with its suggested length while others are found either

shorter or longer than miRBase entries. Predictions of each model are shown in Figure

3.6. When a cutoff value of 0.99 is applied to prediction scores of AverageDT for all

calculated hairpins (3% of overall), 662 hairpins are found as miRNAs.
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Table 3.1. Identified Homo sapiens hairpins. Hpl: length of extracted hairpin, HplM:
length of miRBase hairpin, HplMStart: start position of miRBase hairpin
in extracted hairpin, HplStart: start position of extracted hairpin in miR-
Base hairpin.

Accession Chromosome Strand Hpl HplM HplMStart HplStart AverageDT AverageNB
hsa-mir-4670 chr9 - 119 75 23 0,991 1,000
hsa-mir-5702 chr2 - 131 84 24 0,988 1,000
hsa-mir-3064 chr17 - 84 66 8 0,467 0,597
hsa-mir-4299 chr11 - 63 72 6 0,966 0,991
hsa-mir-4460 chr5 - 81 86 2 0,991 1,000
hsa-mir-4801 chr4 - 88 82 3 0,990 1,000
hsa-mir-4694 chr11 - 111 80 20 0,990 1,000

hsa-mir-3910-2 chr9 - 82 82 0 0 0,991 1,000
hsa-mir-8066 chr4 - 70 78 4 0,756 0,926

Figure 3.6. Predictions of models on Homo sapiens data.

3.4. Drosophila melanogaster Analysis

For analysing Drosophila melanogaster 2L hairpins, the models generated by two

training workflows; one with human data and the other one with Drosophila melanogaster

data are applied on the 56 2L hairpins from miRBase (Table 3.2).
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Table 3.2. Scores for Drosophila melanogaster 2L hairpins.

Accession AverageDT(dme) AverageDT(hsa) Accession AverageDT(dme) AverageDT(hsa)
dme-mir-4971 0,968 0,991 dme-mir-275 0,898 0,912
dme-mir-2490 0,980 0,991 dme-mir-1 0,984 0,911
dme-mir-2a-2 0,983 0,991 dme-mir-1006 0,978 0,900
dme-mir-2b-2 0,983 0,991 dme-mir-305 0,984 0,892
dme-mir-133 0,983 0,991 dme-mir-962 0,983 0,844
dme-mir-375 0,983 0,991 dme-mir-960 0,983 0,838
dme-mir-932 0,980 0,991 dme-mir-9382 0,966 0,831
dme-mir-2a-1 0,984 0,991 dme-mir-9378 0,919 0,825
dme-let-7 0,980 0,989 dme-mir-79 0,980 0,781
dme-mir-306 0,980 0,988 dme-mir-4972 0,983 0,776
dme-mir-964 0,983 0,988 dme-mir-4973 0,947 0,775
dme-mir-965 0,983 0,988 dme-mir-2489 0,843 0,772
dme-mir-967 0,977 0,987 dme-mir-9c 0,985 0,763
dme-mir-968 0,983 0,987 dme-mir-1002 0,977 0,755
dme-mir-959 0,983 0,986 dme-mir-4912 0,899 0,723
dme-mir-963 0,983 0,985 dme-mir-4910 0,979 0,721
dme-mir-4974 0,983 0,985 dme-mir-125 0,981 0,691
dme-mir-263a 0,979 0,985 dme-mir-287 0,901 0,688
dme-mir-87 0,980 0,978 dme-mir-1005 0,981 0,660
dme-mir-2495 0,976 0,976 dme-mir-2497 0,916 0,641
dme-mir-100 0,984 0,974 dme-mir-4984 0,973 0,637
dme-mir-4946 0,981 0,964 dme-mir-9374 0,978 0,634
dme-mir-966 0,886 0,957 dme-mir-4970 0,787 0,614
dme-mir-124 0,978 0,938 dme-mir-4987 0,947 0,483
dme-mir-9b 0,980 0,934 dme-mir-4943 0,903 0,328
dme-mir-961 0,979 0,914 dme-mir-288 0,974 0,242
dme-mir-2280 0,983 0,912 dme-mir-1004 0,710 0,182
dme-mir-2b-1 0,983 0,912 dme-mir-4914 0,739 0,017

Out of the 56 hairpins from 2L, the genome wide approach is not able to extract

16 of them (Table 3.3). Further analysis on these hairpins revealed that since the genome

wide approach searches hairpins in a longer transcript (500 nt), instead of these 16 hair-

pins their shorter or longer versions with less mfe values are extracted. Moreover, it is

possible that if there is a more likely hairpin closer and/or overlapping to these miRBase

hairpins, they would be selected and extracted. In dme-mir-4912 case, prediction score is

not calculated since the hairpin is 27 nt long which is smaller than defined threshold of

minimum 30 nt.

