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Abstract. We give a brief exposition of the formulation of the bound state problem for the one-dimensional
system of N attractive Dirac delta potentials, as an N × N matrix eigenvalue problem (ΦA = ωA). The
main aim of this paper is to illustrate that the non-degeneracy theorem in one dimension breaks down
for the equidistantly distributed Dirac delta potential, where the matrix Φ becomes a special form of the
circulant matrix. We then give elementary proof that the ground state is always non-degenerate and the
associated wave function may be chosen to be positive by using the Perron-Frobenius theorem. We also
prove that removing a single center from the system of N delta centers shifts all the bound state energy
levels upward as a simple consequence of the Cauchy interlacing theorem.

1 Introduction

Dirac delta potentials or point interactions, or sometimes called contact potentials, are one of the exactly solvable
classes of idealized potentials, and are used as a pedagogical tool to illustrate various physically important phenomena,
where the de Broglie wavelength of the particle is much larger than the range of the interaction. They have various
applications in almost all areas of physics, see e.g., [1] and [2] and references therein. For instance, mutually non-
interacting electrons moving in a fixed crystal can be modeled by periodic Dirac delta potentials, known as the
Kronig-Penney model [3]. Another application is given by the model consisting of two attractive Dirac delta potentials
in one dimension. This is used as a very elementary model of the chemical bond for a diatomic ion (H+

2 , for example)
and has been discussed in [4,5].

The interest for Dirac delta potentials and other one-dimensional point potentials provides us with solvable (or
quasi-solvable) models in quantum mechanics that give insight for a better understanding of the basic features of the
quantum theory. This makes them suitable for the purpose of teaching the discipline. In a recent pedagogical review [2],
several interesting features of one-dimensional Dirac delta potentials have been illustrated and the multiple δ-function
potential has been studied in the Fourier space. Moreover, the bound state problem has been formulated in terms of
a matrix eigenvalue problem.

In this paper, we first give a brief review of the bound state spectrum of the N Dirac delta potentials in one
dimension by converting the time-independent Schrödinger equation Hψ = Eψ for the bound states to the eigenvalue
problem for an N × N Hermitian matrix. This method is rather useful especially when we deal with a large number
of centers, since the procedure that uses the matching conditions for the wave function at the location of the delta
centers become cumbersome for large values of N . Once we formulate the problem as a finite-dimensional eigenvalue
problem, we show that there are at most N bound states for N centers, using the Feynman-Hellmann theorem (see
page 288 in [6]). One of the main purposes of this paper is to show that this simple one-dimensional toy problem for
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more than three centers allows us to give an analytical example of the breakdown of the well-known non-degeneracy
theorem for one-dimensional bound state problems [7]. This shows that we should not take the non-degeneracy theorem
for granted, particularly for singular interactions. This was first realized for the so-called one-dimensional hydrogen
atom [8], where the non-degeneracy theorem breaks down and has been studied for other one-dimensional singular
potentials since then [9–14]. In contrast to the degeneracies that appear in bound states, we give elementary proof that
the ground state is non-degenerate and the ground state wave function can be always chosen as real-valued and strictly
positive. In addition, we also show that all the bound state energies for N attractive Dirac delta potentials increase
if we remove one center from the system. All these results become more transparent using some basic theorems from
linear algebra, namely the Perron-Frobenius theorem, the Cauchy interlacing theorem [15]. Simple proofs for these
theorems are given in the appendices so as not to interrupt the flow of the presentation. Our presentation is kept
simple so that it is also accessible to a wide audience and it has been shown in appendix A that it is consistent with
the rigorous approach to the point interactions [16].

2 Bound states for N Dirac delta potentials

We consider a particle moving in one dimension and interacting with the attractive N Dirac delta potentials located
at ai with strengths λi > 0, where i = 1, 2, . . . , N . The time-independent Schrödinger equation is then given by

− h̄2

2m

d2ψ

dx2
−

N∑

i=1

λiδ(x − ai)ψ(x) = Eψ(x). (1)

The above equation is actually a formal expression and its exact meaning can be given by self-adjoint extension
theory [16–18]. Here we follow a more traditional and heuristic approach used in most quantum mechanics textbooks
since the results that we obtain is completely consistent with the rigorous approach. As is well known, the above
equation can also be written as

Hψ = Eψ (2)

in the operator form, where H = P 2

2m + V , and the potential energy operator V for the above particular case in the
bra-ket formalism is

V = −
N∑

i=1

λi|ai〉〈ai|. (3)

Here |ai〉 is the position eigenket. In the coordinate representation, the action of V on the state vector |ψ〉 is

