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ABSTRACT 

 

EVENT DISTORTION BASED CLUSTERING ALGORITHM FOR 

ENERGY HARVESTING WIRELESS SENSOR NETWORKS 

 

Wireless Sensor Network (WSN) is a set of inexpensive densely deployed wireless 

sensor nodes with limited functionalities and scarcity in energies, whose observations are 

forwarded or relayed by intermediate nodes to the Base Station (BS). In the networks with 

densely deployed nodes, the observations are likely to be highly correlated in the space 

domain. This type of correlation is referred as spatial correlation, which produces 

unfavorable redundant readings causing energy wasting.  

In this thesis, the main task is to reduce these nodes that have redundant readings by 

using a clustering algorithm called Event Based Clustering (EDC) algorithm. The clustering 

algorithm is based on exploiting the spatial correlation that is used to cluster the sensor nodes. 

Exploiting spatial correlation is proposed by using Vector Quantization (VQ) with respect to 

the distortion constraints. Furthermore, this algorithm is applied for energy harvesting sensor 

nodes. Also, the inessential sensor nodes that have correlated readings are reduced for 

improving the Energy-Efficacy (EE) with acceptable level of event signal reconstruction 

distortion at the sink node. 

After applying the EDC algorithm, the communication model is changed from single-

hop model to two-hop (clustered-network) model. Hence, a theoretical framework of 

distortion function, i.e., accuracy level, for both single-hop and two-hop communication 

models is derived. Then, single-hop and two-hop communication models are compared in 

terms of achieved distortion level, number of alive nodes, and energy consumption for 

different sizes of event area. Finally, the effects of various harvested energy level on the 

clustered-network is studied with respect to the same terms. 
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ÖZET 

 

ENERJİ TOPLAYAN KABLOSUZ SENSÖR AĞLARI İÇİN OLAY 

BOZULMASINA DAYALI KÜMELENME ALGORİTMASI 

 

Kablosuz Sensör Ağı (KSA), işlevsellikleri sınırlı, enerjileri az, pahalı olmayan, 

yoğun bir şekilde konuşlandırılmış kablosuz sensör düğümleri setidir. Sensör düğümlerinin 

gözlemleri, ara düğümler tarafından baz istasyonuna iletilir. Yoğun bir şekilde 

konuşlandırılmış düğümlerden oluşan ağlarda gözlemler büyük oranda ilintilidir. Uzaysal 

ilinti olarak adlandırılan bu tür ilintiler, gereksiz algılayıcı okumalarına neden olur ve 

dolayısıyla enerji israfına neden olur.  

Bu tez çalışmasında enerji toplayan sensör ağları için Olay Bozulmasına Dayalı 

Kümeleme (OBK) algoritması adı verilen bir kümeleme algoritması verilmektedir. OBK 

algoritması sensörler arasındaki uzaysal ilintiyi kullanarak gereksiz okumalara sebep olan 

düğümleri azaltmak sureti ile enerji tüketimini azaltmayı amaçlamaktadır. Uzaysal ilintinin 

kullanılması bozulma kısıtlamalarına göre Vektör Nicemleme (VN) ile gerçeklenmektedir. 

Sensörlerin baz istasyonuna yaptıkları iletişim için tek hop ve iki hop olmak üzere iki ayrı 

iletişim modeli düşünülerek bu modellerin her biri için iki ayrı olay bozulma fonksiyonu 

türetilmektedir.  

Baz istasyonu OBK algoritması ile türetilen bu bozulma fonksiyonlarını kullanarak 

ilintili okumalara sahip sensör düğümlerinin veri iletimini kontrol edebilmektedir. Bu kontrol 

sayesinde hangi sensörün iletim yapacağına karar verilerek belli bir olay bozulma kısıtlaması 

karşılanırken enerji-etkin iletişim de sağlanabilmektedir. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. Wireless Sensor Network  

 

Wireless Sensor Network (WSN) is a set of sensor nodes that are connected with each 

other through wireless and noisy channel. Each sensor node requires to sense for physical 

phenomena (e.g., field source, fixed and random point sources). Then, each sensor node 

forwards its observations to the Base Station (BS) to be processed or viewed by the end user 

as in Fig 1.1. However, that’s not the whole story, there are many challenges which need to 

be addressed by the developers and engineers in WSNs such as fault tolerance, scalability, 

production costs, hardware constraints, communication and power consumption [1].  
 

 

Figure 1.1 Wireless Sensor Network  

Event area  Sensor Nodes  

BS 
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In WSNs, nodes’ deployment can be random or systematic (fixed topologies) 

determined by the designer or application [1]. Random deployment has an advantage of being 

less expensive than fixed deployment. It enables WSNs to be applied in hostile and 

unreachable environment such as battlefield and under water. As a result, the random 

deployment is more general case but there is a coverage problem (i.e., it’s not guaranteed that 

sensors will cover the whole event area) [1]. Hence, this can be solved by increasing nodes 

density in an event area, i.e., increasing the number of sensors. Since the communication 

among sensor nodes is one of the main source of energy consumption, communication 

protocols are devised for reducing energy consumption. 

In WSNs, it is possible to exploit spatial correlation in sensor readings to improve 

energy efficiency. In densely deployment case, nearby sensor nodes get similar observations 

[3]. By keeping the data distortion below a predefined threshold, sensor nodes can exploit 

spatial correlation to reduce amount of data forwarded to the sink node. This reduction will 

improve Energy-Efficiency (EE) and preserve the distortion level, i.e., without changing the 

accuracy of received data at the sink node. 

One of the main challenges of communication protocols and applications in WSNs is 

energy saving [1]. The battery-powered sensor nodes need to be charged regularly. Reaching 

operation is expensive, on addition, some event areas are unreachable. The developers 

addressed this issue by equipping energy harvesting unit to each sensor node [2]. For 

harvesting sensor networks, there are various sources are available to be harvested, e.g., 

Solar, Vibration (motion), Winds, Thermal and Radio frequency (RF) Signals, etc. Each of 

these harvesting sources provides a different level of harvesting energy as shown in Table 

1.1. In this thesis, RF-harvesting will be used for its inexpensive implementation and 

availability. 

 

1.2. Types and Applications  

 

In various scenarios sensor nodes are required due to their capability to observe a 

different type of event sources, e.g., humidity, temperature, and lighting, etc. Based on the 

applications, different types of WSNs are needed:  
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 Terrestrial WSN: Typically, it consists of hundreds to larger number of low-cost 

wireless sensor nodes deployed in event area, either in an ad hoc (unstructured) or in 

a pre-planned (structured) manner. In ad hoc deployment, sensor nodes can be 

randomly placed into the target area by being dropped from a plane. For example, 

deploying a WSN on an active volcano [17]. Furthermore, some event areas may 

remain uncovered (coverage issue), thus nodes density is required and thus, results 

into difficulties in maintenance (e.g., recharging, communication, etc.). In pre-

planned deployment, all or some sensor nodes are deployed based on fixed planned 

architecture, for example grid and optimal [25] placement models. The advantage of 

pre-planned deployment is that fewer nodes can be deployed, which makes the 

maintenance less cost than ad hoc deployment case.  

 Undergrounded WSN [26] [27] [16]:  set of sensor nodes are buried underground either 

in a cave or mine and are used to monitor underground conditions. Furthermore, sink nodes 

are placed above ground as relays, for taking readings from underground sensor nodes to the 

base station. With respect to maintenance, equipment and deployment, underground WSN 

are more expensive than terrestrial WSN, where suitable equipment parts are needed to 

ensure reliable communication through soil, rocks, water, and other mineral contents to 

reduce the signal losses and attenuation level. Before sensor nodes deploying for 

underground WSN, it requires careful planning of energy and cost considerations. 

Underground sensors are powered with a limited battery power and it is difficult to recharge 

or replace their batteries. 

 

 

Figure 1.2 Undergrounded Wireless Sensor Network 
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 Underwater WSN [28] [29]: A set of number of sensor nodes or vehicles are placed 

underwater that provides great opportunity to discover oceans as to improve the 

studies in environmental issues (Fig 1.3), e.g., marine life in the oceans climate, 

variations of climate and population of coral reefs, etc. As compared to terrestrial 

WSNs, less nodes are needed but more expensive to be sank underwater. Acoustic 

waves are used for wireless communications between underwater sensor nodes. 

Generally, the main challenges in underwater acoustic communication are bandwidth 

limitation, propagation delay, and signal fading problems. 

 

 

Figure 1.3 Underwater Wireless Sensor Network 

 

 Multi-media WSN [30] [18]: A set of inexpensive sensor nodes are equipped with 

cameras and microphones for monitoring multimedia events, such as videos, audios, 

and images (Fig 1.4). These sensors are placed in structured manner to ensure the 

coverage. Furthermore, multi-media WSN requires high bandwidth to deliver the 

media content, e.g., video stream, that requires high data rate. Hence, it causes high 

energy consumption rate. Besides, it is important that a certain level of Quality of 

Service (QoS) is achieved for delivering data reliably.  

Underwater Sensor Nodes 

Wireless Acoustic links  surface buoy 

Base Station (BS) Internet 

(Cloud Storage) 

End User 



 5 
 

 

 

Figure 1.4 Multimedia Wireless Sensor Network  

 

 Mobile WSN [15] [19]: A set of dynamic sensor nodes are capable to sense, 

compute, and communicate like static nodes, i.e., sensor nodes with fixed locations. 

However, there are two main differences with static WSN. Firstly, dynamic sensor 

nodes are capable of repositioning and organize themselves. Since they are able to 

move from one place to another, the higher degree of coverage and connectivity can 

be achieved. Mobile sensor nodes can deliver gathered information to nearby mobile 

nodes. Secondly, there is a difference in data distribution. In a static WSN, data can 

be distributed using fixed routing, while mobile sensor nodes are using a dynamic 

routing. As a result, the issues in mobile sensor nodes include nodes deployment, 

localization, self-organization, navigation, control, coverage, energy, maintenance, 

and data processing, etc. 

 Mainly WSNs applications (Fig 1.5) are bounded in civil applications (e.g., alarm, 

medical, and home etc.) and military applications [1]: -  

 Environmental applications [21]: These sensor networks have many different 

applications in the environment. They can be used for the wildlife tracking 

Internet/ Satellite 

End User 

Microphone 
Sensor Camera  

Video Camera 

Gateway  
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applications, earth quack monitoring, soil observations, atmosphere context, 

irrigation monitoring, natural disasters and almost agricultural issues can be 

addressed by sensor nodes. 

 

 

Figure 1.5 Applications of Wireless Sensor Network 

 

 Medical applications: The advances in integrated biomedical devices and smart 

sensor nodes, have attracted researchers and engineers to exploit sensor networks in 

biomedical field. Some of the medical applications for WSNs are provided for 

diagnostics, monitoring of disabled, patient, drug administration in hospitals, 

movements of insects or other animals, doctors inside hospital, and emergency 

response [31].  

 Military applications [23]: Rapid deployment and self-organizing aspects that are 

made by WSNs are very useful for sensing and observing friendly or hostile 

movements in military operations (Fig 1.6). Furthermore, sensor nodes are capable 

to detect chemical, nuclear, biological attacks, reconnaissance of opposing forces 

WSN
Military

Civil  

Medical

Drug 
administration 

Patient 
monitoring

Home

Vacuum cleaners

Refrigerators

Industrial 
Preventive 
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and terrain in C4ISR systems (i.e., Command, control, communications, computers, 

intelligence, surveillance, and reconnaissance), and battlefield surveillance, etc.  

 Home applications [20]: As the technology is developing, smart sensor nodes can 

be equipped in home devices, such as vacuum cleaners, micro-wave ovens, 

refrigerators, and VCRs. These nodes allow users to control home devices locally 

and remotely by the capability of these nodes to be connected with each other and 

with external networks by the internet or satellite. 

