MEASUREMENT OF TRANSITION METALS IN SODA-LIME-SILICATE GLASSES BY USING ELECTRON SPIN RESONANCE (ESR) SPECTROSCOPY A Thesis Submitted to the Graduate School of Engineering and Sciences of İzmir Institute of Technology in Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE** in Material Science and Engineering by Hakan GÖKTÜRK > July 2017 İZMİR | We annrove | the | thesis | of Hakan | GÖKTÜRK | |------------|-----|--------|------------|----------------| | we approve | uic | uicsis | UI IIakaii | OUNTURIN | #### **Examining Committee Members:** Asst. Prof. Dr. Yaşar AKDOĞAN Department of Materials Science and Engineering, İzmir Institute of Technology Asst. Prof. Dr. Ümit Hakan YILDIZ Department of Materials Science and Engineering, İzmir Institute of Technology Asst. Prof. Dr. Osman AKIN Department of Mechatronics Engineering, İzmir Katip Çelebi University 6 July 2017 Asst. Prof. Dr. Yaşar AKDOĞAN Supervisor, Department of Materials Science and Engineering, İzmir Institute of Technology **Asst. Prof. Dr. Umut ADEM** Co-Supervisor, Department of Materials Science and Engineering, İzmir Institute of Technology Prof. Dr. Mustafa Muammer DEMİR Head of the Department of Materials Science and Engineering **Prof. Dr. Aysun SOFUOĞLU**Dean of the Graduate School of Engineering and Sciences #### ACKNOWLEDGEMENTS There are a lot of people who have assisted me during my graduate education. First of all, I would like to thank Asst. Prof. Dr. Ufuk ŞENTÜRK and Assoc. Prof. Dr. Yaşar AKDOĞAN for their patience, encouragement and excellent guidance on the research which I performed. It was a pleasure for me to work in the field of glass and ESR spectroscopy, and it was honor to study with them. I would like to special thank Asst. Prof. Dr. Ümit Hakan YILDIZ and Asst. Prof. Dr. Osman AKIN for participating as a committee member and reviewing my work. I would like to thank my friends Ayser KAYCI, Anıl ÖZDEMİR, Yaman GÖKSEL and Çağatay SARITEPE. Also I would like to thank Arca İYİEL and ŞişeCam for their supports. Endless gratitude is also extended to my parents, Barış GÖKTÜRK and Nesrin GÖKTÜRK, my brother Kaan GÖKTÜRK and all my friends for providing love and support every time that I got desperate. I love them very much. #### **ABSTRACT** ## MEASUREMENT OF TRANSITION METALS IN SODA-LIME-SILICATE GLASSES BY USING ELECTRON SPIN RESONANCE (ESR) SPECTROSCOPY Electron spin resonance (ESR) spectroscopy does not appear to have found a wide use when compared with other structural analysis methods, especially spectroscopy techniques, utilized in the glass industry. The method, however, provides a good means for supporting the structural information obtained from other spectroscopic methods. Because of its ability to detect and differentiate the paramagnetic ions at low concentrations, ESR spectroscopy is commonly used as a quantitative and qualitative analysis method for evaluating transition metals. This study showed the behavior and interaction of paramagnetic 3d transition metal ions using ESR spectroscopy for the soda-lime-silicate based glasses. For this reason, it revealed the existence of paramagnetic (Fe³⁺, Cr³⁺, Mn²⁺ and Cu²⁺) transition metal ions in soda-lime-silicate glass and their spectral trends studied at addition levels up to 2.0% mol. Additionally, ESR spectra of Fe³⁺-Cr³⁺, Fe³⁺-Mn²⁺ and Fe³⁺-Cu²⁺ added soda-lime-silicate glass samples were studied to show the effects of the different transition metals on Fe³⁺ containing glasses. The final point of study is that the approach to quantify the ESR spectra with the concentration of paramagnetic metal ions in glass. In this way, this study gives structural information about the used glass and so lightens the locations of used metal ions. ## ÖZET ## SODA KİREÇ SİLİKA CAMLARDA GEÇİŞ METALLERİNİN ELEKTRON SPİN REZONANS (ESR) SPEKTROSKOPİSİ KULLANILARAK ÖLÇÜLMESİ Elektron spin rezonans (ESR) spektroskopisi, cam endüstrisinde kullanılan diğer spektroskopik yapısal analiz metotları ile kıyaslandığında geniş alan bulamamıştır. Fakat bu metot diğer spektroskopik tekniklerden elde edilen yapısal bilgileri desteklemede iyi bir araçtır. Paramanyetik iyonları düşük konsantrasyonlarda bile saptayabilmesi ve araştırabilmesi sayesinde ESR spektroskopisi geçiş metallerini değerlendirmede kantitatif ve kalitatif analiz metodu olarak yaygınca kullanılmaktadır. Bu çalışma ESR spektroskopisinin paramanyetik 3d geçiş metal iyonlarının davranış ve etkileşimlerini soda kireç silika camlar için göstermiştir. Bu sebeple, soda kireç silika camların içinde paramanyetik (Fe⁺³, Cr⁺³, Mn⁺² ve Cu⁺²) geçiş metal iyonlarının molce %2.0'ın altında katkılandığındaki spektral yönelimleri ortaya çıkartılmıştır. Buna ek olarak, farklı geçiş metallerinin Fe⁺³ içeren cam örneklere olan tesirlerini ve etkileşimlerini göstermek için Fe⁺³-Cr⁺³, Fe⁺³-Mn⁺² ve Fe⁺³-Cu⁺² eklenmiş soda kireç silika cam örneklerinin ESR spektrumları çalışılmıştır. Çalışmanın son noktası da, cam içerisindeki paramanyetik geçiş metali iyonlarının ESR spektrumlarına olan kantitatif yaklaşımdır. Bu sayede, çalışma kullanılan camın yapısal bilgisi hakkında bilgi vermiştir ve metal iyonlarının cam içerisindeki lokasyonlarını aydınlatmıştır. # **TABLE OF CONTENTS** | LIST OF FIGURES | vii | |---|-----| | LIST OF TABLES | x | | LIST OF ABBREVIATIONS | xi | | CHAPTER 1.INTRODUCTION | 1 | | 1.1. General Overview of Glass | 1 | | 1.2. Electron Spin Resonance (ESR) Spectroscopy | 4 | | 1.3. Literature Survey on ESR Spectroscopy of Glasses | | | 1.4. Motivation | 13 | | CHAPTER 2.EXPERIMENTAL STUDY | 15 | | 2.1. Materials and Methods | 15 | | 2.2. Processing of Glass Compositions | 15 | | 2.2.1. Batch Preparation | 17 | | 2.2.2. Melting and Forming of Glass Compositions | 18 | | 2.3. ESR Analysis of Glass Compositions | 18 | | CHAPTER 3_RESULTS AND DISCUSSION | 20 | | 3.1 ESR Measurements of Transition Metals in Glass | 20 | | 3.1.1 Fe ₂ O ₃ Containing Soda-Lime-Silicate Glass | 20 | | 3.1.2. Cr ₂ O ₅ Containing Soda-Lime-Silicate Glass | 22 | | 3.1.3. MnO ₂ Containing Soda-Lime-Silicate Glass | 30 | | 3.1.4. CuO Containing Soda-Lime-Silicate Glass | 37 | | 3.1.5. General Overview | 42 | | 3.2. XPS Measurements | 46 | | CHAPTER 4.SUMMARY AND CONCLUSIONS | 48 | | REFERENCES | 50 | # LIST OF FIGURES | <u>Figure</u> <u>Pas</u> | <u>ge</u> | |---|-----------| | Figure 1.1. Atomic structure of 2D A ₂ O ₃ (a) crystal form (b) glass form | .1 | | Figure 1.2. Representation of absorbance and first derivative modes of an ESR spectrum. | .4 | | Figure 1.3. Splitting of energy levels of an unpaired electron spin. | .5 | | Figure 1.4. ESR spectrum of MnO | .7 | | Figure 1.5. ESR spectrum of CuO in soda-lime-silicate glass | .8 | | Figure 1.6. ESR spectra of powder samples depending on principal g-factors | 10 | | Figure 1.7. Schematic representation of energy level splitting for isolated Fe ³⁺ ions in high symmetry (a) and axial distortion (b). | 11 | | Figure 3.1. ESR spectrum of Fe ₂ O ₃ containing soda-lime-silicate glass (25Na ₂ O-10CaO 65SiO ₂ -0.5Fe ₂ O ₃) | 20 | | Figure.3.2. ESR spectra of glasses (25Na ₂ O-10CaO-65SiO ₂ -xFe ₂ O ₃ x=0.05 to 2.0 mol%) | 21 | | Figure 3.3. Signal intensity of Fe ³⁺ (from Figure 3.2) at g=4.2 and g=2.0 vs. mol percentages of Fe ₂ O ₃ | 22 | | Figure 3.4 Location of Fe ⁺³ ions vs. mol percentages of Fe ₂ O ₃ in glass | 22 | | Figure 3.5. Crucible samples of [25Na ₂ O-10CaO-65SiO ₂ -yCr ₂ O ₅ (y=0.1, 0.3 and 0.5 mol %)] after cooling process. | 23 | | Figure 3.6. ESR spectrum of Cr ₂ O ₅ containing soda-lime-silicate glass [25Na ₂ O- | | | 10CaO-65SiO ₂ -0.5Cr ₂ O ₅] | 24 | | Figure 3.7. ESR spectra of Cr_2O_5 containing glasses [25Na ₂ O-10CaO-65SiO ₂ - $xCr_2O_5(x=0.\ 1,\ 0.3\ and\ 0.5\ mol\ \%)]$ | 25 | | Figure 3.8. Location of Cr ⁺³ ions vs. mol percentage of Cr ₂ O ₅ in glass | 26 | | Figure 3.9. ESR spectra of Cr ₂ O ₅ containing glass samples [25Na ₂ O-10CaO-65SiO ₂ -xCr ₂ O ₅ (x=1 and 2 mol %)] | 26 | | Figure 3.10. ESR spectra of Fe_2O_3 and Cr_2O_5 containing glass samples [25Na ₂ O-10CaO-65SiO ₂ -0.3Fe ₂ O ₃ -xCr ₂ O ₅ (x=0.1, 0.3 and 0.5 mol %)]2 | 27 | | Figure 3.11. ESR spectra of Fe_2O_3 and Cr_2O_5 containing glass samples [25Na ₂ O-10CaO-65SiO ₂ -0.05Fe ₂ O ₃ -xCr ₂ O ₅ (x=0.1, 0.3 and 0.5 mol %)] | 28 | | Figure 3.12. ESR spectra of Fe2O3 and Cr ₂ O ₅ containing glass samples [25Na2O-10CaO-65SiO2-xFe2O3-0.5Cr ₂ O ₅ (x=0.025, 0.05, 0.06 and 0.1 mol %)] | 29 | | Figure 3.13. | Signal intensity of Cr^{3+} ions (in Figure 3.2 and Figure 3.12) at g=5.2 and g=2.1 vs. mol percentage of Fe_2O_3 and Cr_2O_5 | .30 | |--------------|--|-----| | Figure 3.14. | Crucible samples of $[25Na_2O-10CaO-65SiO_2-xMnO_2\ (x=0.1,\ 0.3\ and\ 0.5\ mol\ \%)]$ after cooling process. | .31 | | Figure 3.15 | 5. Crucible samples of [25Na ₂ O-10CaO-65SiO ₂ -0.05Fe ₂ O ₃ -xMnO ₂ (x=0.1, 0.3 and 0.5 mol %)] after cooling process | .31 | | Figure 3.16. | Crucible samples of [$25Na_2O-10CaO-65SiO_2-0.3Fe_2O_3-xMnO_2$ ($x=0.1$, 0.3 and 0.5 mol %)] after cooling process. | .32 | | Figure 3.17. | ESR spectrum of MnO ₂ containing soda-lime-silicate glass [25Na ₂ O-10CaO-65SiO ₂ -0.3MnO ₂ mol %] | .33 | | Figure 3.18 | . ESR spectra of MnO ₂ containing glass samples [25Na ₂ O-10CaO-65SiO ₂ -xMnO ₂ (x=0.1, 0.3 and 0.5 mol %)] | .34 | | Figure 3.19. | Signal intensity of Mn^{2+} ions (from Figure 3.15) at g=5.0 and g=2.0 vs. mol percentage of MnO_2 | .35 | | Figure 3.20. | Location of Mn ²⁺ ions in