(V ψ)(x) = 〈x|V |ψ〉 =
N∑

i=1

λiδ(x − ai)ψ(ai) =
N∑

i=1

λiδ(x − ai)ψ(x), (4)

where we have used the fact δ(x − ai)ψ(ai) = δ(x − ai)ψ(x). This justifies the above formal potential operator (3)
which corresponds to the Schrödinger equation (1) with multiple Dirac delta potentials. Let us absorb the strengths
λi’s into bras and kets, i.e.,

√
λi|ai〉 = |fi〉, and similarly for bras. In terms of the rescaled bras and kets, the potential

operator becomes V =
∑N

i=1 |fi〉〈fi|. Substituting this into (2) in the coordinate representation, we obtain

〈x| P
2

2m
|ψ〉 −

N∑

i=1

〈x|fi〉〈fi|ψ〉 = E〈x|ψ〉. (5)

The rescaling is introduced to formulate the bound state problem in terms of an eigenvalue problem of a symmetric
matrix, as we will see. Inserting the completeness relation

∫
dp
2πh̄ |p〉〈p| = 1 in front of |ψ〉 and |fi〉, we obtain the

following integral equation, which is actually the Fourier transformation:

∫ ∞

−∞

dp

2πh̄
e

i
h̄ px ψ̃(p)

(
p2

2m
− E

)
=

N∑

i=1

√
λi

∫ ∞

−∞

dp

2πh̄
e

i
h̄ p(x−ai) φ(ai), (6)

where 〈x|p〉 = e
i
h̄ px, 〈p|ψ〉 = ψ̃(p), and φ(ai) = 〈fi|ψ〉 =

√
λiψ(ai). Since two functions with the same Fourier

transforms are equal, eq. (6) implies that

ψ̃(p) =
N∑

i=1

√
λi

e−
i
h̄ pai

p2

2m − E
φ(ai). (7)
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It is interesting to remark that this solution depends on the unknown coordinate wave function at ai and the energy E.
If we use the relation between the coordinate and momentum space wave function through the Fourier transformation,

ψ(x) =
∫ ∞

−∞

dp

2πh̄
e

i
h̄ px ψ̃(p), (8)

and insert (7) into the above for x = ai, we obtain the following consistency relation:

ψ(ai) =
N∑

j=1

√
λj

∫ ∞

−∞

dp

2πh̄

e
i
h̄ p(ai−aj)

p2

2m − E
φ(aj). (9)

Multiplying both sides of (9) by
√

λi and separating the (j = i)-th term, we have
[
1 − λi

∫ ∞

−∞

dp

2πh̄

1
p2

2m − E

]
φ(ai) −

∫ ∞

−∞

dp

2πh̄

N∑

j=1
j �=i

√
λiλj

[
e

i
h̄ p(ai−aj)

p2

2m − E

]
φ(aj) = 0. (10)

This equation can be written as a homogeneous system of linear equations in matrix form:

N∑

j=1

Φij(E)φ(aj) = 0, (11)

where

Φij(E) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − λi

∫ ∞

−∞

dp

2πh̄

1
p2

2m − E
if i = j,

−
√

λiλj

∫ ∞

−∞

dp

2πh̄

e
i
h̄ p(ai−aj)

p2

2m − E
if i �= j.

(12)

As usual, the matrix elements are denoted by Φij(E) and the matrix itself by Φ, so that Φ = {Φij(E)}. Let us first
assume that E < 0, i.e., E = −|E|, so that there is no real pole in the denominators of the integrands. Let us now
consider the integral in the off-diagonal part. The function under the integral sign has simple poles located at the
points (p = ±i

√
2m|E|) in the complex p-plane. In order to calculate this integral by the residue method, we have to

take into account separately the situations ai < aj and ai > aj . We note that only the pole with sign plus (minus) lies
inside the contour of integration for ai > aj (aj > ai). Due to the exponential function, the integral over the semicircle
vanishes as its radius goes to infinite [19]. Then, the value of the integral is obtained multiplying by 2πi the residue
at that point,

∫ ∞

−∞

dp

2πh̄

e
i
h̄ p(ai−aj)

p2

2m − E
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m

h̄
√

2m|E|
exp

(
−
√

2m|E|(ai − aj)/h̄
)

, if ai > aj ,

m

h̄
√

2m|E|
exp

(
−
√

2m|E|(aj − ai)/h̄
)

, if ai < aj .

(13)

The diagonal part of the matrix Φ can be evaluated similarly, so eq. (12) becomes

Φij(E) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − mλi

h̄
√

2m|E|
if i = j,

−
m
√

λiλj

h̄
√

2m|E|
exp

(
−
√

2m|E||ai − aj |/h̄
)

if i �= j.

