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Abstract. A system of nonlinear equations governing the transmission of uni-axial
waves in a cold collisionless plasma subject to a transverse magnetic field is reduced
to the recently proposed resonant nonlinear Schrödinger (RNLS) equation. This
integrable variant of the standard nonlinear Schrödinger equation admits novel
nonlinear superposition principles associated with Bäcklund–Darboux transform-
ations. These are used here, in particular, to construct analytic descriptions of the
interaction of solitonic magnetoacoustic waves propagating through the plasma.

1. Introduction
The nonlinear Schrödinger (NLS) equation arises in the description of a wide
range of physical phenomena. It is an integrable model which admits envelope
soliton solutions of application notably in nonlinear optics and plasma physics.
Dependent on the sign of dispersion (positive or negative), two types of NLS
equation are known corresponding, in turn, to defocusing and focusing. These admit
dark and bright solitons respectively. The envelope wave function is a complex
quantity and the quadratic dispersion, in general, consists of two parts: the phase
dispersion and the modulus dispersion. The first corresponds to geometrical optics
effects, while the second is associated with diffraction. In both the focusing and
defocusing cases of the standard NLS equation, the contribution to dispersion from
the phase and the modulus have the same sign (positive and negative, respectively).
However, in the phenomenological description of certain hypothetical nonlinear
media, the sign may change as a result of competition between the phase and
modulus dispersion. Then, the response of the medium to the action of a quasi-
monochromatic wave with complex amplitude ψ(x, t), which is a slowly varying
function of the coordinate x and the time t is described by a novel integrable
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version of the NLS equation namely [1],

i
∂ψ

∂t
+

∂2ψ

∂x2
+

Λ
4

|ψ|2ψ = s
1

|ψ|
∂2|ψ|
∂x2

ψ. (1.1)

This has been termed the resonant nonlinear Schrödinger (RNLS) equation. It can
be regarded as a third version of the NLS equation, intermediate between the
defocusing and focusing cases. The additional nonlinear term in the NLS equa-
tion can be viewed as due to an additional electrostriction pressure or diffraction
term [2]. Even though the RNLS equation is integrable for arbitrary values of the
coefficient s, the critical value s = 1 separates two distinct regions of behaviour.
Thus, for s < 1 the model is reducible to the conventional NLS equation (focusing
for Λ > 0 and defocusing for Λ < 0). However, for s > 1 it is not reducible to the
usual NLS equation, but rather to a reaction–diffusion (RD) system. In this case,
the model exhibits novel solitonic phenomena [1].
The RNLS equation can be interpreted as an NLS-type equation with an addi-

tional ‘quantum potential’ UQ = |ψ|xx/|ψ|. This latter potential was introduced by
de Broglie [3] and was subsequently used by Bohm [4] to develop a hidden-variable
theory in quantum mechanics [5]. It also appears in stochastic mechanics [6].
Connections between such non-classical motions with the internal spin motion and
the zitterbewegung have been considered in a series of papers (see [7]). Quantum
potentials also appear in proposed nonlinear extensions of quantummechanics with
regard both to stochastic quantization [8,9] and to corrections from quantum grav-
ity [10]. It is noted that the RNLS equation, like the conventional NLS equation,
may also be derived in the context of capillarity models [11,12].
In the present paper, our interest is in the RNLS equation as it appears in plasma

physics. Thus, it is here shown to describe the propagation of one-dimensional
long magnetoacoustic waves in a cold collisionless plasma subject to a transverse
magnetic field. A bilinear representation of the RNLS equation is given. Bäcklund–
Darboux transformations along with novel associated nonlinear superposition prin-
ciples are presented and used to generate, in particular, solutions descriptive of the
interaction of solitonic magnetoacoustic waves.

2. The dynamics of cold collisionless plasma
The dynamics of two-component cold collisionless plasma in the presence of an
external magnetic field is described by the system of equations [13,14]

mi

[
∂

∂t
+ vi · ∇

]
vi = e[E+ (vi × B)], (2.1)

me

[
∂

∂t
+ ve · ∇

]
ve = −e[E+ (ve × B)], (2.2)

∂ni
∂t

+ ∇ · (nivi) = 0, (2.3)

∂ne
∂t

+ ∇ · (neve) = 0, (2.4)

curlB = eµ0(nivi − neve), (2.5)

∂B
∂t

= −curlE, (2.6)