 

 

Figure 1.6 Military Applications for Wireless Sensor Networks 

 

 Industrial applications [22]: Wired or wireless sensor networks can be used for 

industrial fields, such as industrial sensing and control applications, building 

automation, monitoring material fatigue, smart structures with embedded sensor 

nodes and access control etc. Sensor based monitoring systems and manual 

monitoring systems are usable in industrial area for preventive maintenance. Wired 

sensors in such a systems require high cost for upgrading, deployment and require 

personal supervision. 

Satellite 

Local station 

Event of interest  
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1.3. Sensor Node Components  

 

The main components [1] of any typical sensor node have been illustrated in Fig 1.7. 

They are: processer, transceiver, memory, power source and sensing unit. All components of 

a sensor node have different functions as defined below: 

 Processer (micro-controller) unit: It’s a low power consumption unit responsible for 

processing data (e.g., modulation and signal processing, etc.) and controlling other 

units to perform specific tasks at any given time.   

 

 

Figure 1.7 Components of Sensor Node  

 

 Transceiver unit: Wireless sensors use radio frequency media for transmission and 

receiving, by allocating specific frequencies with four different states; transmit, 

receive, idle, and sleep. This unit is defined as the most unit consuming power than 

other units because of its antenna.  

Energy Harvesting 

Unit 

Energy 

Management  

Energy Storage 

Low-Powered 

Processing Unit  

RF-Transceiver 

Unit  

Additional 

Memory 

Sensing Unit 

Energy sources 
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 Memory unit: Mainly it’s used for saving data before transmitting and after 

receiving. 

 Power unit: It can be capacitor or battery (rechargeable or non-rechargeable). It is 

responsible for powering other units. 

 Sensing unit: This unit is used for tracking or observing the physical or environment 

events. 

 External unit: It can be another sensor node, transceiver unit, power unit or 

harvesting unit.  

 Table 1.1. Examples of Energy Harvesting Sources [2] 
 

 

 

 

 

 

 

 

 

 

 

 

 

1.4. Harvesting Technology  

 

Energy gathering from surrounding environment is one of perspective solutions [2] 

for powering sensor nodes. There are different kinds of sources that can be harvested as 

shown in Table 1.1. RF-harvesting will be used in this thesis for its inexpensive 

Source Environmental location Source Power Harvested Power 

 

Light 

Indoor 0.1 𝑚𝑊/𝑐𝑚2 10 𝜇𝑊/𝑐𝑚2 

 Outdoor 100 𝑚𝑊/𝑐𝑚2 10 𝑚𝑊/𝑐𝑚2 

 

 

Human 0.5 𝑚 𝑎𝑡 1 𝐻𝑧  

 

Vibration/Motion 

 1 𝑚/𝑠2 𝑎𝑡 50 𝐻𝑧 4 𝜇𝑊/𝑐𝑚2 

 Machine 1 𝑚 𝑎𝑡 5 𝐻𝑧  

  10 𝑚/𝑠2 𝑎𝑡 1 𝑘𝐻𝑧 100 𝜇𝑊/𝑐𝑚2 

Radio Frequency GSM BSS 0.3 𝜇𝑊/𝑐𝑚2 0.1 𝜇𝑊/𝑐𝑚2 

Thermal Human 20 𝑚𝑊/𝑐𝑚2 30 𝜇𝑊/𝑐𝑚2 

 Machine 100 𝑚𝑊/𝑐𝑚2 1 − 10 𝑚𝑊/𝑐𝑚2 
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implementation and this type of energy source is more reliable. RF-harvesting is done by 

equipping a harvesting circuit to each sensor node and this type of network is called Energy 

Harvesting Wireless Sensor Network (EH-WSN). RF-harvesting converting electromagnetic 

energy from radio frequencies to the electrical form (DC) to be saved in the storage device. 

The main components of harvesting unit are: antenna, impedance matching, voltage 

multiplier and storage capacitor. 

 

1.5. Aim of The Study 

 

For dense nodes’ deployment, sensors have redundant readings, and hence there is a 

wasting of energy and information. Consequently, the main problem is, how the number of 

nodes which have similar readings can be reduced in order to select the specific nodes that 

must transmit their data to the Base Station (BS) with respect to the coverage, reliability 

(distortion), and Energy-Efficiency (EE). 

   The algorithm proposed in this thesis, addresses these problems, by exploiting spatial 

correlation in densely deployment case to cluster sensor nodes and reduce their energy 

consumption. Furthermore, the presented theoretical framework for point-to-point (single-

hop) communication model, to test distortion level of all sensor nodes after nodes reduction, 

and for two-hop communication model to present final accuracy level of the proposed 

clustering algorithm with respect to power constraints. 

 

1.6. Outline 

 

The remaining part of this thesis is organized as follow. Chapter 2 covers related 

works. In chapter 3, the Event Distortion Based Clustering (EDC) algorithm is presented with 

theoretical frameworks for both single-hop and two-hop communication models, besides, the 

energy model for the resulting network (clustered-network) is discussed. EDC analysis and 

simulation results are presented in chapter 4 and the conclusion in the chapter 5. 
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CHAPTER 2 

 

BACKGROUND AND RELATED WORKS 

 

2.1. Overview  

 

The advantages of WSNs are more precise nowadays and in the field of 

communications they cannot be neglected anymore. WSNs can provide varieties of research 

works with wide range of applications in military, industry, security and environmental fields 

[1] as discussed in previous chapter. But the drawback of WSN is its limited energy 

constrains as it might be deployed in areas where it is not feasible for its batteries to be 

replaced or recharged. 

This chapter provides a brief description of the existing works related to this thesis’ 

study. The overview of the clustering algorithms for WSNs is described in Section 2.2. In 

addition, the exploiting of spatial correlation is defined in Section 2.3. Finally, the summery 

is discussed in section 2.4. 

 

2.2. Clustering for Wireless Sensor Networks 

 

Reliability, Energy-Efficiency (EE), channel capacity, accuracy, and communication 

are crucial issues that have to be considered along with the WSN. In sensor networks, distant 

nodes depend on a number of intermediate nodes to forward their observations about physical 

phenomena. Consequently, the intermediate sensor nodes run out of their energy, and hence 

the reliability level is lost at the sink node.  These issues can be addressed by clustering the 

sensor nodes. In clustering, the sensor nodes are divided into different clusters. Each cluster 

is managed by a node that is referred as Cluster Head (CH) and other nodes that are referred 

as Cluster Members (CMs). CMs don’t communicate directly with the sink node. They have 

to pass their readings to the CH. Then, the CH aggregates their readings and transmis their 
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data to the BS or sink node. Furthermore, The CHs are responsible for coordinating with both 

inter-cluster and intra-cluster communications1 as shown in Fig 2.1. 

 

Figure 2.1 Clustering for Wireless Sensor Network 

 

The crucial results from clustering the sensor nodes are prolonged network lifetime, 

scalability for WSNs, and reduced communication overhead, etc. Hence, the clustering 

algorithms can be exploited in many applications, such as earthquake monitoring and 

applications that support data aggregation, such as microclimate and habitat monitoring. 

As discussed in previous chapter, in a dense deployment case, nearby sensor nodes 

have correlated sensing readings (due to spatial correlation) as in Fig 2.2. Hence, it may not 

be essential for every sensor node to transmit its data to the sink; instead, a smaller number 

of sensor nodes referred to as active nodes, might be sufficient to transfer event data to the 

sink node with respect to the predefined distortion level, while the nodes that are prevented 

from observing are called inactive nodes. One prevalent way [7] for conserving energy is 

clustering the network into several clusters for example Low-Energy Adaptive Clustering 

Hierarchy (LEACH) [8] and an Energy Efficient Clustering Scheme (EECS) [9]. 

                                                           
1 The communications that generated inside the cluster (e.g., between CM and CH) are referred as inter-
cluster communications, while the communications between two CHs that located at different clusters are 
referred as intra-cluster communications. 

Cluster 

Sink Node 

Intra-cluster communication 

Inter-cluster communication 

Cluster Head (CH) 

Cluster Member (CM) 
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Furthermore, there are several clustering algorithms that exploits spatial correlation: GAG 

[10], and EAST [11], etc.  
 

 

Figure 2.2 Exploiting Spatial Correlation 

 

In [10], the authors have presented a clustering algorithm to reduce the number of 

transmissions towards the sink node to reduce overhead packets and to enhance total EE of 

sensor nodes. The process has been done by grouping the sensor nodes which have similar 

readings into set of clusters, the size of each cluster defined by correlation range. At each 

iteration, only one sensor node from each cluster is required to send its own data to the sink 

node, based on fault-tolerance (accuracy level) with 10% error threshold. Finally, a reduction 

of 70 % of overhead packets have been observed.  

In [11], the author followed the general idea of [10], but in [11], the difference 

between event sources has been investigated. For events that change at small range, the 

correlated region can be decreased to keep the accuracy level, i.e., the event needs to be 

informed by nearby nodes. For events that do not change at small range, the correlated region 

can be increased to improve the EE. The size of the correlation region can be resized by the 

sink node. 

To qualify the existing algorithms in WSNs, distortion level and energy conservation 

should be considered as the main issues. In WSNs, the distortion represents the similarity 

level between original and estimated readings. Different distortion functions have been 

derived in [3] and [4] in Minimum Mean Squared Sense (MMSE). 

In [3], the author presented an algorithm called Iterative Node Selection (INS) for 

selecting the representative nodes by exploiting spatial correlation through Vector 

Quantization (VQ). The communication model has been considered according to the point-

Correlation range 

BS 

Active node 

Inactive node 

Densely nodes 

deployment 

Event area 

Exploiting spatial 

correlation 

Communication 
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to-point (single-hop) case, i.e., each sensor node transmits its reading directly to the sink 

node, as shown in Fig 2.2. In addition, the author hasn’t assumed any channel noise in the 

communication links. Furthermore, the spatial correlation model between sensors 

observations is modeled by exponential model.   

In [4], the same communication model has been used, but the sensor readings are 

similar and without observation noise. Also, there is one noise in the end of network (sink 

node). Hence, the distortion function is derived with respect to power constraints. 

 

2.3.  Summary  

 

The proposed work is inspired by these above works to minimize data redundancy for 

preserving node energy and prolonging the network life time. In this thesis, a new clustering 

algorithm is proposed by exploiting spatial correlation through Vector Quantization (VQ). In 

contrast to the previous studies (e.g., [3]), our focus is that there is a channel noise in each 

communication link, besides there are observation noises for readings of sensor nodes. In 

such a case, the distortion function is derived with respect to the power constraints. Then, by 

clustering the sensor nodes through VQ, a different communication model is formed. Hence, 

another distortion function is derived for clustered-network, i.e., two-hop communication 

model, which is unlike previous studies that used fault-tolerance to define the accuracy level.    



 15 
 

CHAPTER 3 

 

EVENT DISTORTION-BASED CLUSTERING 

 

3.1.  Overview  

 

In WSNs, clustering is one of the important techniques that is applied for enhancing 

Energy-Efficiency (EE) and prolonging the lifetime of the network. In the preceding chapter, 

various clustering algorithms which can exploit spatial correlation among sensor nodes and 

different distortion functions to examine the reliability level of sensor network are discussed. 

Those previous works have been devised for wireless sensor networks in which sensors are 

assumed to be battery-powered operated nodes. However, the clustering of battery-free 

sensor nodes in energy harvesting wireless sensor networks poses different challenges, such 

as lack of a permanent power source to sense or enable communication process whenever it 

is needed. In order to address such challenges, in this chapter, a clustering algorithm called 

Event Distortion Based Clustering (EDC) algorithm is introduced for energy harvesting 

wireless sensor networks. 

In this chapter, the problem statement is first given in Section 3.2. Then, the network 

model of WSN is introduced in Section 3.3. In Section 3.4, the EDC algorithm is introduced 

and finally, the energy model that is used for the performance evaluations of the EDC 

algorithm is given in Section 3.5. 