For searching all potential miRNAs in 2L chromosome, the models hsa and dme

are applied on all of the extracted hairpins. In order to define a threshold, prediction scores

of 40 miRBase hairpins that are extracted from the chromosome (not listed in Table 3.3)

are taken into consideration; thresholds are defined as the lower quartile values of the 40

hairpins’ prediction scores from AverageDT, as 0.96 for dme model and 0.84 for the hsa

model.
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Table 3.3. Structures of 16 dme hairpins that are not found by GWA.

miRNA hairpin fold(extracted fold from 500nt folding) hsa score
dme-mir-100 ))))).(((((..(((((((..(((..(((((((.(........).).))))))..)))..)))))))..))))).............(((((((.(... 0,718
dme-mir-2489 ((.....)))))).))).(((((((.((((((..((((((((((....))))))..).)))..))))))))))))))))).)))))))....)). 0,870
dme-mir-2495 )))))).....))).)..))))((((.((((.(((((((((((((.((((.((.....)).)))))))).)).))))))).))))))))))))))))))).)))..))))))))) 0,390
dme-mir-287 ))).)))))))))...))))))).)..))))))..(((((..((((((((((((...))))))))))))..)))))..))))))).))))))) 0,870
dme-mir-4912 )))....))))))))))..(((((((((.......)))..))))))))))))).(((((( na
dme-mir-4914 .((.((.....((((..(((...)))..))))..)))))))))).))))....(((((.((..(((........)))..)))))))...))))) 0,470
dme-mir-4973 ))))..........((((((.(((((((((((..(((......(((((((....)))..)))).....)))........((((((.(((((.((....)).))))).)))))).))))))))))).))))))((.((((((((((((...( 0,540
dme-mir-9382 (((((((((..((((.((((((.......................))))))))))..))))))))))). 0,410
dme-mir-4943 ....)....))))))))).))..)))((((((((((((..(.(((((((((.(...........).)))..)))))).).)))))))))))).....((((((((((((.((.(((( 0,810
dme-mir-288 (((((.((((((..((.((((.((((((...(((((((((((....))))........))))))).))))))..)))).))....)))))).))))) 0,465
dme-mir-4910 ..((...((((((((..((((.(((((..(((.....)))..)).)))))))..))))))))...) 0,140
dme-mir-4970 .....((.(((.((..((((.(((((((((.(((.(((.((((..................)))).))).))).))))))))).))))..)).))).)).... 0,243
dme-mir-964 (((((...)))))))))))))((.(((((((((((((...((((((((.............))))))))...))))))))))))).)).(((((...))) 0,990
dme-mir-9b .)))))).........(((((((((...((((.(((((.((........)).))))).))))..))))))))).(((((((((..((.((. 0,940
dme-mir-4984 (((........))))..)))...(((((((((((((((((............((((((((..............))).))))))))))))))))))))))....))))))(((((....)))) 0,930
dme-mir-1004 (((((.(((((((((....(((((..(.((((.....)))))..)))))............((((((( 0,190

Based on the threshold scores 25 of 2L miRNAs listed in miRBase are also found

in the extracted hairpin pool in both models’ predictions while in the hsa model dme-

mir-275, dme-mir-9378, dme-mir-1006, dme-mir-966, dme-mir-967 hairpins passed the

threshold whereas the dme model identified dme-mir-125, dme-mir-275, dme-mir-9374,

dme-mir-960, dme-mir-962, dme-mir-9c. Overall 17455 candidate miRNAs with the dme

model and 43103 candidates with the hsa model are predicted out of 581,883 hairpins in

the 2L chromosome (Figure 3.7).

Figure 3.7. Predicted miRNAs in 2L chromosome of Drosophila melanogaster. Cir-
cles include number of hairpins passing confidence thresholds in hsa and
dme models. Numbers in bold characters indicate miRBase hairpins ex-
tracted and passed the thresholds.
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3.5. Solanum lycopersicum Analysis

Analysis of Solanum lycopersicum nuclear, mitochondrial and chloroplast genomes

showed that all of these genomes could produce hairpin structured transcripts. All of the

hairpins are filtered firstly by their length (as minimum 78 and maximum 240) and then

based on the average of prediction scores of 5 classifiers (minimum average as 0.995).

This filtration process results in 63516 unique hairpins from nuclear genome, 7 unique

hairpins from chloroplast and 36 unique hairpins from mitochondria (Figure 3.8).

In order to find candidate mature sequences, the model with the highest accuracy

score (0.935) is applied to predicted miRNA hairpins after fragmenting them to 24 nt long

sequences with 6 nt overlaps. Mature candidates located in one of the arms and covering

terminal loop are used for further analysis.

In the next step, we searched for interactions among source of miRNAs and their

targets. For this purpose, miRNAs originated from each genome are tested to see whether

they have targets in other genomes as well as in their own genome (Figure 3.8).

Figure 3.8. Solanum lycopersicum miRNA network. Colours indicate the source of
miRNAs; blue nuclear, red mitochondrial, green chloroplast. #t indicates
the number of predicted targets for miRNAs (origin colour coded) found
in the genome.