(14)

Equation (11) has only non-trivial solutions if detΦ(E) = 0. Therefore, the bound state problem is solved once we find
the solution to the transcendental equation detΦ(E) = 0. After that, we can find the bound state wave functions in
the coordinate representation through (8). Suppose that the bound state energy, say EB , is the root of detΦ(E) = 0,
and we find φB(aj) =

√
λjψB(aj) from eq. (11) associated with EB . Then, the bound state wave function at ai is

ψB(ai) =
1√
λi

φB(ai). (15)
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Taking into account the above considerations, we use (15) into the bound state wave function in momentum space (7)
so as to obtain

ψ̃B(p) =
N∑

i=1

√
λi

e−
i
h̄ pai

p2

2m − EB

φB(ai). (16)

Then, the bound state wave function in the coordinate space can be found by just taking the inverse Fourier transform
of the above momentum space wave function

ψB(x) =
N∑

i=1

λi φB(ai)
√

m/2
e−

√
2m|EB |

h̄ |x−ai|

h̄
√

|EB |
, (17)

where φB(ai) is defined by
∑N

j=1 Φij(−|EB |)φB(aj) = 0. Suppose now that E > 0. In this case, we have to find the
wave function and contour integrals of the form

∫ ∞

−∞

dp

2πh̄

e
i
h̄ p(ai−aj)

p2

2m − E
, (18)

whose poles are now located at p = ±
√

2mE on the real axis, and there are four different choices of contours, each of
which gives different result [20]. It is easy to see that the wave function becomes now the linear combination of the
complex exponentials

e±i
√

2mE/h̄|x−ai|. (19)

Such a function cannot be square integrable unless it is identically zero. Therefore, there is no bound state for E > 0. A
similar analysis can be done for E = 0, where the wave function becomes divergent over the whole real axis. Therefore,
we conclude that E must be negative for bound states. From the physical point of view, the bound state energies are
expected to be less than the values of the potential at asymptotes. For this reason, the bound state energies for finitely
many Dirac delta potentials are negative.

For a single center located at x = 0 with coupling constant λ, the matrix Φ is just a 1 × 1 matrix, i.e., a single
function: Φ(E) = 1 − mλ

h̄
√

2m|E|
. Now, the condition detΦ(E) = 0 means that Φ(E) = 0, so that the bound state

energy is EB = −mλ2

2h̄2 for a single center [6]. After having found the bound state energy, we can find the bound state
wave function. For N = 1, φB(ai) is some constant, say C. Then, the bound state wave function in momentum space
becomes

ψ̃B(p) =
√

λ
1

p2

2m − EB

C. (20)

The constant C can be determined from the normalization constant,

λ |C|2(2m)2
∫ ∞

−∞

dp

2πh̄

1
(p2 + m2λ2

h̄2 )2
= 1. (21)

The integral in eq. (21) can also be evaluated using the residue theorem. However, in this case the residues are at
p = ±imλ

h̄ and of order two. Taking the integral, we find C =
√

mλ
h̄ . Now we can find the wave function associated

with this bound state in the coordinate space by taking its Fourier transform. We perform the integration exactly as
we did in (13), and obtain [6]

ψB(x) =

√
mλ

h̄
e−

mλ
h̄2 |x|. (22)

Let us first consider the special case of two centers, namely twin attractive (λ1 = λ2 = λ) Dirac δ potentials located
at a1 = 0 and a2 = a. Then, the expression detΦ(E) = 0 yields to the following transcendental equation:

e−
a
√

2m|E|
h̄ = ±

(
h̄
√

2m|E|
mλ

− 1

)
. (23)

For convenience, we define κ ≡
√

2m|E|
h̄ . Suppose that κ+(κ−) corresponds to the solution of eq. (23) with the positive

(negative) sign in front of the parenthesis, i.e.,

e−aκ+ =
h̄2κ+

mλ
− 1, (24)
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or

e−aκ− = 1 − h̄2κ−
mλ

. (25)

The bound state energies correspond to non-zero solutions for κ± of the above equations (24) and (25). The first
transcendental equation (24) always has one real root, which implies the presence of at least one bound state. This is
clear from the following considerations: the left-hand side of (24) is a monotonically decreasing function, which goes to
zero asymptotically, while the right-hand side is a monotonically increasing function without any asymptote. However,
the second transcendental equation (25) may or may not have a real positive solution. One real root of eq. (25) is
expected for κ− = 0. However, this cannot correspond to a bound state. In order to obtain a non-trivial root, we must
impose the condition that the slope of the right-hand side of (25) must be smaller than the slope of the left-hand side
in absolute value, ∣∣∣∣

d
dκ

(
1 − h̄2κ

mλ

) ∣∣∣∣
κ=0

∣∣∣∣ <
∣∣∣∣

d
dκ

(
e−κa

) ∣∣∣∣
κ=0

∣∣∣∣. (26)

