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Abstract  – The diffraction of high frequency cylindrical electromagnetic waves by step discontinuities is investigated 
rigorously by using the Fourier transform technique in conjunction with the mode matching method. The hybrid 
method of formulation gives rise to a scalar Wiener-Hopf equation of the third kind, the solution of which contains 
infinitely many constants satisfying infinite systems of linear algebraic equations.

I. INTRODUCTION

         The problem of diffraction of high frequency electromagnetic waves by step discontinuities constitutes one 
of the important topics in diffraction theory and is relevant for many engineering applications.  This kind of a 
problem is first considered by Johansen [1] in the case of a surface wave diffraction by a reactive step which 
joins two reactive half-planes. The scattering problems considered by Büyükaksoy and Birbir [2-4], Büyükaksoy 
and Tayyar [5] and Tayyar, Aksoy and Alkumru [6] can also be cited for the diffraction of plane, cylindrical and 
surface waves by different impedance step discontinuities, respectively. 
         The aim of this work is to obtain a rigorous 
solution for the diffraction problem of cylindrical 
waves by perfectly conducting successive step 
discontinuities. For this purpose the step 
geometry given in the Figure-1 is illuminated by a 
time harmonic line source located along an 
infinitely   long straight line S which is parallel to 
the z-axis. By introducing the Fourier transform 
for the scattered field and applying the related 
boundary conditions in the transform domain, the 
problem is reduced into a Modified Wiener-Hopf 
Equation (MWHE) of the third kind. The solution 
of this MWHE involves two types of branch-cut 
integrals and five sets of infinitely many 
constants satisfying five infinite systems of linear 
algebraic equations. One type of branch-cut 
integrals can be evaluated approximately for 
kl >>1 while a numerical treatment is required 
for the other type. A time factor exp( )i t�� is
assumed and suppressed throughout the paper. 
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Fig.1.  Geometry of the diffraction problem
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II. FORMULATION AND SOLUTION OF THE PROBLEM

Consider the diffraction of a line source S by perfectly step discontinuities defined by {y=d, x (-�,0)}U
{y�(c,d), x=0}U{y=c, x� (0,l)} U {y�(0,c), x=l} U{y=0, x� (l,�)} where(x,y) denote the usual cartesian 
coordinates (see Figure 1). The current density associated with this line source is represented by 

0 0( ) ( ) zJ I x x y y e� �� � �
� �

                                                             (1) 

and the total electric field which is parallel to the z-axis can also be written as 

( ) ( ) zE x y u x y e� � �
� �

 .                                                            (2) 

In (1) I stands for the strength of the exciting source, ze
�

shows the unit vector of the z-axis and (.)� is the 

standart Dirac distribution function while in (2) ( , )u x y which satisfies the equation 

2
0 0( ) ( )u k u i I x x y y�� � �� 	 � � � �                                                 (3) 

is the expression to be determined with the help of  well known boundary , edge and radiation conditions for the 
perfectly conducting structures. In (3) k is the free space wave number  having a small positive imaginary part 
which will tend to zero at the end of the analysis. By taking the Fourier transform of ( , )u x y with respect to x 

variable and considering also above mentioned boundary and continuity conditions in the transform domain 
 ,
the problem is reduced into a following Modified Wiener-Hopf Equation of the third kind which is valid in the 
strip Im( ) Im( ) Im( )k k
� � � :
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with  
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where Z is the characteristic impedance of the free space. ( )K 
 appearing in the above expressions stands for 

the square-root function 2 2( )K k
 
� �  defined in the complex 
 -plane cut along ( , ) ( , )k k�� � ( �  with 

the condition (0)K ik� � . In (4) 1( , )G d
 is an entire function while ( , )G d
	 and ( , )G d
�
� are the regular 

functions of 
  in the upper Im( ) k
 ) � and lower Im( ) k
 � half-planes, respectively.

By using the factorization and decomposition procedures together with the consideration of the edge conditions 
which are required for the application of the Liouville theorem, the Modified Wiener-Hopf Equation in (4) can 
be reduced to the following coupled system of Fredholm integral equations of the second kind:
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where

2 2 2 2 2 2
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In (8a,b) the functions ( )M 
, and ( )N 
, are defined through ( ) ( ) ( )M M M
 
 
	 ��  and 

( ) ( ) ( )N N N
 
 
	 �� .

( )M 
	 and ( )N 
	 are regular and free of zero in the upper half-plane while ( )M 
� and ( )N 
� have the same 

properties in the lower half-plane. The explicit expressions of these ( ), functions are given in [7]. 

For kl>>1the solution of  the coupled system of Fredholm integral equations in (8a,b) can be obtained by 
iterations as
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The unknown expansion coefficients , , ,n n n nf g h m and nn appearing in (8a,b) and (9a,b,c) can also be 

determined  approximately from the consideration of  the infinite systems of linear algebraic equations given by 
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Since all the unknown constants are determined according   to this result, the functions 1( , ) , ( , )G d G d
 
	 and

( , )G d
�
�  can also be obtained. So, the total field which is valid for the whole space can easily be computed by 

taking inverse Fourier Transform of the spectral coefficient. 
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