glass vs. mol percentage of MnO ₂ | .35 | | Figure 3.21. | ESR spectra of Fe_2O_3 and MnO_2 containing glass samples [25Na ₂ O-10CaO-65SiO ₂ -0.05Fe ₂ O ₃ -xMnO ₂ (x=0.1, 0.3 and 0.5 mol %)] | .36 | | Figure 3.22. | ESR spectra of Fe_2O_3 and MnO_2 containing glass samples [25Na ₂ O-10CaO-65SiO ₂ -0.3Fe ₂ O ₃ -xMnO ₂ (x=0.1, 0.3 and 0.5 mol %)] | .37 | | Figure 3.23. | Crucible samples of [$25Na_2O-10CaO-65SiO_2-xCuO(x=0.1,\ 0.3\ and\ 0.5\ mol\ \%)$] after cooling process. | .38 | | Figure 3.24. | Crucible samples of [25Na ₂ O-10CaO-65SiO ₂ -0.05Fe ₂ O ₃ -xMnO ₂ (x=0.1, 0.3 and 0.5 mol %)] after cooling process. | .38 | | Figure 3.25. | Crucible samples of [25Na ₂ O-10CaO-65SiO ₂ -0.3Fe ₂ O ₃ -xMnO ₂ (x=0.1, 0.3 and 0.5 mol %)] after cooling process. | .39 | | Figure 3.26. | ESR spectrum of [25Na ₂ O-10CaO-65SiO ₂ -0.5CuO mol %] | .39 | | Figure 3.27. | ESR spectra of CuO containing glass samples [25Na ₂ O-10CaO-65SiO ₂ -xCuO (x=0.1, 0.3 and 0.5 mol %)] | .40 | | Figure 3.28. | . ESR spectra of Fe_2O_3 and CuO containing glass samples [25Na ₂ O-10CaO-65SiO ₂ -0.05Fe ₂ O ₃ -xCuO (x=0.1, 0.3 and 0.5 mol %)] | .41 | | Figure 3.29. | . ESR spectra of Fe_2O_3 and CuO containing glass samples [25Na ₂ O-10CaO-65SiO ₂ -0.3Fe ₂ O ₃ -xCuO x=0.1, 0.3 and 0.5 mol %)] | .42 | | Figure 3.30. | ESR spectra of Fe^{3+} ion at g=4.2 in glass samples; [25Na ₂ O-10CaO-65SiO ₂ -0,05Fe ₂ O ₃ -xCr ₂ O ₅ (x=0.1, 0.3 and 0.5 mol %)] | .43 | | Figure 3.31. | ESR spectra of Fe ³⁺ ion at g=4.2 in glass samples; [25Na ₂ O-10CaO-65SiO ₂ -0,3Fe ₂ O ₃ -xCr ₂ O ₅ (x=0.1, 0.3 and 0.5 mol %)] | .43 | | Figure 3 | 3.32. | ESR spectra of Fe^{3+} ion at g=4.2 in glass samples; [25Na ₂ O-10CaO-65SiO ₂ -0,05Fe ₂ O ₃ -xMnO ₂ x=0.1, 0.3 and 0.5 mol %)] | .44 | |----------|-------|---|-----| | Figure 3 | 3.33. | ESR spectra of Fe^{3+} ion at g=4.2 in glass samples; [25Na ₂ O-10CaO-65SiO ₂ -0,3Fe ₂ O ₃ -xMnO ₂ (x=0.1, 0.3 and 0.5 mol %)] | .44 | | Figure 3 | 3.34. | ESR spectra of Fe^{3+} ion at g=4.2 in glass samples; [25Na ₂ O-10CaO-65SiO ₂ -0,05Fe ₂ O ₃ -xCuO (x=0.1, 0.3 and 0.5 mol %)] | .45 | | Figure 3 | 3.35. | ESR spectra of Fe^{3+} ion at g=4.2 in glass samples; [25Na ₂ O-10CaO-65SiO ₂ -0,3Fe ₂ O ₃ -xCuO (x=0.1, 0.3 and 0.5 mol %)] | .45 | | Figure 3 | 3.36. | XPS spectra of [25Na ₂ O-10CaO-65SiO ₂ -0.3Fe ₂ O ₃ mol %] | .46 | | Figure 3 | 3.37. | XPS spectra of [25Na ₂ O-10CaO-65SiO ₂ -0.5Fe ₂ O ₃ mol %] | .47 | | Figure 3 | 3.38. | XPS spectra of [25Na ₂ O-10CaO-65SiO ₂ -1.0Fe ₂ O ₃ mol %] | 47 | # LIST OF TABLES | <u>Table</u> | Page | |--|------| | Table 1.1. Colors Generated by Transition-Metal and Rare-Earth Ions in Glass | 3 | | Table 1.2. Natural abundance and nuclear spin number of some atoms and their isotopes. | | | Table 2.1. The alternative names and source of materials | 15 | | Table 2.2. Glass Compositions. | 16 | | Table 2.3. Parameters of ESR Measurements. | 19 | # LIST OF ABBREVIATIONS ESR Electron Spin Resonance XPS X-ray Photoelectron Spectroscopy ZFS Zero field splitting #### **CHAPTER 1** ### **INTRODUCTION** #### 1.1. General Overview of Glass Glass is an inorganic amorphous non-crystalline solid ¹. Figure 1.1 shows an illustration of a typical atomic structure arrangement of an A₂O₃ type oxide material ion as its amorphous and crystalline form. The figure illustrates the random arrangement of the atomic network when compared with its crystalline counterpart. Figure 1.1. Atomic structure of 2D A₂O₃ (a) crystal form (b) glass form² Glass, from its structural standpoint, has three kind of components; network formers, intermediates and network modifiers. Cations that form strong ionic bonds with oxygens also provide the basis for the network structure and are referred to as "Network Formers". They are p block elements, which means their valence electrons are in porbitals. Examples of such oxide network formers are silicon oxide (SiO₂), boron trioxide (B₂O₃), phosphorus pentaoxide (P₂O₅) and germanium dioxide (GeO₂). "Intermediates" (such as Al₂O₃, PbO) add special characteristic properties to glass. They cannot form glass network by themselves. However, they can replace with network formers or they can join into an existing network. "Network modifiers" cations form slightly weak ionic bonds with oxygens. They are s group elements. They are alkali oxides such as Na₂O and CaO. Their task is to modify glass network for example decreasing the melting temperature of glass ³. The optical properties of glasses can be examined in three categories: - 1. Bulk optical properties such as refractive index and optical dispersion. Bulk optical properties of glass can change or affect diffraction of light which is core principle of telescope or microscope etc. It is argued that bulk properties support to shape development of modern astronomy, biology, and medical science's future. - 2. Optical properties that depend on the wavelength, which directly affect color of glass. This color effect can result from ligand field, colloidal metal, etc. Geometric arrangement of transition or rare earth metals, which is related with ligand field theory can change absorption wavelength of glass. Some transition metal ions can combine into atoms by heating process in glass. These atoms affect absorption wavelength of glass. The alteration of absorption wavelength of glass directly affects color. - 3. Non-traditional optical effects such as photosensitivity, photochromism, light scattering, etc. Structural properties of photosensitive and photochromic glasses are changed when they are exposed to ultraviolet light, which change the optical properties of glass. Opal glasses are opaque due to light scattering which results from liquid-liquid or liquid-solid phase separation. These three categories are generated and/or modified by adding transition metals or rare earth metals into the glass structure. Each transition metals or rare earth metals and their different ions result in different colors of the glass (Table 1.1). Table 1.1. Colors Generated by Transition-Metal and Rare-Earth Ions in Glass 1 . | Transit | ion Metal | Ions | Rare Earth Ions | | | | |----------------|------------------|------------|------------------|----------------------------------|---------------|--| | Configuration | Ion | Color | Configuration | Ion | Color | | | d^0 | Ti ⁴⁺ | Colorless | 4f ⁰ | La ³⁺ | None | | | | V ⁵⁺ | Faint | Faint | | Weak | | | | | yellow to | | | yellow | | | | | colorless | | | | | | | Cr ⁶⁺ | Faint | 4f¹ | Ce ³⁺ | Weak | | | | | yellow to | | | yellow | | | | | colorless | | | | | | d^1 | Ti ³⁺ | Violet- | $4f^2$ | 4f ² Pr ³⁺ | | | | | | purple | | | | | | | V^{4+} | Blue | 4f³ | Nd^{3+} | Violet- | | | | | | | | pink | | | | Mn ⁶⁺ | Colorless | 4f ⁴ | Pm ³⁺ | None | | | d^2 | d^2 V^{3+} | | 4f ⁵ | Sm ³⁺ | None | | | | | green | | | | | | d ³ | Cr ³⁺ | Green | 4f ⁶ | Sm ²⁺ | Green | | | d ⁴ | Cr ²⁺ | Faint blue | | Eu ³⁺ | None | | | | Mn ³⁺ | Purple | 4f ⁷ | Eu ²⁺ | Brown | | | d ⁵ | Mn ²⁺ | Light | | Gd ³⁺ | None | | | | | yellow | | | | | | | Fe ³⁺ | Faint | 4f ⁸ | Tb^{3+} | None | | | | | yellow | | | | | | d ⁶ | Fe ²⁺ | Blue-green | 4f ⁹ | Dy ³⁺ | None | | | | Co ³⁺ | Faint | 4f ¹⁰ | Dy ²⁺ | Brown | | | | | yellow | | | | | | d ⁷ | Co ²⁺ | Blue-pink | | Ho ³⁺ | Yellow | | | d ⁸ | Ni ²⁺ | Brown- | 4f ¹¹ | Er ³⁺ | Weak pink | | | | | purple | | | | | | | | | | (04 | on next nage) | | (Cont. on next page) Table 1.1. (Cont.) | d^9 | Cu ²⁺ | Blue-green | 4f ¹² | Tm ³⁺ | None | |----------|------------------|------------|------------------|------------------|------| | d^{10} | Cu ⁺ | Colorless | 4f ¹³ | Tm ²⁺ | None | | | | | | Yb^{3+} | None | | | | | 4f ¹⁴ | Lu ³⁺ | None | ### 1.2. Electron Spin Resonance (ESR) Spectroscopy Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy determines and measures paramagnetic materials with at least one unpaired electron ⁴. ESR spectrometer measures the energy differences between the electron spin states at the resonance condition. Applied external magnetic field separates the energy levels of spin states until the energy difference is equal to the energy of the microwave source. At this point the unpaired electron changes its spin state by absorbing the microwave radiation ⁴. This absorption signal is converted into the ESR spectrum after taking its first derivative. Figure 1.2 shows the common representation of an ESR spectrum. Figure 1.2. Representation of absorbance and first derivative modes of an ESR spectrum. Figure 1.3. Splitting of energy levels of an unpaired electron spin. Electron has a magnetic moment and a spin quantum number. For every single electron, s refers spin quantum number (s=1/2) and m_s refers spin magnetic moment component (m_s = ±1/2). Under magnetic field (B_o), spin magnetic moment component of electron is divided into parallel (m_s = -1/2) and antiparallel (m_s = +1/2) to external field as shown in Figure 1.3. Each of them has individual different energy due to the Zeeman effect: $$E=m_sg_e\beta B_o \tag{1.1.}$$ g_e is g factor (g_e =2.0023 for free electron), β is Bohr magneton (β =9.2700949 x 10^{-24} JT⁻¹) and B_o is external magnetic field. Consequently, the difference between magnetic components (m_s = $\pm 1/2$ and m_s = -1/2) is: $$\Delta E = g_e \beta B_o$$ for an unpaired electron (1.2.) This equation shows that energy levels are proportional to external magnetic field as shown in Figure 1.3. The difference between energy levels is equal to microwave photon energy (ΔE =h ν where h=Planck's constant, ν =microwave frequency), which results in principle equation of ESR spectroscopy ⁵:
