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ABSTRACT

QUANTUM TRANSPORT IN NANOSTRUCTURED MATERIALS

Due to the advances in the measurement and fabrication techniques at the nano-

scale it is now possible to measure thermal transport across single molecule junctions[1],

which makes it possible to consider nano-scale thermal devices. One of the building

blocks for such thermal devices should be thermal switches. The aim of this study is

to design a thermal switch, which is based on a single molecule junction and photoiso-

merism. We propose reversible photoisomerism as a key ingredient to build reversible

thermal switches based on single molecule junctions. In this thesis, the thermal con-

ductances of molecular junctions built by azobenzene and its derivatives are computed

using density functional theory based tight binding method combined with atomistic

Green’s functions. These molecules show photoisomeric behaviour by switching their

three-dimensional structure when exposed to radiation. We investigate the effects of dif-

ferent linker groups as well as the details of the reservoirs. Carbon nanotubes are used

as reservoirs, while generic reservoirs are also investigated to illuminate the effects of

the reservoir details. We show that thermal conductance can be altered by switching the

molecule from trans to cis configuration. The effect is robust under the change of the

linkers that bind the molecules to the reservoirs and under the change of the particular

molecular species.
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ÖZET

NANO SEVİYE MALZEMELERDE KUANTUM TAŞINIMI

Nano düzeydeki ölçüm ve üretim tekniklerindeki gelişmeler sayesinde, tek mole-

küllü eklemlerde ısıl taşınım ölçümü günümüzde mümkündür[1], bu durum nano ölçekte

termal cihazlar yapımını mümkün kılar. Termal cihazların yapıtaşlarından biri ise ısısal

anahtardır. Bu çalışmanın amacı ise fotoizomerleşmeye ve tek moleküllü eklemlere

dayanan bir ısıl anahtar yapmaktır. Tersinir fotoizomerleşme tek moleküllü eklemlere

dayanan tersinir ısıl anahtar yapımının asli unsurudur. Bu tezde, azobenzen ve türevlerin-

den kurulan moleküler eklemlerin ısıl iletkenlikleri atomistik Green fonksiyonları ile

kombine edilmiş yoğunluk fonksiyoneli teorisine dayanan sıkıbağlanma methodu kul-

lanılarak hesaplanmıştır. Bu moleküller fotoizomerleşme özelliğini ışık altında uzay-

daki üç boyutlu yapısını değiştirerek göstermektedirler. Rezervuar detaylarının yanı sıra

farklı bağlayıcı grupların etkileri araştırılmıştir. Rezervuar olarak karbon nanotüpler

kullanılmıştır, ve bununla beraber rezervuar detaylarının etkilerini incelemek için jenerik

rezervuarlar da incelenmiştir. Isıl iletkenliğin molekülün yapısının trans konfigurasyon-

dan sis konfigurasyonuna geçişinden dolayı değişebileceğini gösterilmiştir. Bu değişim

molekülü rezervuara bağlayan bağlayıcı grupların deģiştirilmesi durumunda da ve mole-

külün değişmesi durumunda da gözlenmektedir.
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CHAPTER 1

INTRODUCTION

1.1. Quantum Thermal Transport

In our time, miscellaneous technological devices are based on miniaturization of

their constructional components, such as transistors, diodes, memory chips, switches.

Components are getting increasingly smaller. The most important advantage of miniatur-

ization is that the number of components packed on a single chip increases incrementally.

Today’s technology generates chips in which billions of transistors are embedded. This

advancement enables us to produce fast, multi-functional, and small devices. Minimizing

the size of systems to nanometer leads to quantum mechanics that depart from classical

mechanics primarily with regard to length scales.

Until 1920’s, many physicists had thought that most of the important laws of na-

ture had already been explored. However, the strange behaviour of the blackbody spec-

trum, namely the ultraviolet catastrophe, and experimental observation of the photoelec-

tric effect, forced physicists to think differently. These phenomenons are incomprehensi-

ble to classical physics, although it describes macroscopic worlds successfully. According

to classical physics, energy of light depends on its intensity, and all energies are allowed.

On the contrary, photoelectron emission does not occur until the frequency of the light is

high enough, which means that the energy of light depends on its frequency. Additionally,

within the classical theory, the mean energy of any oscillator is kBT . Blackbody radiation

showed that actual average energy is ε = hν/(exp(hν/kBT ) − 1). These results led to

the discovery of quanta, which refers to discrete packets of energy. According to quan-

tum theory, each photon, which is a small packet of light, with the frequency ’ν ’ has the

energy of Planck’s constant multiplied by its frequency, hν. The energy emitted from the

oscillators of the blackbody walls can have discrete energies

εn = nhν n = 0, 1, 2, ... (1.1)

and the mean value of energy is no longer average of oscillators energies which display
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continuous distribution, instead average of

ε =
hν

e
hν

kBT − 1
(1.2)

Quantum theory has successfully clarified the strange behaviour of blackbody spectrum

and the photoelectric effect with this new quantization perspective. The most direct evi-

dence to observe discrete energy is energy spectrum of atoms. [2, 3]

Classical theory also fails to describe the nature of solids within the low temper-

ature limit. It considers the solids as an aggregation of non-interacting harmonic oscilla-

tors. By using the equipartition theorem, for each degree of freedom where energy can

be stored the energy of one half kBT is obtained. Within solids, each atom has six

degrees of freedom as well as the energy of 3kBT . Energy of a solid is the sum of en-

ergies of each atom of the solid, 3NkBT . In addition, occupations are governed by the

Maxwell-Boltzmann distribution function of classical statistical mechanics. This result

established by Mr. Boltzmann in 1896 was an extremely important result for a number

of reasons. Firstly, the result revealed the law of Dulong-Petit that had been known for

almost a hundred of years without knowledge of its reason. The law of Dulong-Petit

states that internal energy of most solids is constant 3NkBT , and it is based on experi-

mental observations. Moreover, the result was extremely important since it revealed the

validity of statistical mechanics. However, there was a problem, the law of Dulong-Petit

is not always valid. There were significant deviations from the law at low temperatures.

The source of problem was identified by Einstein. Einstein treated the oscillators using

quantum mechanics rather than classical mechanics. He incorporated the quantization

perspective to the Boltzmann solids [4]. Due to the quantum mechanics, the energy levels

of a harmonic oscillator are quantized, and the energy states of an atom in the harmonic

well is En = hν(n+1/2), where the quantum number, n, is a non-negative integer. This

is the result of one-dimensional oscillators. Hence the avarage energy per oscillator is the

same as in equation 1.2. The energy of a solid became

E =
3Nhν

e
hν

kBT − 1
(1.3)

Although, the Einstein model clarifies the deviations from the law of Dulong-Petit at low

temperatures, it can not make an exact quantitative agreement with the experimental val-
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ues. The inadequacy of the Einstein model brought out the subject of today, which is the

Debye model of solids. The Debye’s intuition was that solids can not be thought as a

bunch of non-interacting harmonic oscillators because when an atom moves, it does get a

push-back to its original position by its neighbour. But, in the process it pushes its neigh-

bour, and the neighbour pushes its neighbour, so forth [5]. So, in fact, the vibration in a

solid is actually a wave, and each wave mode in a solid should be treated as an oscillator.

Based on Einstein’s work, the energy of a given oscillator would be En = hν(n + 1/2).

According to the Debye model, a solid can be considered as a box. The total energy of a

solid is the sum over all the wave modes in the box [6]. Such intuition differs from Ein-

stein’s in that whenever there is a bunch of modes in a box, some of those modes are going

to be low energy (frequency) modes. The poor fit of the Einstein model originates from

his assumption, which claims that atoms oscillate independently at fixed frequency. Due

to the Debye model, there is a finite number of modes. The cut-off frequency is equal

to the Debye frequency, which is determined by the interatomic forces between atoms.

The Debye frequency of a solid describes the possible maximum frequency of phonons

which propagate through that solid. There is no wave mode above the Debye frequency.

The Debye temperature is �ωD/kB where ωD is the Debye frequency. The materials in

which atoms are bound tightly to each other have higher Debye temperatures. It can be

related to the hardness of a material as well as the bond strength. For instance, carbon

materials have high Debye Temperatures. Below the Debye temperature, quantum effects

are significant since thermal energy, kBT , is lower than the gap between the discrete

energy levels. It is necessary to use quantum statistics within this limit. Bose-Einstein

distribution function, (1/(e(�ω/kBT )−1)), defines the filling of states of bosons which are

particles with integer spin. Within the low temperature limit, Bose-Einstein distribution

function vanishes very quickly to zero. At high temperatures where �ω/kBT is a small

number Bose Factor can be replaced by

1

(e(�ω/kBT ) − 1)
=

1

(1 + �ω
kBT

)− 1
=

1
�ω
kBT

(1.4)

Since the Taylor series expansion of exponential functions is

ex = 1 + x+
1

2!
x2 + .... (1.5)
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All terms of order higher than the first-order can be ignored. By this substitution, the

difference between quantum behaviour and classical behaviour vanishes. Occupations of

bosons increase linearly with temperature. [7].

1.2. Phonons

Figure 1.1. Illustration of a one-dimensional linear chain and its unit cell. This unit

cell consists of two different kinds of atoms.