As it can bee seen from Figure 3.8, some miRNAs that have targets in organelle

genomes have been identified. For instance, some of the nuclear miRNAs seem to be
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targeting chloroplast tRNA genes and ribulose-1,5-bisphosphate carboxylase/oxygenase

large subunit (rbcL) gene which is translated in chloroplast. Also, some of mitochon-

drial targets of nuclear miRNAs include tRNA genes, mitochondrial gene for ABC-type

heme transporter subunit (gi:1304246), mitochondrial rpl10 gene for ribosomal protein

L10 (gi:304376250), mitochondrial gene for 18S ribosomal RNA (gi:658152043) and

mitochondrial atp9 gene for ATPase subunit 9 (gi:13077). The only identified target

of mitochondria originated miRNAs in mitochondria genes is 18S ribosomal RNA gene

(gi:658152043)

For an organelle genome whether it is mitochondria or chloroplast, to produce

miRNAs would mean that either transportation of miRNA machinery (Figure 1.2) through

the membranes of organelles or export of pre-miRNA to cytosol. In the case of rbcL

targeting, the nuclear originated miRNA should be transported into chloroplast. How

such transportation occurs is still not a fully answered question not only for plants but

also for human mitochondrial miRNAs (Shinde and Bhadra, 2015).

3.6. Virus Analysis

The possible miRNAs of retroviruses were analyzed by using the described genome

wide approach (Figure 2.2) and applying the obtained data to izMiR workflows. At the

end, out of 38 hairpins (3 from Human endogenous retrovirus K113 (HERK113), 3 from

Hepatitis B virus (strain ayw) (HB), 10 from Human T-lymphotropic virus 1 (HTLV1), 10

from Human T-lymphotropic virus 2 (HTLV2), 3 from Human immunodeficiency virus

2 (HIV2) and 9 from Human immunodeficiency virus 1 (HIV1)) had prediction scores

above 0.90 for AverageDT. One of the 9 predicted hairpins of Human immunodeficiency

virus 1 matched hiv1-mir-TAR. From these 38 hairpin sequences, 52 mature sequences

were extracted and tested to see if they could target human genes. At the end, 26 mature

sequences seemed to have capacity to target 79 genes in human transcriptome (Table 3.4).

In a similar manner, known human miRNA mature sequences from miRBase were

used to see if they could also target viral genes (Table 3.5). According to information

presented in Table 3.5, none of the 2588 mature sequences of human would not target

genes of HIV2 and HERK113.

Lastly, we did also checked if viral miRNAs could target their own viral genes as

well. However, none of the 52 mature sequences targeted their own genes.
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Table 3.4. List of human genes that might be targeted by viral miRNAs.

Virus Target
HB RALGPS2, DZIP1, ANGPT1, MTHFSD

HIV2 SENP8, SART3, PTBP3, NAAA, FCRL1, FCRL1, BATF2, KIF3A

HERK113 ZNF592, SMCR8, SMC2, SNRPB2, ANGEL1, ANGEL1, PURA, PURA, PERP

HTLV1 RAD18, ARHGEF7, ERAP2, AGPAT5, PTPN4, FAM114A1, SERINC5, XIAP

HTLV2
PSMA5, OTUD4, LCA5, MKLN1, KIAA1549L, ZBTB6, TMEM220, ZNF365,
NEO1, PRKAA2, FOXI1, HBP1, ZNF212, ITPRIP, MME, G6PC, ACP2, MST1L,
DHX8, CDV3, EIF4B

HIV1
TNPO3, UTP14C, FBXO21, CFHR3, SGOL1, L3MBTL4, MEDAG, HTRA2,
PALM2-AKAP2, APAF1, SH3BP2, LMTK2, ERN1, INPP4A, METTL7A, ZNF483,
CLDN10, ADAMTS5, ZNF100, PAPPA, CRISP3, GPHB5, MED21, ARNT2, POLD2

Table 3.5. List of viral genes that might be targeted by human miRNAs.

mirNA Virus Target Description
hsa-mir-3960 HTLV1 gene=HTLV1gp1, protein=Pr gag-pro-pol, location=join(450..1718,1718..2245,2245..4836)
hsa-mir-8077 HTLV1 gene=HTLV1gp1, protein=Pr gag-pro-pol, location=join(450..1718,1718..2245,2245..4836)
hsa-mir-3960 HTLV1 gene=HTLV1gp2, protein=Pr gag-pro, location=join(450..1718,1718..2404)
hsa-mir-8077 HTLV1 gene=HTLV1gp2, protein=Pr gag-pro, location=join(450..1718,1718..2404)
hsa-mir-3960 HTLV1 gene=gag, protein=Pr55, location=450..1739
hsa-mir-8077 HTLV1 gene=gag, protein=Pr55, location=450..1739
hsa-mir-6802-5p HTLV1 gene=env, protein=gp46 SU, location=4829..6295
hsa-mir-6752-5p HTLV2 gene=HTLV2gs1, protein=pol polyprotein, partial=5’, location=<2239..5187
hsa-mir-2116-5p HTLV2 gene=HTLV2gp6, protein=hypothetical protein, location=5180..6640
hsa-mir-6779-5p HTLV2 gene=HTLV2gp6, protein=hypothetical protein, location=5180..6640
hsa-mir-4796-5p HIV1 gene=vif, protein=Vif, location=4587..5165
hsa-mir-6873-3p HIV1 gene=rev, protein=Rev, location=join(5516..5591,7925..8199)
hsa-mir-1913 HIV1 gene=env, protein=Envelope surface glycoprotein gp160, precursor, location=5771..8341
hsa-mir-6873-3p HIV1 gene=env, protein=Envelope surface glycoprotein gp160, precursor, location=5771..8341
hsa-mir-557 HB gene=P, protein=polymerase, location=join(2309..3182,1..1625)
hsa-mir-511-3p HB gene=P, protein=polymerase, location=join(2309..3182,1..1625)
hsa-mir-5193 HB gene=X, protein=X protein, location=1376..1840
hsa-mir-511-3p HB gene=S, protein=large envelope protein, location=join(2850..3182,1..837)
hsa-mir-511-3p HB gene=S, protein=middle envelope protein, location=join(3174..3182,1..837)
hsa-mir-511-3p HB gene=S, protein=small envelope protein, location=157..837
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CHAPTER 4