$$\Delta E = hv = g_e \beta B_o \tag{1.3.}$$ An unpaired electron can be affected by applied external magnetic field (B_o) and also by local magnetic field (B_{local}) paramagnetic species, ligand fields, magnetic nuclei etc. Both of them can contribute to effective magnetic field (B_{eff}) : $$B_{eff} = B_0 + B_{local} \tag{1.4.}$$ B_{local} can be induced by applied field, which means that value of B_{local} depends on applied magnetic field (B_o) ⁶. Hence, it can be written: $$B_{\text{eff}} = B_0(1-\sigma) \tag{1.5.}$$ σ is the effect of local field. Hence, ESR equation changes at resonance condition: $$\Delta E = hv = g_e \beta B_{eff} \rightarrow \Delta E = hv = g_e \beta B_o (1-\sigma)$$ (1.6.) $g_e(1-\sigma)$ is expressed as g which is called g-factor. The final ESR equation becomes: $$\Delta E = hv = g\beta B_o \tag{1.7.}$$ The unpaired electron or the magnetic field of unpaired electron is affected by nearby nuclear spin ($I\neq 0$). This results in additional splitting which is called "Hyperfine Coupling" ⁷. Splitting number is expressed as: Splitting number = $$2nI+1$$ (1.8.) n is number of effective nuclei nearby unpaired electron, I is the nuclear spin number which is taken from Table 1.2. It shows spin number and abundance of some atoms and their isotopes. Table 1.2. Natural abundance and nuclear spin number of some atoms and their isotopes. (Source: IUPAC, 1998). | Atom | Isotope | Spin(abundance) | |------|----------------|--| | Н | 1, 2 | ¹ H 1/2 (99.985), ² H 1 (0.015) | | N | 14, 15 | ¹⁴ N 1 (99.632), ¹⁵ N 1/2 (0.368) | | О | 16, 17, 18 | ¹⁷ O 5/2 (0.038) | | Mn | 55 | 5/2 (100.000) | | Fe | 54, 56, 57, 58 | ⁵⁷ Fe 1/2 (2.119) | | Cu | 63, 65 | ⁶³ Cu 3/2 (69.17), ⁶⁵ Cu 3/2 (30.83) | | Cr | 50, 52, 53, 54 | ⁵³ Cr 3/2 (9.501) | For instance, MnO (I=5/2) has 6 hyperfine splittings as shown in Figure 1.4. The nuclear spin number of Mn is 5/2 and the number of effective nuclei nearby unpaired electron of ⁵⁵Mn is 1. Nuclear spin number of oxygen (ligand of Mn) is zero. Hence: number of splitting = $$(2.(1).(5/2))+1=6$$ (1.9.) Figure 1.4. ESR spectrum of MnO ⁸. CuO (I=3/2) has 4 hyperfine splittings marked as blue lines in Figure 1.5. The nuclear spin number of Cu is 3/2 and the number of effective nuclei nearby unpaired electron of Cu is 1. Nuclear spin number of oxygen (ligand of Cu) is zero. Hence: number of splitting = $$(2.(1).(3/2))+1=4$$ (1.10.) Figure 1.5. ESR spectrum of CuO in soda-lime-silicate glass. In quantum mechanics, if there are several different energy states with the same energy level, it is called degeneracy of energy states ⁹. Degeneracy of energy states is reduced under magnetic field. However, zero field splitting (ZFS) occurs even in the absence of an external magnetic field. ZFS is described as disappearance of spin microstate degeneracy even in the absence of magnetic field ¹⁰. Alteration or distortion of crystal field symmetry causes deviation. These deviations refer ZFS parameters (D and E). D and E refer axial and transversal components of magnetic interaction, respectively ¹¹. The ZFS parameters are stated by second order terms in the spin Hamiltonian. Hamiltonian is the operator in quantum mechanics. It represents total energy (kinetic and potential) of a system. The total energy corresponds to Hamiltonian operator and it is represented by H or Ĥ. Each system has individual particle or particles. Each particle has different kinetic energy and potential energy. The sum of kinetic energies and potential energies are represented by Hamiltonian. Hamiltonian operator (H or Ĥ) can show alteration depending on type of system and number of particle such as one particle, free particle, electric dipole in an electric field, magnetic dipole in a magnetic field. ESR spectroscopy deals with magnetic dipole in a magnetic field ¹². In this condition, spin Hamiltonian is used. As mentioned earlier, ZFS parameters (D and E) are stated by second order terms in the spin Hamiltonian: $$H = g\beta B_0 S + D \left[S_z^2 - (1/3) S(S+1) \right] + E \left[S_x^2 - S_y^2 \right]$$ (1.11.) β is the Bohr magneton, B_o is the magnetic field vector, S is the electron spin operator. S_x , S_y and S_z are the spin matrices which means that g tensor consists of g_x , g_y and g_z values (principal g-factors). These three g values depend on principal axis system of molcule. In powder samples, ESR spectrum can show differences depending on symmetry of same paramagnetic ion because alteration of the symmetry cause alteration of g_x , g_y and g_z values. If the symmetry of paramagnetic ion is isotropic shape (e.g. octahedron, tetrahedron), it gives isotropic spectrum with $g_x=g_y=g_z$. If the symmetry of paramagnetic ion is axially symmetric or symmetry of paramagnetic ion is distorted to axially symmetry, it gives one of two different spectra with $g_x=g_y>g_z$ and $g_x=g_y<g_z$. If the symmetry of paramagnetic ion has rhombic symmetry or symmetry of paramagnetic ion is distorted to rhombic symmetry, it gives one spectrum with $g_x\neq g_y\neq g_z$ as shown in Figure 1.6. However, these conditions are valid for ideal circumstances. Increasing temperature, increasing concentration of paramagnetic ions, changing difference between g_x , g_y and g_z values or changing population of different symmetries of the same paramagnetic ions can cause a change of ESR spectrum. Figure 1.6. ESR spectra of powder samples depending on principal g-factors ¹³. When crystal field symmetry of Fe³⁺ ion (d⁵) is cubic, ZFS parameters equal to zero (D=0 and E=0). In this circumstance, spin quantum numbers (m_s) corresponding to energy states degenerate in the absence of magnetic field. This degeneracy is lifted under external magnetic field and energy levels split equally. In this way, five ESR transitions (m_s = $\pm 5/2$, $\pm 3/2$, $\pm 1/2$) are allowed with $\Delta m_s = \pm 1$ at the same resonant value due to isotropy shown in Figure 1.7 a ¹⁴. These allowed ESR transitions give signal at g≈2 in ESR the spectrum. When octahedral or tetrahedral symmetry of Fe³⁺ is distorted to axial or rhombic symmetry, ZFS parameters are D \neq 0, E = 0 and D > E \neq 0, respectively. In this circumstance, energy state degeneracy is reduced even in the absence of external magnetic field and this gives 3 Kramer's doublets (m_s = $\pm 5/2$, $\pm 3/2$, $\pm 1/2$) as shown in Figure 1.7 b. If splitting between Kramer's doublet is high (compare to microwave energy) which means large rotation of symmetry to axial or rhombic, the only one ESR transition is allowed between m_s = -1/2 and m_s = +1/2. The other four transition are not allowed due to high anisotropy. When rhombic distortion is maximum, ESR transition gives two signals which are single line at $g \approx 4.2$ and also weak and broad line at $g \approx 9.0$ in ESR spectrum. When axial distortion is maximum, ESR transition gives one signal at $g \approx 6.0^{15}$. Figure 1.7. Schematic representation of energy level splitting for isolated Fe³⁺ ions in high symmetry (a) and axial distortion (b) ¹⁴. #### 1.3. Literature Survey on ESR Spectroscopy of Glasses Iron plays an important role in the field of glass research and technology since iron is present as an impurity in the raw materials of glass. Iron ions enter into the glass chemistry and its structure either as an unwanted or an uncontrolled impurity element or as a purposefully formulated dopant. Ruangthaweep *et al.* ¹⁶ studied the addition of iron into a soda-lime silicate glass composition, where the formulation has been given as (65-x) SiO₂: 25Na₂O: 10CaO: xFe₂O₃. This glass composition was studied at Fe₂O₃ concentrations from 0.00 to 0.50 mol percentages. They showed the paramagnetic Fe³⁺ ions in the ESR spectra and explained the signals behaviors at g=4.3 and g=2.1. They showed that the signal at g=4.3 is associated with rhombic distortion of octahedral or tetrahedral symmetry of Fe³⁺ ions and signal at g=2.1 is associated with Fe³⁺ ions located as cluster in glass. They concluded that the Fe³⁺ signal increases by increasing the amount of Fe₂O₃. This behavior is related to the changes in the color of glass. Rüssel ¹⁷ showed the effects of iron addition on lithium, sodium, potassium and cesium containing lime and silicate based glass compositions. Rüssel ¹⁸, in another study showed the effects of sodium ions on a potassium containing mixed alkali lime silicate glasses. All of these studies concluded that amount and types of alkali metals affect location (in cluster or in glass network) of the transition metal ions. Transition metals interact with non-bridging oxygens in glass where transition metals locate as cluster or they attend to glass network by forming Si-O-(Transition metal)-O-Si bond. This alkali metal effect is caused by changing number of non-bridging oxygens and also stability of transition metal ions in glass. Nattapon *et al.* ¹⁹ showed effect of paramagnetic manganese ion content on sodalime-silicate glass. The signal near g=4.3 has been linked to the distortion of octahedral symmetry of Mn²⁺ to rhombic symmetry. At g=2.0, octahedral symmetry of Mn²⁺ in clusters is distorted and sextet lines appear which arises from interaction between electron spin and nuclear spin in manganese, called hyperfine interaction. These hyperfine splittings disappear with increasing concentration of manganese. Nobuya *et al.* ²⁰ showed effect of partial oxygen pressure on the oxidation states of chromium ions (Cr³⁺ and Cr⁵⁺) in soda-lime-silicate glasses. Oxidation states of chromium ions, Cr³⁺ and Cr⁵⁺ were showed by using ESR spectroscopy. Three signals were observed which depend on amount of chromium content and CO pressure in ESR spectrum. When CO pressure increases, the oxidation state of chromium changes from Cr³⁺ to Cr²⁺ so the ESR signal disappears. At g=4, the signal results from isolated Cr³⁺ ions