This means that the distance between the centers must be greater than some critical value for two bound states:

a >
h̄2

mλ
. (27)

Hence, we conclude that there are at most two bound states for attractive twin Dirac delta potentials. The first one
appears unconditionally so that it corresponds to the ground state. On the other hand, the second bound state appears
only if a is sufficiently large ( h̄2

maλ < 1). This corresponds to the excited state of the system.
Actually, the explicit solutions to eqs. (24) and (25) can be easily found and then the bound state energies are

E+ = −
(

λ

2
+

1
a

W

[
aλ

2
e−

aλ
2

])2

,

E− = −
(

λ

2
+

1
a

W

[
−aλ

2
e−

aλ
2

])2

, (28)

where W is the Lambert W function [21], defined as the solution of the transcendental equation y ey = z, i.e.,
y = W [z]. The above explicit solutions given in terms of Lambert W function have been known in the literature, see
for instance [22] and the recent work [23], where the non-linear generalization of the problem has been discussed.

3 Bound states as a finite-dimensional eigenvalue problem

In order to study location and properties of bound states more systematically, we consider eq. (11) as the particular
case of an eigenvalue problem for the matrix Φ,

Φ(E)A(E) = ω(E)A(E), (29)

where ω is any of the eigenvalues of the matrix Φ. Then, the zeros of the eigenvalues of Φ are just the bound state
energies. In other words, the roots of the equation

ω(E) = 0 (30)

give the bound state energies. Hence, the eigenvalues of the linear differential equation Hψ(x) = Eψ(x) are obtained
through a non-linear transcendental algebraic problem, ω(E) = 0.

Let us consider the N = 2 case. For twin centers, located at a1 = 0, a2 = a, the eigenvalues can be explicitly
calculated:

ω1 = 1 +
mλ

h̄
√

2m|E|

(
−1 − e−

1
h̄

√
2m|E|a

)

ω2 = 1 +
mλ

h̄
√

2m|E|

(
−1 + e−

1
h̄

√
2m|E|a

)
. (31)

As shown in fig. 1, there are always two eigenvalues of the matrix Φ. However, for λ = 2 with h̄ = 2m = 1, there are
two bound states only if the distance between the centers is greater than the critical value a = 1. Otherwise there is
only one bound state, which is consistent with the result given in the previous part. When the centers are sufficiently
close to each other, one of the bound states seems to disappear, since the zeros of the first eigenvalue seems to move
to the negative real axis.
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Fig. 1. The flow of the eigenvalues of the matrix Φ as a function of |E| for different values of a. Here λ = 2 and h̄ = 2m = 1.

We also observe, from fig. 1, that the bound state energies come closer and closer as the distance between them
increases. This is not surprising since the eigenvalues (31) converge to 1 − mλ

h̄
√

2m|E|
as a → ∞ so that zeros of these

degenerate eigenvalues lead to degenerate bound states in the limiting case.
Now, we shall show why our method is much easier to investigate the bound state spectrum as we increase the

number of Dirac delta potentials. The number of bound states is an important characteristic of any system. There are
several ways to determine it for some regular potentials [24]. It is noteworthy that we can determine the maximum
number of bound states of this system from the behavior of the eigenvalues of the matrix Φ(E) through the Feynman-
Hellmann theorem [25,26].

To find the behavior of the eigenvalues as a function of E, let us first take the derivative of Φij(E) with respect
to E. We may interchange this derivative and the integral sign in (14), since all the matrix elements Φij are analytic
functions on the half plane 	(E) < 0. Hence, we obtain

dΦij

dE
= −

√
λiλj

∫ ∞

−∞

dp

2πh̄

e
i
h̄ p(ai−aj)

( p2

2m − E)2
. (32)

Now, let us make use of the Feynman-Hellmann theorem, which states that

dω(E)
dE

= 〈Ak|dΦij

dE
|Ak〉, (33)

where Ak is a given normalized eigenvector for ω(E). In other words, the Feynman-Hellmann theorem states that
the derivative of the eigenvalue of a parameter-dependent Hermitian matrix is equal to the expectation value of the
derivative of the matrix with respect to its normalized eigenvector. The Feynman-Hellmann theorem can be generalized
for the degenerate states [27] but it does not change our conclusion that we will draw. Thus, we have

dω(E)
dE

= −
√

λiλj

N∑

i,j=1

(Ak
i )∗
∫ ∞

−∞

dp

2πh̄

e
i
h̄ p(ai−aj)