 

3.2. Problem Statement  

 

In this thesis, the network is considered as a set of 𝑁 homogeneous wireless sensor 

nodes {𝑛}𝑁 = [𝑛1, 𝑛2, … … … , 𝑛𝑁]. The sensor nodes are assumed to be randomly and 

densely deployed in an event area, and hence the sensor readings tend to be spatially 

correlated and thus, redundant. Hence, due to this redundancy which may inject excessive 

traffic load on the network and the lack of permanent energy source in the nodes, it is 
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important to decide which sensor nodes should transmit their readings in order to provide an 

acceptable level of the event signal reconstruction distortion at the sink node. This issue is 

addressed by the EDC algorithm by exploiting spatial correlation through the Vector 

Quantization (VQ) in the following chapter. Next, the network model for WSN is considered 

in this thesis is introduced.  

 

3.3.  Network Model 

 

The sensor nodes are deployed in the event area for observing the physical event, 

which generates an event signal, 𝑆, through a point source. Each sensor node has a fixed 

location and it capable to send its data through single-hop (point-to-point) and multi-hop 

communication models as illustrated in Fig 3.1. The sink node is assumed to be at the center 

of the network. Furthermore, the following assumptions are considered in the thesis: 
 

 

Figure 3.1 Wireless Sensor Network Considered in This Thesis 

 

 All sensor nodes are densely and randomly deployed in the event area. 

 All sensors are capable of adjusting their transmission power levels. 

 All sensor nodes are homogeneous and have the same capabilities. 

 Each sensor is equipped with a harvesting unit to harvest energy from ambient 

electromagnetic radiation in radio frequencies. 



 17 
 

 Each sensor node transmits its data to the other sensor node or to the sink node 

without encoding the data. 

 

3.4. Event Distortion Based Clustering (EDC) Algorithm  

 

Here, the EDC algorithm is introduced. It is an off-line algorithm which runs in the 

sink node to cluster the sensor nodes so as to determine which sensor nodes should send their 

readings to the sink node for an acceptable level of event signal reconstruction distortion. 

The distortion function is first derived for single-hop model. Then, the clustering of the 

sensor node is explained through the EDC algorithm. Finally, based on the clustered network, 

the distortion function is used to evaluate the performance of the EDC algorithm. 

 

3.4.1. Distortion with Point-To-Point Communication 

 

In this section, a scenario in which all of 𝑁 sensor nodes send their readings to the 

sink node through single-hop links are considered. It is also assumed that all the sensor 

readings can reliably reach the sink node without any loss. The model for the information 

gathered by 𝑁 sensors in an event area is illustrated in Fig. 3.2. The sink is concerned in 

estimating the event source (i.e., point source at location, 𝑛0), S, according to the 

observations of the sensor nodes, 𝑛𝑖, in the event area. Each node, 𝑛𝑖 , observes, 𝑋𝑖[𝑛], the 

noisy version of the event information, 𝑆𝑖[𝑛], which is spatially correlated to the event 

source, S. In order to transfer these observations to the sink node, the sensor nodes don’t 

encode their readings. The uncoded information are then sent to the sink node by single-hop 

communications through channel noise, 𝑊𝑖[𝑛]. The sink node estimates these 

information, 𝑌𝑖[𝑛], to get the estimate, 𝑆̂, of the event source 𝑆.. Each observed sample, 𝑋𝑖[𝑛],  

of sensor, 𝑛𝑖, at time 𝑛 is defined as: 

𝑋𝑖[𝑛] = 𝑆𝑖[𝑛] + 𝑁𝑖[𝑛]  

(3.1) 

where the location of node 𝑛𝑖 denoted by the subscript 𝑖, i.e., (𝑥𝑖 , 𝑦𝑖). 
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𝑆𝑖[𝑛] is the realization of the space-time process 𝑠(𝑡, 𝑥, 𝑦) at time 𝑡2 = 𝑡𝑛 and (𝑥, 𝑦)  =

 (𝑥𝑖, 𝑦𝑖), and 𝑁𝑖[𝑛] is the observation noise. {𝑁𝑖[𝑛]}𝑛 is a sequence of i.i.d Gaussian random 

variables of zero mean and variance 𝜎𝑁
2. Furthermore, the noises at different sensors are 

independent of each other, that is, 𝑁𝑖[𝑛] and 𝑁𝑗[𝑛] are independent for 𝑖 ≠ 𝑗 and ∀𝑛.  

 

Figure 3.2 Point-to-Point communication Model 
 

By dropping the time index 𝑛, (3.1) can be restated as: 

𝑋𝑖 = 𝑆𝑖 + 𝑁𝑖 (3.2) 

where the observation noise, 𝑁𝑖, of each sensor node, 𝑛𝑖 , is modeled as i.i.d. Gaussian random 

variable of zero mean and variance 𝜎𝑁
2. Furthermore, the event information, 𝑆𝑖, at node 𝑛𝑖 is 

modeled as Joint Gaussian Random Variables (JGRVs) as: 

𝐸[𝑆𝑖] = 0,     𝑣𝑎𝑟[𝑆𝑖] = 𝜎𝑆
2,          𝑖 = 1,2, … , 𝑁. (3.3) 

The physical event information is assumed to have an exponential autocorrelation 

function [32], [33] the correlation coefficient , 𝜌(𝑆𝑖, 𝑆𝑗), between the observations of sensor 

nodes, 𝑛𝑖 and 𝑛𝑗 , can be given as follows:  

                                                           
2 Note that, a discrete-time model is used, since each node samples the physical phenomenon synchronously after the initial wake-up. 

𝑆̂𝑃 𝑆̂ 
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𝜌(𝑆𝑖, 𝑆𝑗) =
𝐸[𝑆𝑖𝑆𝑗]

𝜎𝑆
2 = 𝑒

(
𝑑(𝑛𝑖,𝑛𝑗)

𝜃1
⁄ )

𝜃2

. 

 

(3.4) 

Here, 𝜃2 = 1 is used in exponential model, and 𝜃1 controls the correlation range 

between the observations of sensor nodes. Furthermore, 𝑑(𝑛𝑖, 𝑛𝑗) = ||𝑛𝑖 − 𝑛𝑗|| denotes the 

distance between nodes 𝑛𝑖 and 𝑛𝑗 . This correlation coefficient, 𝜌(𝑆𝑖, 𝑆𝑗), is assumed to be 

non-negative and decreases monotonically with the distance, 𝑑(𝑛𝑖, 𝑛𝑗), with limiting values 

of 1 at 𝑑 = 0 and of 0 at 𝑑 = ∞. 

The event source, S, is a JGRV and it is of special interest. Hence, the 𝜌(𝑆, 𝑆𝑖) and 

𝑑(𝑛0, 𝑛𝑖), can be denoted as the correlation coefficient and the distance, between the event 

source, 𝑆, at 𝑛0 and sensor node, 𝑛𝑖, respectively. As follows: 

𝜌(𝑆, 𝑆𝑖) =
𝐸[𝑆 𝑆𝑖]

𝜎𝑆
2 = 𝑒

(
𝑑(𝑛0,𝑛𝑖)

𝜃1
⁄ )

𝜃2
.
 

 

(3.5) 

where 𝑑(𝑛0, 𝑛𝑖) = ||𝑛0 − 𝑛𝑖|| denotes the distance between event source at position 𝑛0, 𝑆, 

and node, 𝑛𝑖. As each sensor node, 𝑛𝑖, observes an event information, 𝑋𝑖. This information 

is then encoded to be forwarded to the sink node. It has been investigated that for sensor 

networks, the uncoded transmission performs better than the coding approach with Gaussian 

source [4]. Hence, uncoded transmission is adopted for the sensor readings, in this analysis. 

Consequently, each node, 𝑛𝑖, sends to the sink a scaled version of the observed sample, 𝑋𝑖, 

to meet its power constraint, 𝑃̂, i.e., transmitted power for data from sensor, 𝑛𝑖, to the sink 

node, which it can be defined by calculating the energy consumption for transmitting number 

of bits over specific interval, it will be defined in Section 3.5. It is given as follows: 

∑ 𝐸[(𝛼 𝑋𝑖)
2]

𝑁

𝑖=1

≤ 𝑁𝑃̂. 
 

(3.6) 

By taking the upper bound, then (3.6) can be simplified with respect to (2) as: 

𝐸[(𝛼 (𝑆𝑖 + 𝑁𝑖))
2

] = 𝑃.̂ (3.7) 
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Since each sensor, 𝑛𝑖 , is capable to adjust its power level based on the destination, 

then (𝑃̂ = 𝑃𝑖)3. Then, the scaler, 𝛼𝑖, can be defined after taking the expectation operator as:  

𝛼𝑖 = √
𝑃𝑖

𝜎𝑆
2 + 𝜎𝑁

2 . 

 

(3.8) 

where 𝜎𝑆
2 and 𝜎𝑁

2 are the variances of the event information, 𝑆𝑖, and the observation noise, 

𝑁𝑖, respectively. Then, the received signal at sink node, 𝑌𝑖, can be defined as 

𝑌𝑖 = 𝛼𝑖𝑋𝑖 + 𝑊𝑖.  (3.9) 

where {𝑊}𝑖 is a channel noise between node, 𝑛𝑖, and sink node, which its modeled as a set 

of i.i.d Gaussian random variables with zero mean and variance 𝜎𝑊
2 .  

The sink needs to calculate the estimation of each event information, 𝑆𝑖. Since 

uncoded transmission is used, it is well known that the Minimum Mean Square Error 

(MMSE) estimation is the optimum decoding technique [34]. Hence, the estimation, 𝑍𝑖, of 

the event information, 𝑆𝑖, is simply the MMSE estimation of 𝑌𝑖. Then, 𝑍𝑖  can be defined 

according to the linear transformation of 𝑌𝑖 as: 

𝑍𝑖 = 𝑎 𝑌𝑖 . (3.10) 

where 𝑎 is a constant. For optimal case, the received sample, 𝑍𝑖, in sink node is equal to the 

observation, 𝑆𝑖, of node, 𝑛𝑖, as given below: 

  𝐸[(𝑍𝑖 − 𝑆𝑖)
2] = 0. (3.11) 

In order to find an optimal 𝑎, the derivative is taken with respect to 𝑎 and the 

expectation is applied after (3.8) is substituted in (3.9), as follows:  

𝐸 [
𝑑

𝑑𝑎
((𝑎2 𝑌𝑖

2) − 2(𝑎 𝑌𝑖 𝑆𝑖) + (𝑆𝑖
2))] = 0. 

(3.12) 

Then, 

                                                           
3 The transmitted powers can be calculated based on sensor locations at the sink node, and hence they are 
assumed to be fixed. 
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𝐸[(2 𝑎 𝑌𝑖
2) − 2(𝑌𝑖 𝑆𝑖)] = 0. (3.13) 

Finally, 𝑎 can be written as: 

𝑎 =
𝐸[𝑌𝑖𝑆𝑖]

𝐸[𝑌𝑖
2]

. 
 

(3.14) 

After finding 𝑎, 𝑍𝑖 can be easily expressed by substituting (3.2), (3.9) and (3.14) is 

substituted in (3.10), as follows;  

𝑍𝑖 =
𝐸[𝑌𝑖𝑆𝑖]

𝐸[𝑌𝑖
2]

𝑌𝑖 =
𝐸[(𝛼𝑖 𝑋𝑖 + 𝑊𝑖 ) 𝑆𝑖]

𝐸[(𝛼𝑖 𝑋𝑖 + 𝑊𝑖)2]
𝑌𝑖. 

(3.15) 

Since there is no correlation between 𝑆𝑖 and 𝑊𝑖, it can be written as; 

𝑍𝑖 =
𝐸[(𝛼𝑖 𝑋𝑖 𝑆𝑖)]

𝐸[(𝛼𝑖 𝑋𝑖)2] + 𝐸[(𝑊𝑖)2]
𝑌𝑖 =

𝛼𝑖 𝐸[𝑋𝑖 𝑆𝑖]

𝑣𝑎𝑟(𝛼𝑖 𝑋𝑖) + 𝑣𝑎𝑟(𝑊𝑖)
𝑌𝑖 . 