in an orthorhombic field. Isolated Cr⁵⁺ ions cause signal at g=2.3. Coupled Cr³⁺ ion pairs are observed at g=2. Dacapito *et al.* ²¹ showed effect of alkali ion exchange which is done by CuSO₄:Na₂SO₄ and CuSO₄:K₂SO₄ salt bath on state of copper ion in soda-lime-silicate glass. Isolated Cu²⁺ ions replace with alkali species in glass and the signal of Cu²⁺ ions are located at g=2.0 in the ESR spectrum. Dacapito showed that alkali ion exchange affects optical response of soda-lime-silicate glass like refractive index. Refractive index depends on quantity of transition metal content which can be effected by alkali species. ESR spectroscopy has been also used to investigate paramagnetic metal ions in non-silicate glasses. Kesavulu *et al.* ²² studied the effect of changing lithium content on paramagnetic chromium ions in a lithium-cesium borate type glasses. Lakshmana *et al.* ²³ studied the effects of both CuO and Cr₂O₅ additions, and the effect of temperature on KSO₄-ZnSO₄ based sulphate glasses. Kesavulu *et al.* ²⁴ studied effect of paramagnetic chromium ions on borate glasses (Li₂O–Cs₂O–B₂O₃). Lakshmana and Kesavulu showed the behavior of paramagnetic chromium ions with ESR spectroscopy. At near g=4.0, the signal is associated with isolated Cr^{3+} ions which are in octahedral environments. At near g=2, there are two kinds of signals which are attributed to the Cr^{3+} - Cr^{3+} and Cr^{5+} - Cr^{5+} interactions. Adam *et al.* ²⁵ showed the effect of changing CuO and MnO₂ contents on CaB₄O₇ and LiCaBO₃ based borate glasses. Prakash *et al.* ²⁶, studied the effects of paramagnetic copper ions content on sodium fluoride-sodium borate glasses, and evaluated the molcular orbital coefficients. Both of these studies showed that the Cu^{2+} ions replaced with alkali species present as isolated ions, and they are found at the octahedral sites in the glass structure. If octahedrally coordinated Cu^{2+} ions elongate parallel to z-axis, it is represented as g_{11} =2.3 while the octahedrally coordinated Cu^{2+} ions that elongate perpendicular to z-axis is represented as g_{11} =2.0. #### 1.4. Motivation ESR spectroscopy does not appear to have found a wide use when compared with other structural analysis methods, especially spectroscopy techniques, utilized in the glass industry. The method, however, provides a good means for supporting the structural information obtained from other spectroscopic methods. Because of its ability to detect and differentiate the paramagnetic ions, ESR spectroscopy is commonly used as a quantitative and qualitative analysis method for evaluating transition metals. This is also a valid approach for the techniques application in glasses. The knowledge of the form and amount of transition metal ions in the structure of the material is important since these can affect the properties (e.g. optical, mechanical, etc.) of glass. In this study, we aim to provide an approach and an understanding on the below listed key areas related to the use of ESR spectroscopy applied to a soda-lime-silica based glass composition with addition of the different transition metal ions. - Understanding the operation of the ESR spectrometer used in this study as it applies to the analysis of glasses. To do this, we used Fe ions dissolved in a soda-lime silicate glass matrix at different concentrations. Iron is a transition metal that has been widely studied using ESR to date. As such, the findings from this study aims to compare and correlate our experimentation with what is known and adopted in the literature. - Understanding the ESR spectra of soda-lime silicate glasses those have another transition metal added to their structures in addition to iron in the glass composition. We have not found a systematic study in this area, hence another aim in this particular area is to provide ESR spectral information on the interactions that may be present in dual transition metals added glass formulations. - Understanding if ESR spectroscopy can be used to quantitatively characterize the presence of paramagnetic Fe³⁺ ions in soda-lime silicate glasses. - Understanding the structural nature of the paramagnetic transition metal ions in sodalime silicate glasses. #### **CHAPTER 2** ### **EXPERIMENTAL STUDY** #### 2.1. Materials and Methods All chemical reagents were either obtained from commercial supplier (Aldrich, Aldrick, Alfa Aesar and Emsure) and Sisecam AS (Table 2.1). All glass samples was produced in electrical furnace which is Protherm PC442. ESR was measured with Adani CMS 8400 ESR spectrometer. Table 2.1. The alternative names and source of materials | Material | Alternative Name | Source | |--------------------------------------|------------------------------------|---------------------| | SiO ₂ | Sand | ŞİŞECAM | | CaCO ₃ | Lime | ŞİŞECAM | | Na ₂ CO ₃ | Soda | Aldrich | | Fe ₂ O ₃ | Iron(III) oxide | Aldrich | | CrCl ₃ *6H ₂ O | Chromium(III) chloride hexahydrate | Aldrick-27096-100GF | | MnO ₂ | Manganese(IV) oxide | Fluka-63548-1KG-F | | Cu ₂ O | Copper(I) oxide | Alfa Aesar-A14436 | | CoCl ₂ *6H ₂ O | Cobalt(II) chloride
hexahydrate | Emsure-1.02539 | #### 2.2. Processing of Glass Compositions Each glass composition was weighed and prepared in mol percentage as shown in Table 2.2. However they were not proved with other spectroscopic methods after production of glass samples. Table 2.2. Glass Compositions. | Sample | SiO ₂ | CaO | Na ₂ O | Fe ₂ O ₃ | Cr ₂ O ₅ | MnO ₂ | CuO | CoO | |----------------|------------------|-----|-------------------|--------------------------------|--------------------------------|------------------|-----|-----| | Identification | | | | | | | | | | 1.Base | 65 | 10 | 25 | - | - | - | - | - | | 2.1.Base+Fe | 65 | 10 | 25 | 0.05 | - | - | - | - | | 2.2 | 65 | 10 | 25 | 0.1 | - | - | - | - | | 2.3 | 65 | 10 | 25 | 0.3 | - | - | - | - | | 2.4 | 65 | 10 | 25 | 0.5 | - | - | - | - | | 2.5 | 65 | 10 | 25 | 1.0 | - | - | - | - | | 2.6 | 65 | 10 | 25 | 2.0 | - | - | - | - | | 3.1.Base+Cr | 65 | 10 | 25 | - | 0.1 | - | - | - | | 3.2 | 65 | 10 | 25 | - | 0.3 | - | - | - | | 3.3 | 65 | 10 | 25 | - | 0.5 | - | - | - | | 3.4 | 65 | 10 | 25 | - | 1.0 | - | - | - | | 3.5 | 65 | 10 | 25 | - | 2.0 | - | - | - | | 4.1.Base+Fe+Cr | 65 | 10 | 25 | 0.05 | 0.1 | - | - | - | | 4.2 | 65 | 10 | 25 | 0.05 | 0.3 | - | - | - | | 4.3 | 65 | 10 | 25 | 0.05 | 0.5 | - | - | - | | 4.4 | 65 | 10 | 25 | 0.3 | 0.1 | - | - | - | | 4.5 | 65 | 10 | 25 | 0.3 | 0.3 | - | - | - | | 4.6 | 65 | 10 | 25 | 0.3 | 0.5 | - | - | - | | 4.7 | 65 | 10 | 25 | 0.025 | 0.5 | - | - | - | | 4.8 | 65 | 10 | 25 | 0.05 | 0.5 | - | - | - | | 4.9 | 65 | 10 | 25 | 0.06 | 0.5 | - | - | - | | 4.10 | 65 | 10 | 25 | 0.1 | 0.5 | - | - | - | | 5.1.Base+Cu | 65 | 10 | 25 | - | - | - | 0.1 | - | (Cont. on next page) Table 2.2. (Cont.) | | | | | | 1 | 1 | 1 | | |----------------|----|----|----|------|---|-----|-----|---| | 5.2 | 65 | 10 | 25 | 1 | - | - | 0.3 | - | | 5.3 | 65 | 10 | 25 | - | - | - | 0.5 | - | | 6.1.Base+Fe+Cu | 65 | 10 | 25 | 0.05 | - | - | 0.1 | - | | 6.2 | 65 | 10 | 25 | 0.05 | - | - | 0.3 | - | | 6.3 | 65 | 10 | 25 | 0.05 | - | - | 0.5 | - | | 6.4 | 65 | 10 | 25 | 0.3 | - | - | 0.1 | - | | 6.5 | 65 | 10 | 25 | 0.3 | - | - | 0.3 | - | | 6.6 | 65 | 10 | 25 | 0.3 | - | - | 0.5 | - | | 7.1.Base+Mn | 65 | 10 | 25 | - | - | 0.1 | - | - | | 7.2 | 65 | 10 | 25 | - | - | 0.3 | - | - | | 7.3 | 65 | 10 | 25 | - | - | 0.5 | - | - | | 8.1.Base+Fe+Mn | 65 | 10 | 25 | 0.05 | - | 0.1 | - | - | | 8.2 | 65 | 10 | 25 | 0.05 | - | 0.3 | - | - | | 8.3 | 65 | 10 | 25 | 0.05 | - | 0.5 | - | - | | 8.4 | 65 | 10 | 25 | 0.3 | - | 0.1 | - | - | | 8.5 | 65 | 10 | 25 | 0.3 | - | 0.3 | - | - | | 8.6 | 65 | 10 | 25 | 0.3 | - | 0.5 | - | - | ### 2.2.1. Batch Preparation A constant composition representing a soda-lime-silicate type glass has been used as a base formulation throughout this study. This composition is 25Na2O-10CaO-65SiO2, where the values in the formulation is given in mol %. Each component was weighed for 120 g batch and then add to a 140 ml refractory aluminum oxide crucible (Nanotech, Eskişehir). Materials in the crucible were mixed with metal spatula. After that, the crucible was put into elevator type electrical furnace. In furnace, temperature increased until 1350oC for 2 hours in order to avoid breaking of crucible because of thermal shock. Then, temperature stayed constant at 1350oC for 4 hours. After heating process was done, glassy liquid in the crucible was quenched in water. When cooling process was done, glass particles were put into oven to be dried. In oven, glass particles were stayed at 100°C for few hours. Then, dried glass particles crashed in ceramic mortar and became powder, which was ready for addition of transition metal. #### 2.2.2. Melting and Forming of Glass Compositions 10 gram of base composition which was mentioned at previous section was weighed for each sample and then add to 140 ml refractory aluminum oxide crucible. After that, metals were weighed with respects to Table 2.2 and put into crucibles. In industry, glass samples are ladled over and over again or glassy liquid is mixed during heating process in order to produce homogenously. However, 10 gram of samples were not sufficient amount for this process. That's why, glass particles and metal powder were mixed with metal spatula in crucible. After that, the crucible was put into elevator type electrical furnace. In furnace, temperature increased until 1350°C for 2 hours in order to avoid breaking of crucible because of thermal shock. Then, temperature stayed constant at 1350°C for 4 hours. After heating process was done, glassy liquid in the crucible was quenched in water. When cooling process was done, glass particles were put into oven to be dried. In oven, glass particles were stayed at 100°C for few hours. #### 2.3. ESR Analysis of Glass Compositions The glass particles which were dried in oven (prepared in previous section 2.2.2) were