( p2

2m − E)2
Ak

j

= −
∫ ∞

−∞

dp

2πh̄

1

( p2

2m − E)2

∣∣∣∣∣

N∑

i=1

e−
i
h̄ pai

√
λi Ak

i

∣∣∣∣∣

2

< 0. (34)

For E = −|E|, dω(E)
d|E| > 0. Since there are at most N distinct eigenvalues of the N ×N matrix Φ and these eigenvalues

are monotonically increasing functions of |E|, there must be at most N bound states. This conclusion would have been
rather difficult to arrive just by following the standard method, in which the properties of the bound states are just
determined by matching conditions at the locations of the delta centers.
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4 Degeneracies in the bound states for periodically distributed centers

Let us consider N Dirac delta potentials located equidistantly, i.e., a0 = 0, a1 = a, a2 = 2a, . . . , aN = (N − 1)a and
λ1 = . . . = λN = λ. Then, the matrix Φ given in eq. (14) takes the following form:

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

c0 c1 · · · cN−2 cN−1

cN−1 c0 c1 · · · cN−2

cN−2 cN−1
. . . . . .

...
...

...
. . . . . . c1

c1 c2 · · · cN−1 c0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

N×N

, (35)

where c0 = 1 − mλ

h̄
√

2m|E|
and

cj = cN−j = − mλ

h̄
√

2m|E|
exp

(
−
√

2m|E|ja/h̄
)

, (36)

for all j = 1, . . . , N − 1. The form of the matrix above (35) is usually known as the circulant matrix. By using the
Fourier matrix, it can be diagonalized and its eigenvalues can be found easily [15]. However, showing this is the beyond
the scope of the main aim of this paper. Nevertheless, it is a simple exercise to show that

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

c0 c1 · · · cN−2 cN−1

cN−1 c0 c1 · · · cN−2

cN−2 cN−1
. . . . . .

...
...

...
. . . . . . c1

c1 c2 · · · cN−1 c0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1
ζl

ζ2l

...

ζ(N−1)l

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= λl

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1
ζl

ζ2l

...

ζ(N−1)l

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (37)

where ζ is the N th root of the unity, i.e., ζ = e2πi/N and j = 0, 1, . . . , N −1 and λl’s are the eigenvalues of the matrix
Φ, given by

ωj =
N−1∑

k=0

ck ζjk. (38)

Note that the above formula is reduced to (31) for N = 2. We realize that for N ≥ 3, the eigenvalues are degenerate

ωj = ωN−j , (39)

for all j = 1, . . . , N − 1, since

ωj = c0 +
N−1∑

k=1

ck ζjk = c0 +
N−1∑

k=1

cN−k ζjk = c0 +
N−1∑

l=1

cl ζ
j(N−l) = c0 +

N−1∑

l=1

cl ζ
(N−j)l = ωN−j , (40)

where we have used ζN = 1 and j(N−l) = (N−j)l mod N [28]. Note that ω0 and ωN cannot be degenerate. Since the
matrix Φ is Hermitian, its algebraic multiplicity is equal to its geometric multiplicity1, the eigenvectors Aj associated
with the degenerate eigenvalues ωj span the degenerate space. The functions ωj(E) are monotonic functions of |E|,
so there exists a one-to-one relation between ωj(E) and its zeros. From the monotonic behavior of the eigenvalues
ωj(E) and the explicit relation between the bound state wave function and the eigenvectors Aj , we conclude that the
bound state energies are degenerate and the dimension of the degeneracy subspace of Φ is equal to the dimension of
the degeneracy subspace of the bound state wave functions. This is contrary to the common belief that there is no
degeneracy in one-dimensional bound state problems [7].

In order to understand why the non-degeneracy theorem breaks down, we first recall the standard proof of the
non-degeneracy theorem for one-dimensional bound state problem of a generic potential V . Suppose that there are
two bound states ψ1 and ψ2 associated with the same energy E. Then, it is easy to show [7] that the Wronskian of
these solutions must be equal to a constant C, i.e.,

W = ψ2
dψ1

dx
− ψ1

dψ2

dx
= C, (41)

1 The algebraic multiplicity of an eigenvalue λ is the number times it is repeated as a root of the characteristic polynomial,
whereas the geometric multiplicity of λ is the maximal number of linearly independent eigenvectors associated with λ.
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for all x. For bound states, we expect that ψ → 0 as x → ±∞. As a consequence of this, one can conclude that C = 0
as long as there is no blow up in the derivatives (this is one argument, where the non-degeneracy theorem breaks down
for potentials, see [12]). This implies that

ψ2
dψ1

dx
= ψ1

dψ2

dx
. (42)

At points, where ψ1 and ψ2 are non-zero, the division to ψ1ψ2 is possible so that we have a separable differential
equation

ψ′
1

ψ1
=

ψ′
2

ψ2
. (43)

Hence, the solution to this is given by
ψ1 = c ψ2.