In crystal structures, atoms are located in a repetitive lattice. The bonds, which

hold atoms together, behave like springs as mentioned in the previous section. As a result,

atoms oscillate at certain frequencies. Phonons are quantized lattice waves, and the lattice

waves are collective vibrational motions of atoms. Phonons are the carriers of heat and

sound. Unlike light waves, which have two polarizations, phonons have three polariza-

tions: one longitudinal, two transverse. In longitudinal waves, atoms move back and forth

along the direction of propagation of the phonon. In transverse waves, atoms move up

and down in regard to the direction of propagation.

The simplest example to basically comprehend phonons is one-dimensional linear

chain. In a crystalline solid, due to the repetitive layout of atoms, the motions of the

atoms can be characterized by solely considering its smallest repeating unit, namely unit

cell. Figure 1.1 illustrates a unit cell which consists two different atoms. Solids display

two different kinds of phonons, i.e. acoustic phonons and optical phonons. Acoustic

branches of phonons are the consequence of in-phase movements of atoms, while optical

branches are the consequence of out-of-phase movements. All solids display acoustic

branches of phonons, while optic branches of phonons occur only if there is more than
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one atom in its unit cell. Acoustic waves have similar characteristics with sound waves.

An electric field with proper frequency can actuate an optical phonon. This is the reason

why it is called optical phonon. Phonons are represented by the relationship between the

wavevector and the frequency which is called the dispersion relation, w(k) , where k is

the wavevector of a phonon. The number of phonon branches depends on the number of

atoms inside its unit cell, therefore if there are n atoms inside unit cell, corresponding bulk

structure displays 3n phonon dispersion branches. In two and three-dimensional solids,

three of them are acoustic and rest are optical, while in one-dimensional solids, four are

acoustic and the rest are optical. The common three acoustic branches emerge from in-

phase movements of atoms along X-axis, Y-axis, and Z-axis of the coordinate system. An

additional acoustic branch, which is only observed in one-dimensional solids, is caused

by the coherent torsional motion of atoms. [7–9]

1.3. Phononics

Figure 1.2. Illustration of the phononic spectrum The figure is adapted from the refer-

ence [10].

Phononics is the science of controlling and managing phonons. Admittedly, con-

trol of the energy carried by phonons is indeed more difficult than control of the energy

carried by photons and electrons. This is because phonons are quasi-particles in the form

of energy, and they possess neither a charge nor mass. However, due to the advancements

in the measurement and fabrication techniques at the nano-scale, it is now possible to

measure thermal transport across a single atom junction [1], which makes it possible to

consider nano-scale thermal devices. Understanding the nature of phonons and improv-

ing our ability to control phonons provide opportunities to construct thermally insulated

buildings, reduce environmental noise, transform waste heat energy into electricity, and
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develop earthquake protection (see Figure 1.2) [11], but phonons play a secondary role

in these applications. In addition to these, most of opportunities achieved by controlling

electrons and photons can also be achieved by controlling phonons [12, 13]. Such possi-

bilities would have potential applications in nano-scale thermal molecular devices such as

thermal logics, thermal rectifiers, logic gates, thermal memories, and thermal transistors.

In molecular phononics, like molecular electronics, molecules instead of bulk ma-

terials are used as components of the system, and to yield active and passive components

such as switches, diodes etc. Molecular phononics involves the use of a single molecule

or small packets of molecules as units for computing.

1.4. Statement of the Problem: Phononic switch

The demand of thermal management in science and industry is rapidly growing

[14, 15], not only due to the requirement to invest in altarnetive energy sources [13], but

also in order to get rid of dissipative heat from components [16]. Researchers widely

investigate the opportunities to take control of thermal flow. Managing thermal conduc-

tivity by the virtue of the material’s design is a remarkable issue to build thermal devices.

Thermal switch is one of the building blocks of thermal devices. A thermal switch would

greatly improve our ability to control heat flow since it alters the thermal conductances

between ”on” and ”off” state [10, 17]. The construction of a thermal switch is a widely

studied phenomenon [18–21].

Photoisomeric molecules attract considerable attention since these molecules give

opportunities to build systems whose properties can be controlled by light. There is a great

amount of researches about possible applications of photoisomeric molecules. In this

study, the possibility of management of thermal conductivity by photoisomeric behaviour

of azobenzene and its derivatives is going to be investigated. The thesis is organized as

follows: Chapter 2 explains the methods, and defines theoretical background information

the methods rely on. Chapter 3 defines the system set-up from molecules to construction

of the switch. Numerical results are analysed in chapter 4. Finally, chapter 5 presents the

conclusion.
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CHAPTER 2

METHODS

2.1. Density Functional Theory

In physics, the answer of most problems associates with the ground state structure.

The ground state of any quantum system is the lowest eigenstate of its Hamiltonian.

Ĥψ(r1, r2, ...., rN ,R1,R2, ....,RM) = Eψ(r1, r2, ...., rN ,R1,R2, ....,RM) (2.1)

where E is the lowest eigenvalue. Because most of the Hamiltonian can not be solved

exactly the idea of an approximate solution has emerged. The many body Hamiltonian is

Ĥ = −1

2

N∑
i=1

�2
i −

1

2

M∑
A=1

1

MA

�2
A −

N∑
i=1

M∑
A=1

ZA

riA

+
N∑
i=1

N∑
j〉i

1

rij

+
M∑

A=1

M∑
B〉A

ZAZB

RAB

(2.2)

The terms, from left to right in the above equation, stand for the kinetic energy of elec-

trons, the kinetic energy of nuclei, the attractive forces between electrons and nuclei, the

repulsive forces between electrons, and the repulsive forces between nuclei. Equation 2.2

is written in atomic units to avoid inconvenient combinations of the fundamental con-

stants. The abbreviated illustration for the Hamiltonian is

Ĥ = KII +Kee + VIe + Vee + VII (2.3)

and is written in the same order as described in the explanation above.

The first approximation to simplify the Hamiltonian is the adiabatic approxima-

tion (the Born-Oppenheimer approximation). The approximation assumes that the nuclei

are fixed in positions due to the fact that nuclei are much slower than electrons. As a

result the kinetic energy term of nuclei can be neglected, and the nuclear potential term,

VII , is constant. A constant potential just shifts the eigenvalues of the Hamiltonian. In

addition the electrons feel a static electric potential, VIe, resulting from the nuclei in that
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fixed configuration [22]. The Born-Oppenheimer approximation allows us to separate the

system wavefunction into the nuclear wavefunction, φ, and the electronic wavefunction,

χ.

ψ(R, r) = φ(R)χ(r,R) (2.4)

The electronic wavefunction now depends parametrically on the nuclear coordinates rather

than the nuclear wavefunction. In other words, dependency of the electronic motion on

the nuclear motion, namely decoupling, disappears.

The non-interacting electron approaches, the Hartree and the Hartree-Fock ap-

proximation, follow the Born-Oppenheimer approximation [23]. The Hartree approxi-

mation assumes that the overall electronic wavefunction is made of individual wavefunc-

tions, so if system has N electrons, electronic wavefunction can be written as a product of

individual electronic wavefunctions.

χ(r1, r2, ...., rn) = χ1(r1)χ2(r2).....χN(rN) (2.5)

is called the Hartree product. Therefore, the Hamiltonian can be written like the one-

electron Schrödinger equation

ĤHχi(r,R) = εiχi(r,R) (2.6)

ĤH = −1

2
�2

i +V (r,R) (2.7)

with the potential, V (r,R) = VIe(r,R)+Vee(r), and each electron is under a mean-field

Coloumb potential arising from the remaining N − 1 electrons.

VHartree(r) =
1

2

∫
dr′ρ(r′)

1

|r − r′| (2.8)

where ρ(r′) =
∑

i |χ(r)|2. The Hartree-Fock approximation can be considered as the

Hartree approximation along the exchange effect. The Hartree product fails to reflect the

Pauli exclusion principle, which is one of the important elements of essential physics.

According to the exclusion principle, wavefunctions of fermions are required to be anti-

symmetric. When two electrons are exchanged, the total wavefunction label changes.

ψ(r1, r2, ...., rN) = −ψ(r2, r1, ....., rN) (2.9)

8



Formation of the Slater determinant from individual electronic wavefunctions fulfils the

requirement of being antisymmetric under the condition of exchange.

χ(r1, r2, ...., rn) =
1√
N !

∣∣χ1(r1)χ2(r2).....χN(rN)
∣∣ (2.10)

It is obvious that the Hamiltonian is also modified due to requirement to fulfil this anti-

symmetry condition. The exchange term is added to the Hamiltonian. It looks like the

Coulomb potential, but describes the exchanged electrons.

HHF = −1

2
�2

i +V (r,R)− 1

2

∑
i,j

∫
dr′χ

∗
j(r

′)χi(r
′)

|r − r′| (2.11)

The last term is the difference between the so called Hartree Hamiltonian, equation 2.7,

and the so called Hartree-Fock Hamiltonian, equation 2.11. As a result, the requirement

of the antisymmetry condition is satisfied with this term.