∇ · B = 0, (2.7)
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where mi,me, vi, ve, ni, ne denote, in turn, masses, velocities and concentrations of
ions and electrons respectively. E is the electric field, B is the magnetic field, e is the
electric charge and µ0 is the magnetic permeability. If the frequency of oscillations
is much smaller than the ion Langmuir frequency then plasma quasi-neutrality is
implied, i.e. ni ≈ ne = n. The mass density ρ and velocity v of the plasma may then
be introduced via

ρ = (mi + me)n, u =
mivi + meve

mi + me
, (2.8)

whence (2.3), (2.4), imply the continuity equation

∂ρ

∂t
+ ∇ · (ρu) = 0. (2.9)

Elimination of the electric field E if me/mi�1 and introduction of appropriate
dimensionless variables leads to the system

∂u
∂t

+ (u · ∇)u+
1
ρ
(B× curlB) −

(
curlB

ρ
· ∇

)(
curlB

ρ

)
= 0, (2.10)

∂

∂t

[
B+

mi

me
curl u+ curl

(
curlB

ρ

)]
= curl(u× B) − mi

me
curl(u · ∇)u

− curl
[
(u · ∇)

curlB
ρ

+
(
curlB

ρ
· ∇

)
u
]
,

(2.11)

∇ · B = 0. (2.12)

3. Magnetoacoustic waves: Uni-axial propagation
For uni-axial plasma propagation with

u = u(x, t) ex, B = B(x, t) ez (3.1)

the system (2.9)–(2.12) reduces to the form [15]

∂ρ

∂t
+

∂

∂x
(ρu) = 0, (3.2)

∂u

∂t
+ u

∂u

∂x
+

B

ρ

∂B

∂x
= 0, (3.3)

∂

∂t

[
B − ∂

∂x

(
1
ρ

∂B

∂x

)]
+

∂

∂x

[
u

(
B − ∂

∂x

(
1
ρ

∂B

∂x

))]
= 0. (3.4)

Equations (3.2) and (3.4) together imply that

B − ∂

∂x

(
1
ρ

∂B

∂x

)
= Cρ (3.5)
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where C = C(m) with mx = −ρ,mt = ρu. If we set B = 1 and ρ = 1 at infinity
then C = 1 and the system (3.2)–(3.4) reduces to

∂ρ

∂t
+

∂

∂x
(ρu) = 0, (3.6)

∂u

∂t
+ u

∂u

∂x
+

B

ρ

∂B

∂x
= 0, (3.7)

∂

∂x

(
1
ρ

∂B

∂x

)
= B − ρ. (3.8)

This system is equivalent to that of Whitham [16] and has also been derived by
Gurevich and Meshcherkin [17]. It describes the propagation of nonlinear magneto-
acoustic waves in a cold plasma with a transverse magnetic field.
It has been shown recently by El, Khodorovskii and Tyurina [18] that a system

of the type (3.6)–(3.8) also occurs in the context of hypersonic flow past slender
bodies.

4. A shallow water approximation
Here, we consider a shallow water approximation to the magnetoacoustic system
(3.6)–(3.8). Thus, rescaling the space and time variables via x′ = βx and t′ = βt,
we have

∂ρ

∂t′ +
∂

∂x′ (ρu) = 0, (4.1)

∂u

∂t′ + u
∂u

∂x′ +
B

ρ

∂B

∂x′ = 0, (4.2)

β2 ∂

∂x′

(
1
ρ

∂B

∂x′

)
= B − ρ. (4.3)

On expansion of B as a power series in the parameter β2 according to

B = ρ + β2b2(ρ, ρx′ , ρx′x′ , . . . ) + O(β4), (4.4)

insertion into (4.3) yields

b2 =
∂

∂x′

(
1
ρ

∂ρ

∂x′

)
. (4.5)

Substitution of (4.4) into (4.2) yields

∂u

∂t′ + u
∂u

∂x′ +
∂ρ

∂x′ + β2

[
1
ρ

∂3ρ

∂x′3 − 2
ρ2

∂ρ

∂x′
∂2ρ

∂x′2 +
(

1
ρ

∂ρ

∂x′

)3]
= 0 (4.6)

to O(β2). Accordingly, the following system results:

∂ρ

∂t′ +
∂

∂x′ (ρu) = 0, (4.7)

∂u

∂t′ + u
∂u

∂x′ +
∂ρ

∂x′ + β2 ∂

∂x′

[
1
ρ

∂2ρ

∂x′2 − 1
2

(
1
ρ

∂ρ

∂x′

)2]
= 0. (4.8)