crashed in ceramic mortar. Powder of glass samples were added to quartz ESR tube with height of 2.3 cm for each sample. Experiments were done at 23-28°C and constant pressure. The parameters of ESR measurements are listed in Table.2.3. Table.2.3. Parameters of ESR Measurements. | | Fe and Cr | Co, Mn and Cu | |---------------------|-------------------|---------------| | Center field | 250 mT | 350 mT | | Sweep width | 400 mT | 600 mT | | Mod. Amplitude | 200 uT | 200 uT | | Power attenuation | 13 dB | 13 and 26 dB | | Gain value | 1*10 ² | $1*10^2$ | | Sweep time | 100 s | 100 s | | Microwave frequency | 9441-9443 MHz | 9441-9443 MHz | | Room Temperature | 23-28°C | 23-28°C | #### **CHAPTER 3** #### RESULTS AND DISCUSSION #### 3.1 ESR Measurements of Transition Metals in Glass #### 3.1.1 Fe₂O₃ Containing Soda-Lime-Silicate Glass Fe³⁺ ion has d⁵ orbital and its total spin number is S=5/2. Hence, it splits into three Krames' doublets, $\pm 5/2$, $\pm 3/2$ and $\pm 1/2$. However, $-1/2 \rightarrow +1/2$ transition is allowed for powder samples and other four transitions is not allowed due to high anisotropy. That's why, Fe³⁺ gives one signal at ESR spectrum. Figure 3.1 shows the ESR spectrum of Fe₂O₃ containing soda-lime-silicate glass. The figure shows two significant characteristic g values at g=4.2 and g=2.0. The signal at g=4.2 and weak signal at g=9.6 ²⁷⁻²⁸ are associated with the rhombic distortion of tetrahedral or octahedral coordination of C_{2v} symmetry of Fe³⁺ which locates in network structure of glass (Si-O-Fe-O-Si) ¹⁶. The signal at g=2.0 is associated with Fe³⁺ ions located as clusters in glass structure and Fe³⁺-Fe³⁺ interaction. Figure 3.1. ESR spectrum of Fe₂O₃ containing soda-lime-silicate glass (25Na₂O-10CaO 65SiO₂-0.5Fe₂O₃) Figure 3.2 shows the ESR spectra of 6 different levels of Fe_2O_3 (in a range of 0.05 – 2.00 mol %) containing base compositions (25Na₂O-10CaO-65SiO₂), which were named as 2.1 to 2.6 at Table 2.2. Signal intensities of Fe^{3+} at g=9.6, g=4.2 and g=2.0 increase with increasing amount of Fe_2O_3 . However, changes in the signal intensities are different at g=2.0 in comparison to g=9.6 and g=4.2. Figure.3.2. ESR spectra of glasses (25Na₂O-10CaO-65SiO₂-xFe₂O₃ x=0.05 to 2.0 mol %) In Figure 3.2, it was also observed that with increasing amount of Fe_2O_3 content in glass, signal rises of Fe^{3+} at g=4.2 and g=9.6 are slower compared to the signal at g=2.. The signal intensities at Figure 3.3 were taken from ESR spectra (Figure 3.2). The change in the intensities can be also represented by the area under the spectrum. In order to get quantitative relation between percentage of iron content and area under the spectrum, the area at g=4.2 (x=0 to 270 mT) and the area at g=2 (x=270 to 450 mT) were calculated. Hence, with increasing amount of Fe_2O_3 content in glass, the percentage of Fe^{3+} ions that locate in glass network decreases and the percentage of Fe^{3+} ions that locate as cluster in glass increases as shown also in Figure 3.4. It is assumed that with increasing amount of Fe_2O_3 content, the number of Fe^{3+} ions locate in glass network reaches saturation level and thus most of the Fe^{3+} ions locate as cluster in glass structure. Figure 3.3. Signal intensity of Fe^{3+} (from Figure 3.2) at g=4.2 and g=2.0 vs. mol percentages of Fe_2O_3 Figure 3.4 Location of Fe⁺³ ions vs. mol percentages of Fe₂O₃ in glass ## 3.1.2. Cr₂O₅ Containing Soda-Lime-Silicate Glass Figure 3.5 shows three levels of Cr_2O_5 containing soda-lime-silicate glass samples with these compositions; $25Na_2O-10CaO-65SiO_2-xCr_2O_5$ (x=0.1, 0.3, 0.5) after cooling process. They were firstly analyzed in terms of optical properties of glasses. Cr^{3+} ion gives green color to glass and color intensity is directly proportional to Cr^{3+} concentration (from Table 1.1). Figure 3.5 shows that intensity of green color of glass sample increases with increasing amount of Cr_2O_5 . Figure 3.5. Crucible samples of [25Na₂O-10CaO-65SiO₂-yCr₂O₅ (y=0.1, 0.3 and 0.5 mol %)] after cooling process. After visual analyze, ESR method was used in order to observe Cr^{3+} species in glass. Figure 3.6 shows the ESR spectrum of Cr_2O_5 containing soda-lime-silicate glass sample with composition; $25Na_2O-10CaO-65SiO_2-0.5Cr_2O_5$. Cr^{3+} has d^3 orbital and its total spin number is S=3/2. Hence, it splits into two Krames' doublets, $\pm 3/2$ and $\pm 1/2$. There are three ESR transition is allowed between these Krames' doublets $(-3/2 \rightarrow -1/2, -1/2 \rightarrow +1/2, +1/2 \rightarrow +3/2)$. However, $-1/2 \rightarrow +1/2$ transition is allowed for powder samples and also other two transitions are not allowed due to high anisotropy. The glass sample includes Fe_2O_3 as an impurity (0,003 mol %). Figure 3.6 shows 4 significant characteristic values of g. The signal at g=5.2 is associated with rhombic distortion of octahedral coordination of Cr^{3+} ions in glass network. It is assumed that the signal at g=4.2 is associated with octahedral coordination with C_{2v} symmetry of impurity Fe^{3+} . The signal at g=2.1 is associated with Cr^{3+} clusters in glass. The signal at g=2.0 is associated with Cr^{5+} ion is also paramagnetic) clusters in glass. Cr^{5+} ion has d^1 orbital and its total spin number is S=1/2. Cr^{5+} ion occur probably during glass melting process with partly oxidation of Cr^{3+} ion to Cr^{5+} ion Cr^{5+} ion Cr^{5+} ion to Cr^{5+} ion Cr^{5 Figure 3.6. ESR spectrum of Cr₂O₅ containing soda-lime-silicate glass [25Na₂O-10CaO-65SiO₂-0.5Cr₂O₅]. Figure 3.7 shows the ESR spectra of 3 different levels of Cr_2O_5 containing base compositions [25Na₂O-10CaO-65SiO₂-xCr₂O₅(x=0. 1, 0.3, 0.5)], which were named as 3.1 to 3.5 at Table 2.2. Signal intensities at each g values (5.2, 4.2, 2.1 and 2.0) increase with increasing amount of Cr_2O_5 . However, the signal at g=4.2 could not be explained very well. It is assumed that this signal comes from Fe^{3+} impurity but when the amount of Cr_2O_5 increases, the signal intensity at g=4.2 increases as well. It can be concluded that the signals of Fe^{3+} and Cr^{3+} ions overlap around g=5.2 and g=4.2, and the signal of Fe^{3+} does not influence the anisotropy in glass at these levels. Figure 3.7. ESR spectra of Cr_2O_5 containing glasses [25Na₂O-10CaO-65SiO₂- $xCr_2O_5(x=0.1, 0.3 \text{ and } 0.5 \text{ mol }\%)]$ The change of signal intensities as a function of Cr_2O_5 amount is different in Figure 3.7. The signal intensities at g=5.2 (Cr^{3+} ions located in glass network) and g=2.1 (Cr^{3+} ions located as cluster in glass) are crucial to observe location of Cr^{3+} ions in glass. Figure 3.8 shows that signal intensities of Cr^{3+} ions at g=5.2 and at g=2.1 obtained from Figure 3.7. Figure 3.8 shows that mol percentages ratio of Cr^{3+} ions located in glass network with respect to Cr^{3+} ions located as cluster decreases with increasing amount of Cr_2O_5 content (The signal intensity rise of Cr^{3+} ions located in glass network shows a decreasing trend). It is assumed that glass network starts to reach saturation level of Cr^{3+} with increasing amount of Cr_2O_5 content and Cr^{3+} ions start to locate as cluster rather than locate in glass network. Kesavulu *et al.* showed that with increasing amount of Cr_2O_5 content, the signals around at g=5.2 and g=4.2 start to vanish and the signals around at g=2.0 start to overlap and give one strong isotropic signal. This is because, the signal which is associated with Cr^{3+} ions located as cluster (around g=2.0 or g=2.1) increases too much and overlaps with the other signals. However, this occurs at high level of Cr_2O_5 content like 5.0 mol % in glass, which is out of our work range 22,24 . Figure 3.8. Location of Cr⁺³ ions vs. mol percentage of Cr₂O₅ in glass Figure 3.9. ESR spectra of Cr_2O_5 containing glass samples [25Na₂O-10CaO-65SiO₂- $xCr_2O_5(x=1 \text{ and } 2 \text{ mol } \%)]$ Figure 3.9 shows that the signal at g=4.2 start to vanish with amount of 1.0 mol and 2.0 mol % Cr_2O_5 or the signal at g=4.2 is overlapped with signal of Cr^{3+} . This vanishing shows that the signal at g=4.2 can be associated with Fe^{3+} impurity otherwise it should keep increasing. High addition level of Cr_2O_5 may cause anisotropy in glass structure for Fe^{3+} ions. That's why, the signal at g=4.2 may vanish. To observe interactions between Fe³⁺-Cr³⁺ and Fe³⁺-Cr⁵⁺ signals in ESR spectroscopy, different glass compositions were prepared. Figure 3.10 shows EPR spectra of glasses that have these compositions; 25Na₂O-10CaO-65SiO₂-0.3Fe₂O₃- $xCr_2O_5(x=0.1, 0.3 \text{ and } 0.5)$. Compositions were also named as 4.4 to 4.6 at Table 2.2. Figure 3.10 shows four characteristic g values at g=9.6, g=4.2, g=2.1 and g=2.0. The signal at g=9.6 and g=4.2 is associated with Fe³⁺ ions in glass network. Increasing the Cr₂O₅ content decreases the signal of Fe³⁺ ions at g=4.2. This can be explained by the anisotropy increases in the glass structure ²⁵. The signal at g=2.1 is associated with Cr³⁺ ions located as cluster (or Cr³⁺-Cr³⁺ couples) in the glass structure. The signal at g=2.0 is associated with signal overlapping of Fe³⁺ and Cr⁵⁺ ions located as cluster. The characteristic signal of Fe³⁺ at g=2.0 can be observed in 0.1% Cr₂O₅ containing sample. However, with increasing amount of Cr₂O₅ content, the characteristic signal of Fe³⁺ cannot be seen very well and it is overlapped by the signal of Cr5+ ions due to high anisotropy. The signal at g=5.2 which is associated with rhombic distortion of octahedral coordination of Cr3+ ions in glass network cannot be seen. This is because, the signal of Fe^{3+} ions at g=4.2 may block them (and/or due to anisotropy) 22,24 . The same situation is valid for the signal of Cr3+ and Cr5+ ions at g=2.1 and g=2.0, respectively. The characteristic signal of Cr3+