CONCLUSION

Early estimates indicated that there are about 11 million potential hairpins in the

human genome (Bentwich et al., 2005) and these hairpins might come from any part of the

genome (Lindow and Gorodkin, 2007). However, the results presented in this work show

that the actual number of hairpins that can be transcribed from the human genome is much

higher than anticipated (> 60 million). Combined with the fact that there are hundreds

of features defining pre-miRNAs, analysing such huge data sets becomes a challenging

issue. Furthermore hairpin structure is not limited to miRNAs, meaning that identifying

the hairpins which would become functional miRNAs is a very essential task requiring

highly accurate systems.

One of the main aims of this study is creating an integrative data mining platform

which would provide all the steps to accomplish an efficient classification process for

searching candidate pre-miRNAs in a given data set. To achieve this, available studies in

the area are analysed (Table 1.3) and their individual performances and the new consensus

approaches are compared (Figure 3.1, Figure 3.2 and Figure 3.3). Overall, the presented

framework includes 13 individual studies (feature groups) with two classifier models and

six consensus methods. Although some of the studies have higher accuracy values none

significantly outperforms others. For the consensus models, equal weights are given to all

individual models even though they do not perform equally well. Also, while selecting

the best model among 1000 iterations, the highest accuracy scores are taken into consid-

eration, which may not be the best way. However, the workflows are available for users

and other scores like the F-measure and the Youden index are also calculated for each

model, so if desired alternative model selection strategies can be performed.

The influence of data quality is also assessed by applying the generated models

on various positive and negative data sets. Based on the pre-miRNAs of 223 species in

miRBase, TPR scores for all consensus models and NgDT as the representative of studies

are presented (Table A). Although, the system achieves high scores even for organisms

with big evolutionary distance to human (learning data), for mouse obtained results did

not seem quite well. This situation is further analysed by filtering miRBase mouse hair-
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pins through setting RPM value as minimum 100 (mmu*) and the TPR score of this data

set is much closer to expected range (Figure 3.4). Based on the information in Figure 3.5

the most challenging negative data sets for models to solve are Zou, NotBestFold, and

pseudoFR data sets.

GWA reveals that various organisms genomes have the capacity to produce cer-

tain number of pre-miRNAs. Homo sapiens analysis indicates that human genome has

a higher capacity of pre-miRNAs than estimated. Moreover, Drosophila melanogaster

analysis show that even though the models trained with human miRNA hairpins make pre-

dictions with high TPR scores, the models specially created by Drosophila melanogaster

miRNAs reach to higher scores (Table 3.2). An interesting finding of this analysis is that

some of the miRNAs in miRBase are not extracted from the genomes since their struc-

tures would not create proper hairpins for Drosha and Dicer and/or they have competing

neighbours with better structures (Table 3.3).

To our knowledge this is the first study performing a genome wide miRNA search

in chloroplast and mitochondria and looking for communications between three genomes

in Solanum lycopersicum cells. Network analysis reveals that there are potential miR-

NAs that might be originated from these genomes and target mRNAs of others as well

as their own (Figure 3.8). Although these results require experimental validation, they

suggest that among various communication mechanisms described so far, miRNAs might

be another player in the field in addition to their post-transcriptional regulation functions.

Analysis of potential miRNAs produced by retroviruses and their effects on human

gene regulation is an interesting research area. In this study we showed that a form of

miRNA based cross-kingdom regulation through viruses and their host could be possible.

In the future, experimental validation of the provided results would help increasing our

understanding about the issue.

In conclusion, the work explained in this study provides the comparison of exist-

ing ab initio pre-miRNA prediction tools, enables the opportunity to use the workflows

designed, offers various data sets and shows that the method is applicable to many species,

even to eukaryotes with large genomes.
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Saçar, M. D., C. Bağcı, and J. Allmer (2014, oct). Computational Prediction of MicroR-

NAs from Toxoplasma gondii Potentially Regulating the Hosts’ Gene Expression.