This describes the propagation of long magnetoacoustic waves in a cold plasma of
density ρ with velocity and magnetic field as given by (3.1), (4.4).
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5. The resonant NLS equation
Introduction of the velocity potential S via u = −2∂S/∂x′ into the system (4.7),
(4.8) leads to

∂ρ

∂t′ − 2
∂

∂x′

(
ρ

∂S

∂x′

)
= 0, (5.1)

together with the Bernoulli-type integral

−∂S

∂t′ +
(

∂S

∂x′

)2

+
1
2
ρ +

β2

2

[
1
ρ

∂2ρ

∂x′2 − 1
2

(
1
ρ

∂ρ

∂x′

)2]
= B(t). (5.2)

Here, the arbitrary function B(t) may be absorbed into the potential S and so may
be set to zero without loss of generality.
If we now let

ψ =
√

ρe−iS (5.3)

then the system (5.1), (5.2) reduces to the RNLS equation

i
∂ψ

∂t′ +
∂2ψ

∂x′2 − 1
2

|ψ|2ψ = (1 + β2)
1

|ψ|
∂2|ψ|
∂x′2 ψ (5.4)

corresponding to Λ = −2, s = 1+β2 in (1.1). Since s > 1, the RNLS equation (5.4)
cannot be transformed into the conventional NLS equation. However, on introduc-
tion of e(+) and e(−) according to

e(+) =
√

ρe(1/β)S , e(−) = −√
ρe−(1/β)S (5.5)

so that e(+) > 0, e(−) < 0, we obtain the RD system

∓∂e(±)

∂τ
+

∂2e(±)

∂x′2 − 1
2β2

e(+)e(−)e(±) = 0, (5.6)

where τ = βt′. Without loss of generality, we can choose β > 0. On the other hand,
for e(+) > 0, e(−) > 0 we set

e(+) =
√

ρe(1/β)S , e(−) =
√

ρe−(1/β)S , (5.7)

whence for ρ and S we retrieve a system of the type (5.1), (5.2) but with ρ replaced
by −ρ. The RNLS equation

i
∂ψ

∂t′ +
∂2ψ

∂x′2 +
1
2

|ψ|2ψ = (1 + β2)
1

|ψ|
∂2|ψ|
∂x′2 ψ (5.8)

results. The original RNLS equation (5.4) and its variant (5.8) can be viewed
as defocusing and focusing NLS-type equations, respectively, but perturbed by
the quantum potential. However, the behaviour of the soliton solutions for the
RNLS equation is novel. Thus, in general, the defocusing RNLS equation admits
bright soliton solutions, while the focusing RNLS equation admits dark soliton
solutions [1].

6. Bilinear form
Gurevich and Krylov [19] constructed the travelling wave solutions u = u(x−u0t),
ρ = ρ(x − u0t) of a magnetoacoustic wave system of the type (4.7), (4.8). Indeed,
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it is readily shown that this system admits solutions with

u = u0 − (α1α2α3)1/2

ρ
, (6.1)

ρ = α1 + (α3 − α1)dn2[12 (α3 − α1)1/2(x − u0t), κ], (6.2)

where dn is the Jacobian elliptic function with modulus κ given by κ2 = (α3 −
α2)/(α3 − α1) and αi are real constants. The associated solution of the RNLS
equation (5.4) for α1 = 0 adopts the form

ψ = 2βcdn[c(x′ − u0t
′), κ] exp

(
−i

{
φ0 − u0

2
x′ +

[
u2

0

4
+ β2c2(2 − κ2)

]
t′
})

, (6.3)

where c, φ0 are arbitrary constants and x′ = ρx, t′ = βt. The particular case α1 =
α2 = 0 leading to κ = 1 produces the envelope soliton

ψ = 2βc exp
(

−i

[
φ0 − u0

2
x′ +

(
u2

0

4
+ β2c

)
t′
])
sech c(x′ − u0t

′). (6.4)

Correspondingly, for the RD system (5.6) we obtain, in turn, a ‘dissipative-periodic’
solution

e(±) = ±2βcdn[c(x′ − vτ), κ] exp
(

±
{

φ0 − vx′

2
+

[
v2

4
+ c2(2 − κ2)

]
τ

})
, (6.5)

and a dissipative analogue of the envelope soliton, namely the so-called ‘dissip-
aton’ [1]

e(±) = ±2βc exp
(

±
[
φ0 − v

2
x′ +

(
v2

4
+ c2

)
τ

])
sech c(x′ − vτ), (6.6)

where v is a constant velocity of propagation. In a similar manner, corresponding
to the envelope soliton