Computational time of the Hartree frame increases according to the augmenta-

tion of the number of particles of the system, and in addition the computation is getting

more complicated. There are two types of approaches to solve approximately the many

body Hamiltonian: Wavefunction based, and density based. The Hartree method and the

Hartree-Fock method are two wavefunction based approaches. Density functional theory

(DFT) is a density based method. Using density instead of wavefunctions accelerates

algorithms.

DFT is based on two theorems proved by Hohenberg and Kohn [24] and the

set of equations derived by Kohn and Sham [25]. DFT’s name comes from its starting

point which is the first theorem proved by Hohenberg and Kohn. The first theorem of

Hohenberg-Kohn is that the ground state energy is a particular functional of electronic

density. In other words, in the absence of degeneracy, every unique ground state den-

sity has its own specific potential, or more explicitly, there is one-to-one correspondence

between the ground state density and potential.

ρ(r) ⇔ V (r) (2.12)

To understand the theorem, the meaning of functional should be known firstly. A function

describes one-to-one relationship between its input and output. A functional is a function
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of a function,

f(x) = x→ y function

F [(x)] = f(x) → y functional

and the density functional means that the ground state energy of a system is the functional

of its density, E[(ρ(r))].

The proof of the theorem is simple and based on method of reductio ad absurdum.

Assume two different potentials, Vxx(r) and Vyy(r), and these two potentials differ from

each other more than a constant, and lead to same density, ρ(r), in the case of non-

degeneracy. The corresponding Hamiltonians, Ĥxx(r) and Ĥyy(r), also give rise to the

same density, ρ(r).

Exx �= 〈ψyy|Ĥxx|ψyy〉
Exx �= 〈ψyy|Ĥyy|ψyy〉+ 〈ψyy|Ĥxx − Ĥyy|ψyy〉

Since just potentials differ from each other,

Exx �= Eyy +

∫
ρ(r)[Vxx − Vyy]dr (2.13)

Changing labels gives

Eyy �= 〈ψxx|Ĥyy|ψxx〉
Eyy �= 〈ψxx|Ĥxx|ψxx〉+ 〈ψxx|Ĥyy − Ĥxx|ψxx〉

Eyy �= Exx +

∫
ρ(r)[Vyy − Vxx]dr (2.14)

Addition of 2.13 and 2.14 equations concludes in Exx + Eyy �= Exx + Eyy .

This result is mathematically wrong. So, two different potentials can not lead to same
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density, ρ(r).

The second theorem of Hohenberg Kohn states that a universal functional of den-

sity, E[ρ], can be defined for energy. The global minimum of this functional gives the

exact ground state of the system, and the density, ρ(r), leading to the minimum value of

the functional, refers to the exact ground state density, ρo(r). The proof is as follows: the

first theorem of Hohenberg-Kohn proves that the density, ρ(r), determines the potential,

V (r). We already know from quantum mechanics that potential determines the Hamil-

tonian, the Hamiltonian determines the ground state wavefunctions, and the ground state

wavefunctions determines the ground state density. As a result, every observable can be

written as a functional of the ground state density.

F [ρ(r)] = 〈 ψ |F̂ | ψ 〉 (2.15)

Variational principle asserts that the total energy of the ground state can be found by

minimizing the energy functional with respect to its density, ρ(r) [26].

These theorems demonstrate that electronic density, rather than individual wave-

functions, can be used as the starting point. Why are the results of Hohenberg-Kohn

theorems so important? The first thing is the computational time saving. Now, we are

dealing with three spatial variables instead of 3N variables. Besides, wavefuncitons are

not directly observable. On the contrary, density can be measured by experimental meth-

ods.

Although, Hohenberg-Kohn asserted two powerful theorems, they did not offer

any prescription to apply their theorems in reality. But, Kohn-Sham did. In order to

explain Kohn-Sham equations, it is required to restate the Hamiltonian here,

Ĥ = Kee + VIe + Vee + Vex (2.16)
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The kinetic energy term,KII , and the nuclear potential term, VII are absence under favour

of the Born-Oppenheimer approximation. In order to write energy as a function of density

as stated in the second theorem of Hohenberg-Kohn

E = 〈ψ|Ĥ|ψ〉
E =〈ψ|Kee|ψ〉+ 〈ψ|VIe|ψ〉+ 〈ψ|Vee|ψ〉+ 〈ψ|Vex|ψ〉

Since both the nuclei-electron interaction term, VIe, and the electron-electron interac-

tion term, Vee, do not contain any derivatives or complexities, the wavefunction and its

conjugate can be gathered under a common norm square, and to conclude

〈VIe〉 = −
Ne∑
I

∫
ρ(r)VIe(r)dr (2.17)

The Hartree potential, equation 2.8, defines electron-electron interaction and its expecta-

tion values is

〈Vee〉 = 1

2

∫ ∫
dr′dr

ρ(r′)ρ(r)
|r − r′| (2.18)

However, in the case of both the exchange term and kinetic energy term, collection of

wavefunction and its conjugate under a common norm square is impossible.

〈Vex〉 = −1

2

N∑
i,j

∫ ∫
ψ∗
i (r)ψ

∗
j (r

′)
1

|r − r′|ψi(r)ψj(r
′)dr′dr (2.19)

〈Kee〉 = −1

2

∫
dr ψ∗(r) �2 ψ(r) (2.20)

In order to handle the problem in kinetic energy term, assume that density is defined as the

sum of norm squares of single-particle orbitals, called the Kohn-Sham orbitals, Θn(r).

ρ(r) =
Ne∑
n

|Θn(r)|2 (2.21)

Under favour of this assumption, it is now possible to consider the kinetic energy as a

collection of individual kinetic energies of the Kohn-Sham orbitals. However, the con-

sequent kinetic energy shall be different from the real kinetic energy. This difference is

known as correlation.
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Within Kohn-Sham approach, the ground state energy functional in the form

Eks = Ks[ρ] +

∫
drVext(r)ρ(r) + Eee[ρ] + Exc[ρ] (2.22)

can be written where Vext(r) refers to the external potential due to the nuclei and any

other external fields, respectively [23]. Now, the Hamiltonian can be divided into two

parts

EKS[ρ] = Eknown[ρ] + Exc[ρ] (2.23)

whereEknown is a collection of terms that can be determined exactly andExc is everything

else, which includes exchange-correlation effects. In order to get the Kohn-Sham equa-

tions, one must derive the equation 2.23 with respect to density according to the second

theorem of Hohenberg-Kohn. In case of kinetic energy, derivation with respect to density

is impossible, instead it can be derived with respect to wavefunction conjugate, ψ∗(r).

δEKS

δΘ∗
i (r)

=
δKS

δΘ∗
i (r)

+

[
δEext

δρ(r)
+

δEee

δρ(r)
+
δExc

δρ(r)

]
δρ(r)

δΘ∗
i (r)

= 0 (2.24)

With the Kohn-Sham equations, many particle system can be described in terms of single-

particle orbitals [
− 1

2
�2 +Veff

]
Θi(r) = εiΘi(r) (2.25)

with the important difference that Veff is the sum of VHartree, Vxc, and Vext. The

exchange-correlation term contains all the complex many-body interactions, and it can

not be handled easily. There are approximations to tackle exchange-correlation. The most

commonly used one is local density approximation (LDA). And others are called general-

ized gradient approximation (GGA), exact exchange functionals, hybrid functionals and,

LDA+U. DFT is still an subject of investigation.

DFT method has a very huge range of applications , and is a very efficient method

to predict electronegativity, chemical potential, hardness, and chemical property[27, 28].

Even optical properties can be determined by using the time-dependent DFT. Still there

are limitations. Calculations of large, complex systems such as biosystems, nanostruc-

tures, clusters, and nanoreactors are impossible with ab-initio methods, which do not

include any experimental parameters. Since DFT does not contain empirical parameters,

which come from experimental data, it is an ab-initio method.
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Figure 2.1. The self-consistent loop for solution of Kohn-Sham equations is repre-

sented as a schema. The figure is adapted from the reference [23]
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2.2. Density Functional Tight Binding Theory

Density functional tight binding method (DFTB) is a tight binding method in

which parameters are determined by DFT calculations of a few molecules. DFTB is

not an ab-initio method as opposed to DFT, even though parameters are not derived from

experimental data.