Genomics, proteomics & bioinformatics 12(5), 228–238.
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APPENDIX A

PERFORMANCE ON MIRBASE DATA

Table A.1. TPR scores for organisms in miRBase. hp: number of hairpins, CR: Consen-

susRule, CDT: ConsensusDT, CNB: ConsensusNB, CR: ConsensusRule,

AvgDT: AverageDT, AvgNB: AverageNB. Table sorted from the highest hp

to the lowest.

Acronym hp CR CDT CNB CM AvgDT AvgNB NgDT

hsa 1881 76,40 98,56 86,12 97,13 97,08 82,62 88,62

mmu 1193 59,09 86,59 82,23 76,36 82,82 77,03 80,47

mmu* 380 83,95 95,79 93,42 94,21 95,00 91,05 93,16

bta 808 65,72 84,41 80,45 78,22 81,68 77,60 80,57

gga 740 54,86 83,92 77,43 73,78 79,59 72,84 81,35

eca 715 56,36 92,45 83,50 77,34 87,27 80,14 77,48

mtr 670 73,73 90,45 84,48 82,54 86,27 82,99 83,13

ptr 655 78,32 94,81 88,24 90,23 92,67 86,72 89,77

ppy 642 76,95 91,90 86,60 88,94 89,56 84,58 88,16

mml 619 80,29 94,83 88,85 91,76 91,76 86,75 91,11

osa 592 74,49 89,86 86,49 84,12 86,49 85,47 83,11

gma 573 84,82 96,68 94,76 92,32 95,11 93,02 94,42

efu 502 50,40 92,03 80,68 77,69 87,25 77,29 74,30

cfa 495 65,66 92,93 89,09 81,62 90,30 86,06 84,24

rno 495 77,78 95,15 93,54 89,29 94,34 91,72 92,93

bmo 487 35,32 56,47 54,41 46,61 52,36 51,33 48,05

mdo 460 76,30 95,22 91,52 87,83 93,48 89,35 91,96

oan 396 66,41 90,66 85,35 84,60 89,39 83,08 85,10

ssc 382 65,71 82,46 78,01 75,65 80,63 74,61 78,01

ssa 371 81,94 97,04 95,15 91,91 95,69 92,18 95,15

ppc 354 68,64 93,50 89,83 83,33 89,55 85,31 88,14

ggo 352 77,27 96,02 90,63 93,47 95,45 88,35 93,47

(cont. on next page)
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Table A.1 (cont.).

Acronym hp CR CDT CNB CM AvgDT AvgNB NgDT

ptc 352 82,67 96,31 92,90 92,61 95,45 91,76 94,32

cin 348 59,48 89,37 81,03 75,00 85,92 77,30 87,93

dre 346 83,82 94,22 94,22 91,91 93,35 93,06 94,22

ath 324 77,78 95,06 93,83 89,81 92,90 92,59 91,05

bdi 317 77,60 94,32 91,80 89,27 92,74 90,22 89,91

aca 282 90,78 97,87 97,16 95,04 97,87 96,45 97,16

ipu 281 82,92 96,80 92,17 92,17 95,37 90,39 94,66

gra 269 85,50 99,26 94,80 97,40 98,51 92,57 97,03

chi 267 77,15 97,38 91,01 92,13 95,51 88,76 92,51

dme 256 64,84 92,58 87,11 82,03 89,06 82,42 83,59

ame 254 56,69 77,56 75,20 70,47 73,23 71,26 74,02

cel 250 75,20 93,20 89,20 84,40 90,00 87,60 88,80

tgu 247 77,73 97,17 92,71 91,09 95,95 88,66 95,55

pma 244 80,33 90,57 91,39 86,48 89,34 89,75 88,52

ppt 229 80,79 97,38 95,63 94,32 96,51 95,63 92,14

stu 224 86,61 97,32 95,09 91,96 94,64 94,20 92,41

tca 220 66,36 84,09 81,36 76,82 81,36 79,55 79,09

cbn 214 78,04 94,39 96,26 83,18 93,46 94,86 92,52

dps 210 64,29 89,05 89,05 79,52 87,14 84,29 82,38

mdm 206 96,60 100,00 99,51 100,00 100,00 99,51 100,00

aly 205 88,29 100,00 99,51 97,56 100,00 99,51 98,05

sbi 205 89,76 99,02 97,07 97,07 98,54 96,59 98,54

cgr 200 81,00 94,50 92,50 87,00 93,00 91,00 94,00

prd 200 76,50 98,00 91,50 85,50 96,00 90,00 93,50

oha 198 84,34 97,47 94,95 93,94 95,96 91,41 95,96

xtr 192 88,54 98,96 97,40 95,83 97,92 96,35 96,88

hco 188 73,40 89,89 84,04 85,64 88,83 81,91 88,30

ppe 180 90,00 97,22 96,67 96,67 96,67 95,56 96,67

tch 177 88,70 98,31 95,48 95,48 97,18 93,22 95,48

cbr 175 80,57 95,43 96,00 89,71 94,29 94,29 92,00

zma 172 86,05 97,67 96,51 95,93 97,09 95,93 96,51

ola 168 79,76 95,24 94,64 92,26 94,05 93,45 92,86

vvi 162 83,95 97,53 95,68 96,91 97,53 93,83 94,44

(cont. on next page)

49



Table A.1 (cont.).