ψ = 2βc exp
(

−i

[
φ0 − u0

2
x′ +

(
u2

0

4
− 2β2c2

)
t′
])

tanh c(x′ − u0t
′) (6.7)

of the RNLS equation (5.8), the associated RD system admits the dissipative, ‘dark’
soliton given by

e(±) = 2βc exp
(

±
[
φ0 − v

2
x′ +

(
v2

4
− 2c2

)
τ

])
tanh c(x′ − vτ). (6.8)

It turns out that the RD version of the RNLS equation is well-suited to the
generation of multi-soliton solutions via a bilinear representation. Thus, if we
introduce

e(±) = 2βG(±)/F, (6.9)

where G(±) and F are real functions, then the bilinear representation

(±Dτ − D2
x′)(G(±) · F ) = 0, D2

x′(F · F ) = −2G(+)G(−) (6.10)

results. Here, Hirota’s bilinear operators [20] are defined by

Dn
y (f · g) = (∂y − ∂y′)nf(y) g(y′)|y′=y. (6.11)

The corresponding solution of the RNLS equation (5.4) has

|ψ(x′, t′)|2 = ρ = −e(+)e(−) = 2β2 D2
x′(F · F )

F 2
= 4β2 ∂2 ln F

∂x′2 . (6.12)
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The one-dissipaton is given by the solution of system (6.10) with

G± = ±eη±
1 , F = 1 + eη+

1 +η−
1+φ1,1 , eφ1,1 = (k+

1 + k−
1 )−2, (6.13)

where η±
1 = k±

1 x′ ± (k±
1 )2τ + η

±(0)
1 and k±

1 , η
±(0)
1 are constants. If we set c =

(k+
1 + k−

1 )/2, v = −(k+
1 − k−

1 ) then it acquires the form (6.6).
Multi-dissipaton and additional exotic solutions of the RNLS equation may now,

in principle, be generated via its bilinear representation [1]. Here, however, an
alternative approach via Bäcklund transformations and associated nonlinear super-
position principles is adopted. This allows the construction of solutions descriptive
of the interaction of solitonic magnetoacoustic waves which exhibit the required
asymptotic behaviour.

7. Bäcklund–Darboux transformations. Nonlinear superposition
principles

The RD system (5.6) remarkably represents the simplest two-component integrable
system contained in the AKNS hierarchy of integrable systems [21]. Here, for
convenience, we consider the normalization

pt = pxx − 1
2p2q, −qt = qxx − 1

2q2p (7.1)

which is equivalent to (5.6). The RD system is retrieved on application of an appro-
priate scaling of the independent variables x and t which intrudes the parameter
β. For pq < 0, the variant

p = κe
∫

τ dx, q = −κe−
∫

τ dx (7.2)

of the Hasimoto transformation [22] for the standard nonlinear Schrödinger equa-
tion then produces the system

κt = 2κxτ + κτx

τt =
(

κxx
κ

+ τ2 +
κ2

2

)
x

,
(7.3)

which, in turn, constitutes the analogue of the classical Da Rios system [23] de-
scriptive of the self-induced motion of a thin isolated vortex filament travelling
without stretching in an incompressible fluid. The variables ρ, u of the cold plasma
system (4.7), (4.8) are related to those of the above Da Rios-type system by

ρ = κ2, u = −2τ (7.4)

so that

ρ = −pq, u =
qx

q
− px

p
. (7.5)