(3.16) 

where the means of 𝑋𝑖 and 𝑊𝑖 are zeros. Consequently, 𝑍𝑖 can be simplified as; 

𝑍𝑖 =
𝛼𝑖 𝐸[𝑆𝑖

2]

𝛼𝑖
2(𝜎𝑆

2 + 𝜎𝑁
2) + 𝜎𝑊

2  𝑌𝑖. 
(3.17) 

Finally, 𝑍𝑖 can be stated as; 

𝑍𝑖 =
𝛼𝑖 𝜎𝑆

2

𝑃𝑖 + 𝜎𝑊
2  𝑌𝑖. 

(3.18) 

The 𝑍𝑖 is decoded using (MMSE) estimator in the sink node. Hence, the estimation, 

𝑆̂𝑃, of event source, 𝑆, can be computed by taking the average of all the received event 

information, 𝑍𝑖. Then, the estimated version, 𝑆̂𝑃, can be formed as, 

𝑆̂𝑃 =
1

𝑁
∑ 𝑍𝑖

𝑁

𝑖=1

. 
  

  

(3.19) 

Finally, the distortion for single-hop communication model, 𝐷𝑝𝑜𝑖𝑛𝑡, can be presented 

with respect to the estimated value, 𝑆̂𝑃, as: 
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𝐷𝑝𝑜𝑖𝑛𝑡 = 𝐸 [(𝑆 − 𝑆̂𝑃)
2

] = 𝐸[𝑆2] − 2 𝐸[𝑆 𝑆̂] + 𝐸[𝑆̂2]. (3.20) 

The first term, 𝐸[𝑆2], is equal to 𝜎𝑆
2. The second term, 𝐸[𝑆 𝑆̂𝑃], is calculated by 

substituting (3.19), (3.18), (3.9), and (3.2) as follows: 

𝐸[𝑆 𝑆̂𝑃] = 𝐸 [𝑆 (
1

𝑁
∑

𝛼𝑖 𝜎𝑆
2

𝑃𝑖 + 𝜎𝑊
2  (𝛼𝑖 (𝑆𝑖 + 𝑁𝑖) + 𝑊𝑖)

𝑁

𝑖=1

)]. 
 

(3.21) 

Note that, there is no correlation between (𝑆 and 𝑁𝑖), and (𝑆 and 𝑊𝑖). Hence, it can 

be solved by: 

𝐸[𝑆 𝑆̂𝑃] =
1

𝑁
∑

𝛼𝑖
2 𝜎𝑆

4

𝑃𝑖 + 𝜎𝑊
2  𝜌(𝑆, 𝑆𝑖).

𝑁

𝑖=1

 

 

(3.22) 

Since mean of 𝑆̂ is zero, the third term, 𝐸[𝑆̂𝑃
2], is equal to the variance of the estimated 

version, 𝑆̂, of 𝑆. i.e., 

𝐸[𝑆̂𝑃
2] = 𝑣𝑎𝑟(𝑆̂). (3.23) 

By using (3.17), 

𝐸[𝑆̂𝑃
2] = 𝑣𝑎𝑟 (

1

𝑁
∑ 𝑍𝑖

𝑁

𝑖=1

) =
1

𝑁2
∑ 𝑣𝑎𝑟(𝑍𝑖)

𝑁

𝑖=1

+
1

𝑁2
∑ ∑ 𝐸[𝑍𝑖𝑍𝑗]

𝑁

𝑗=1

𝑁

𝑖=1

. 
 

(3.24) 

Substituting (3.19), (3.18), (3.9), and (3.2) in (3.24), then (3.24) can be extended as shown: 

Then, it can be reduced after taking the expectation as shown: 

𝐸[𝑆̂𝑃
2] =

1

𝑁2
∑

𝛼𝑖
2 𝜎𝑆

4

𝑃𝑖 + 𝜎𝑊
2

𝑁

𝑖=1

+
𝜎𝑆

4

𝑁2
∑ ∑

𝛼𝑖
2

𝑃𝑖 + 𝜎𝑊
2  

𝛼𝑗
2

𝑃𝑗 + 𝜎𝑊
2

𝑁

𝑗=1

𝑁

𝑖=1

𝜌(𝑆𝑖, 𝑆𝑗). 
 

(3.26) 

Using (3.22) and (3.26) in (3.20), the result can be finalized as: 

𝐸[𝑆̂𝑃
2] =

1

𝑁2
∑ (

𝛼𝑖 𝜎𝑆
2

𝑃𝑖 + 𝜎𝑊
2 )

2

 𝑣𝑎𝑟(𝛼𝑖 𝑋𝑖 + 𝑊𝑖) +
𝜎𝑆

4

𝑁2
∑ ∑

𝛼𝑖

𝑃𝑖 + 𝜎𝑊
2  

𝛼𝑗

𝑃𝑗 + 𝜎𝑊
2

𝑁

𝑗=1

𝑁

𝑖=1

𝑁

𝑖=1

× 𝐸[((𝛼𝑖(𝑆𝑖 + 𝑁𝑖) + 𝑊𝑖)  (𝛼𝑗(𝑆𝑗 + 𝑁𝑗) + 𝑊𝑗)]. 

 

(3.25) 
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𝐷𝑝𝑜𝑖𝑛𝑡 = 𝜎𝑆
2 −

𝜎𝑆
4

𝑁2
∑

𝛼𝑖
2

𝑃𝑖 + 𝜎𝑊
2  (2 𝑁 𝜌(𝑆, 𝑆𝑖) − 1 − ∑  

𝛼𝑗
2 𝜌(𝑆𝑖, 𝑆𝑗)

𝑃𝑗 + 𝜎𝑊
2

𝑁

𝑗=1

) .

𝑁

𝑖=1

 

 

(3.27) 

where 𝜌(𝑆, 𝑆𝑖) and 𝜌(𝑆𝑖, 𝑆𝑗) are correlation coefficients between node, 𝑛𝑖, and source event, 

𝑆, and between node, 𝑛𝑖, and node, 𝑛𝑗, respectively. This distortion function represents the 

accuracy level of original event 𝑆 at sink node for single-hop communication with respect to 

observation and channel noises.  

 

3.4.2. Clustering Formation  

 

According to the results that obtained in the preceding section, the EDC algorithm is 

introduced. The EDC algorithm is firstly required to select a smaller set of sensor nodes, 

rather than all sensor nodes. These selected sensor nodes are defined through exploiting 

spatial correlation such that the acceptable level of event signal reconstruction distortion can 

be maintained at the sink node. The EDC algorithm uses VQ as a way to exploit spatial 

correlation. Secondly, the sensor nodes are clustered by the sink node based on the selected 

and unselected nodes that are defined by VQ. An overview about the VQ design problem is 

given next. 

VQ is a lossy data compression method [12], that compresses the set of pixels for 

images, or the set of bits in signals (e.g., speech signals). The VQ maps k-dimensional source 

vectors (i.e., pixels or bits) into the finite set of vectors called codewords. The set of all 

codeword vectors is called codebook. Associated with each codeword, a nearest region is 

called Voronoi region. However, this method reduces the quality of images or signals, 

because VQ is nothing more than an approximation.  

Generally, the samples of speech signal might be temporally correlated, and the pixels 

of specific image might be spatially correlated. Therefore, the selection of correlated points 

based on a distortion constraint has been investigated by exploiting VQ methods [12]. Hence, 

these methods have been used by properly addressing the dense deployment issue in WSN 

[3].  
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The VQ design can be described as follows [12]: Given a vector source with its 

statistical properties known4, given a distortion constraint, and given the number of 

codewords, the VQ algorithm tries to find a codebook and partitions (i.e., voronoi regions) 

which result in the smallest possible average distortion. More specifically, the VQ algorithm 

aims to represent all possible codewords in a code space by a subset of codewords, within 

the distortion constraint (i.e., maximum acceptable distortion). Hence, the spatial correlation 

can be exploited using VQ, where all the sensor nodes in an event area are needed to be 

represented with a smaller number. If two dimensional source vector is selected, the code 

space in the VQ method is applied to the network topology with the sensor nodes as the 

codeword spaces. The VQ algorithm, when it is applied to the sensor nodes selection issue, 

the codebook and the partitions can be determined. Since the sensor nodes are densely 

deployed, it is possible to refer the closest nodes to the fixed locations of codebook as 

Representative Nodes, while the other remaining nodes are referred as Unrepresentative 

Nodes.  

The EDC algorithm starts with selecting the length of codebook as one, to be an input 

to the VQ, as well as all 𝑁 sensor nodes as a source vector. The outputs are one representative 

node and set of unrepresentative nodes. Then, the EDC algorithm iteratively increases the 

number of representative nodes (i.e., by increasing the length of codebook). For each 

increment, the unrepresentative nodes are decreased. The EDC algorithm continues to 

increase the number of representative nodes until the point distortion, defined by (27), of the 

unrepresentative nodes achieves distortion constraint.  

The INS algorithm [3] successfully selects the representative nodes but it does not 

exploit the unselected nodes. However, the EDC algorithm consideres only the 

unrepresentative nodes readings (instead of representative nodes) to be transmitted to the sink 

node. Moreover, the EDC algorithm uses the representative nodes in relaying the 

observations of unrepresentative sensor nodes to the sink node. In the EDC algorithm, only 

the readings of unrepresentative sensor nodes are considered at the sink node. The majority 

of the unrepresentative nodes and the advantage of their coverage made the distortion more 

likely to be maintained at the sink node, rather than representative sensor nodes.   

                                                           
4 The statistical property is referred as a type of source vector distribution, or deployment approach in the 
WSN sense. In WSN, nodes deployment can be done through Uniform, Poisson, or Gaussian distribution.  
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. 

Figure 3.3 Clustered-Network by EDC Algorithm 

 

The EDC algorithm then forms a sample topology, as shown in Fig 3.3. The Voronoi 

diagrams are referred as clusters, administered by their Cluster Heads (CHs), (i.e., 𝑐 

representative nodes). All Cluster Members (CMs), (i.e., all 𝑟 unrepresentative nodes) are 

located inside clusters that are assigned by K-Nearest Neighbor (KNN) [24]. Each cluster 𝑘 

contains set of 𝑚𝑘
5 cluster members, which are defined through KNN with respect to their 

CHs. Furthermore, The distortion constraint represents the maximum acceptable distortion 

level in single-hop case for unrepresentative nodes, 𝐷𝑃𝑜𝑖𝑛𝑡(𝑟) with respect to distortion 

threshold, 𝐷𝑡ℎ𝑟𝑒𝑠𝑜𝑙𝑑, which it defined with respect to the application requirement. 

                                                           
5 Each cluster contains different numbers of 𝐶𝑀𝑠, i.e., 𝑚𝑘 ≠ 𝑚𝑙, that are calculated in the sink node based 

on KNN with respect to voronoi regions, and hence they assumed to be fixed not random. 

Cluster Members Cluster Heads 

BS 

Codebook 

Inter-communication 

Intra-communication  

Cluster 
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Figure 3.4 Event Distortion Based Clustering (EDC) Algorithm 
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for all 𝑁 sensor nodes 

Applying Vector Quantization 

(VQ) 

Unrepresentative Nodes (𝑟)- 

transmission is required 

Representative Nodes (𝑐)- 

transmission isn’t required 

IF 

𝐷𝑝𝑜𝑖𝑛𝑡(𝑟) ≥ 𝐷𝑝𝑜𝑖𝑛𝑡(𝑁) + 𝐷𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

𝑤ℎ𝑒𝑟𝑒 𝑐 = 𝑁 − 𝑟 

  

𝑐 = 𝑐 + 1 

Representative Nodes CHs 

Unrepresentative Nodes CMs 

Voronoi digrams Clusters 

The previous results of 

representative, (𝑐 − 1), and 

unrepresentatve nodes, (𝑟 + 1) 

IF 

𝐸𝐶𝐻(𝑖),𝐶𝑀(𝑘,𝑖) <  𝜀0 

∀ 𝑘, 𝑖  

𝐶𝐻(𝑘) = 𝐶𝑀(𝑘, 𝑖),  

where, 𝑖 = max(𝐸𝐶𝑀𝑠(𝑘, : )) 
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After defining a clustered-network, the EDC algorithm starts to check the energy 

level of all sensor nodes (CH & CM) and changes their duties based on their remaining 

energies. Since each sensor node is assumed to transmit its information about its remaining 

energy level to the sink node. 