This contradicts with the initial assumption, which proves that there can not be degeneracy in the bound states of
one-dimensional systems. This is the well-known standard proof of the non-degeneracy theorem. However, the above
solution is not necessarily true at the points where ψ1ψ2 = 0. Hence, the above solution is valid only between the
adjacent zeros of the ψ1ψ2. As a result, c is constant in each region where ψ1ψ2 �= 0 but this does not guarantee that
the values of c are the same for all regions. We could have multiple constant c′s, jumping to each other at the location of
zeros of ψ1ψ2. As Loudon [8] pointed out that a discontinuous c implies that ψ1 and ψ2 cannot both have a continuous,
finite derivative at their zeros. Since ψ1 and ψ2 satisfy the Schrödinger equation with the same eigenvalue, one can
heuristically expect that the potential V must have a singularity at the zeros of ψ1ψ2. Therefore, the non-degeneracy
theorem does not have to be valid for potentials having singularities and there exist one-dimensional singular potentials
(e.g., one-dimensional hydrogen atom [8]), where degeneracies may occur.

Let us now explicitly show that the above argument is indeed the case for our problem. The explicit form of the
wave function associated with bound state energy EB = −|EB | can easily be computed by substituting the solution
eq. (16) for λ1 = λ2 = · · · = λN = λ and the centers of delta potentials are located equidistantly into eq. (8) in the
manuscript, so that we have

ψB(x) = λ

∫ ∞

−∞

dp

2πh̄
e

i
h̄ px

N∑

i=1

e−
i
h̄ pai

p2

2m + |EB |
φB(ai)

= λ
N∑

i=1

φB(ai)
√

m/2
e−

√
2m|EB |

h̄ |x−ai|

h̄
√

|EB |
. (44)

It is important to notice that φB is the eigenvector of the matrix Φ(E) associated with its zero eigenvalues (see
eqs. (29), (30), and eq. (11)). As explicitly shown in eq. (37), we have

φB =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1
ζl

ζ2l

...

ζ(N−1)l

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (45)

where ζ is the N -th root of unity and j = 0, 1, . . . , N − 1. As a consequence of this, we obtain

ψB(ai) =
λ
√

m/2
h̄
√

|EB |

N∑

i=1

φB(ai)

=
λ
√

m/2
h̄
√

|EB |
(1 + ζ + ζ2 + · · · + ζ(N−1))

= 0, (46)

due to the fact that (1+ ζ + ζ2 + . . .+ ζ(N−1)) = 0 [29]. This shows that the bound state wave function vanishes at the
location where the potential has a singularity, namely at the location of the Dirac delta centers. This is exactly the
situation where the non-degeneracy theorem may break down as discussed above. Hence, we explicitly show the reason
why non-degeneracy theorem breaks down for our problem when the Dirac delta centers are located equidistantly.

Actually, it has been demonstrated recently that the one-dimensional Hydrogen atom model may not be indeed
a counter example of the non-degeneracy theorem when it is investigated by a more rigorous approach, namely the
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self-adjoint extension theory [30]. Although the method we have used in this paper is heuristic rather than a rigorous
analysis using the self-adjoint extension theory, where one has to deal with the technicalities of the domain of the
unbounded operators, it is completely consistent with the self-adjoint extension treatment of the Dirac delta potentials
given in [16], as shown in appendix A.

5 Non-degeneracy of the ground state

For a generic distribution of centers, it is not obvious whether the ground state is non-degenerate or not. Here, we shall
show that this is indeed the case by using the Perron-Frobenius theorem (see page 661 in [15]) for symmetric matrices.
Actually, the proof of the non-degeneracy of the ground states for some class of potentials has been discussed in [31]
and the non-degeneracy of the ground state for point interactions has been proved using the positivity preserving
semi-groups generated by Φ and Beurling-Deny conditions in [16]. Here we give a more elementary proof, which was
also used in the two- and three-dimensional version of the model in [32].