and Cr5+ ions cannot be seen clearly. It is assumed that addition 0.3 mol % level of Fe₂O₃ to glass, may increase randomness of Cr^{3+} and Cr^{5+} ions (it is also known anisotropy) which causes signal loss ²⁵. Figure 3.10. ESR spectra of Fe₂O₃ and Cr₂O₅ containing glass samples [$25Na_2O-10CaO-65SiO_2-0.3Fe_2O_3-xCr_2O_5(x=0.1, 0.3 \text{ and } 0.5 \text{ mol } \%)$] Figure 3.11 shows ESR spectra of addition 0.05 mol % Fe₂O₃ content to three different levels of Cr₂O₅ containing soda-lime-silicate glass samples [25Na₂O-10CaO-65SiO₂-0.05Fe₂O₃-xCr₂O₅ (x=0.1, 0.3 and 0.5)] in order to observe signal behavior of Cr³⁺ ions at g=5.2 with addition of Fe³⁺ ions. Signal intensities of Cr³⁺ ions at g=2.1 and Cr⁵⁺ ions at g=2.0 (in Figure 3.11) decrease in comparison to only Cr₂O₅ containing glass samples (in Figure 3.7). It is assumed that rise of Fe₂O₃ content in glass causes randomness in glass. Hence, the signal intensities at g=2.1 and g=2.0 decrease due to anisotropy in glass structure ²⁵. However, signal intensities of Cr³⁺ ions at g=5.2 increase with addition of Fe₂O₃ content. This is because, signal of Fe³⁺ ions at g=4.2 overlap with signal of Cr³⁺ ions at g=5.2. This overlapping blocks to observe fall of signal intensities at g=5.2 due to rise of anisotropy (like at g=2.1 and g=2.0). Figure 3.11. ESR spectra of Fe_2O_3 and Cr_2O_5 containing glass samples [25Na₂O-10CaO-65SiO₂-0.05Fe₂O₃-xCr₂O₅(x=0.1, 0.3 and 0.5 mol %)] Figure 3.12 shows ESR spectra of addition 0.5 mol % Cr_2O_5 content to three different levels of Fe_2O_3 containing soda-lime-silicate glass samples [25Na₂O-10CaO-65SiO₂-0.5 Cr_2O_5 -x Fe_2O_3 (x=0.025, 0.06, 0.1)] in order to observe signal behavior of Cr^{3+} ions and Cr^{5+} ions with Fe^{3+} ion at g=2.1 and g=2.0, respectively. The signal intensities of Cr^{3+} ions at g=2.1 (in Figure 3.11) and Cr^{5+} ions at g=2.0 are two times less than in only 0.5 mol % Cr_2O_5 containing glass sample (in Figure 3.7). It is assumed that the rise of Fe₂O₃ content in glass causes randomness in glass. Hence, the signal intensities of Cr³⁺ and Cr⁵⁺ decrease due to anisotropy in glass structure ²⁵. Figure 3.12. ESR spectra of Fe2O3 and Cr2O5 containing glass samples [25Na2O-10CaO-65SiO2-xFe2O3-0.5Cr₂O₅(x=0.025, 0.05, 0.06 and 0.1 mol %)]. Figure 3.13 shows signal intensities of Cr^{3+} ions at g=5.2 and g=2.1 in ESR spectra (Figure 3.7 and Figure 3.12). Figure 3.13 shows that with addition of Fe_2O_3 content to Cr_2O_5 containing soda-lime-silicate glass, the signal intensities at g=5.2 and at g=2.1 increase and decrease, respectively. The rise of signal intensity at g=5.2 results from that with increasing amount of Fe_2O_3 content until 0.1 mol %, the signal at g=4.2 increase and overlap with signal at g=5.2. This overlapping causes rise of the signal at g=5.2. It is assumed that, the signal at g=5.2 (Cr^{3+} ion located in glass network) is not affected from rise of anisotropy too much and Cr^{3+} ions located in glass network have still powerful ESR signal. The signals of Cr^{3+} ions at g=2.1 (comes from Cr^{3+} clusters) decrease with increasing amount of Fe_2O_3 content as shown in Figure 3.13. It is assumed that, the signal of Fe^{3+} at g=2.0 (come from Fe^{3+} clusters) may overlap with the signal of Fe^{3+} ions at Fe^{3+} and cancel them. Hence, the signal of Fe^{3+} ions at increasing of anisotropy with addition of Fe^{3+} ions increasing of anisotropy wi Figure 3.13. Signal intensity of Cr^{3+} ions (in Figure 3.2 and Figure 3.12) at g=5.2 and g=2.1 vs. mol percentage of Fe_2O_3 and Cr_2O_5 ## 3.1.3. MnO₂ Containing Soda-Lime-Silicate Glass Figure 3.14, 3.15 and 3.16 show three levels of MnO₂ containing soda-lime-silicate glass samples with compositions; 25Na₂O-10CaO-65SiO₂-xMnO₂ (x=0.1, 0.3, 0.5), 25Na₂O-10CaO-65SiO₂-0.05Fe₂O₃-xMnO₂ (x=0.1, 0.3 and 0.5), 25Na₂O-10CaO-65SiO₂-0.3Fe₂O₃-xMnO₂ (x=0.1, 0.3 and 0.5) after cooling process, respectively. MnO₂ gives purple color to glass (from Table 1.1) and the color intensity is directly proportional to MnO₂ concentration as shown in Figure 3.14 and 3.15. Color of each glass samples does not appear uniform due to depth of glass in crucible. When the depth of glass increases, the color intensity increases. Figure 3.16 shows that when the amount of Fe₂O₃ reaches at amount of MnO₂ levels in glass, color of glass starts to change from purple to green. Figure 3.14. Crucible samples of $[25Na_2O-10CaO-65SiO_2-xMnO_2\ (x=0.1,\ 0.3\ and\ 0.5\ mol\ \%)]$ after cooling process. Figure 3.15. Crucible samples of [$25Na_2O-10CaO-65SiO_2-0.05Fe_2O_3-xMnO_2$ (x=0.1, 0.3 and 0.5 mol %)] after cooling process. Figure 3.16. Crucible samples of [25Na₂O-10CaO-65SiO₂-0.3Fe₂O₃-xMnO₂ (x=0.1, 0.3 and 0.5 mol %)] after cooling process. Figure 3.17 shows ESR spectrum of MnO₂ containing soda-lime-silicate glass with composition; 25Na₂O-10CaO-65SiO₂-0.5MnO₂. Mn²⁺ has d⁵ orbital and its total spin number is S=5/2. Hence, it splits into three Krames' doublets, $\pm 5/2$, $\pm 3/2$ and $\pm 1/2$. There are five ESR transitions are allowed between these Krames' doublets $(-5/2 \rightarrow -3/2)$, $-3/2 \rightarrow -1/2$, $-1/2 \rightarrow +1/2$, $+1/2 \rightarrow +3/2$, $+5/2 \rightarrow +3/2$). However, $-1/2 \rightarrow +1/2$ transition is allowed for powder samples and other four transitions are not allowed due to the high anisotropy. Mn²⁺ has also a nuclear spin I=5/2 that causes 6 hyperfine splittings (from 2I+1 formula). Figure 3.17 shows three significant characteristic values of g. The signal at g=5.0 is associated with strong rhombic distortion of octahedral symmetry of Mn²⁺ ions in glass network ²⁹. The signal at g=4.2 is associated with Fe³⁺ impurity ³⁰ whose symmetry is rhombic distorted in glass network. The signal at g=2.0 consist of two types of signal which come from Mn²⁺ clusters and hyperfine interaction of Mn²⁺ ions. The first one is associated with elongation or tetragonal 31 distortion of octahedral symmetry of Mn²⁺ ions that locate as clusters in glass and it is associated with Mn²⁺-Mn²⁺ spin interaction ³². The second one is that sextet lines appear which arises from interaction between electron spin and nuclear spin in manganese ions, which is also called hyperfine interaction ²⁹. Figure 3.17. ESR spectrum of MnO₂ containing soda-lime-silicate glass [25Na₂O-10CaO-65SiO₂-0.3MnO₂ mol %] Figure 3.18 shows the ESR spectra of 3 different levels (x=0.1, 0.3 and 0.5 mol %) of MnO₂ containing base compositions (25Na₂O-10CaO-65SiO₂), which were named as 7.1 to 7.3 at Table 2.2. Signal intensities at g=5.0 and g=2.0 increase with increasing amount of MnO₂. At g=2.0, the sextet lines (hyperfine splittings) vanish with increasing amount of MnO₂, which may be caused by signal overlapping of sextet lines. Another assumption is that the signal of Mn²⁺-Mn²⁺ spin interaction may suppress the sextet lines. Azzoni ³³ claimed that these sextet lines disappear with high concentration of MnO₂ due to increasing of randomness in the position of Mn²⁺ ions (which is also called anisotropy). Figure 3.18. ESR spectra of MnO_2 containing glass samples [25Na₂O-10CaO-65SiO₂- $xMnO_2(x=0.1, 0.3 \text{ and } 0.5 \text{ mol } \%)]$ The changes in the signal intensity as a function of amount of MnO₂ are different for g=2.0 and g=5.0. Figure 3.19 shows signal intensity of Mn²⁺ ions versus mol percentage of MnO₂ in soda-lime-silicate glass from Figure 3.18. It is observed that increasing ratio of signal at g=2.0 is higher than increasing ratio of signal at g=5.0. As mentioned earlier, the signal at g=5.0 is associated with Mn²⁺ ions in glass network and the signal at g=2.0 is associated with Mn²⁺ ions located as cluster in glass. Hence, with increasing amount of MnO₂ content, amount of Mn²⁺ ions in clusters increases more than the increase number of Mn²⁺ ions in glass network. It is also supported with Figure 3.20 which shows location percentages of Mn²⁺ ions in glass structure versus MnO₂ content in glass. It shows that percentage of Mn²⁺ ions located as cluster in glass is much higher than Mn²⁺ ions located in glass network and this difference increase with increasing content of MnO₂. It is assumed that the number of MnO₂ content. That's why, Mn²⁺ ions locate as clusters with higher percentage than Mn²⁺ ions located in glass network. Figure 3.19. Signal intensity of Mn^{2+} ions (from Figure 3.15) at g=5.0 and g=2.0 vs. mol percentage of MnO_2 Figure 3.20. Location of Mn²⁺ ions in glass vs. mol percentage of MnO₂ In order to analyze the ESR spectra of Fe^{3+} - Mn^{2+} ion mixtures, two different Fe_2O_3 composition levels were used with 0.1, 0.2 and 0.3 MnO_2 mol % (compositions 8.1 to 8.6 at Table.2.2) as shown in Figure 3.21 and Figure 3.22. Figure 3.21. ESR spectra of Fe_2O_3 and MnO_2 containing glass samples [25Na₂O-10CaO-65SiO₂-0.05Fe₂O₃-xMnO₂ (x=0.1, 0.3 and 0.5 mol %)] Figure 3.21 shows ESR spectra of glass samples after addition of 0.05 mol % Fe₂O₃ content to 3 different levels of MnO₂ containing base compositions (25Na₂O-10CaO-65SiO₂), which were named as 8.1 to 8.3 at Table 2.2. Signal intensities at g=5.0 and g=2.0 increase with increasing MnO₂ content. The sextet lines at g=2.0 also start to vanish. These signals behaviors are same with the only MnO₂ containing soda-lime-silicate glass samples (Figure 3.18). The signal at g=4.2 is associated with the rhombic distortion of tetrahedral or octahedral coordination of C_{2v} symmetry of Fe³⁺ ions which locate in glass network ¹⁶. This signal has higher intensity than the intensity of signal at g=4.2 in Figure 3.18 (just MnO₂ containing soda-lime-silicate glass samples) with addition of %0.05 Fe₂O₃ content. However, this signal rise is not proportional to or equal with summation of signal intensities of Fe³⁺ and Mn²⁺ at g=4.2. It is assumed that this nonequivalence results from signal overlapping or signal loss due to anisotropy. Figure 3.22.