Acronym hp CR CDT CNB CM AvgDT AvgNB NgDT

nta 161 90,68 94,41 94,41 94,41 94,41 94,41 95,03

crm 157 76,43 97,45 97,45 84,71 94,90 96,18 92,36

bfl 156 87,82 96,15 94,23 93,59 95,51 94,23 96,15

mes 153 92,16 100,00 98,04 100,00 100,00 97,39 99,35

sme 148 76,35 95,27 91,89 86,49 95,27 90,54 96,62

nve 141 62,41 82,98 78,01 74,47 78,01 73,76 79,43

dsi 135 71,11 90,37 89,63 79,26 85,93 87,41 82,96

ccr 134 91,04 98,51 97,76 94,78 98,51 97,01 97,01

dvi 134 74,63 97,01 92,54 92,54 96,27 91,79 94,03

pxy 133 85,71 96,24 94,74 91,73 95,49 92,48 96,24

tni 132 87,12 99,24 98,48 95,45 99,24 97,73 98,48

fru 131 87,79 100,00 98,47 96,95 99,24 98,47 100,00

cte 129 80,62 96,90 96,12 92,25 95,35 93,80 96,90

lus 124 83,06 100,00 97,58 98,39 100,00 96,77 99,19

api 123 79,67 95,12 91,87 87,80 95,12 90,24 96,75

cme 120 75,00 97,50 96,67 95,83 96,67 95,00 93,33

atr 119 85,71 99,16 99,16 98,32 99,16 99,16 98,32

bbe 118 85,59 96,61 93,22 94,07 95,76 93,22 95,76

tae 116 84,48 96,55 95,69 93,10 93,97 92,24 93,10

bma 115 79,13 95,65 92,17 92,17 94,78 89,57 93,04

sma 115 43,48 72,17 68,70 50,43 66,09 63,48 60,00

oar 106 78,30 97,17 86,79 91,51 94,34 85,85 90,57

str 106 82,08 98,11 96,23 90,57 98,11 95,28 94,34

aae 101 77,23 99,01 97,03 93,07 99,01 97,03 96,04

mse 98 83,67 94,90 91,84 92,86 92,86 91,84 93,88

asu 97 80,41 97,94 92,78 90,72 94,85 92,78 97,94

bra 96 95,83 100,00 100,00 100,00 100,00 100,00 100,00

hme 92 71,74 97,83 91,30 92,39 93,48 90,22 93,48

bna 90 91,11 100,00 98,89 97,78 100,00 98,89 97,78

sko 89 96,63 98,88 98,88 97,75 98,88 98,88 98,88

ppa 88 90,91 98,86 95,45 96,59 98,86 93,18 95,45

ata 88 88,64 100,00 98,86 98,86 100,00 97,73 98,86

dgr 82 84,15 100,00 98,78 92,68 100,00 98,78 100,00
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tcc 82 91,46 100,00 100,00 100,00 100,00 100,00 100,00