The simplest description of the tight binding method is to build a Hamiltonian

matrix whose elements depend on the spatial parameters. The tight binding method as-

sumes that electrons are tightly bound to the atom which they belong to. The tight binding

method takes atomic-like orbitals as the basis set. In the tight binding method, total energy

is divided into two components

E = Ebnd + Erep (2.26)

where Ebnd describes the energies of occupied orbitals, and Erep describes the repulsive

contribution. In order to use DFT as basis for a tight binding method, electronic density

is described by

ρ(r) = ρ0(r) + δρ(r) (2.27)

Inserting the equation 2.27 into the equation 2.23 and writing it explicitly

E[ρ0 + δρ] =
N∑
i

ni

〈
ψi

∣∣∣∣∣− 1

2
�2 +Vext(r) +

∫
ρ′0(r)
|r − r′|dr

′ + Vxc[ρ0]

∣∣∣∣∣ψi

〉

− 1

2

∫ ∫
ρ′0(ρ0 + δρ)

|r − r′| dr′dr −
∫
Vxc[ρ0](ρ0 + δρ)dr

+
1

2

∫ ∫
δρ′(ρ0 + δρ)

|r − r′| dr′dr + Exc[ρ0 + δρ] + EII (2.28)

where ρ′0 = ρ0(r
′), and δρ′0 = δρ0(r

′). In this equation, EII term describes nuclei-

nuclei repulsion. The Taylor expansion of the exchange-correlation term, Exc[ρ0 + δρ],

up to the second-order is

Exc[ρ0 + δρ] = Exc[ρ0] +

∫
δExc

δρ

∣∣∣∣∣
ρ0

δρdr +
1

2

∫ ∫
δ2Exc

δρδρ′0

∣∣∣∣∣
ρ0

δρδρ′0drdr
′ (2.29)
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Substition of the equation 2.29 into the equation 2.28 gives

E =
N∑
i

ni

〈
ψi

∣∣∣∣∣− 1

2
�2 +Vext(r) +

∫
ρ′0

|r − r′|dr
′ + Vxc[ρ0]

∣∣∣∣∣ψi

〉

− 1

2

∫ ∫
ρ′0ρ0

|r − r′|drdr
′ + Exc[ρ0]−

∫
vxc[ρ0]ρ0dr + EII

+
1

2

∫ ∫ (
δρδρ′

|r − r′| +
δ2Exc

δρδρ′

∣∣∣∣∣
ρ0

)
drdr′ (2.30)

where (δExc/δρ)ρ0 = Vxc[ρ] is defined in brief. From the equation 2.30, one can divide

energy into the Ebnd and the Erep terms of the equation 2.26.

Ebnd =
N∑
i

ni

〈
ψi

∣∣∣∣∣− 1

2
�2 +Vext(r) +

∫
ρ′0(r)
|r − r′|dr

′ + Vxc[ρ0]

∣∣∣∣∣ψi

〉
(2.31)

Erep = −1

2

∫ ∫
ρ′0ρ0

|r − r′|drdr
′ + Exc[ρ0]−

∫
vxc[ρ0]ρ0dr + EII (2.32)

The term, which represents corrections, depends on the fluctuations in the density,

is called second-order correction term.

E2nd[ρ0, δρ] =
1

2

∫ ∫ (
δρδρ′

|r − r′| +
δ2Exc

δρδρ′

∣∣∣∣∣
ρ0

)
drdr′ (2.33)

In the standart DFTB model, which is solved without self-consistency, this term

is neglected. The non-self-consistent solution of DFTB is convenient to determine prop-

erties of homonuclear systems. However, the second-order correction term can not be

negligible in the systems where chemical bonds are sensitive to the charge balance such

as heteronuclear molecules and polar semiconductors[29]. In this case, the self-consistent

charge correction scheme is a more proper way to study these systems. [30]

Implementation of DFTB method is achieved by using DFTB+ software pack-

age. The structure’s geometries are optimized by using the conjugate gradient algorithm.

Optimizations stop when the force component with the maximal value drops below 0.02

eV/Angstrom. Lattice parameters are optimized to yield the minimum energy. The DFTB
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Hamiltionian with self-consistent charge calculation(SCC) is solved. The SCC tolerance

is set to 1.0e-7 Hartree. Mixer type for mixing charges in an SCC calculation is Broyden

with 1.5 mixing parameter.

2.3. Hellman-Feynman Theorem

Once the ground state structure has been reached, molecular forces can be calcu-

lated by using the Hellmann-Feynman theorem. The Hellman-Feynman theorem states

dE

dλ
=

〈
ψ(λ)

∣∣∣∣dHdλ
∣∣∣∣ψ(λ)

〉
(2.34)

The most widely used application of the Hellmann-Feynman theorem is the calculation

of molecular forces since

F iα = − ∂E

∂Riα

= −
〈
ψ

∣∣∣∣ ∂H∂Riα

∣∣∣∣ψ
〉

(2.35)

This is a very important and practical result since fluctuations of wavefunctions can be

ignored, thus changes in the Hamiltonian are calculated exclusively[31]. Since only the

term Vext and EII depend on atomic coordinates,

F iα = −
∫
drρ(r)

∂Vext
∂Riα

− ∂EII

∂Riα

(2.36)

2.4. Finite Displacements Method

In order to obtain force constants, the finite differences method, in the present

case the finite displacements method, is used. Firstly, geometries are optimized by using

the DFTB method. Then one atom from the low energetic configuration is dislodged

each time. The number of new configurations that are generated by dislodging one atom

depends on the symmetries of the original low energetic configuration. The forces of these

new configurations are calculated by using the DFTB method. After the calculations of
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forces, finite differences method is applied in order to gain the force constants from the

forces [32].

Cαβ(jl, j
′l′) 	 −F β(j

′l′; Δrα(jl))− F β(j
′l′)

Δrα(jl)
(2.37)

In this equation, Δrα(jl) represents finite displacement of dislodged atom and

F β(j
′l′; Δrα(jl)) is the force on the dislodged atom. F β(j

′l′) is calculated from the

equilibrium position of the dislodged atom and is usually zero.

The software package, named as Phonopy, is used to apply the finite differences

method. Phonopy takes optimized geometry structure as input, and creates supercell struc-

tures with displecements from optimized geometry. Phonopy also creates the perfect su-

percell structure without displacements. Phonopy does not calculate forces. In order to

calculate forces, one can use his/her own favorite calculator such as VASP, Siesta, etc.

In this research, DFTB+ package is used. Once the forces are calculated, the force con-

stants are calculated with the equation 2.37 by using Phonopy ”–fc” tag. In addition,

the thermal properties (density of states, band structure, etc) can be determined by using

Phonopy. [33]

2.5. Zero Force Condition

Interatomic potentials are described by considering two-body interactions, U(R),

where R is interatomic distance between a pair of atoms. Because the standard two-

body interatomic potential curve exhibits asymmetric behaviour, U(R) can be expanded

as Taylor series around its minimum

U = U(R0) +

(
∂U

∂R

)
0

x+
1

2

(
∂2U

∂R2

)
0

x2 + ... (2.38)

The zeroth-order term of the series is constant as well as insignificant. The first-order

term must vanish since it identifies a force, and total force acting on an atom must be zero

in the equilibrium configuration. The terms with order that are higher than the second-

order are ignored since just non-interacting phonons are considered due to the fact that

ballistic transport dominates the regime which is under interest . In the harmonic approx-

imation, the quadratic term is taken into consideration, and it defines an interatomic force
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constant [7]. Furthermore, zero force condition reflects to the matrix of force constants as

Cαβ(jl, jl) = −
∑
j′l′ �=jl

Cαβ(jl, j
′l′) (2.39)

The force constants, Cαβ(jl, jl) , are called on-site terms .

2.6. Atomistic Green’s Function

Density functional tight binding method is combined with atomistic Green’s func-

tion method in order to characterize phonon transport characteristics. Atomistic Green’s

function method(AGF) is an efficent method to determine the transport properties of

molecular junctions.

Figure 2.2. The general set-up for atomistic Green’s function. The dark atoms located

on the left represent the left contact bulk region, the white atoms represent

the region of the device, the dark atoms located on the right represent the

right contact bulk region. The figure is adapted from the reference [34].

Molecular transport junctions, one of the building blocks of nano-scale devices,

are the constituents in which a single molecule is placed between two electrodes but in

phononic cases, thermal reservoirs are placed instead of the electrodes [35, 36]. The gen-
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eral structure for Green’s function method is illustrated in the figure 2.2. The construction

consists of three regimes: left contact bulk region (LCB), right contact bulk region (RCB)

and, device. LCB and RCB are two semi-infinite thermal reservoirs.

The AGF method starts with constructing the dynamical matrix of the system

under interest. The description of dynamical matrix is

D̂ = {D̂pq} =
1

MpMq

⎧⎪⎪⎨
⎪⎪⎩
− ∂2U

∂up∂uq
, if p �= q

− ∑
m �=q

∂2U

∂uq∂um
, if p = q

(2.40)

where up and uq refer to any atomic degree of freedom (i.e. displacements), and U in-

dicates the total interatomic potential. Mp and Mq are atomic masses associated with

degrees of freedom up and uq, respectively. Here, just harmonic non-interacting phonons

are considered. Anharmonicity (nonlinearism) can be neglected due to the fact that the

regime in which the ballistic transport is dominant, is under interest.

The next step of the AGF method is to calculate free Green’s functions of the

reservoirs. The dynamical equation for the system is

((w2 + δi)�− D̂)û = � (2.41)

where u is a coloumn vector that consists vibrational degrees of freedom and δ is an

arbitrary constant. The non-contact Green’s function is

g = ((w2 + δi)�− D̂)−1 (2.42)

After connections set between reservoirs and device, the following matrix occurs

⎡
⎢⎢⎣
(w2 + δi)�− D̂L −τ †L 0

−τL (w2 + δi)�− D̂d −τR
0 −τ †R (w2 + δi)�− D̂R

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩
gLD

GD

gRD

⎫⎪⎪⎬
⎪⎪⎭ = 0 (2.43)

where τL and τR are interaction matrices between the device and the left reservoir and be-

tween device and right reservoir, respectively. The terms, gLD(RD), represent the Green’s

functions of reservoirs including the changes when the connections are established. When
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multiplication is achieved,

((w2 + δi)�− D̂L) gLD − τ †LGD = 0 (2.44)

−τL gLD + ((w2 + δi)�− D̂D)GD − τR gRD = � (2.45)

((w2 + δi)�− D̂R) gRD − τ †RGD = 0 (2.46)

Since ((w2 + δi)�− D̂L(R)) = gL(R)−1 , the equations 2.44 and 2.46 become

gLD = gLτ
†
LGD (2.47)

gRD = gRτ
†
RGD (2.48)

Inserting the equations 2.47 and 2.48 into the the equation 2.45 concludes the Green’s

function of the device

GD =

[
(w2 + δi)�−Dd − τLgLτ

†
L − τRgRτ

†
R

]−1

(2.49)

where � is the unity matrix.