ESR spectra of Fe₂O₃ and MnO₂ containing glass samples [25Na₂O-10CaO-65SiO₂-0.3Fe₂O₃-xMnO₂ (x=0.1, 0.3 and 0.5 mol %)] Figure 3.22 shows ESR spectra of glass samples after addition of 0.3 mol % Fe₂O₃ content to 3 different levels of MnO₂ containing base compositions (25Na₂O-10CaO-65SiO₂), which were named as 8.4 to 8.6 at Table 2.2. Signal intensities at g=5.0 and g=2.0 increase with increasing amount of Cr₂O₅. The signal at g=5.0 (signal of Mn²⁺ ions) cannot be seen well in comparison to other two ESR spectra (Figure 3.19 and Figure 3.20) with addition of 0.3 mol % level of Fe₂O₃ content to MnO containing soda-lime-silicate glass. It is assumed that Fe³⁺ signal at g=4.2 may block signal of Mn²⁺ at g=5 or the signal of Mn²⁺ ions cannot seen due to anisotropy. At g=2, hyperfine splittings cannot be observed accurately, which is caused by 0.3 mol % concentration of Fe₂O₃. Increasing amount of Fe³⁺ content in glass causes anisotropy in glass or rise of randomness in position of Mn²⁺ ions in glass. As mentioned by Azzoni ³³, these randomness may cause disappearance of sextet lines (hyperfine splittings) at g=2.0. # 3.1.4. CuO Containing Soda-Lime-Silicate Glass Figure 3.23, 3.24 and 3.25 show three levels of CuO containing soda-lime-silicate glass samples with these compositions (samples 5.1 to 6.6 from Table 2.2); $25Na_2O-10CaO-65SiO_2-xCr_2O_5$ (x=0.1, 0.3 and 0.5 mol %), $25Na_2O-10CaO-65SiO_2-0.05Fe_2O_3-xMnO_2$ (x=0.1, 0.3 and 0.5 mol %) and $25Na_2O-10CaO-65SiO_2-0.3Fe_2O_3-xMnO_2$ (x=0.1, 0.3 and 0.5 mol %) after cooling process. CuO gives light blue color to glass (from Table 1.1) and color intensity is directly proportional to CuO concentrations. Figure 3.25 shows that when amount of Fe₂O₃ reaches at amount of CuO levels in glass, color of glass starts to change from light blue to green color. Figure 3.23. Crucible samples of $[25Na_2O-10CaO-65SiO_2-xCuO(x=0.1, 0.3 \text{ and } 0.5 \text{ mol} \%)]$ after cooling process. Figure 3.24. Crucible samples of $[25Na_2O-10CaO-65SiO_2-0.05Fe_2O_3-xMnO_2(x=0.1, 0.3 and 0.5 mol \%)]$ after cooling process. Figure 3.25. Crucible samples of [25Na₂O-10CaO-65SiO₂-0.3Fe₂O₃-xMnO₂ (x=0.1, 0.3 and 0.5 mol %)] after cooling process. Figure 3.26. ESR spectrum of [25Na₂O-10CaO-65SiO₂-0.5CuO mol %] Figure 3.26 shows ESR spectrum of CuO containing soda-lime-silicate glass with composition; $25\text{Na}_2\text{O}-10\text{CaO}-65\text{SiO}_2-0.5\text{CuO}$. Cu^{2^+} has d^9 orbital and its spin number is S=1/2. Cu^{2^+} ions located octahedral symmetry in glass. If octahedral symmetry of isolated (located in glass network) Cu^{2^+} ions elongate (or distort tetragonally) parallel to z-axis, it is represented as g_{11} and its value around g=2.2. If octahedral symmetry of isolated Cu^{2^+} ions elongate (or distort tetragonally) perpendicular to z-axis, it is represented as g_{11} and its value around g=2.0 as shown in Figure 3.26 34 . Cu²⁺ ion has a nuclear spin (I=3/2) that causes 4 hyperfine splittings (from 2I+1 formula). The signal at g=4.2 is associated with Fe³⁺ impurity whose symmetry is rhombic distorted in glass network 25 . Figure 3.27. ESR spectra of CuO containing glass samples [25Na₂O-10CaO-65SiO₂-xCuO (x=0.1, 0.3 and 0.5 mol %)] Figure 3.27 shows ESR spectra of 3 different levels of CuO containing base compositions (25Na₂O-10CaO-65SiO₂), which were named as 5.1 to 5.3 at Table 2.2. Signal intensities at g=2.2 and g=2.0 increase with increasing amount of CuO. The signal at g=4.2 is not shown in spectra because it is associated with impurity of Fe³⁺ ions and it does not show any difference with respect to changing amount of CuO content in sodalime-silicate glass. Four parallel hyperfine splittings (g_{II}) would be expected at g_{II} =2.2, and these splittings resolved better with increasing amount of CuO content. Four hyperfine splittings would be expected at g_I=2.0 but they are not resolved very well due to the anisotropy. However, with decreasing amount of CuO, these splittings start to appear as shown in sample 0.1 mol % CuO containing soda-lime-silicate glass in Figure 3.27 ²⁵. In order to observe Fe^{3+} - Cu^{2+} interactions, two different Fe_2O_3 compositions were used with 0.1, 0.2 and 0.3 CuO mol % (compositions 6.1 to 6.6 at Table.2.2) as shown in Figure 3.28 and Figure 3.29. Figure 3.28. ESR spectra of Fe₂O₃ and CuO containing glass samples [25Na₂O-10CaO-65SiO₂-0.05Fe₂O₃-xCuO (x=0.1, 0.3 and 0.5 mol %)] Figure 3.28 shows ESR spectra of glass samples after addition of 0.05 mol % Fe_2O_3 addition to 3 levels of CuO with these compositions; $25Na_2O-10CaO-65SiO_2-0.05Fe_2O_3-xCuO$ (x=0.1, 0.3 and 0.5 mol %). The signal intensity at g=4.2 which is associated with rhombic distorted octahedral symmetry of Fe^{3+} ions in glass network increase with addition of 0.05 mol % Fe_2O_3 content in comparison to Figure 3.26. Signal at g_1 =2.0 which is associated with Fe^{3+} locating as cluster in glass structure is blocked by Cu^{2+} signal at g_1 =2.0. Figure 3.29. ESR spectra of Fe₂O₃ and CuO containing glass samples [25Na₂O-10CaO-65SiO₂-0.3Fe₂O₃-xCuO x=0.1, 0.3 and 0.5 mol %)] Figure 3.29 shows ESR spectra of glass samples after addition of 0.3 mol % Fe₂O₃ addition to 3 levels of CuO with these compositions; $25\text{Na}_2\text{O}$ -10CaO-65SiO₂-0.3Fe₂O₃-xCuO (x=0.1, 0.3 and 0.5 mol %). The signal intensity at g=4.2 which is associated with rhombic distorted octahedral symmetry of Fe³⁺ in glass network increases with addition of 0.3 mol % Fe₂O₃ content in comparison to Figure 3.26 and Figure 3.28. Signal at g=2.0 which is associated with Fe³⁺ locating as cluster in glass structure is blocked by Cu²⁺ signal at g₁=2.0. #### 3.1.5. General Overview In order to observe effects of Cr³⁺, Mn²⁺ and Cu²⁺ ions on Fe³⁺ ions, ESR spectra of pure Cr₂O₅, MnO₂ and CuO containing soda-lime-silicate glasses (from Figure 3.7, Figure 3.18 and Figure 3.27, respectively) is subtracted from ESR spectra of Cr₂O₅-Fe₂O₃, MnO₂-Fe₂O₃ and CuO-Fe₂O₃ (from Figure 3.10-3.11, Figure 3.21-3.22 and Figure 3.28-3.29, respectively) containing soda-lime-silicate glasses, respectively. As shown in Figure 3.30 to Figure 3.35, when transition metals (Cr³⁺, Mn²⁺ and Cu²⁺) were added to Fe₂O₃ containing soda-lime-silicate glasses, the signal of Fe³⁺ ions at g=4.2 (located in glass network) decreases. This signal loss may result from replacing of Cr³⁺, Mn²⁺ or Cu²⁺ ions with octahedral or tetrahedral symmetry of Fe^{3+} ions which are located in glass network or these transition metals may reduce Fe^{3+} ions into diamagnetic Fe^{2+} ions In another assumption is,addition of transition metals $(Cr^{3+}, Mn^{2+} \text{ and } Cu^{2+})$ causes high randomness of Fe^{3+} (or anisotropy) in glass. Therefore the signal of Fe^{3+} ions located in glass network decreases 25 . Figure 3.30. ESR spectra of Fe³⁺ ion at g=4.2 in glass samples; [$25Na_2O-10CaO-65SiO_2-0,05Fe_2O_3-xCr_2O_5$ (x=0.1, 0.3 and 0.5 mol %)] Figure 3.31. ESR spectra of Fe^{3+} ion at g=4.2 in glass samples; [25Na₂O-10CaO-65SiO₂-0,3Fe₂O₃-xCr₂O₅ (x=0.1, 0.3 and 0.5 mol %)] Figure 3.32. ESR spectra of Fe $^{3+}$ ion at g=4.2 in glass samples; [25Na₂O-10CaO-65SiO₂-0,05Fe₂O₃-xMnO₂ x=0.1, 0.3 and 0.5 mol %)] Figure 3.33. ESR spectra of Fe $^{3+}$ ion at g=4.2 in glass samples; [25Na₂O-10CaO-65SiO₂-0,3Fe₂O₃-xMnO₂ (x=0.1, 0.3 and 0.5 mol %)] Figure 3.34. ESR spectra of Fe $^{3+}$ ion at g=4.2 in glass samples; [25Na₂O-10CaO-65SiO₂-0,05Fe₂O₃-xCuO (x=0.1, 0.3 and 0.5 mol %)] Figure 3.35. ESR spectra of Fe $^{3+}$ ion at g=4.2 in glass samples; [25Na₂O-10CaO-65SiO₂-0,3Fe₂O₃-xCuO (x=0.1, 0.3 and 0.5 mol %)] #### 3.2. XPS Measurements In order to differentiate Fe³⁺ and Fe²⁺ ions quantitatively in soda-lime-silicate glass, X-ray photoelectron spectroscopy (XPS) was used. 0.3%, 0.5% and 1.0% mol Fe₂O₃ containing soda-lime-silicate glasses were measured and 2p orbitals of iron ions were scanned by XPS spectrometer. However, X-ray photoelectron spectrometer could not differentiate iron ions under level of 1.0% mol Fe₂O₃ as shown in Figure 3.36 and Figure 3.38. Even 1.0% mol Fe₂O₃ containing soda-lime-silicate glass sample cannot be differentiated precisely by XPS as shown in Figure 3.38. These results showed that X-ray photoelectron spectrometer is not as precise as ESR spectrometer at low levels (range of 0.0%-1.0% mol). Figure 3.36. XPS spectra of [25Na₂O-10CaO-65SiO₂-0.3Fe₂O₃ mol %]. Figure 3.37. XPS spectra of [25Na₂O-10CaO-65SiO₂-0.5Fe₂O₃ mol %] Figure 3.38. XPS spectra of [25Na₂O-10CaO-65SiO₂-1.0Fe₂O₃ mol %] ### **CHAPTER 4** ## **SUMMARY AND CONCLUSIONS** This study showed the behavior and interaction of paramagnetic 3d transition metal ions (Fe³⁺, Cr³⁺, Mn²⁺ and Cu²⁺) at low addition levels by using ESR spectroscopy in soda-lime-silicate based glasses. The results obtained from the ESR measurements of Fe₂O₃ containing glasses showed signals at g=4.2 and g=2.0, in agreement with the literature. These signals are associated with Fe³⁺ ions located in glass network for g=4.2, and with Fe³⁺ ions located as a cluster as well as Fe³⁺- Fe³⁺ interaction for g=2.0 ¹⁴. The results further showed the intensities of the signals at these two g values to be effected by the concentration of Fe₂O₃ in the glass composition. ESR technique can reveal the types of Fe³⁺ ions in glass even at low addition levels (below 1.0 mol % Fe₂O₃). When the concentration level of Fe₂O₃ reaches 1.0 mol % in glass, percentage of Fe³⁺ ions that locate as cluster increases more than the percentage of Fe³⁺ ions in glass network. It is assumed that Fe ions in glass network starts to reach saturation level with addition of Fe₂O₃. XPS analysis was done in order to further support the quantification of the ESR data of the Fe₂O₃ in the glass composition. However, XPS was ineffective at low addition levels (below 1.0 mol % Fe₂O₃). While XPS was found to be inadequate in quantifying the paramagnetic Fe³⁺ ions at