In the case that the energy level of CH (or CM) is under a predefined threshold, 𝜀0, it 

turns to inactive state (i.e., sensor node is prevented from observing, aggregating and 

communicating etc.). Furthermore, if the energy level of cluster head 𝑘 at cluster 𝑘, 𝐸𝐶𝐻(𝑘), 

is less than 𝜀0, the CM with highest energy level is elected to play CH role until CH recover 

its energy. Moreover, recovering the energy is assumed to be done continuously through 

energy harvesting from ambient electromagnetic radiation in radio frequencies.  

During the lifetime of the network, the network topology can change due to failure or 

battery drain of sensor nodes. However, since the distortion depends on the physical 

phenomenon, such a change should not affect the distortion achieved at the sink, unless the 

number of CMs decreases significantly (i.e., when the energy level of any cluster member 𝑖 

at cluster 𝑘, 𝐸𝐶𝑀(𝑘, 𝑖), is less than 𝜀0). In such a case, the event information cannot be 

captured in the sink node at the desired distortion level.  

 

3.4.3. Distortion with Two-hop Communication 

 

The presented EDC algorithm uses two-hop communication model for data transfer 

as shown in Fig 3.3, unlike single-hop model that has been defined in Fig 3.2. The model for 

the information gathered by all Cluster Members (CMs) in the event area is shown in Fig 3.5. 

The sink node estimates the event source, S, i.e., point source at location 𝑛0, according to the 

observations of only CMs, 𝑆𝑘,𝑖. Each cluster member 𝑖 at cluster 𝑘, 𝐶𝑀𝑘,𝑖, observes the noisy 

version, 𝑋𝑘,𝑖, of the event information, 𝑆𝑘,𝑖, which is spatially correlated with the event 

source, 𝑆. In order to transfer these observations to the sink node, the CMs don’t need encode 

their readings. The uncoded information are then sent to the cluster head 𝑘 at cluster 𝑘, 𝐶𝐻𝑘, 

by single-hop communications through channel noise, 𝑊𝑘,𝑖. Then, each 𝐶𝐻𝑘 receives and 

aggregates the samples from its CMs, 𝑌𝑘,𝑖, after decoding them. Also, 𝐶𝐻𝑘 does not need to 

encodes its data, and hence it only requires to receive the observations from 𝑚𝑘 cluster 
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members and then it aggregates their readings. Then, the aggregated information, 𝑆𝑘, is 

relayed to the sink node through another channel noise, 𝑔𝑘. The sink is then estimates from 

the information of 𝐶𝐻𝑘, 𝑌𝑘, to get the estimation, 𝑆̂𝑅, of the event source, 𝑆. Hereafter, for 

ease of illustration, the time index is dropped. Hence, each observed sample, 𝑋𝑘,𝑖, of 𝐶𝑀𝑘,𝑖 

is defined as: 

𝑋𝑘,𝑖 = 𝑆𝑘,𝑖 + 𝑁𝑘,𝑖. (3.28) 

 

Figure. 3.5 Two-hop Communication Model 

 

where {𝑁}𝑘,𝑖 is a set of i.i.d Gaussian random variables with zero mean and variance 𝜎𝑁
2. The 

event information, 𝑆𝑘,𝑖, at each 𝐶𝑀𝑘,𝑖 is modeled according to the Joint Gaussian Random 

Variables (JGRVs) as follows:  

𝐸[𝑆𝑘,𝑖] = 0, 𝑣𝑎𝑟[𝑆𝑘,𝑖] = 𝜎𝑆
2,    𝑖 = 1,2, … . , 𝑚𝑘. (3.29) 

where these properties are the same for different CMs and even in different clusters. The 

CMs that are located in the same cluster might be correlated, as well as in different clusters. 

Since, the physical event has an exponential autocorrelation function, then, the correlation 

coefficient , 𝜌(𝑆𝑘,𝑖, 𝑆𝑘,𝑗), between the observations of cluster member 𝑖 and 𝑗 at cluster 𝑘, and 

𝑆̂𝑅 

𝑆̂ 

CM CH 
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𝜌(𝑆𝑘,𝑖, 𝑆𝑙,𝑗), between the observations of cluster members 𝑖 and 𝑗 at clusters 𝑘 and 𝑙, 

respectively can be given as follows:  

𝜌(𝑆𝑘,𝑖, 𝑆𝑘,𝑗) =
𝐸[𝑆𝑘,𝑖 𝑆𝑘,𝑗]

𝜎𝑆
2 = 𝑒

(
𝑑(𝐶𝑀𝑘,𝑖,𝐶𝑀𝑘,𝑗)

𝜃1
⁄ )

𝜃2

 

 

(3.30) 

𝜌(𝑆𝑘,𝑖, 𝑆𝑙,𝑗) =
𝐸[𝑆𝑘,𝑖 𝑆𝑙,𝑗]

𝜎𝑆
2 = 𝑒

(
𝑑(𝐶𝑀𝑘,𝑖,𝐶𝑀𝑙,𝑗)

𝜃1
⁄ )

𝜃2

.
 

 

(3.31) 

Similarly, the event source, S, is modeled as JGRV. The correlation coefficient, 

𝜌(𝑆, 𝑆𝑘,𝑖), and the distance, 𝑑(𝑛0, 𝐶𝑀𝑘,𝑖), between the event source, 𝑆, and 𝐶𝑀𝑘,𝑖, 

respectively, are given bellow: 

𝜌(𝑆, 𝑆𝑘,𝑖) =
𝐸[𝑆 𝑆𝑘,𝑖]

𝜎𝑆
2 = 𝑒

(
𝑑(𝑛0,𝐶𝑀𝑘,𝑖)

𝜃1
⁄ )

𝜃2

.
 

 

(3.32) 

Since uncoded transmission has been adopted in this analysis for single-hop 

communication with Gaussian source, then the received sample 𝑌𝑘,𝑖 at CH can be defined as: 

𝑌𝑘,𝑖 = 𝛼𝑘,𝑖𝑋𝑘,𝑖 + 𝑊𝑘,𝑖. (3.33) 

where {𝑊}𝑘,𝑖 is a channel noise (between 𝐶𝑀𝑘,𝑖 and 𝐶𝐻𝑘), which is defined as a set of i.i.d 

Gaussian random variables with zero mean and variance 𝜎𝑊
2 . And the scalar 𝛼 is defined with 

respect to its power constraints, 𝑃̂, as: 

∑ 𝐸[𝛼 𝑋𝑘,𝑖]
2

𝑚𝑘

𝑖=1

≤ 𝑚𝑘 𝑃̂. 
(3.34) 

Since each 𝐶𝑀𝑘,𝑖 is capable to adjust its transmitted power level, then 𝑃̂ ≜ 𝑃𝑘,𝑖, i.e., 

the transmitted power for the information from 𝐶𝑀𝑘,𝑖 to the 𝐶𝐻𝑘. Hence, by taking the upper 

bound of (3.34), then the scaler 𝛼𝑘,𝑖 can be simplified as: 

𝛼𝑘,𝑖 = √
𝑃𝑘,𝑖

𝜎𝑆
2 + 𝜎𝑁

2. 

 

(3.35) 
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In order to estimate the received sample at CH, MMSE estimation is used. Hence, 

received signal at 𝐶𝐻𝑘, 𝑍𝑘,𝑖, can be defined according to the linear transformation of 𝑌𝑘,𝑖 as 

follows: 

𝑍𝑘,𝑖 = 𝑎 𝑌𝑘,𝑖. (3.36) 

where 𝑎 is constants. According to the MMSE estimator the optimal case the received signal, 

𝑍𝑘,𝑖, is equal to the sensor observation, 𝑆𝑘,𝑖, as: 

𝐸[(𝑍𝑘,𝑖 − 𝑆𝑘,𝑖)2] = 0. (3.37) 

Similarly, in order to find an optimal 𝑎, the derivative is calculated with respect to 𝑎 

and the expectation is applied after (36) is substituted in (37), as defined bellow:  

𝐸 [
𝑑

𝑑𝑎
(𝑎2 𝑌𝑘,𝑖

2 − 2 𝑎 𝑌𝑘,𝑖 𝑆𝑘,𝑖 + 𝑆𝑘,𝑖
2)] = 0. 

 

(3.38) 

Since the means of source 𝑆𝑘,𝑖 and noise 𝑁𝑘,𝑖 are zero, then (3.38) can be solved and 

𝑎 can be given by: 

𝑎 =
𝐸[𝑌𝑘,𝑖 𝑆𝑘,𝑖]

𝐸[𝑌𝑘,𝑖
2]

. 
 

(3.39) 

After finding 𝑎, 𝑍𝑘,𝑖 can expressed by using (3.28), (3.33), (3.39) in (3.36) as follows: 

𝑍𝑘,𝑖 =
𝐸[𝑌𝑘,𝑖 𝑆𝑘,𝑖]

𝐸[𝑌𝑘,𝑖
2]

𝑌𝑘,𝑖 =
𝐸[(𝛼𝑘,𝑖 𝑋𝑘,𝑖 + 𝑊𝑘,𝑖 ) 𝑆𝑘,𝑖]

𝐸[(𝛼𝑘,𝑖 𝑋𝑘,𝑖 + 𝑊𝑘,𝑖)2]
𝑌𝑘,𝑖. 

 

(3.40) 

Since there is no correlation between 𝑆𝑘,𝑖 and 𝑊𝑘,𝑖, then it can be reduced to: 

𝑍𝑘,𝑖 =
𝐸[(𝛼𝑘,𝑖 𝑋𝑘,𝑖 𝑆𝑘,𝑖)]

𝐸[(𝛼𝑘,𝑖 𝑋𝑘,𝑖)2] + 𝐸[(𝑊𝑘,𝑖)2]
𝑌𝑘,𝑖 =

𝛼𝑘,𝑖 𝐸[𝑋𝑘,𝑖 𝑆𝑘,𝑖]

𝛼𝑘,𝑖
2𝑣𝑎𝑟( 𝑋𝑘,𝑖) + 𝑣𝑎𝑟(𝑊𝑘,𝑖)

𝑌𝑘,𝑖. 
 

(3.41) 

where the means of 𝑋𝑘,𝑖 and 𝑊𝑘,𝑖 are zero. Hence, 𝑍𝑘,𝑖 can be finally simplified as: 

𝑍𝑘,𝑖 =
𝛼𝑘,𝑖 𝜎𝑆

2

𝑃𝑘,𝑖 + 𝜎𝑊
2  𝑌𝑘,𝑖. 

 

(3.42) 

Furthermore, since the 𝐶𝐻𝑘 decodes each 𝑌𝑘,𝑖 using the MMSE estimator, the 

estimation, 𝑆𝑘, of the event information, 𝑆𝑘,𝑖 can simply be computed by taking the average 

of 𝑚𝑘 readings of CMs, 𝑍𝑘,𝑖. Then, the estimation, 𝑆𝑘, is given as follows: 
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The uncoded transmission is not only optimal for single-hop communication, but also 

for two-hop communication model [14]. Then, the received sample, 𝑌𝑘, at sink node, and it 

can be defined as: 

𝑌𝑘 = 𝛼𝑆𝑘 + 𝑔𝑘. (3.44) 

where {𝑔}𝑘 is a channel noise that between 𝐶𝐻𝑘 and sink node, which it is defined as a set 

of i.i.d Gaussian random variables with zero mean and variance 𝜎𝑔
2. And the scalar 𝛼 is 

defined with respect to its power constraint, 𝑃̂, as shown: 

∑ 𝐸[(𝛼 𝑆𝑘)2]

𝑐

𝑘=1

≤ 𝑐 𝑃̂. 
 