Let us first recall the Perron-Frobenius theorem.
Let A = (aij) be an N × N symmetric matrix with elements aij > 0 and let λ be the largest eigenvalue. There

follows that:

1) λ > 0.
2) There exists a corresponding eigenvector (xj) with every component xj > 0.
3) λ is non-degenerate.
4) If μ is any other eigenvalue, λ > |μ|.
In order to make our presentation self-contained, an elementary proof (just using the basic knowledge of linear algebra)
of this theorem is given in appendix B [33].

Since the matrix Φ given in (14) is symmetric but not positive, we cannot directly apply the Perron-Frobenius
theorem. Nevertheless, we can make Φ positive in such a way that the spectrum of the problem is invariant. One
simple way to achieve this is to subtract from Φ a diagonal matrix whose elements coincide with the maximum of the
diagonal elements of Φ and, then, reversing the overall sign,

Φ′(E) := −
[
Φ(E) − (1 + ε) max

Egr≤E<∞
diag (Φ11(E), . . . , ΦNN (E))

]
> 0, (47)

where ε is arbitrarily small positive number. Let Egr be the ground state energy. Since Φii(E) is a decreasing function
of E, maxE Φii(E) = Φii(Egr). Let us simplify this further by replacing Φii(Egr) with maxi Φii(Egr) =: Φ(Egr, λmin),
where λmin := mini λi. Here, we have used the fact that Φii is a decreasing function of λi. Then, we define

Φ′′(E) := − [Φ(E) − (1 + ε) I Φ(Egr, λmin)] , (48)

where I is the identity matrix. Adding a diagonal matrix to Φ does not change its eigenvectors whereas its eigenvalues
are shifted by a constant amount. However, this is equivalent to an overall translation in the bound state spectrum,
which is physically unobservable. Hence, the transformed positive matrix Φ′′ and Φ have common eigenvectors and
this guarantees that there exist a strictly positive eigenvector A for Φ′′ and

Φ′′(E)A(E) = − [ω(E) − (1 + ε) I Φ(Egr, λmin)] A(E) = ω′′(E)A(E). (49)

The minimum eigenvalue of Φ corresponds to the maximum eigenvalue of Φ′′. For a given E, there exists a strictly
negative non-degenerate minimum eigenvalue of Φ, say ωmin(E) as a consequence of the Perron-Frobenius theorem.
Since we are looking for the zeros of the eigenvalues ω(E), ωmin goes to zero at the ground state energy Egr = −|Egr|,
as can be easily seen in fig. 2. In other words, we must have

ωmin(Egr) = 0. (50)

Then, from the remaining part of the Perron-Frobenius theorem, we conclude that there exists a corresponding positive
eigenvector Ai(Egr) associated with the non-degenerate minimum eigenvalue ωmin(Egr). Using

ψgr(x) =
N∑

i=1

√
λi

∫ ∞

−∞

dp

2πh̄

(
e

i
h̄ p(x−ai)

p2

2m + |Egr|

)
Ai(Egr) =

N∑

i=1

√
λi Ai(Egr)

(
m

h̄
√

2m|Egr|
exp

(
−
√

2m|Egr||x − ai|/h̄

))
,

(51)
we also conclude that ψgr(x) is positive so it has no node.

Another important result about the bound states is that the ground state energy increases when we remove one
of the centers from the system. This can be seen from the Cauchy interlacing theorem and the monotonic behavior of
the eigenvalues ω of the matrix Φ. The Cauchy interlacing theorem states the following (page 552 in [15]).
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Fig. 2. Flow of the eigenvalues of Φ.

Let A be a Hermitian matrix of order N and let B be a principal submatrix of A of order N − 1. Let us list the
eigenvalues of A in decreasing order as λN ≤ λN−1 ≤ . . . ≤ λ2 ≤ λ1 and the same with the eigenvalues of B as
μN ≤ μN−1 ≤ . . . ≤ μ2. Then, we have

λN ≤ μN ≤ λN−1 ≤ μN−1 ≤ . . . ≤ λ2 ≤ . (52)

A simple proof of this theorem using the intermediate value theorem in Calculus is given in appendix C. Suppose now
that we have N Dirac delta centers along with the associated N × N matrix Φ. As we remove one single center, its
spectrum is determined from the principal submatrix of Φ of order N − 1. From the Cauchy interlacing theorem, the
eigenvalues of the matrix Φ, with order N , are interlaced with those of any principal submatrix of Φ of order N − 1.
This means that the minimum eigenvalue of the principal submatrix of Φ is greater than or equal to the minimum
eigenvalue of Φ. Since the eigenvalues are increasing functions of |E|, we conclude that new minimum eigenvalue goes
to zero at a lower point in the |E| axis. Hence, the ground state energy increases for the new system. Actually, this
argument can be applied to all other bound states as well. In other words, the bound state spectrum is shifted upwards
as we remove one center from the system.