7.1. Elementary Darboux transformations

It may be verified that the linear system

Φx =
1
2

[(
0 p
q 0

)
+ λ

(
1 0
0 −1

)]
Φ

Φt =
1
2

[(
− 1

2pq px

−qx
1
2pq

)
+ λ

(
0 p
q 0

)
+ λ2

(
1 0
0 −1

)]
Φ

(7.6)
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for a non-singular matrix-valued functionΦ is compatible if and only if p and q obey
the evolution equations (7.1). Here, λ is an arbitrary constant parameter. Indeed,
(7.6)1 constitutes the AKNS ‘scattering problem’ corresponding to the system (7.1)
with λ being the ‘spectral’ parameter. This fact may be exploited to generate large
classes of solutions of the nonlinear system (7.1) via the inverse scattering transform
(IST) method applied to the linear representation (Lax pair) [24]. Alternatively,
standard transformations of Bäcklund–Darboux type may be used to construct
iteratively sequences of solutions from known seed solutions (see, e.g., [25–27] and
references therein). However, in contrast to the complex nonlinear Schrödinger
equation which is formally obtained from (7.1) by letting t → it and p = q̄, the
simplest ‘regular’ matrix Darboux transformation associated with the ‘real’ coupled
system (7.1) may be decomposed into two ‘singular’ elementary transformations.
The decomposition of Bäcklund transformations into the product of commuting
elementary Bäcklund transformations was introduced by Konopelchenko [28] and
subsequently developed in a series of papers [29–31]. A review of the procedure is
given in [32]. Interestingly, this observation turns out to be significant in connection
with the generation of solutions which represent solitonic magnetoacoustic waves
displaying the required asymptotic behaviour ρ → 1 at infinity.
Thus, the simplest matrix Darboux transformation B̃ : (Φ, p, q) → (Φ̃, p̃, q̃) which

leaves form-invariant the linear representation (7.6) is given by (cf. [32])

B̃ :

⎧⎪⎪⎨
⎪⎪⎩

Φ̃ =

[(
λ − µ 0

0 0

)
+

(
1
2p

1

)
(−φ−11)

]
Φ

p̃ = px − µp − 1
2p2φ−1, q̃ = −2φ−1,

(7.7)

where φ = φ1/φ2 and

φ =
(

φ1

φ2

)
(7.8)

constitutes a vector-valued solution of (7.6) associated with the parameter µ. The
validity of this transformation may be verified directly. It induces a Bäcklund
transformation which maps any seed solution (p, q) to another solution (p̃, q̃) of the
coupled system (7.1). It is observed that if the ‘Darboux matrix’ Φ̃Φ−1 is regarded
as a matrix-valued polynomial in the parameter λ then the coefficient multiplying λ
is singular. Moreover, the Darboux matrix is parametrized in terms of the quantity
φ which obeys the compatible Riccati system

φx = 1
2p + µφ − 1

2qφ2

φt = 1
2px + 1

2µp + (− 1
2pq + µ2)φ + (1

2qx − 1
2µq)φ2.

(7.9)

By symmetry, another elementary matrix Darboux transformation B̂ : (Φ, p, q) →
(Φ̂, p̂, q̂) may be introduced according to

B̂ :

⎧⎪⎪⎨
⎪⎪⎩

Φ̂ =

[(
0 0
0 λ − σ

)
+

(
1

− 1
2q

)
(1 − ψ)

]
Φ

p̂ = 2ψ, q̂ = −qx − σq + 1
2q2ψ,

(7.10)

where ψ = ψ1/ψ2 and

ψ =
(

ψ1

ψ2

)
(7.11)
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constitutes another vector-valued solution of (7.6) associated with the ‘Bäcklund
parameter’ σ. The corresponding Riccati system for ψ reads

ψx =1
2p + σψ − 1

2qψ2

ψt =1
2px + 1

2σp + (− 1
2pq+ σ2)ψ + (1

2qx − 1
2σq)ψ2

(7.12)

and any seed solution (p, q) is mapped to another solution (p̂, q̂) of the coupled
system (7.1).
If we choose the seed solution p = q = 0 then φ and ψ are given by

φ = −eµx+µ2+c̃, ψ = eσx+σ2t+ĉ (7.13)

and

q̃ = 2e−µx−µ2t−c̃, p̂ = 2eσx+σ2t+ĉ. (7.14)

It is noted that q̃ and p̂ are particular solutions of the backward and forward heat
equations

−q̃t = q̃xx, p̂t = p̂xx, (7.15)

respectively, which constitute special reductions of the coupled system (7.1) corres-
ponding to p̃ = 0, and q̂ = 0, respectively.

7.2. Compound elementary Darboux transformations. A superposition principle

Solutions of arbitrary complexitymay be obtained bymeans of iterative application
of elementary matrix Darboux transformations. For instance, the action of the
compound transformation

B
′ = B̂ ◦ B̃ (7.16)

may be obtained in the following manner. Successive application of the transform-
ation laws (7.7)1 and (7.10)1 produces the ‘eigenfunction’

Φ′ =
[(

0 0
0 λ − σ

)
+

(
1

− 1
2 q̃

)
(1 − ψ̃)

][(
λ − µ 0

0 0

)
+

(
1
2p

1

)
(−φ−11)