(3.45) 

where the mean of 𝑆𝑘 is zero. By substituting (3.43) in (3.45), and by taking the upper 

bound then, (3.45) can be written as: 

∑ 𝛼2 𝑣𝑎𝑟(
1

𝑚𝑘
∑ 𝑍𝑘,𝑖

𝑚𝑘

𝑖=1

)2

𝑐

𝑘=1

= 𝑐 𝑃̂. 
 

(3.46) 

which it can be extended to: 

∑
𝛼2

𝑚𝑘
2

𝑐

𝑘=1

(∑ 𝑣𝑎𝑟(𝑍𝑘,𝑖)

𝑚𝑘

𝑖=1

+ ∑ ∑ 𝑐𝑜𝑣(𝑍𝑘,𝑖

𝑚𝑘

𝑗=1

, 𝑍𝑘,𝑗)

𝑚𝑘

𝑖=1

) = 𝑐 𝑃̂. 

 

(3.47) 

By substituting (3.28), (3.33), (3.35), and (3.42) in (3.47). Then, (3.47) can be extended as: 

∑
𝛼2

𝑚𝑘
2

𝑐

𝑘=1

(∑ 𝑣𝑎𝑟 (
𝛼𝑘,𝑖  𝜎𝑆

2

𝑃𝑘,𝑖 + 𝜎𝑊
2 (𝛼𝑘,𝑖(𝑆𝑘,𝑖 + 𝑁𝑘,𝑖) + 𝑊𝑘,𝑖))

𝑚𝑘

𝑖=1

+ ∑ ∑ 𝐸 [(
𝛼𝑘,𝑖  𝜎𝑆

2

𝑃𝑘,𝑖 + 𝜎𝑊
2 (𝛼𝑘,𝑖(𝑆𝑘,𝑖 + 𝑁𝑘,𝑖) + 𝑊𝑘,𝑖)) (

𝛼𝑘,𝑗  𝜎𝑆
2

𝑃𝑘,𝑗 + 𝜎𝑊
2 (𝛼𝑘,𝑗(𝑆𝑘,𝑗 + 𝑁𝑘,𝑗) + 𝑊𝑘,𝑗))]

𝑚𝑘

𝑗=1

𝑚𝑘

𝑖=1

)

= 𝑐𝑃̂. 

 

 

(3.48) 

Since each CH is capable to adjust its transmitted power level, then 𝑃̂ ≜ 𝑃𝑘, i.e., the 

transmitted power of 𝐶𝐻𝑘for data forwarding to the sink node . Hence, the scaler, 𝛼𝑘,𝑖, can 

be simplified as follows: 

𝑆𝑘 =
1

𝑚𝑘
∑

𝛼𝑘,𝑖𝜎𝑆
2

𝑃𝑘,𝑖 + 𝜎𝑁
2

𝑚𝑘

𝑖=1

𝑌𝑘,𝑖. 
 

(3.43) 
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𝛼𝑘 =
√

𝑃𝑘 𝑚𝑘
2

∑
𝛼𝑘,𝑖

2𝜎𝑆
4

𝑃𝑘,𝑖 + 𝜎𝑊
2

𝑚𝑘

𝑖=1 (1 + ∑
𝛼𝑘,𝑗

2𝜎𝑆
2

(𝑃𝑘,𝑗 + 𝜎𝑊
2 )

𝜌(𝑆𝑘,𝑖𝑆𝑘,𝑗)
𝑚𝑘

𝑗=1 )

. 
 

(3.49) 

where 𝜌(𝑆𝑘,𝑖, 𝑆𝑘,𝑗) is the correlation coefficient between the readings of 𝐶𝑀𝑘,𝑖 and 𝐶𝑀𝑘,𝑗. 

For simplicity, the scaler, 𝛼𝑘, will be written as: 

𝛼𝑘 = √
𝑃𝑘

𝑣𝑎𝑟(𝑆𝑘)
= √

𝑃𝑘

𝜎𝑆𝑘
2 . 

 

(3.50) 

The sink node then tries to estimate the readings of each cluster, 𝑆𝑘, with MMSE 

estimator in a form of linear transformation. Hence, the estimation of each cluster’s readings, 

𝑍𝑘 is given as: 

𝑍𝑘 = 𝑎 𝑌𝑘 . (3.51) 

According to the MMSE estimator, 𝑍𝑘 has to be equal to 𝑆𝑘, which it can be written 

in the form: 

𝐸[(𝑍𝑘 − 𝑆𝑘)2] = 0.  (3.52) 

Then, the derivative with respect to 𝑎 is applied before the expectation as follows: 

𝐸 [
𝑑

𝑑𝑎
(𝑎2 𝑌𝑘

2 − 2 𝑎 𝑌𝑘 𝑆𝑘 + 𝑆𝑘
2)] = 0. 

(3.53) 

Since the means of source 𝑆𝑘 and noise 𝑁𝑘 are zeros, it can easily see that 𝑎 can be 

written as shown: 

𝑎 =
𝐸[𝑌𝑘 𝑆𝑘]

𝐸[𝑌𝑘
2]

. 
 

(3.54) 

By substituting (3.44) and (3.54) in (3.51), then (3.51) can be defined as: 

𝑍𝑘 =
𝐸[𝑌𝑘 𝑆𝑘]

𝐸[𝑌𝑘
2]

 𝑌𝑘 =
𝐸[(𝛼𝑘 𝑆𝑘 + 𝑔𝑘)𝑆𝑘]

𝐸[(𝛼𝑘 𝑆𝑘 + 𝑔𝑘)2]
 𝑌𝑘 =

𝛼𝑘 𝜎𝑆𝑘
2

𝑃𝑘 + 𝜎𝑔
2

 𝑌𝑘. 
(3.55) 
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Then, the estimated version 𝑆̂𝑅 of original event 𝑆 is defined by averaging all 

information of  𝐶𝐻𝑠, 𝑍𝑘 , with number 𝑐 ,and it is demonstrated as: 

Finally, the distortion of two-hop communication model is referred as relayed 

distortion (𝐷𝑟𝑒𝑙𝑎𝑦). It is calculated at the sink node with respect to the estimated value 𝑆̂𝑅 

and source event, 𝑆, according to: 

𝐷𝑟𝑒𝑙𝑎𝑦 = 𝐸 [(𝑆 − 𝑆̂𝑅)
2

] = 𝐸[𝑆2] − 2 𝐸[𝑆 𝑆̂𝑅] + 𝐸[𝑆̂𝑅
2]. (3.57) 

The first term, 𝐸[𝑆2], equal to 𝜎𝑆
2, where the source mean is zero. By substituting 

(3.28), (3.33), (3.43), (3.44), (3.55), and (3.56) in the second term, 𝐸[𝑆 𝑆̂𝑅],  then it can be 

defined as: 

𝐸[𝑆 𝑆̂𝑅] = 𝐸 [𝑆
1

𝑐
∑

𝛼𝑘𝜎𝑆𝑘
2

𝑃𝑘 + 𝜎𝑔
2

 (𝛼𝑘 (
1

𝑚𝑘

∑
𝛼𝑘,𝑖(𝜎𝑆

2 + 𝜎𝑁
2)

𝑃𝑘,𝑖 + 𝜎𝑊
2  (𝛼𝑘,𝑖(𝑆𝑘,𝑖 + 𝑁𝑘,𝑖) + 𝑊𝑘,𝑖)

𝑚𝑘

𝑖=1

) + 𝑔𝑘)

𝑐

𝑘=1

]. 
 

(3.58) 

which it can be simplified to: 

𝐸[𝑆 𝑆̂𝑅] =
𝜎𝑆

2

𝑐
∑

𝑃𝑘

𝑃𝑘 + 𝜎𝑔
2

 (
1

𝑚𝑘
∑

𝑃𝑘,𝑖

𝑃𝑘,𝑖 + 𝜎𝑊
2

 𝜌(𝑆 𝑆𝑘,𝑖)

𝑚𝑘

𝑖=1

)

𝑐

𝑘=1

. 
 

(3.59) 

The third term can be defined as: 

𝐸[𝑆̂𝑅
2] = 𝑣𝑎𝑟(𝑆̂). (3.60) 

where the mean of 𝑆̂ is zero. By substituting (3.56) in (3.60), then (3.60) can be stated as 

shown: 

𝑣𝑎𝑟 (
1

𝑐
∑ 𝑍𝑘

𝑐

𝑘=1

) =
1

𝑐2
(∑ 𝑣𝑎𝑟(𝑍𝑘) + ∑ ∑ 𝐸[𝑍𝑘  𝑍𝑙]

𝑐

𝑙=1

𝑐

𝑘=1

𝑐

𝑘=1

). 
 

(3.61) 

By substituting (3.28), (3.33), (3.35), (3.42), and (3.44) in (3.61), then (3.61) can be 

extended as: 

𝑆̂𝑅 =
1

𝑐
∑ 𝑍𝑘 .

𝑐

𝑘=1

 
 

(3.56) 
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1

𝑐2
(∑

𝑃𝑘𝜎𝑆𝑘
2

𝑃𝑘 + 𝜎𝑔
2

+ ∑ ∑
𝑃𝑘

𝑃𝑘 + 𝜎𝑔
2

𝑃𝑙

𝑃𝑙 + 𝜎𝑔
2

1

𝑚𝑘

1

𝑚𝑙

(∑ ∑
𝛼𝑘,𝑖𝜎𝑆

2

𝑃𝑘,𝑖 + 𝜎𝑊
2

𝛼𝑙,𝑗  𝜎𝑆
2

𝑃𝑙,𝑗 + 𝜎𝑊
2 𝐸[(𝛼𝑘,𝑖  (𝑆𝑘,𝑖

𝑚𝑙

𝑗=1

𝑚𝑘

𝑖=1

𝑐

𝑙=1

𝑐

𝑘=1

𝑐

𝑘=1

+ 𝑁𝑘,𝑖) + 𝑊𝑘,𝑖) (𝛼𝑙,𝑗  (𝑆𝑙,𝑗 + 𝑁𝑙,𝑗) + 𝑊𝑙,𝑗)])). 

 

 

(3.62) 

Then, the last term can be simplified as: 

𝐸[𝑆̂𝑅
2] =

1

𝑐2
(∑

𝑃𝑘𝜎𝑆𝑘
2

𝑃𝑘 + 𝜎𝑔
2 + ∑ ∑

𝑃𝑘

𝑃𝑘 + 𝜎𝑔
2

𝑃𝑙

𝑃𝑙 + 𝜎𝑔
2

1

𝑚𝑘

1

𝑚𝑙
(∑ ∑

𝑃𝑘,𝑖

𝑃𝑘,𝑖 + 𝜎𝑊
2  

𝑃𝑙,𝑗

𝑃𝑙,𝑗 + 𝜎𝑊
2  𝜎𝑆

2 𝜌(𝑆𝑘,𝑖𝑆𝑙,𝑗)

𝑚𝑙

𝑗=1

𝑚𝑘

𝑖=1

)

𝑐

𝑙=1

𝑐

𝑘=1

𝑐

𝑘=1

). 
 