The broadening terms are imaginary components of self-energy terms, Σ. Self-

energy terms are calculated from the Green’s function of the reservoirs and the interaction

matrices

ΓL(R) = −2Im(ΣL(R)) = −2Im( τL(R)gL(R)τ
†
L(R) ) (2.50)

Transmission function is

Ξ(w) = Trace[ΓLGDΓRG
†
D] = Trace[ΓRGDΓLG

†
D] (2.51)

since at the steady state the total energy flux is independent of the direction. The heat flux

in the Landauer form is

J =
1

2π

∫
dw �w Ξ(w) [fL(w, T )− fR(w, T )] (2.52)

where fL(R)(w, T ) are the Bose-Einstein distribution functions.
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Finally, conductance is

κ =
J

ΔT
(2.53)

Assuming that ΔT → 0, namely equilibrium transport condition, then conductance be-

come

κ =
1

2π

∫
dw �w Ξ(w)

∂f

∂T
; (2.54)

since
fL(T + ΔT

2
)− fR(T − ΔT

2
)

ΔT
=
∂f

∂T
(2.55)

2.7. Generic Reservoir

Consider a one-dimensional linear chain with the first nearest neighbour interac-

tion. The relationship between its frequency, ω, and its wavevector, k, is

ω =

√
4C

M
sin

(
ka

2

)
and ωmax =

√
4C

M
(2.56)

Figure 2.3. Phonon dispersion relation (left) and phononic density of states (right) of

a one-dimensional monoatomic linear chain

The group velocity of phonons, which are propagating through the one-dimensional

chain, is described as

dω

dk
=

√
4C

M

a

2
cos

(
ka

2

)
(2.57)
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and it describes transmission of a phonon wave packet. The group velocity at low values

of wavevector gives sound velocity, which gives the speed of acoustic phonons.

lim
k→0

dω

dk
=

√
4C

M

a

2
= vg = vs (2.58)

The tight binding dynamical matrix operator of a semi-infinite linear chain is

D0 =

⎛
⎜⎜⎜⎜⎜⎝

α −γ 0 0 ...

−γ α −γ 0
. . .

0 −γ α −γ . . .

...
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠ (2.59)

where α =
2C

M
and γ =

C

M
=
α

2
(2.60)

Compensating the equations 2.58 and 2.60 gives α = v2s/a
2. Once one knows

the α and γ, the Hamiltonian matrix can be constructed. The Green’s function can be

calculated analytically from the tight binding dynamical matrix elements as shown in

W.Müller’s work.[37]

g0kl = − 1

ω2

exp(i(k + l)θ)− exp(i(k − l)θ)

2i sin(θ)
(2.61)

where t =
(ω2 − α)

2γ
and θ = arccos(−t) (2.62)

because the first atom of the chain, which is going to link to the molecule, is under interest,

k = l = 1, and this condition reduces the equation 2.61

g011 = −�M

C
exp(iθ) (2.63)

With this scheme, one can easily derive the Green’s function of the reservoirs

from their sound velocity without doing complex, time consuming optimization step, and

calculation of forces step. The elements of the tight binding dynamic matrix of the semi-

infinite chain are calculated by using sound velocity of carbon nanotubes. The on-site

terms equal to 2v2s/a
2, and the first-neighbour interaction terms equal to v2s/a

2. However,

these steps are still requisite for molecules which are intended to be used as device. These
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molecules have to be optimized and their matrix of force constants is determined by the

methods explained in the previous sections. In order to connect the generic reservoirs

to the molecule, each atom, which is located at the sides of the molecule where generic

reservoirs are going to be bind to, is removed. The generic reservoirs are placed to these

empty locations. While placing the reservoirs, care must be taken about the charge bal-

ance, which must be preserved. One atom from each reservoir is included to the force

matrix of the molecule. In order to perform this, the corresponding elements of these

removed atoms in the force matrix of the molecule are set to zero. After that, Mα is

inserted for on-site terms of the replaced atoms, and −Mγ is inserted for the terms which

describe interactions between the replaced atoms and the atoms of the molecule linked to

the reservoirs.

To make things clear, let’s consider the benzene molecule. This toy model was

applied to benzene molecule and results were investigated in depth. The first and twelfth

hydrogen atoms (see the figure 2.4) are removed from both the molecule and its matrix of

force constants . To reflect this effect to the matrix, substitution of corresponding elements

with zero was carried out followed by replacement of previous zero values with appropri-

ate values. Furthermore, 2Mv2s/a
2, is inserted to C(1,1) and C(12,12). Mv2s/a

2, is inserted

to C(1,2), C(2,1), C(11,12), C(12,11). By this substitution, the matrix of force constants of the

benzene is ready for construction of dynamic matrix of device. Consequently, in order

apply the atomistic Green’s function method, all necessary information is known, thus

thermal conductivity can be determined. Figure 2.5 shows the transmission and density

of states of benzene, which are determined by virtue of generic reservoir.

The last thing, required to be defined, is a term, called switching effect:

SE =
|κtrans − κcis|

κtrans
x100 (2.64)

The term gives information numerically how much isomeric changes affect the phononic

conductivity. Switching effect is calculated from conductances of systems at 300K.
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Figure 2.4. Illustrations of a free benzene molecule (top), and a connected benzene

molecule with generic reservoirs (bottom). The first and twelfth hydrogen

atoms are removed, and the generic reservoirs are placed to these empty

locations.
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Figure 2.5. Transmission plot (left) and density of states plot (right) of benzene are

illustrated. They are calculated within generic reservoir scheme.
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Figure 2.6. Alignment of methods
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CHAPTER 3

SYSTEM SET-UP

3.1. Carbon nanotubes

A carbon nanotube is a carbon allotrope with a tube shape, which can be con-

sidered as a rolled sheet of graphene. Graphene is a two-dimensional hexagonal lattice

of sp2 hybridized carbon atoms while carbon nanotube is a one-dimensional tube. Car-

bon nanotubes attract considerable attention since they possess extraordinary properties.

Due to the long mean free path, carbon nanotubes are ballistic conductors. Carbon nan-

otubes have high carrier concentration for electrons and holes because of the delocalized

π-electrons donated by each atom. Graphene, diamond, and carbon nanotubes are very

strong materials because of the double bond character arising from sp2 hybridized carbon

atoms. Due to the same reason, melting temperatures of carbon materials are high. In

addition, cylindrical shape makes carbon nanotubes stronger than graphene. The Debye

temperatures are high in carbon nanotubes as well as other carbon materials.

Electrical characteristics of carbon nanotubes can be altered between conducting

and semiconducting states via structural design. These unique properties make carbon

nanotubes promising candidates to build effective nanostructures. A great variety of ap-

plications of carbon nanotubes have come to light since their discovery in 1991. One of

their extraordinary applications is that they can be used to construct aerospace devices,

since carbon nanotubes are hard materials and have high melting temperatures [38]. Car-

bon nanotubes are still under interest in many scientific areas such as material science,

electronics, mechanics, energy management, chemical processing, and many other fields.

Carbon nanotubes can possess a single outer wall or multiple walls (see the figure

3.1). Multiple walled carbon nanotubes are irrelevant to this study. However, single

walled carbon nanotubes are used as thermal reservoirs. There are three different kinds

of chiralities for a single walled carbon nanotube depending on its rolling vector (see the

figure 3.2): zigzag, armchair, chiral. Single walled carbon nanotubes are identified by

their rolling vector indices, (n, m). In this research, (5,5) armchair carbon nanotube and

(9,0) zigzag carbon nanotube are used. The figure 3.3 illustrates the unit cells of carbon

nanotubes which are used in this research.
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Figure 3.1. A single walled carbon nanotube (on the left), a multi walled carbon nan-

otube (on the right). The figure is adapted from the reference [39].

Figure 3.2. Figure of different chirality of a carbon nanotube. There are three different

chiralities of a carbon nanotube depending on its rolling vector, Ck. The

figure is adapted from the reference [39].
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Figure 3.3. Figure of unit cells of (5,5) armchair carbon nanotube (left) and (9,0)

zigzag carbon nanotube (right). The unit cell of a (5,5) armchair carbon

nanotube consists of 20 carbon atoms, the unit cell of a (9,0) zigzag carbon

nanotube consists of 36 carbon atoms.

3.2. Azobenzene

Azobenzene is a molecule which exhibits photoisomeric behaviour. When ex-

posed to radiation, azobenzene changes its three-dimensional structure reversibly between

its two isomeric states. The energy difference between the two isomeric states is 0.2 eV.