der 81 77,78 95,06 97,53 86,42 92,59 95,06 91,36

cpa 79 81,01 92,41 87,34 86,08 88,61 87,34 92,41

dse 78 85,90 93,59 96,15 89,74 91,03 93,59 91,03

dwi 77 75,32 97,40 97,40 88,31 97,40 94,81 97,40

ghr 77 81,82 98,70 97,40 97,40 98,70 96,10 96,10

dan 76 76,32 94,74 96,05 90,79 94,74 92,11 94,74

dya 76 76,32 94,74 93,42 86,84 93,42 93,42 92,11

dpe 75 80,00 98,67 98,67 89,33 97,33 97,33 98,67

sly 75 94,67 98,67 98,67 97,33 98,67 98,67 98,67

mne 74 87,84 100,00 97,30 97,30 98,65 93,24 95,95

cqu 74 79,73 94,59 95,95 89,19 91,89 93,24 91,89

dmo 71 84,51 98,59 95,77 92,96 97,18 95,77 97,18

hvu 69 46,38 78,26 62,32 66,67 69,57 56,52 57,97

odi 66 77,27 87,88 83,33 84,85 86,36 81,82 86,36

aga 66 86,36 98,48 98,48 95,45 98,48 98,48 98,48

sha 64 40,63 89,06 76,56 85,94 87,50 75,00 81,25

spu 63 73,02 84,13 85,71 82,54 82,54 84,13 82,54

rco 63 92,06 100,00 100,00 100,00 100,00 100,00 100,00

lja 62 66,13 95,16 85,48 80,65 91,94 85,48 88,71

age 60 93,33 98,33 96,67 98,33 98,33 96,67 95,00

gsa 60 73,33 95,00 91,67 81,67 95,00 90,00 96,67

csi 60 56,67 86,67 76,67 80,00 85,00 73,33 83,33

lgi 59 93,22 100,00 98,31 100,00 98,31 98,31 98,31

smo 58 87,93 100,00 100,00 100,00 100,00 100,00 100,00

sja 56 50,00 62,50 64,29 57,14 60,71 62,50 64,29

nvi 53 84,91 98,11 94,34 94,34 96,23 90,57 94,34

tur 52 84,62 100,00 100,00 98,08 100,00 100,00 100,00

lva 50 92,00 96,00 96,00 94,00 96,00 96,00 96,00

cre 50 88,00 100,00 98,00 96,00 100,00 98,00 98,00

pmi 49 87,76 100,00 93,88 97,96 97,96 93,88 93,88

isc 49 79,59 97,96 97,96 93,88 95,92 97,96 95,92

lla 48 91,67 100,00 95,83 97,92 97,92 93,75 93,75
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cca 48 93,75 100,00 97,92 100,00 100,00 97,92 97,92

esi 46 93,48 97,83 95,65 93,48 97,83 95,65 95,65

aqc 45 84,44 97,78 93,33 93,33 95,56 88,89 95,56

dpu 44 72,73 81,82 75,00 81,82 79,55 75,00 81,82

sla 42 88,10 97,62 95,24 100,00 97,62 95,24 90,48

hhi 40 67,50 92,50 85,00 85,00 87,50 82,50 85,00

pab 40 55,00 82,50 80,00 75,00 77,50 80,00 75,00

rlcv 36 88,89 97,22 97,22 97,22 97,22 94,44 97,22

pta 34 91,18 97,06 94,12 91,18 94,12 94,12 91,18

ngi 32 84,38 93,75 93,75 87,50 93,75 93,75 90,63

rgl 32 40,63 75,00 68,75 62,50 68,75 65,63 68,75

hbr 31 77,42 96,77 96,77 83,87 93,55 96,77 87,10

pde 29 93,10 96,55 96,55 96,55 96,55 96,55 96,55

pgi 29 100,00 100,00 100,00 100,00 100,00 100,00 100,00

nlo 28 92,86 96,43 96,43 92,86 96,43 96,43 96,43

csa 27 74,07 92,59 77,78 92,59 92,59 74,07 92,59

ebv 25 84,00 100,00 96,00 100,00 100,00 96,00 100,00

rmi 24 25,00 54,17 45,83 37,50 41,67 41,67 50,00

dev 24 45,83 75,00 79,17 62,50 70,83 79,17 66,67

egr 23 69,57 95,65 91,30 86,96 95,65 86,96 95,65

ahy 23 65,22 73,91 73,91 69,57 69,57 73,91 86,96

xla 22 90,91 95,45 90,91 86,36 90,91 90,91 81,82

emu 22 72,73 100,00 90,91 95,45 100,00 86,36 90,91

pol 20 85,00 95,00 95,00 90,00 95,00 95,00 95,00

aja 19 89,47 100,00 100,00 100,00 100,00 94,74 94,74

ssp 19 78,95 100,00 100,00 94,74 100,00 100,00 94,74

vun 18 94,44 100,00 100,00 94,44 100,00 100,00 94,44

ssl 18 88,89 100,00 100,00 100,00 100,00 94,44 100,00

hsv1 18 72,22 88,89 88,89 72,22 83,33 83,33 88,89

hsv2 18 83,33 88,89 88,89 88,89 88,89 88,89 88,89

mcmv 18 72,22 88,89 83,33 88,89 88,89 83,33 77,78

mdv2 18 72,22 88,89 94,44 83,33 83,33 94,44 83,33

hma 17 76,47 94,12 94,12 94,12 94,12 94,12 94,12
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ddi 17 100,00 100,00 100,00 100,00 100,00 100,00 100,00