]
Φ, (7.17)

where ψ̃ is a solution of the Riccati system (7.12) corresponding to the potentials
p̃ and q̃. If we make the canonical choice ψ̃ = B̃(ψ) then ψ̃ is given by

ψ̃ =
1
2
p − (σ − µ)

ψφ

ψ − φ
. (7.18)

Hence, the action of B
′ is readily shown to be

B
′ :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Φ′ =

[(
λ − σ + µ

2

)
11 +

σ − µ

2(ψ − φ)

(
−(ψ + φ) 2ψφ

−2 ψ + φ

)]
Φ

p′ = p − 2(σ − µ)
ψφ

ψ − φ
, q′ = q − 2(σ − µ)

1
ψ − φ

.

(7.19)

The transformation laws (7.7)1 and (7.10)1 imply that B̃(φ) = 0 and B̂(ψ) = 0.
Accordingly, the matrix Darboux transform Φ′ obeys the algebraic conditions

Φ′ = (λ11 + Q)Φ, Φ′[Φ = φ] = 0, Φ′[Φ = ψ] = 0. (7.20)

Since Φ′ is uniquely determined by these conditions, it is evident that Φ′ also
constitutes an eigenfunction associated with the compound transformation B̃ ◦ B̂



266 J.-H. Lee et al.

if we make use of the eigenfunction φ̂ = B̂(φ). We are therefore led to the permut-
ability theorem

B
′ = B̂ ◦ B̃ = B̃ ◦ B̂ (7.21)

which expresses the fact that the elementary matrix Darboux transformations
B̃ and B̂ commute provided that the eigenfunctions ψ̃ and φ̂ are chosen in the
above-mentioned manner. In this connection, it is noted that B

′ coincides with
the standard simplest ‘regular’ matrix Darboux transformation for the AKNS
hierarchy [33] since the latter is characterized by the conditions (7.20).
Elimination of φ and ψ in the transformation laws (7.19)2,3 by means of (7.7)3

and (7.10)2 leads to the nonlinear superposition principle

p′ = p + 4(σ − µ)
p̂

q̃p̂ + 4
, q′ = q − 4(σ − µ)

q̃

q̃p̂ + 4
. (7.22)

Thus, if (p, q) is a solution of the nonlinear system (7.1) and q̃ and p̃ are elementary
Bäcklund transforms of q and p associated with the Bäcklund parameters µ and σ
respectively then another solution (p′, q′) of (7.1) is given by (7.22). For instance,
nonlinear superposition of the solutions (7.14) of the heat equations (7.15) generates
the dissipaton (cf. (6.6))

p′ = (σ − µ)
eξ

cosh η
, ξ =

σ + µ

2
x +

σ2 + µ2

2
t +

ĉ + c̃

2

q′ = (µ − σ)
e−ξ

cosh η
, η =

σ − µ

2
x +

σ2 − µ2

2
t +

ĉ − c̃

2

(7.23)

so that

ρ′ =
(σ − µ)2

cosh2 η
, u′ = −(σ + µ). (7.24)

Hence, the quantity ρ′ exhibits the typical sech2 profile of a soliton.

7.3. A novel superposition principle for ‘regular’ matrix Darboux transformations

In principle, multi-dissipatons may now be generated bymeans of a well-known per-
mutability theorem associated with the matrix Darboux transformation B

′ (see [25,
26] and references therein). However, the implementation of this solution generation
technique is somewhat arduous due to the complex nature of the corresponding
nonlinear superposition principle. This impediment is circumvented here by ad-
opting the analogue of a novel ‘universal’ superposition principle which has been
established only recently in [34].

7.3.1. A conservation law. The additional ingredient in the above-mentioned com-
pact superposition principle is the potential r defined by

rx = pq, rt = pxq − pqx (7.25)

corresponding to the simplest conservation law

(pq)t = (pxq − pqx)x (7.26)

associated with the RD system (7.1). Up to arbitrary additive constants, the action
of the elementary Darboux transformations B̃ and B̂ on r is readily shown to be

r̃ = r − 2pφ−1, r̂ = r − 2qψ. (7.27)
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We may therefore choose the constant of integration in the potential r′ such that

r′ = r − 2(σ − µ)
ψ + φ

ψ − φ
. (7.28)

This convention is adopted in the remainder of this paper. If, for instance, p = q =
r = 0 then the potential related to the dissipaton (7.23) reads

r′ = 2(µ − σ) tanh η. (7.29)

In general, the potential r may be used to reformulate the transformation law
(7.19)1 as

Φ′ =

[(
λ − σ + µ

2

)
11 +

(
1
4 (r′ − r) − 1

2 (p′ − p)
1
2 (q′ − q) − 1

4 (r′ − r)

)]
Φ. (7.30)

This is the key observation which will be exploited below.