(3.63) 

Finally, (3.57) can be simplified by using (3.59) and (3.63) as demonstrated below: 

𝐷𝑟𝑒𝑎𝑙𝑦 = 𝜎𝑆
2 −

1

𝑐2
∑

𝑃𝑘

𝑃𝑘 + 𝜎𝑔
2

 
1

𝑚𝑘
2

∑
𝛼𝑘,𝑖

2 𝜎𝑆
4

𝑃𝑘,𝑖 + 𝜎𝑊
2  (2 𝑐 𝑚𝑘  𝜌(𝑆, 𝑆𝑘,𝑖) − 1 − ∑

𝛼𝑘,𝑗
2 𝜎𝑆

2𝜌(𝑆𝑘,𝑖 , 𝑆𝑘,𝑗)

(𝑃𝑘,𝑗 + 𝜎𝑊
2 )

 

𝑚𝑘

𝑗=1

)

𝑚𝑘

𝑖=1

𝑐

𝑘=1

+
1

𝑐2
∑ ∑

𝑃𝑘𝑃𝑙
𝑚𝑘𝑚𝑙

⁄

(𝑃𝑘 + 𝜎𝑔
2)(𝑃𝑙 + 𝜎𝑔

2)
∑ ∑

𝛼𝑘,𝑖
2 𝛼𝑙,𝑗

2 𝜎𝑆
6

(𝑃𝑘,𝑖 + 𝜎𝑊
2 )(𝑃𝑙,𝑗 + 𝜎𝑊

2 )
 𝜌(𝑆𝑘,𝑖 , 𝑆𝑙,𝑗)

𝑚𝑙

𝑗=1

𝑚𝑘

𝑖=1

𝑐

𝑙=1

𝑐

𝑘=1

. 

 

(3.64) 

where 𝜌(𝑆, 𝑆𝑘,𝑖) and 𝜌(𝑆𝑘,𝑖, 𝑆𝑙,𝑗) are the correlation coefficients between the source event, 𝑆, 

and the readings of 𝐶𝑀𝑘,𝑖, 𝑆𝑘,𝑖, and between the readings of 𝐶𝑀𝑘,𝑖, 𝑆𝑘,𝑖, and 𝐶𝑀𝑙,𝑗, 𝑆𝑘,𝑖, 

respectively.  

The goal of this analytical derivation is to define the accuracy level of the clustered-

network from EDC algorithm. Each sensor is required to do specific duty, but when its energy 

level is less than the predetermined threshold, the sensor changes its state to inactive state 

(only-harvesting) and based on that the distortion changes. The upper limit of both 𝐷𝑝𝑜𝑖𝑛𝑡 

(3.27) and 𝐷𝑟𝑒𝑙𝑎𝑦 (3.64) reached when all sensor nodes triggers into inactive state. In such a 

case, the distortions are equal to event variance 𝜎𝑆
2 as stated below: 

𝜎𝑆
2 = 𝑚𝑎𝑥𝑛𝑜𝑑𝑒𝑠=∅(𝐷𝑟𝑒𝑙𝑎𝑦, 𝐷𝑝𝑜𝑖𝑛𝑡). (3.65) 

 

3.5.  Energy Model 

 

In this section, we attempt to investigate the mechanism of energy consumption in the 

sensor networks for single-hop and two-hop communication models. In both cases, a sensor 

node is either in active or inactive state. An active node assists in operation of the network 
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for sensing the area or sending the data to sink. In an inactive state, sensor nodes stop sensing 

and sending data until they recovered their energy by recharging their batteries or by energy 

harvesting. 

The energy consumption in the active nodes is composed of four components. These 

components can be defined as energy consumed for packet transmitting, packet receiving, 

data gathering (aggregating) and event sensing. The simplified model of energy consumption 

for each part is defined in this section. 

 

3.5.1. Energy Consumption for Clustered Network 

 

In clustered-network model Fig 3.3, sensor nodes are assembled into clusters, where 

in each cluster consists of a single CH, and several CMs with number 𝑚𝑘. Based on the EDC 

algorithm, CH requires to receive the observations from its 𝐶𝑀𝑠, and aggregates their 

readings to transmit towards the sink node by single-hop communication.  

The required energy for transmitting and receiving 𝐿 bits over the distance 𝑑 between 

the transmitter and the receiver can be modeled according to the first order radio (Fig 3.6) 

model [8] defined as: 

𝐸𝑇𝑥(𝐿, 𝑑) = {
(𝐸𝑒𝑙𝑒𝑐 𝐿) + (𝜀𝑓𝑠 𝐿 𝑑2), 𝑑 ≤ 𝑑0

(𝐸𝑒𝑙𝑒𝑐 𝐿) + (𝜀𝑚𝑝 𝐿 𝑑4), 𝑑 > 𝑑0

 

𝐸𝑅𝑥(𝐿) = 𝐸𝑒𝑙𝑒𝑐 𝐿. 

 

(3.66) 

where, 𝑑0 = √
𝜀𝑓𝑠

𝜀𝑚𝑝
. 

The 𝐸𝑒𝑙𝑒𝑐 is electronic energy. The  𝜀𝑓𝑠 and 𝜀𝑚𝑝  are coefficients in free space model 

and in multi-path model, respectively. Furthermore, sensing energy for 𝐿 bits can be defined 

as follows: 

𝐸𝑠𝑒𝑛𝑠(𝐿) = 𝐿 𝑇𝑠𝑒𝑛𝑠 𝐼𝑠𝑒𝑛𝑠 𝑉𝑠𝑢𝑏 . (3.67) 
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Figure 3.6. First Order Radio Model 

 

where 𝐼𝑠𝑒𝑛𝑠 is sensing current, 𝑉𝑠𝑢𝑏 is supplied voltage and 𝑇𝑠𝑒𝑛𝑠 is sensing time. The 

aggregating energy form 𝑚 receiving destinations can be modeled as [8] 

𝐸𝑎𝑔𝑔(𝐿, 𝑚) = 𝐿 𝑚 𝐸𝐷𝐴. (3.68) 

where 𝐸𝐷𝐴 is aggregation energy. Based on the above equations, it is possible now to define 

the energy consumption of 𝐶𝑀𝑘,𝑖 and 𝐶𝐻𝑘 which can be demonstrated as:  

 𝐸𝐶𝑀(𝑘, 𝑖) = 𝐸𝑠𝑒𝑛𝑠(𝐿) + 𝐸𝑇𝑥(𝐿, 𝑑𝑐ℎ(𝑘, 𝑖)), 

𝐸𝐶𝐻(𝑘) = 𝐸𝑎𝑔𝑔(𝐿, 𝑚𝑘) + 𝑚𝑘 𝐸𝑅𝑥(𝐿) + 𝐸𝑇𝑥(𝐿, 𝑑𝐵𝑆(𝑘)). 

(3.69) 

(3.70) 

where 𝑑𝑐ℎ(𝑘, 𝑖) and 𝑑𝐵𝑆(𝑘)  are Euclidean distance between 𝐶𝑀𝑘,𝑖 and 𝐶𝐻𝑘, and between 

𝐶𝐻𝑘 and sink node, respectively. Furthermore, the energy consumption for single-hop 

communication case is modeled as: 

𝐸𝑛𝑖
(𝑖) = 𝐸𝑠𝑒𝑛𝑠(𝐿) + 𝐸𝑇𝑥(𝐿, 𝑑𝐵𝑆(𝑖)) (3.71) 

where 𝑑𝐵𝑆(𝑖) is the euclidean distance between 𝑛𝑖 and sink node. The above equations in 

(66) represent the energy consumption for transmitting in joules.  

However, the unit of power constraints (i.e., transmitting power, that is defined in 

point distortion (17) and relayed distortion (64)) is Watts. Also, the unit of above energy 

consumption functions is Joules. Hence, a simple conversion method is used for finding the 

power constraints by converting to Watts, which is (𝑃(𝑤𝑎𝑡𝑡𝑠) = 𝐸(𝑗𝑜𝑢𝑙𝑒𝑠)/𝑇), with respect 

to the time durations (𝑇𝑠𝑒𝑛𝑠, 𝑇𝑎𝑔𝑔, and 𝑇𝑡𝑟𝑎𝑛𝑠) as shown below: 
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𝑇𝑎𝑔𝑔 = 𝐿 
𝑁𝑐𝑦𝑐

𝑓𝑠𝑒𝑛
,         𝑇𝑡𝑟𝑎𝑛 = 𝑇𝑟𝑒𝑐 =

𝐿

𝑅
. 

(3.72) 

where 𝑁𝑐𝑦𝑐 is the number of processor cycles per bit, 𝑓𝑠𝑒𝑛 is sensor frequency and 𝑅 is the 

data rate. 

 

3.5.2. Harvesting Model 

 

Energy harvesting is an interesting solution for battery recharging when nodes are 

positioned in an event area covered by a cellular base station. By assuming that there is radio 

frequency source such as GSM900 tower [13] with transmitted power 𝑃𝑡 and antenna gain 𝐺𝑡. 

Then, it’s possible from each sensor node to harvest energy from it by equipping an additional 

harvesting circuit with additional antenna of gain 𝐺𝑟. Therefore, by using Friis equation it’s 

possible to model the receiving power, 𝑃𝑅, considering the free path loss model as shown:  

𝑃𝑟 = 𝑃𝑡

𝐺𝑇𝐺𝑅𝜆2

(4𝜋𝑑)2
. 

 

(3.73) 

where 𝜆 is wave length over 𝑑 distance. The harvested time, 𝑇ℎ𝑎𝑟, can be defined with respect 

to circuit harvesting efficiency and battery charging time. 

 

3.6. Case Study  

 

In this section, the point (27) and relayed (64) distortion functions are studied based 

on some important parameters ( data rate, number of sensor nodes, event distance, and the 

size of event area for different values of 𝜃1) by means of  Monte Carlo simulation ( i.e., 500 

iterations). 

 

3.6.1. Data Rate (𝑹) 

 

The presented two distortion functions are observed by varying the data. According 

to (72), increasing data rate decreases transmission time, 𝑇𝑡𝑟𝑎𝑛. It is possible to convert the 



 38 
 

transmitting energy, 𝐸𝑇𝑥(𝐿, 𝑑), to transmitting powers (i.e., power constraints) by dividing 

them with 𝑇𝑡𝑟𝑎𝑛. Since the power constraints of the two distortion functions are transmitting 

powers (i.e., (𝑃𝑘,𝑖, 𝑃𝑘) for 𝐷𝑟𝑒𝑙𝑎𝑦 and 𝑃𝑖 for 𝐷𝑝𝑜𝑖𝑛𝑡), the distortion functions are affected also 

by the transmission time, 𝑇𝑡𝑟𝑎𝑛. Hence, increasing the data rate, 𝑅, improves the distortion 

functions, (𝐷𝑟𝑒𝑙𝑎𝑦 & 𝐷𝑝𝑜𝑖𝑛𝑡), i.e., the reliability or accuracy level of the entire network as 

shown in Fig 3.7.  

 

Figure 3.7 Distortion Vs Data Rate 

 

3.6.2. Number of Sensor Nodes 

 

Increasing the number of sensor nodes affects positively the distortion functions but 

until 100 sensors. In other words, by fixing the event area (100 × 100 𝑚2), when more than 

100 sensor nodes are deployed in the event area, relatively similar distortion levels are 

observed in the sink node as shown in Fig 3.8. The reason for that is related to the density 

property for WSN. Since the distortion isn’t changed after increasing the nodes more than 

100, the 100 sensor nodes are already present a dense deployment, and the nearby sensors 

create redundant readings. Hence, there is no new information about source event, even if 

more sensors are deployed.  
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         Figure 3.8 Distortion Vs Number of Nodes 

 

Figure 3.9 Distortion Vs Event Distance 

 

3.6.3. Event Distance 

 

The correlation coefficients (𝜌(𝑆, 𝑆𝑘,𝑗) for 𝐷𝑟𝑒𝑙𝑎𝑦 and  𝜌(𝑆, 𝑆𝑖) for 𝐷𝑝𝑜𝑖𝑛𝑡) are 

mainly depend on the distance between event source, 𝑆, (i.e., point source that is located at 

𝑛0) and sensor nodes, 𝑛𝑖, Consequently, by setting 100 sensors, increasing the event distance, 

i.e., the distance between source event and sensor nodes (in meter), effects on the distortion 
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functions negatively. In other words, if the sensor nodes are selected apart from the event 

source, they observe relatively inaccurate readings, resulting higher distortion level at the 

sink node for both cases, as shown in Fig 3.9. 