The trans isomer is characterized by its planar structure, while benzene rings of the cis

isomer are tilted with respect to each other. Especially, in electronics and photonics, this

structural difference gives rise to potential applications to design devices whose particular

properties can be controlled by light. The trans isomer of azobenzene have π-conjugation

across the whole molecule, however, the ”v” shape of the cis isomer breaks this conjuga-

tion. This leads to significant changes in its electronic spectrum and gives the opportu-

nitiy to construct very powerful electronic switches [40–42], diodes [43, 44], transistors

[45, 46]. This π-conjugation also makes the trans isomers more stable than the cis iso-

mers.

The most important reason of the difference between the vibrational spectrums of

the isomers of azobenzene, which is seen in the figure 3.5, comes from the non-planarity

of cis isomer. π-electrons are localized on the azo-group (central N = N bond) instead

of the whole molecule, as a result both double bond character of azo-group and the single

bond character of adjent CN bonds are increased [47].

Azobenzene derivatives are also used as junction. 1,2-di([1,1’-biphenly]-4-yl) di-

azene and 1,2-di([1,1’:4’,1”-terphenly]-4-yl) diazene are called azobiphenly and azotriph-

enly in this research for abbreviation purposes (see figure 3.4). The prefix, (E)-, repre-

sents the trans conformation and the prefix, (Z)-, represents the cis conformation. Besides

azobenzene, azobenzene derivatives are widely used in researches [41, 48]. The photoiso-

29



Figure 3.4. Illustration of isomers of azobenzene and its derivatives. Molecules on the

left illustrate trans isomers, molecules on the right illustrate cis isomers.
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Figure 3.5. To see the difference betweeen vibrational spectrums of two isomers of

azobenzene, each spectrum is plotted in the same figure. The red lines

belong to the cis isomer of azobenzene while the green lines belong to the

trans isomer of azobenzene.

merisation behaviour is also displayed by both azobiphenly and azotriphenly molecules.

The energy difference between their isomers is approximately same with the energy dif-

ference between azobenzene isomers. Many characteristic properties are same for all. For

cis isomer’s dihedral angles, table 4.3 can be seen. The motivation in the usage of deriva-

tives is the expectation of improving switching effect by extension of the molecules.

3.3. Molecular Junction

The figure 3.6 demonstrates the partition of our systems. A single azobenzene,

or one of its derivatives is placed between two semi-infinite carbon nanotubes. A single

azobenzene is placed between single walled five periodic cells (approximately 12.4971

angstroms) (5,5) armchair and five periodic cells (approximately 19.8 angstroms) (9,0)

zigzag CNTs in order to construct the device. The hydrogen atoms at para positions of
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Figure 3.6. A schematic diagram of our system. The left and right contact bulk re-

gions are two semi-infinite carbon nanotubes. The junction molecule is the

trans isomer of azobenzene. The device includes five unit cells of carbon

nanotubes from both left and right end.

Figure 3.7. A close look to the geometry of junctions. The hexagone of armchair car-

bon nanotube which is completed with CO atoms of the CONH linker is

illustrated on the left. The heptagone of zigzag carbon nanotube which is

completed with CO atoms of the CONH linker is illustrated on the right.

azobenzene are removed, and NHCO linker or NH(CO)2 linker is placed. The arrange-

ment of the linkers is important. The cis and trans isomers are able to transform to each

other, only the separation of reservoirs is allowed to change. The incomplete hexagon

of armchair carbon nanotube and the incomplete heptagon of zigzag carbon nanotube are

completed with the oxygen and carbon atoms of the linkers. Their places must be the

same in each condition. Figure 3.7 demonstrates the NHCO linker case. Each carbon

atom of CNTs on the linker’s side with incomplete bonds are saturated with hydrogens.

Three periodic cells (6.2653 angstroms) of the device’s CNTs are fixed from both right

end and left end. From both left and right end, three periodic cells (11.2258 Angstroms)

of zigzag CNTs of device are fixed as well. Simulation window is large enough to avoid

the self-interaction of the system. Device is contacted with LCB from left and RCB from

right.
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CHAPTER 4

NUMERICAL RESULTS

4.1. Structural analysis

Building of the constructions start with the relaxation of the unit cells of carbon

nanotubes which are illustrated in the figure 3.3. Once relaxations of the unit cells are

achieved, supercells are constructed from these unit cells in order not only to calculate the

forces of reservoirs but also to construct contacts which are 1×1×5 supercells of carbon

nanotubes of devices. Furthermore, these contacts have perfect geometries. Molecules,

which are intented to be used as junction, are placed between contacts as explained in

the last section of the system set-up chapter. After the connection between contacts and

molecules are established, structures are ready to be optimized in order to get low en-

ergetic configurations. The structures were optimized by using DFTB method, and to

accomplish this, DFTB+ package was used. During optimizations, three periodic of car-

bon nanotubes from both left and right end of the device are fixed in order to preserve the

periodicities of the simulation cells of devices. To accomplish this, contact’s separations

are changed exclusively, while molecules and the rest two periodic cells located at the

molecule side of contacts are allowed to be relaxed. Figure 4.1 demonstrates an array of

graphs which are the plotted energy versus contact’s separation. The global minimum of

these curves give the low energetic configurations. In each graph, the blue line stands

for cis isomer, while the green line represents trans isomer. In each condition, the device

in which the junction is constructed from trans isomer is more stable than the device in

which the junction is constructed from cis isomer. The devices with cis isomeric junctions

have a higher free energy than the devices with trans isomeric junctions. The one with the

higher free energy is metastable. Between both states, it is a necessary condition of the

energy barrier to be much larger than the thermal energy in order to avoid uncontrollable

isomerization.

Some characteristic features of azobenzene and its derivatives change after con-

nections are established. Energy differences between the isomers of free azobenzene,

azobiphenly and, azotriphenly molecules are calculated as 0.18 eV, 0.202 eV, 0.203 eV,

respectively. The largest numerical deviation in energy differences occurs when azoben-

zene is connected with armchair CNT and its value is approximately 0.1 eV. Because the
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Figure 4.1. Energies vs Contacts Seperations
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azobenzene molecule’s lenght is shorter than the lenght of its derivatives, some tension

remains on the linkers. While the lenght of molecules are getting longer, the energy dif-

ferences dissappear. Furthermore, in the low energetic configurations the direction of the

cis isomer bendings differs from each other according to the types of reservoirs and link-

ers. Each type of low energetic configuration will be deeply investigated in the upcoming

sections.

4.2. Azobenzene

In this section, the investigation is on the system in which azobenzenes are used

as junctions. Because azobenzene is the main molecule of this study, this section is com-

pletely dedicated to azobenzene. Transmissions of the systems are shown in figure 4.2.

The left graph represents the case where reservoirs consist of armchair carbon nanotubes,

and the right one illustrates the transmission of the system in which reservoirs consist of

zigzag carbon nanotubes. The blue lines represent the cis isomeric state of azobenzene,

while the green lines represent the trans isomeric state of azobenzene in both cases. At

low frequencies, isomers’ transmissions are similar to each other, however, within high

frequency range, the difference between the transmission spectrum of the isomers be-

comes evident.

The conductivity plot can be seen in the figure 4.3. The green, blue, turquoise,

and red lines represent armchair carbon nanotubes with trans isomer, armchair carbon

nanotubes with cis isomer, zigzag carbon nanotubes with trans isomer, and zigzag carbon

nanotube with cis isomer, respectively. The most conductive one of these systems is the

system in which reservoirs are constructed from armchair carbon nanotubes, and where

the junction is in trans isomeric state. Trans isomer is more conductive than cis isomer in

both cases. If we compare carbon nanotube’s isomers in itself, the system in which ther-

mal reservoirs are made up from armchair carbon nanotubes is more conductive than the

system where thermal reservoirs are made from zigzag carbon nanotubes. The switching

effect of the system where armchair carbon nanotubes are used as reservoirs is 19.81%

while the switching effect of the other is 20.58 %. For a better understanding, low ener-

getic configurations are illustrated in the figure 4.4. The structures located at left side of

the figure demonstrate the armchair reservoir case while the structures located at the right

side of the figure represent the zigzag reservoir case. The upper illustrations belong to cis

isomeric states, the below illustrations belong to trans isomeric states. If low energetic

configurations are examined, one can see the reason for why switching effects are close to
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Figure 4.2. Transmission graphs of azobenzene with armchair carbon nanotube (left)

and with zigzag carbon nanotube (right)
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Figure 4.4. Low energy configurations of cis isomer of azobenzene contacted with

armchair carbon nanotube (up-left), trans isomer of azobenzene contacted

with armchair carbon nanotube (bottom-left), cis isomer of azobenzene

contacted with zigzag carbon nanotube (up-right), trans isomer of azoben-

zene contacted with zigzag carbon nanotube (bottom-right)

each other while conductances are different. Although, cis isomers bend to the opposite

directions in respect to one another, their bending is similar in both cases. This can be

seen clearly in the upper illustrations of the figure 4.4. To support this condition, linker

angles (measured from CNC one carbon belongs to reservoir, linker’s nitrogen and the

other carbon is located the para position of the benzene) are measured, see table 4.1. An-

gles’ values are close to each other, which means that the stress upon the linkers is similar.