7.3.2. A novel superposition principle. We now consider the action of two matrix
Darboux transformations B1 and B2 of the type B

′ generated by the pairs of eigen-
functions (φ1,ψ1) and (φ2,ψ2) with parameters (µ1, σ1) and (µ2, σ2), respectively.
The corresponding eigenfunctions Φ1 and Φ2 are of the form

Φ1 = [(λ − α)11 + Q]Φ, α =
σ1 + µ1

2
, Q = U1 − U

Φ2 = [(λ − β)11 + R]Φ, β =
σ2 + µ2

2
, R = U2 − U

(7.31)

with

U =

(
1
4r − 1

2p
1
2q − 1

4r

)
(7.32)

and the Bäcklund transforms U1 = B1(U) and U2 = B2(U). The eigenfunctions

φ2
1 = B1(φ2), ψ2

1 = B1(ψ2), φ1
2 = B2(φ1), ψ1

2 = B2(ψ1) (7.33)

may then be used to construct eigenfunctions associated with the compound matrix
Darboux transformations B2 ◦ B1 and B1 ◦ B2, respectively, denoted by

Φ12 = B2(B1(Φ)), Φ21 = B1(B2(Φ)). (7.34)

Specifically, the expressions

Φ12 = [(λ − β)11 + R1]Φ1, R1 = U12 − U1

Φ21 = [(λ − α)11 + Q2]Φ2, Q2 = U21 − U2

(7.35)

are obtained, where U12 = B2(B1(U)) and U21 = B1(B2(U)).
It is well established that the regular matrix Darboux transformations B1 and B2

commute provided that the choice of eigenfunctions (7.33) is made [25, 26]. Thus,
the permutability theorem

Φ12 = Φ21 (7.36)

produces the identity

[(λ − β)11 + R1][(λ − α)11 + Q] = [(λ − α)11 + Q2][(λ − β)11 + R]. (7.37)

Since the latter must be valid for any value of λ, insertion of the parametrizations
(7.31)3,6 and (7.35)2,4 produces the two relations

U12 = U21 (7.38)
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and

(β − α)(U12 − U1 − U2 + U) = (U12 − U2)(U2 − U) − (U12 − U1)(U1 − U). (7.39)

The first relation not only confirms the permutability theorem at the nonlinear
level, that is (p12, q12) = (p21, q21), but also extends its validity to the poten-
tial r. The second relation provides explicit expressions for the Bäcklund transform
(p12, q12, r12) in terms of the seed (p, q, r) and its intermediate Bäcklund transforms
(p1, q1, r1) and (p2, q2, r2). This is summarized in the following theorem.

Theorem 7.1. Let (p, q) be a solution of the RD equations (7.1), r be a correspond-
ing potential defined by (7.25) and U be the matrix

U =

(
1
4r − 1

2p
1
2q − 1

4r

)
. (7.40)

Let U1 and U2 be Bäcklund transforms of U generated by B1 and B2 associated with the
pairs of Bäcklund parameters (µ1, σ1) and (µ2, σ2), respectively. If the unique solution
U12 of the linear equation

(σ2 + µ2 − σ1 − µ1)(U12 − U1 − U2 + U) = [U12 − U,U2 − U1] (7.41)

is parametrized according to

U12 =

(
1
4r12 − 1

2p12

1
2q12 − 1

4r12

)
(7.42)

then (p12, q12) constitutes another solution of (7.1) with r12 being a corresponding
potential. (p12, q12, r12) is the image of both (p1, q1, r1) and (p2, q2, r2) under the
Darboux transformations B2 and B1 respectively.

Proof. The matrix equation (7.39) may be brought into the form

2(β − α)(U12 − U1 − U2 + U)

= [U12 − U,U2 − U1] − (U12 − U2)2 + (U1 − U)2 + (U12 − U1)2 − (U2 − U)2.
(7.43)

Since the square of any trace-free 2 × 2 matrix is proportional to the unit matrix,
decomposition of (7.43) into its trace and trace-free parts leads to (7.41) and

(U12 − U2)2 − (U1 − U)2 − (U12 − U1)2 + (U2 − U)2 = 0. (7.44)

Furthermore, the trace terms of (7.41) multiplied by U12 − U1 +U2 − U give rise to

tr[(U12 − U1)2 − (U2 − U)2] = 0 (7.45)

so that

(U12 − U1)2 = (U2 − U)2. (7.46)

Similarly, we obtain the additional relation

(U12 − U2)2 = (U1 − U)2. (7.47)

Accordingly, the condition (7.44) is redundant.