hvt 17 41,18 70,59 64,71 58,82 70,59 58,82 70,59

lca 16 87,50 93,75 87,50 93,75 93,75 87,50 93,75

htu 16 87,50 100,00 93,75 100,00 100,00 93,75 100,00

sof 16 50,00 93,75 100,00 87,50 87,50 100,00 87,50

far 15 13,33 80,00 53,33 53,33 73,33 53,33 46,67

hcmv 15 60,00 100,00 100,00 80,00 93,33 93,33 100,00

mghv 15 73,33 93,33 93,33 86,67 86,67 80,00 80,00

mdv1 14 71,43 100,00 92,86 92,86 100,00 92,86 100,00

pti 13 0,00 76,92 46,15 38,46 69,23 46,15 15,38

gso 13 92,31 100,00 100,00 100,00 100,00 92,31 100,00

dpr 13 92,31 100,00 100,00 100,00 100,00 100,00 100,00

kshv 13 61,54 92,31 84,62 69,23 84,62 84,62 69,23

prv 13 38,46 100,00 100,00 84,62 84,62 84,62 84,62

ocu 12 100,00 100,00 100,00 100,00 100,00 100,00 100,00

hbv 12 75,00 91,67 100,00 83,33 91,67 100,00 100,00

pbi 11 100,00 100,00 100,00 100,00 100,00 100,00 90,91

ssy 11 100,00 100,00 100,00 100,00 100,00 100,00 100,00

bol 10 100,00 100,00 100,00 100,00 100,00 100,00 100,00

bhv1 10 30,00 60,00 80,00 50,00 60,00 70,00 60,00

xbo 8 75,00 75,00 75,00 75,00 75,00 75,00 75,00

aqu 8 100,00 100,00 100,00 100,00 100,00 100,00 100,00

pvu 8 75,00 100,00 100,00 75,00 100,00 100,00 75,00

lmi 7 71,43 100,00 100,00 100,00 100,00 100,00 100,00

aau 7 71,43 71,43 85,71 71,43 71,43 85,71 100,00

iltv 7 85,71 85,71 85,71 85,71 85,71 85,71 85,71

rrv 7 85,71 100,00 100,00 100,00 100,00 100,00 100,00

han 6 66,67 66,67 66,67 66,67 66,67 66,67 66,67

ctr 6 33,33 100,00 100,00 83,33 100,00 100,00 83,33

egu 6 83,33 100,00 100,00 100,00 100,00 100,00 100,00

mja 5 40,00 80,00 60,00 40,00 60,00 60,00 80,00

hru 5 80,00 80,00 80,00 80,00 80,00 80,00 100,00

ccl 5 60,00 100,00 100,00 100,00 100,00 100,00 100,00
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bhv5 5 60,00 100,00 100,00 60,00 100,00 100,00 100,00

blv 5 100,00 100,00 100,00 100,00 100,00 100,00 100,00

cln 4 75,00 100,00 100,00 75,00 100,00 100,00 100,00

bcy 4 75,00 100,00 100,00 100,00 100,00 100,00 75,00

bgy 4 100,00 100,00 100,00 100,00 100,00 100,00 100,00

crt 4 75,00 100,00 100,00 100,00 100,00 100,00 100,00

peu 4 0,00 100,00 50,00 75,00 100,00 50,00 50,00

hhv6b 4 75,00 75,00 75,00 100,00 75,00 75,00 75,00

meu 3 66,67 100,00 66,67 100,00 100,00 66,67 100,00

smr 3 100,00 100,00 100,00 100,00 100,00 100,00 100,00

har 3 33,33 66,67 66,67 66,67 66,67 66,67 66,67

hci 3 33,33 66,67 66,67 66,67 66,67 33,33 33,33

hpa 3 66,67 100,00 100,00 100,00 100,00 100,00 66,67

hpe 3 100,00 100,00 100,00 100,00 100,00 100,00 100,00

amg 3 66,67 66,67 100,00 66,67 66,67 100,00 100,00

hiv1 3 33,33 33,33 66,67 33,33 33,33 66,67 33,33

hvsa 3 100,00 100,00 100,00 100,00 100,00 100,00 100,00

pra 2 100,00 100,00 100,00 100,00 100,00 100,00 100,00

psj 2 100,00 100,00 100,00 100,00 100,00 100,00 100,00

cla 2 100,00 100,00 100,00 100,00 100,00 100,00 100,00

hex 2 0,00 0,00 0,00 0,00 0,00 0,00 0,00

ama 2 100,00 100,00 100,00 100,00 100,00 100,00 100,00

bfv 2 50,00 100,00 100,00 100,00 100,00 100,00 100,00

pin 1 100,00 100,00 100,00 100,00 100,00 100,00 100,00

gpy 1 100,00 100,00 100,00 100,00 100,00 100,00 100,00

tre 1 100,00 100,00 100,00 100,00 100,00 100,00 100,00

lco 1 100,00 100,00 100,00 100,00 100,00 100,00 100,00

sci 1 100,00 100,00 100,00 100,00 100,00 100,00 100,00

gar 1 100,00 100,00 100,00 100,00 100,00 100,00 100,00

ghb 1 100,00 100,00 100,00 100,00 100,00 100,00 100,00

ttu 1 100,00 100,00 100,00 100,00 100,00 100,00 100,00

bkv 1 100,00 100,00 100,00 100,00 100,00 100,00 100,00

bpcv1 1 0,00 100,00 100,00 100,00 100,00 0,00 100,00
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bpcv2 1 100,00 100,00 100,00 100,00 100,00 100,00 100,00

jcv 1 100,00 100,00 100,00 100,00 100,00 100,00 100,00

mcv 1 0,00 100,00 100,00 100,00 100,00 100,00 100,00

sv40 1 100,00 100,00 100,00 100,00 100,00 100,00 100,00
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APPENDIX B

ACCURACY DISTRIBUTIONS

Figure B.1. The accuracy distributions of five classifiers for Solanum lycopersicum
hairpin analysis.
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Khalifa W, Yousef M, Saçar Demirci MD and Allmer J (2016) The impact of feature

selection on one and two-class classification performance for plant microRNAs, PeerJ.
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