As a result, the structural difference between two isomeric states is alike, and switching

effect remains the same under change of reservoirs between zigzag carbon nanotube and

armchair carbon nanotube.

Table 4.1. Angle of linkers connects azobenzene to reservoirs

Thermal reservoir Left angle Right angle

Armchair CNT 124.313 124.291

Zigzag CNT 124.720 125.159
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4.3. Effect of Molecule

In this part, the use of different molecules as junctions and the effect of this usage

is investigated. To be more precise, the junctions are constructed by using azobenzene

derivatives, i.e. azobiphenly and azotriphenly. In the figure 4.5, the graph on the left

side shows the transmission plot of the system where the junction is a single azobiphenly

molecule and the reservoirs are constructed from armchair carbon nanotubes, and the

graph on the right side represents the transmission plot of the system in which reservoirs

are constructed from zigzag carbon nanotubes. The blue lines indicate the cis isomeric

states, while the green lines indicate the trans isomeric states. In the figure 4.7, apart from

junctions being constructed from azotriphenly molecules, all the attribute are the same as

in figure 4.5. The difference in transmission spectrum of isomers descends as opposed to

expectation.

Figures 4.6 and 4.8 demostrate the graphs of conductances. In the figure 4.6, the

junctions of systems are established by using azobiphenly molecules, however, reservoirs

are different in terms of carbon nanotube’s isomers. The blue, green, red, and turquoise

lines indicate armchair reservoir with cis isomeric junction, armchair reservoir with trans

isomer, zigzag reservoir with cis isomer, and zigzag reservoir with trans isomer, respec-

tively. This order is valid for the figure of conductance, in which azotriphenly is used

as junction molecule. It can be clearly seen from the figures of conductance that when

the systems are at trans isomeric states, the conductivity increases as opposed to the con-

ductance in cis isomeric states, as in azobenzene case. In addition, the systems in which

isomers are bound to zigzag carbon nanotubes are less conductive than the systems in

which isomers are bound to armchair carbon nanotubes.

Table 4.2 demonstrates both switching effects and conductances at 300K. Switch-

ing effects of azobiphenly case shows different behaviour. When the junction is azo-

biphenly, and armchair carbon nanotubes are used as thermal reservoirs, switching effect

is 17.90% while switching effect of zigzag carbon nanotube’s case is 9.53% as opposed

to the trend azobenzene and azotriphenly have established. When reservoirs are changed

from armchair carbon nanotubes to zigzag carbon nanotubes, their switching effects re-

main approximately the same. The reason of this difference can be clearly understood

from low energetic configurations. Figure 4.9 demonstrates the bridges of systems, their

junctions are constructed by using azobiphenly molecules. When trans isomer is bound

to zigzag carbon nanotube, its planarity disappears. However, in armchair case, planarity

of trans isomer is unspoiled.
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Figure 4.5. Plot of transmissions of armchair CNT with azobiphenly’s isomers is on

the left. Plot of transmissions of zigzag CNT with azobiphely’s isomers is

on the right.
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Figure 4.6. Plot of conductances of azobiphenly with both isomer of CNTs
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Table 4.2. Switching effects of systems

Thermal Junction cis Isomer trans Isomer Switching
reservoir Molecule (nW/K) (nW/K) Effect

A- CNT
Azobenzene 0.1704 0.2125 19.81%

Azobiphenly 0.1706 0.2078 17.90%

Azotriphenly 0.1044 0.1144 8.74 %

Z-CNT
Azobenzene 0.1007 0.1268 20.58%

Azobiphenly 0.1044 0.1154 9.53%

Azotriphenly 0.933 0.1024 8.11 %

Table 4.3. Dihedral angles of cis isomers

Molecule Free Molecule Linked to A-CNT Linked to Z-CNT

Azobenzene 13.943 deg 26.268 deg 18.413 deg

Azobiphenly 13.419 deg 18.559 deg 15.167 deg

Azotriphenly 13.496 deg 17.881 deg 13.546 deg
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Figure 4.9. Bridge structures of cis azobiphenly with armchair CNT (top left), trans
azobiphenly with armchair CNT (bottom left), cis azobiphenly with zigzag

CNT (top right), and trans azobiphenly with zigzag CNT (bottom right)

Figure 4.10. Bridge structures of cis azotriphenly with armchair CNT (top left), trans
azotriphenly with armchair CNT (bottom left), cis azotriphenly with zigzag

CNT (top right), and trans azotriphenly with zigzag CNT (bottom right)
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When the low energetic structures of junctions with azotriphenly are examined,

the observed case become stranger. The benzene rings of triphenly rotate, and as a result,

the perfect geometry of free azotriphenly’s isomers break down. The motivation to use

longer molecules as junctions was to improve the switching effect via enhanced folding.

Since the azobenzene is a short molecule, linked cis isomer’s folding can not be achieved

completely, and as a result, some stress remains on linkers and switching effect is low as

opposed to expectations. Table 4.3 shows dihedral angles between cis isomer’s planes.

The most significant change happens in azobenzene case; while the dihedral angle of cis

azotripenly, which is linked to the zigzag carbon nanotube, remains almost the same as

free molecule. Extended molecules are expected to remove these deviations from the free

molecule’s behaviour. However, two other effects disprove this expectation. The first one

is that when the molecules are extended, their spectrum becomes denser, which means

that the number of channels where phonons flow through will increase. This effect im-

proves the conductance while it reduces the switching effect. The second effect is that

the structures of azobiphenly and triphenly molecules are degenerated when connections

are set. The benzene rings are flipped. The most significant degenerations occur in azot-

riphenly cases. See figure 4.10. Trans azotriphenly loses its planarity in each case. As a

result, conductances are low, as well as switching effects.

4.4. Effect of Reservoir

In this section, the effects of using different linkers are analysed. To see the ef-

fects in the usage of different reservoirs, two different kinds of carbon nanotubes are used:

armchair carbon nanotube and zigzag carbon nanotube. Besides, generic reservoirs are

derived by using sound velocity, as explained previously in the Methods chapter. Because

the molecules are degenerated due to the connections, the state of the generic reservoir

clearly displays the switching effect where this degeneration is kept out. In other words,

it lays bare the difference between the cis and trans isomer states. Furthermore, before

a system is established, one can predict the transport characteristics of a molecule which

is intended to be used as the junction, by virtue of the fact that it favours and acceler-

ates the calculation process. Figure 4.11 demonstrates the transmissions of constructions,

in which junctions are build by use of azobenzene molecules. At left graphic displays

transmissions of junctions with cis isomer of azobenzene molecule, and the one located

at right side of the figure 4.11 displays transmissions of juctions with trans isomers. In

both cases, red lines, green lines, and blue lines point toward zigzag carbon nanotube
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Figure 4.12. Conductances of azobenzene isomers with different reservoirs
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reservoirs, armchair carbon nanotube reservoirs, generic reservoirs, respectively. Due to

the fact that sound velocity describes acoustic phonons, frequency range become narrow,

and maximum frequency drops in case of generic reservoirs.

Figure 4.12 demonstrates the conductances of the construction with azobenzene

junctions linked to different thermal reservoirs. The cis isomer, which is linked to zigzag

carbon nanotube, armchair carbon nanotube, and generic reservoir point toward purple,

red, and blue line, respectively; and for trans isomer; yellow, turquois, green lines indicate

the reservoirs in the same order. Table 4.4 shows the numerical results that are obtained at

300 K. The most conductive system includes trans isomer of azobenzene as junction and

its reservoirs are described by generic reservoirs. The generic reservoirs yield elevated

conductances, because of the stress effects as explained in the azobenzene section and

deterioration effects as explained in the effect of molecule section are removed. In sys-

tems where zigzag carbon nanotubes are used as thermal reservoirs, the conductances are

low. The conductances of bare carbon nanotubes in armchair and zigzag form at 300 K is

2.8774 nW/K and 2.7944 nW/K, respectively. In despite of this resemblance, the con-

ductance of the systems where zigzag carbon nanotubes are used as reservoirs are lower

than the cases of armchair reservoirs. This condition is related with the distribution of the

modes on the device. The distribution of the modes is going to be investigated thoroughly

in the last section of this chapter. The justification of why switching effects remain the

same, despite the fact that conductance deviates significantly from each other under the

changeover of reservoirs between armchair carbon nanotube and zigzag carbon nanotube,

was clearly stated in azobenzene section.

Table 4.4. Switching effects of systems in which azobenzene linked to different reser-

voirs

Reservoir cis isomer trans isomer Switching effect

Armchair CNT 0.1704 nW/K 0.2125 nW/K 20.01 %

Zigzag CNT 0.1007 nW/K 0.1268 nW/K 20.58%

Generic Reservoir 0.1993 nW/K 0.3056 nW/K 34.62 %

45



Figure 4.13. This is a close look of the connections between the contacts and the

azobenzene molecule. The geometry of the NH linker is illustrated at

left, while geometry of CONH linker is illustrated at right.