It is evident that the singularity structure of (p12, q12, r12) depends crucially on
the regularity of the matrix

(β − α)11 + U1 − U2 (7.48)
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Figure 1. ρ12 and u12 associated with a two-dissipaton solution for µ2 = −3, σ2 = −1,
µ1 = 1, σ1 = 2.

which multiplies U12 in the nonlinear superposition principle (7.39). The corres-
ponding determinant is proportional to

4(σ2 + µ2 − σ1 − µ1)2 + 4(p2 − p1)(q2 − q1) − (r2 − r1)2. (7.49)

For instance, in the case of the nonlinear superposition of two dissipatons of the
form (7.23), (7.29), regularity of the two-dissipaton solution requires that

c cosh(η2 + η1) + c′ cosh(η2 − η1) + c′′ cosh(ξ2 − ξ1) �= 0, (7.50)

where

c= (σ2 −σ1)(µ2 −µ1), c′ = (σ2 −µ1)(µ2 −σ1), c′′ = (σ2 −µ2)(σ1 −µ1). (7.51)

This is achieved by choosing the Bäcklund parameters such that

µ2 < σ2 < 0 < µ1 < σ1 ⇒ c, c′, c′′ > 0. (7.52)

The quantities ρ12 and u12 associated with a proto-typical two-dissipaton solution
are shown in Fig. 1.

7.4. Generation of solitonic magnetoacoustic waves

In order to generate solutions of the RD system (7.1) corresponding to mag-
netoacoustic waves in a cold plasma which exhibit the correct behaviour at infinity,
it is required to choose the non-zero seed

p = et/2, q = −e−t/2 (7.53)

so that the ‘background’ plasma density and velocity are

ρ = 1, u = 0. (7.54)

This choice constitutes the natural analogue of the seed solution of the nonlinear
Schrödinger equation on which the generation of ‘smoke rings’ is based [35,36].
Integration of the Riccati systems (7.9) and (7.12) yields

φ = et/2

[
−µ −

√
µ2 − 1 tanh

(√
µ2 − 1
2

(x + µt + c̃)
)]

ψ = et/2

[
−σ −

√
σ2 − 1 tanh

(√
σ2 − 1

2
(x + σt + ĉ)

)]
.

(7.55)
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Figure 2. Interaction of two solitonic magnetoacoustic waves for µ = 4/3 and σ = −3/2.

For |µ|, |σ| > 1, it is then readily verified that the elementary Bäcklund transforms

p̃ = px − µp − 1
2
p2φ−1, q̃ = −2φ−1

p̂ = 2ψ, q̂ = −qx − σq +
1
2
q2ψ

(7.56)

give rise to solutions (ρ̃, ũ) and (ρ̂, û) of the cold plasma system which represent
single magnetoacoustic solitons and exhibit the required asymptotic behaviour
(ρ̃, ũ) → (1, 0) and (ρ̂, û) → (1, 0). Specifically, relations (7.5) deliver

ρ̂ = 1 + (σ2 − 1)sech2

(√
σ2 − 1

2
(x + σt + ĉ)

)

û = σ(1 − σ2)
/[

σ2 + sinh2

(√
σ2 − 1

2
(x + σt + ĉ)

)] (7.57)

and similar expressions for ρ̃ and ũ. It is noted that the above solution may be
retrieved from (6.1), (6.2) by making the choice α1 = α2 = 1 and α3 = σ2, u0 = −σ
so that, in particular, κ = 1.
Solutions that correspond to the interaction of two magnetoacoustic solitons may

be obtained by means of the compound Bäcklund transforms

p′ = p − 2(σ − µ)
ψφ

ψ − φ
, q′ = q − 2(σ − µ)

1
ψ − φ

(7.58)

provided that σµ < 0. In Fig. 2, the pair (ρ′, u′) is displayed for µ = 4/3 and σ =
−3/2. The matrix Darboux transformations and nonlinear superposition principles
discussed in the preceding may now be used to generate solutions representing the
interaction of an arbitrary number of magnetoacoustic solitons.
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