low addition levels, the results of ESR spectroscopy were shown to provide trends in the relative structural formation of Fe³⁺ ions either as part of the glass network or as clusters outside of the network structure. Furthermore, when other transition metals (Cr^{3+} , Mn^{2+} or Cu^{2+}) were added to Fe_2O_3 containing glass compositions, the signal at g=4.2 for Fe^{3+} decreases. This result is assumed to be either replacement of Cr^{3+} , Mn^{2+} or Cu^{2+} ions with Fe^{3+} ions which are located in glass network or these transition metals may reduce Fe^{3+} ions into diamagnetic Fe^{2+} ions. Another assumption is that with addition of these transition metals (Cr^{3+} , Mn^{2+} or Cu^{2+}), ESR signal intensity of Fe^{3+} ions decrease due to the anisotropy increases $^{22,\,24}$. The ESR spectra of Cr_2O_5 , MnO, and CuO containing glasses have been analyzed as follows: • ESR measurement of Cr_2O_5 containing glass showed signals at g=5.2, g=2.1 and g=2.0, in line with the literature. These signals have been linked to Cr^{3+} ion located - in glass network for g=5.2, and to Cr^{3+} and Cr^{5+} located as cluster and transition metal-metal interaction for signals at g=2.1 and g=2.0, respectively 22,24 . - ESR measurement of MnO₂ doped glass shows signals at g=5.0 and g = 2.0, which are associated with Mn²⁺ ion located in glass network and signal at g=2.0 which is also associated with Mn²⁺ ion located as cluster and Mn²⁺- Mn²⁺ interaction. At g=2.0 there are also sextet lines appear which is associated with hyperfine interaction of Mn²⁺ ions ²⁹. - ESR measurement of CuO doped glass shows signals at g_u =2.2 and g_{\perp} =2.0. The signal at g_{\perp} =2.0 which has been associated with octahedral sites of Cu²⁺ ions elongated perpendicular to z-axis in glass network and signal at g_u =2.2 which has been linked with octahedral sites of Cu²⁺ ions elongated parallel to z-axis. At g_u =2.2, quartet lines appear, which is associated with hyperfine interaction of Cu²⁺ ions ³⁴. #### REFERENCES - 1. Varshneya, A. K., Fundamentals of Inorganic Glasses. 1 ed.; 1994. - 2. Park, J. B., *Bioceramics : properties, characterizations, and applications*. Springer: New York, 2008; p xii, 359 p. - 3. Shelby, J. E., *Introduction to Glass Science and Technology*. 2 ed.; 2005. - 4. Zavoisky, E., Spin-magnetic resonance in paramagnetics. *Fizicheskii Zhurnal* **1945**, *9*. - 5. Odom, B.; Hanneke, D.; D'Urso, B.; Gabrielse, G., New measurement of the electron magnetic moment using a one-electron quantum cyclotron. *Phys Rev Lett* **2006**, *97* (3). - 6. Abraham, A.; Bleaney, B., Electron Paramagnetic Resonance of Transition Ions. 1986. - 7. Wertz, J. E.; Bolton, J. R., *Electron spin resonance: Elementary theory and practical applications*. 1972. - 8. Cornu, L.; Duttine, M.; Gaudon, M.; Jubera, V., Luminescence switch of Mn-Doped ZnAl2O4 powder with temperature. *J Mater Chem C* **2014**, *2* (44), 9512-9522. - 9. Merzbacher, E., Quantum Mechanics 3ed.; John Wiley: New York, 1998. - 10. Atherton, N. M., *Principles of electron spin resonance*. Ellis Horwood PTR Prentice Hall, 1993. - 11. Kapteijn, F.; RodriguezMirasol, J.; Moulijn, J. A., Heterogeneous catalytic decomposition of nitrous oxide. *Appl Catal B-Environ* **1996**, *9* (1-4), 25-64. - 12. R. Resnick, R. E., John Wiley & Sons,, *Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles* 2ed.; 1985. - 13. Weil, J. A.; Wertz; J.E. and Bolton, J. R.; McGraw-Hill; Wiley, J., *Electron Paramagnetic Resonance: Elementary Theory and Practical Applications* 2ed.; 1994. - 14. Fu, C. M.; Korchak, V. N.; Hall, W. K., Decomposition of Nitrous-Oxide on Fey Zeolite. *J Catal* **1981**, *68* (1), 166-171. - 15. Perez-Ramirez, J.; Kapteijn, F.; Mul, G.; Moulijn, J. A., NO-assisted N2O decomposition over Fe-based catalysts: Effects of gas-phase composition and catalyst constitution. *J Catal* **2002**, *208* (1), 211-223. - 16. Ruangthaweep, Y.; Kittiauchawal, T.; Kaewkhao, J.; Thamaphat, K.; Limsuwan, P., The Spectroscopic Analysis of Iron-Doped Soda-Lime-Silica Glass by Spectrophotometer and ESR Spectrometer. *Adv Mater Res-Switz* **2010**, *93-94*, 312-+. - 17. Russel, C., Iron Oxide-Doped Alkali Lime Silica Glasses .1. Epr Investigations. *Glastech Ber-Glass* **1993**, *66* (3), 68-75. - 18. Russel, C., EPR and voltammetric studies of iron-containing mixed alkali glasses with the basic composition xNa(2)O center dot(16-x)K2O center dot 10CaO center dot 74SiO(2). *Glastech Ber-Glass* **1997**, *70* (1), 17-22. - 19. Srisittipokakun, N.; KedKaew, C.; Kaewkhao, J.; Kittiauchawal, T.; Thamaphat, K.; Limsuwan, P., Electron Spin Resonance (ESR) and Optical Absorption Spectra of a Manganese Doped Soda-Lime-Silicate Glass System. *Kasetsart J. (Nat. Sci.)* **2009**, *43*, 360 364. - 20. Iwamoto, N.; Makino, Y., State of the Chromium Ion in Soda Silicate-Glasses under Various Oxygen Pressures. *J Non-Cryst Solids* **1980**, *41* (2), 257-266. - 21. DAcapito, F.; Colonna, S.; Mobilio, S.; Gonella, F.; Cattaruzza, E.; Mazzoldi, P., Local atomic environment of Cu ions in ion-exchanged silicate glass waveguides: An x-ray absorption spectroscopy study. *Appl Phys Lett* **1997**, *71* (18), 2611-2613. - 22. Kesavulu, C. R.; Chakradhar, R. P. S.; Jayasankar, C. K.; Rao, J. L., EPR, optical, photoluminescence studies of Cr3+ ions in Li2O-Cs2O-B2O3 glasses An evidence of mixed alkali effect. *J Mol Struct* **2010**, *975* (1-3), 93-99. - 23. Rao, J. L.; Sreedhar, B.; Reddy, M. R.; Lakshman, S. V. J., Electron-Spin Resonance and Optical-Absorption Spectra of Cr-3+ and Cu-2+ Ions in K2so4-Znso4 Glasses. *J Non-Cryst Solids* **1989**, *111* (2-3), 228-237. - 24. Kesavulu, C. R.; Chakradhar, R. P. S.; Muralidhara, R. S.; Rao, J. L.; Anavekar, R. V., EPR, optical absorption and photoluminescence properties of Cr3+ ions in lithium borophosphate glasses. *J Alloy Compd* **2010**, *496* (1-2), 75-80. - 25. Drzewiecki, A.; Padlyak, B.; Adamiv, V.; Burak, Y.; Teslyuk, I., EPR spectroscopy of Cu2+ and Mn2+ in borate glasses. *Nukleonika* **2013**, *58* (3), 379-385. - 26. Prakash, P. G.; Rao, J. L., Cu2+ ions in sodium fluoride-sodium borate glasses studied by EPR and optical absorption techniques. *J Mater Sci* **2004**, *39* (1), 193-200. - 27. Slappendel, S.; Veldink, G. A.; Vliegenthart, J. F. G.; Aasa, R.; Malmstrom, B. G., A Quantitative Optical and Electron-Paramagnetic-Res Study on the Interaction between Soybean Lipoxygenase-1 and 13-L-Hydroperoxylinoleic Acid. *Biochim Biophys Acta* **1983**, 747 (1-2), 32-36. - 28. Fukamachi, C. R. B.; Wypych, F.; Mangrich, A. S., Use of Fe3+ ion probe to study the stability of urea-intercalated kaolinite by electron paramagnetic resonance. *J Colloid Interf Sci* **2007**, *313* (2), 537-541. - 29. Stefan, R.; Simon, S., EPR of Mn2+ and Fe3+ ions doped in bismuth-borate glasses. *Mod Phys Lett B* **2001**, *15* (3), 111-117. - 30. Baesso, M. L.; Mansanares, A. M.; Dasilva, E. C.; Vargas, H.; Miranda, L. C. M., Phase-Resolved Photoacoustic-Spectroscopy and Epr Investigation of Mno2-Doped and Coo-Doped Soda-Lime Glasses. *Phys Rev B* **1989**, *40* (3), 1880-1884. - 31. Janes, R. M., E. A., Metal-ligand bonding. 2004. - 32. Terczynska-Madej, A.; Cholewa-Kowalska, K.; Laczka, M., The effect of silicate network modifiers on colour and electron spectra of transition metal ions. *Opt Mater* **2010,** *32* (11), 1456-1462. - 33. Azzoni, C. B.; Di Martino, D.; Chiavari, C.; Martini, M.; Sibilia, E.; Vandini, M., Electron paramagnetic resonance of mosaic glasses from the Mediterranean area. *Archaeometry* **2002**, *44*, 543-554. - 34. Purnima, M.; Edukondalu, A.; Kumar, K. S.; Rahman, S., EPR and Optical Absorption Studies of Cu2+ in Boro-Arsenate Glasses. *Mater Res-Ibero-Am J* **2017**, *20* (1), 46-52.