Figure 4.14. Bridge structures of cis azobiphenly linked to armchair CNT by CONH
linker ( left), trans azobiphenly linked armchair CNT by CONH linker

(right)

4.5. Effect of Linker

In this section, the effects of changeover linkers from NH to CONH linker are

investigated. Up to this point, NH linker establishes connections between contacts and

molecules to reservoirs in each case. Additional CO atoms are placed between the con-

tacts and the NH linker to form CONH linker, see figure 4.13. For a clear statement,

azobenzene molecule is connected to armchair carbon nanotube reservoirs and generic

reservoirs by bothNH and CONH linkers. To illustrate the junctions clearly, figure 4.14

demonstrates low energetic bridge structures of the case where azobenzene molecule is

linked to armchair carbon nanotubes by CONH linker. If we compare figure 4.4 and

figure 4.14, some structural differences are observed. The direction of the cis isomer

bending is reversed as opposed to the case where azobenzene molecule is bound by NH

linker to armchair carbon nanotubes. Besides, trans isomer planarity is not perfect, a
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Figure 4.15. Transmissions of cis isomers of azobenzene which is bound by both

CONH linker ( blues lines) and NH linker (green lines) to armchair car-

bon nanotube reservoir (left) and generic reservoir (right)
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generic reservoirs by two different linker group
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Figure 4.17. Transmissions of trans isomers of azobenzene which is bound by both

CONH linker ( blues lines) and NH linker (green lines) to armchair car-

bon nanotube reservoir (left) and generic reservoir (right)
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Figure 4.18. Conductances of trans isomers which is connected to both armchair and

generic reservoirs by two different linker group
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slight bending in the trans isomer is observed and its benzen rings have rotated a little.

Figures 4.15 and 4.17 demonstrate the transmission graphics. Isomers are separated to

get an explicit illustration. In all four transmission graphs, blues lines represent CONH

linker case, green lines represent NH linker case. Using CONH rather than NH as

the linker lowers the transmission in all cases. This decrease can be observed much bet-

ter in the transmission graphs with generic reservoirs. As it is understood from all the

transmission graphs, the difference is significant at high frequencies.

Figures 4.16 and 4.18 show conductances. Figure 4.16 stands for cis isomer in

four different cases: connected to armchair carbon nanotube by NH linker (blue line),

connected to generic reservoir by NH linker (green line), connected to armchair carbon

nanotube by CONH linker (red line), connected to generic reservoir by CONH linker

(turquois line). Figure 4.18 illustrates conductances of trans isomers in the same manner.

In each cases, usage of CONH connector group instead of NH connector group lowers

the conductances as well as switching effects. When using CONH linker, the switching

effect where azobenzene is connected to armchair reservoirs and generic reservoirs is

17% and 22%, respectively. The distortion in trans isomer, as mentioned in the beginning

of this section, lowers the switching effect in armchair reservoir case. The reason why

conductances and switching effects are low in the case of CONH linker is going to be

investigated more deeply in the Mode Analysis section.

4.6. Mode Analysis

Up to now, we discussed the transmissions and the conductances by relating them

to the low energetic configurations. In this section, the atomic displacements are visual-

ized to have deeper understanding. To achieve this, the self-energies are incorporated into

the dynamic matrix, and eigenvectors and eigenvalues of the result matrix are calculated.

M = (D̂D + Σl + ΣR) (4.1)

Mu = ω2u (4.2)

where u represents displacements of the atoms at the frequency w. This calculation is

done for frequencies that have significant differences. The animation videos of these

frequencies are attached to this thesis additionally.

In the first two illustrations the connection case of our main molecule azobenzene
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linked to the armchair carbon nanotubes by NH linker is investigated. In the first illus-

tration of these two, the frequency of 23.4603 THz where the cis isomer transmission has

higher value than the trans isomer transmission, and as to the second visual, the frequency

of 42.0596 THz, where trans isomer transmission has higher value than than the cis iso-

mer is examined. The turquoise arrows show displacements. What draws the attention

in these displacements are that while the modes in the cis isomer are uniform and dis-

tributed properly, the displacements in the trans isomer molecule are lacking. However,

in the second illustration the contrary is observe: while the modes in the trans isomer are

distributed properly, the displacements in the cis isomer molecule atoms are poor.

Looking the following two illustrations the focus is on why the CONH linker us-

age linkers lowers the conductances. In the first of these illustrations the cis isomeric state

is visualized and in the second one, trans isomeric state is visualised. As one observes

in both cases, it is clear that the displacements of molecules atoms are poor in the case

usage of CONH linker. Modes are aggregated on the reservoirs. Especially when when

we look at the visual where cis isomer state has been drawn what stands out is the arrows

that belong to the oxygen atoms which complete the hexagons of the armchair carbon

nanotubes. This reveals that additional CO atoms behave like a barrier to the coming

phonons.

In the last figure, the focus of interest is that why there is a difference between

conductances of the armchair reservoir case and zigzag reservoir case, even though there

is almost no difference between the conductivities of bare armchair carbon nanotubes and

zigzag carbon nanotubes. In the figure 4.23, the left illustrations stands for cis isomer

and the trans isomer is illustrated at right. Modes are distributed on the system asymmet-

rically. Displacements of atoms which belong to the system with cis isomeric junction

are determined at 38 THz while displacements of atoms which are belong to the system

with trans isomeric junction are determined at 33 THz. At these frequencies, transmission

values of both systems are close to zero. Visualisation of the displacements reveals that vi-

brational modes have an asymmetric distribution. This is the reason why the systems with

zigzag reservoirs have lower conductances than the systems with armchair reservoirs.
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Figure 4.19. Visualization of atoms’ displacements. The systems contain armchair car-

bon nanotubes, azobenzene molecule, andNH linkers. The displacements

are calculated at the frequency, 23.4603 THz. The left illustration shows

the cis isomeric state and the one at right side demonstrates the trans iso-

meric state. At this frequency, the cis isomeric state has a higher transmis-

sion value than the trans isomeric state.
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Figure 4.20. In this illustration the same system of the figure 4.19 is shown. But here,

the displacements are determined at 42.0596 THz. At this frequency, the

trans isomeric state has a higher transmission value than the cis isomeric

state. This can be observed by looking at the arrows that belong to the

linkers.
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Figure 4.21. The linkers are compared with each other by the visualisation of the sys-

tems where azobenzene molecule is linked to armchair carbon nanotubes

by the NH linker(left) and the CONH linker(right). Both systems are in

the cis isomeric state. The frequency, 6.2533 THz, is selected to determine

displacements. At this frequency, the polarization directions of the arrows,

which belong to the linkers draw attantion. The CONH linker behaves

like a barrier.
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Figure 4.22. In this figure, the same systems in the same order as the figure 4.21 is

discussed to compare linkers. But these systems are in trans isomeric state.

The displacements have been calculated at the frequency, 27.3851 THz.

And the results show that the vibration of the molecule with the CONH
linker is poor.
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Figure 4.23. This illustration shows the system where zigzag carbon nanotubes are

linked to the azobenzene molecule by NH linker. The junction that is

illustrated at left is in the cis isomeric state while the juction that is illus-

trated at right is in the trans isomeric state. The displacements that are

seen at the left visual are calculated at 38 THz frequency, while displace-

ments of the right one are calculated at 33 THz. The transmission values at

both frequencies are approximately zero, because there is an asymmetric

distribution of vibrational modes.
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CHAPTER 5

CONCLUSION

To sum up, in this thesis; the possibility of the heat flow control based on both

photoisomeric behaviour of azobenzene and its derivatives, and single molecule junction

is investigated to build a thermal switch. A singular molecule junction is a structure

where a single molecule is placed between two semi-infinite reservoirs. In this thesis, to

build the switch, a single azobenzene molecule or one of its derivatives is placed between

two semi-infinite carbon nanotubes. These photoisomeric molecules change their three-

dimensional structures when exposed to light in particular frequencies. The possibility

whether the thermal flux can be altered between on and off states by the help of the photo

isomeric behaviour of the molecules is examined. The effects of linker groups, thermal

reservoirs, and different molecules on thermal conductivity are analysed as well. The find-

ings indicate that the structural changes of the molecules can alter the thermal conductiv-

ity with a fair average. Trans isomers of molecules are found to be more conductive than

cis isomers. Azobenzene derivatives are used as well, because with the extension of the

molecules it was expected that the switching effect would increase. As the molecules are

extended, the stress on the linkers that connect the azobenzene with the carbon nanotubes

decreases. Because of that, the prediction was an increase of the switching effect that

originated from this decrease of stress. However, a decrease was observed on the switch-

ing effect for the reason that there where distortions when molecules are extended. In

addition, two different kinds of chiral isomers of carbon nanotube - armchair and zigzag -

are used as thermal reservoirs, moreover on the account of a deeper understanding of these

systems’ behaviour, generic reservoirs are developed. The results of developing generic

reservoirs reveal that the deterioration of the azobenzene molecule, which occurs when

the connections are established, reduces the intended switching effect. The changeover

of reservoirs brings out the obvious that the switching effect does not directly depend on

the chirality of carbon nanotubes that are used as thermal reservoirs. Changeover of the

reservoirs from armchair carbon nanotube to zigzag nanotube alter the conductances, but

without changing the switching effect. Extension of the linker by adding CO-group into

to NH-group lowers the thermal conductivity, besides switching effect, due to the fact

that additional atoms are able to act like barriers.
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