 

3.6.4. Event Area 

 

Changing the size of the event area affects in the distortion functions. In other words, 

when the area is increased, the separation between sensor nodes are also increased. Hence, 

the correlation coefficients between sensor readings (i.e., 𝜌(𝑆𝑘,𝑖 𝑆𝑘,𝑗), 𝜌(𝑆𝑘,𝑖𝑆𝑘,𝑙) for 𝐷𝑟𝑒𝑙𝑎𝑦 

and 𝜌(𝑆𝑖 𝑆𝑗) for 𝐷𝑝𝑜𝑖𝑛𝑡) are changed also. Because they depend on the separation distances 

between sensor nodes (for single-hop case) and between 𝐶𝑀𝑠 (for two-hop case, as a result 

from EDC algorithm).  

 
 

Figure 3.10 Distortion Vs Event area 

Furthermore, in this analysis, power exponential model is used, which it defined in 

equations (4), (30) and (31). By setting 𝜃1 = 1000, as in [3], when the correlation range is 

increased, the distortions is improved. In other words, when the distance between the sensor 

nodes increases, the distortion decreases. Because of the further apart nodes observe less 

correlated data. Hence, less correlated observations are more favorable in WSNs.  
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CHAPTER 4 

 

SIMULATIONS  

 

In this section, the proposed EDC clustering algorithm is simulated in MATLAB to 

examine its detailed performance with respect to the single-hop communication model. For 

this purpose, simulation results in different network scopes are reported with different 

parameters to observe the performance of the proposed algorithm. The simulation is applied 

in terms of distortion, energy consumption rate and network lifetime. Furthermore, the 

influence of the harvesting energy on the network performance is presented with respect to 

the same above terms. 

 

4.1. Setup Parameters  

 

In this section, some important parameters are defined. A total of 100 sensor nodes 

are deployed randomly in 100×100, 200×200 and 300×300 square meters event area, based 

on the uniform distribution. Changing event area, changes the density degree of nodes’ 

deployment. Furthermore, each sensor node requires to forward its observations to the sink 

node continuously via single-hop or two-hop communication links. The sink node is assumed 

to be located at the center of the event area. Furthermore, a cell tower, i.e., GSM900, can be 

used as a renewable energy source. This tower is assumed to be located at the center of event 

area as a harvesting source for all sensor nodes. Then each node can harvest energy, besides 

its main duties.  

Each sensor node has an additional circuit for energy harvesting similar to the 

presented circuit in [13]. Hence, each sensor node has two antennas, one for harvesting and 

the other one for communicating with others. The harvesting energy is available only if 

sensor nodes are located within specific threshold distance, 𝑑0, ( due to free path loss model). 

Without physical damages, sensor nodes run out from their energies with each iteration (time) 

with respect to the proposed energy model in Chapter 3. The simulation parameters are 

introduced in Table 4.1.  
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4.2. EDC algorithm 

 

At the first stage of EDC algorithm, the sink node allocates all locations of sensor 

nodes and estimates their receiving samples based on single-hop communication and 

determines the resulted point distortion for all 𝑁 nodes, 𝐷𝑝𝑜𝑖𝑛𝑡(𝑁).   After 𝐷𝑝𝑜𝑖𝑛𝑡(𝑁) is 

calculated, the sink node is applied Vector Quantization (VQ). All sensor nodes are assumed 

to be uniformly distributed in event area. 

 

Table 4.1. Simulation Parameters 

 

 

 

 

 

 

 

 

 

 

  

 
 

Hence, VQ is initiated with all sensor nodes locations as a vector source, code vector 

length is one. According to EDC algorithm, the sink node starts to increase the code word 

length until the remaining nodes (unrepresentative nodes) achieve distortion constraints as 

shown in Fig 4.1. The maximum achievable distortion is defined according to: 

Parameters Values 

Area (100×100, 200×200 and 300×300) 𝑚2 

Number of sensors, N 100 

Sink node and GSM900 locations (50,50) 

Initial energy 0.5 J 

𝐸𝑒𝑙𝑒𝑐  50 nJ/bit 

𝐸𝐷𝐴 5 nJ/bit 

𝑑0  threshold distance 87 m 

𝜀𝑓𝑠 10 PJ/bit/𝑚2 

𝜀𝑚𝑝 0.0013 PJ/bit/𝑚4 

L data packet size 1000 bytes 

L-broadcast packet 25 bytes 

Center frequency for harvesting GSM 900 950 MHZ 

𝐺𝑡  ,   𝐺𝑟 17 dB   ,  9 dB 
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𝐷𝑃𝑜𝑖𝑛𝑡(𝑁) + 𝐷𝑡ℎ𝑟𝑒𝑠𝑜𝑙𝑑 ≥ 𝐷𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡. (4.1) 

where 𝐷𝑃𝑜𝑖𝑛𝑡(𝑁) is the minimum distortion achieved when all the sensor nodes in the event 

area send information to the sink [3]. And 𝐷𝑡ℎ𝑟𝑒𝑠𝑜𝑙𝑑 is threshold distortion for single-hop 

case, which it is assumed to be equal to 0.001 for noiseless (𝜎𝑊
2 = 0) and noisy (𝜎𝑊

2 = 0.5) 

channel cases. Approximately, in both cases it produces similar results. But in noisy case, the 

distortion is lifted up as shown in Fig 4.1 (a). 

 

 

Figure 4.1 Network Clustering 

 

After repeating the experiment over 100 trials (Monte Carlo), EDC approximately 

selects 84 sensors nodes as unrepresentative nodes (CMs) and 16 representative nodes (CHs). 

Then, the representative nodes (CHs) forms Voronoi diagrams (clusters) as shown in Fig 4.1 

(b). Then, Fig 4.1 (b) represents a snapshot for the resulted network with the sink node which 

is located at the center of event area. This network uses two-hop communication model, and 

hence, we can use a relayed distortion function (64) to define the accuracy level. The 

clustered-network is then compared with single-hop communication model. In single-hop 

case, the VQ is also applied for sensor nodes and the result is unrepresentative nodes that 

require to forward their observations. In 100 × 100 𝑚2 event area, the distortion for single-

hop, 𝐷𝑃𝑜𝑖𝑛𝑡(𝑐), is less than the distortion for two-hop (EDC) case, 𝐷𝑟𝑒𝑙𝑎𝑦 (64). Furthermore, 

(a) (b) 
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when the number of iterations increased, some sensors may run off from energy and hence 

distortion is increased. Besides for both cases, the network terminates at the same time. 

Hence, single-hop communication provides a better performance than two-hop (EDC) case 

as illustrated in Fig 4.2 (a). Also with respect to the number of alive nodes and energy 

consumption, single-hop provides similar performance to EDC case as shown in Fig 4.2 (b), 

(c). The simulation is performed for 500 seconds. The energy consumption is calculated at 

each iteration with respect to equations (3.69), (3.70) and (3.71).   

Figure 4.2. Distortion, Number of Alive nodes and Energy Consumption for 100 × 100 𝑚2 

                   Event Area 

 

This similarity is observed because of the total distances of the forwarded data 

through single-hop case is approximately equal to the two-hop (EDC) case, as shown: 

(a) (b) 

(c) 
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∑ 𝑑𝐵𝑆(𝑖)

𝑁

𝑖=1

≅ ∑ (∑ 𝑑𝐶𝐻(𝑘, 𝑖) + 𝑑𝐵𝑆(𝑘)

𝑚𝑘

𝑖=1

)

𝑐

𝑘=1

. 
 

(4.2) 

where 𝑑𝐵𝑆(𝑖) is a distance between node 𝑛𝑖 and sink node. Besides, 𝑑𝐶𝐻(𝑘, 𝑖) and 𝑑𝐵𝑆(𝑘) 

are the distance between 𝐶𝑀𝑘,𝑖 and 𝐶𝐻𝑘 and between 𝐶𝐻𝑘 and sink node, respectively.  

Figure 4.3 Distortion, Number of Alive nodes and Energy Consumption for 200 × 200 𝑚2  

                  Event Area 

 

On the other hand, when the size of event area is 200 × 200 𝑚2, EDC algorithm is 

provided a better performance than single-hop case. The reason is that the 𝐷𝑝𝑜𝑖𝑛𝑡(𝑐) is 

(a) (b) 

(c) 
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decreasing faster that 𝐷𝑟𝑒𝑙𝑎𝑦, until all sensors expired as shown in Fig 4.3, because the total 

distances to transmit data for single-hop case is greater than EDC case, as shown: 

∑ 𝑑𝐵𝑆(𝑖)

𝑁

𝑖=1

> ∑ (∑ 𝑑𝐶𝐻(𝑘, 𝑖) + 𝑑𝐵𝑆(𝑘)

𝑚𝑘

𝑖=1

)

𝑐

𝑘=1

. 

 

(4.3) 

Figure 4.4 Distortion, Number of Alive nodes and Energy Consumption for 300 × 300 𝑚2 

                  Event Area 

 

Similarly, in case of 300 × 300 𝑚2 event area, the performance of EDC is much 

better than single-hop case as in Fig 4.4. As a result, EDC is considered to be used for event 

areas with sizes are greater than 100 × 100 𝑚2 and single-hop is considered to be used for 

only 100 × 100 𝑚2 because of its advantage in distortion level.  

 

(a) (b) 

(c) 
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Figure 4.5 Distortion for Different Harvested Energies 

 

Furthermore, by fixing the size of event area, another investigation is performed, 

where a different harvesting energy levels (i.e., transmitted power, 𝑃𝑡, form cell tower [13])  

is applied for each sensor node. Because of harvesting, an inactive sensor node can be 

recharged and be active again, hence the distortion changes iteratively. Then, the distortion 

level improved and made it less than the upper bound as possible as shown in Fig 4.5. The 

upper bound in this simulation is set to be equal to one, i.e., it is the variance of source event 

𝜎𝑆
2. Furthermore, this improvement is happened because of the energy consumption rate, as 

shown in Fig 4.6 (a), is reduced at each iteration and it aided the number of nodes to be alive 

for longer time which is shown in Fig.4.6 (b).  

(a) (b) 

(c) 
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Figure 4.6 Energy Consumption and Number of Alive nodes for Different Harvested 

                  Energies 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 
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CHAPTER 5 

 

CONCLUSION AND FUTURE WORKS 

 

5.1. Conclusion  

 

In both military and civil applications, the WSN is highly required. In most 

applications, densely deployment has been used because of it is inexpensive to be deployed. 

However, in densely deployment, the nearby sensors are spatially correlated, and hence their 

readings are redundant, which causes wasting in energy and increasing overheading packets.  

The EDC algorithm is presented to address these challenges by cluster the network based on 

exploiting spatial correlations between sensor nodes through Vector Quantization. The main 

contribution from exploiting spatial correlation is to ban the readings of cluster heads and 

thus their duties are reduced and the network’s life time is improved. As a part of this 

algorithm, a theoretical framework defining distortion for single-hop and two-hop 

commutations model has been derived.  

Additionally, the EDC algorithm has been presented for energy harvesting sensors. 

Energy harvesting is enhancing the accuracy level. In other word, when sensor nodes harvest 

energy, their life time is improved. Unlike non-harvesting case, when the network loss the 

accuracy when all nodes die. 

 

5.2. Future Works  

 

The power constraints are not random. However, by changing this assumption and 

model the power constraints randomly, another model it can be derived for distortion function 

and another results are expected. Energy harvesting technology has been used in WSN and 

hence it is good idea if the distortion function is connected with available harvesting power.  

By developing another form for distortion for multi-hop communication model, it is possible 

to compare EDC algorithm with other clustering algorithms. 
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