The analysis of the resonance phenomena of the simpler version of the above model with positive strengths of the
delta potential has been recently discussed by [34]. Our formulation here can be also useful for studying the resonances
but we shall study the analysis of resonances for a future work

The present work has been fully financed by TUBITAK from Turkey under the “2221 - Visiting Scientist Fellowship Programme”.
We are very grateful to TUBITAK for this support. We also acknowledge Osman Teoman Turgut for clarifying discussions and
his interest in the present research. Finally, this work was also sponsored by the Spanish MINECO (MTM2014-57129-C2-1-P)
and Junta de Castilla y León Project No. VA057U16. Finally, we thank the two anonymous reviewers whose comments improved
this manuscript.

Appendix A. The relation between our formalism and the self-adjoint extension treatment of
the problem

The resolvent formula associated with the finitely many-point interactions is well known and is given as theorem 2.1.1
in [16]:

(−Δα,Y − k2)−1 = Gk +
N∑

i,j=1

[Γα,Y (k)]−1
ij (Gk(·,−aj), ·)Gk(·,−ai), (A.1)
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where ai ∈ Y , Y = {a1, a2, . . . , aN}, Δα,Y is the self-adjoint extension of the free Hamiltonian defined in (2.1.5) in [16],
Gk = (−Δ − k2)−1, with k2 is in the resolvent set of −Δα,Y , 
k > 0, and

[Γα,Y (k)]ij =

⎧
⎪⎪⎨

⎪⎪⎩

−
[
α−1

i +
i

2k

]
if i = j,

− i

2k
eik|ai−aj | if i �= j.

(A.2)

Here the free resolvent kernel is given by Gk(x − y) = i
2keik|x−y|. Theorem 2.1.3 in [16] states that the bound state

spectrum of the problem (as can be seen from the above resolvent formula) can be found from the zeros of the
det[Γα,Y (k)]. It is important to notice that h̄ = 2m = 1 in [16].

Let us explicitly show that our heuristic formulation of the point interactions is completely consistent with the
one given above. If we choose αi → −λi and restrict the matrix Γ onto the negative real E-axis, namely, k = i

√
|E|

(E = k2 and 
k > 0), we obtain

[Γλ,Y (E)]ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
λ−1

i − 1
2
√

|E|

]
if i = j,

− 1
2
√
|E|

e−
√

|E||ai−aj | if i �= j.

(A.3)

It is easy to show that our matrix Φ given in eq. (14) is related by Γ (E) through the following similarity transformation:

S Γ (E)ST = Φ(E), (A.4)

where S = diag(
√

λ1, . . . ,
√

λN ). Here we have removed the subscripts λ and Y of Γ . This shows that det Γ (E) =
det Φ(E). Therefore, our formulation is equivalent to the one given in [16]. The only difference is that we exclude the
case, where λi’s are infinite and consider only the bound states.

Appendix B. A proof of the Perron-Frobenius theorem

We give the simple proof of the Perron-Frobenius theorem for symmetric matrices given in [33]. Since the eigenvalues
of A are real and the sum of the eigenvalues are equal to the trace of A, we have TrA > 0. Then, λ > 0. Let (uj) be
any real normalized eigenvector associated with the eigenvalue λ. Then, we have

Aui = λui =
∑

j

aij uj , (B.1)

for i = 1, . . . , n. Setting xj = |uj |, we get

0 < λ =
∑

ij

aij ui uj =

∣∣∣∣∣∣

∑

ij

aij ui uj

∣∣∣∣∣∣
, (B.2)

and
λ ≤

∑

ij

|aij | |ui| |uj | =
∑

ij

aij xi xj . (B.3)

By means of the variational theorem, the right-hand side is less than or equal to λ (it is equal if and only if (xj) is
the eigenvector associated with the eigenvalue λ). Hence, we obtain

λxi =
∑

j

aij xj , (B.4)

for i = 1, . . . , n. Therefore, if xi = 0 for some i, then because of aij > 0 for all j, xj = 0 which cannot be true. Thus,
xj > 0. This completes the first two part of the theorem.

For the third part, let us assume that λ is degenerate. Hence, we can find two real orthonormal eigenvectors (uj)
and (vj) associated with λ. Suppose that ui < 0 for some i. From the addition of eqs. (B.1) and (B.4), we have

λ(ui + xi) =
∑

j

aij (uj + xj) ⇒ λ (ui + |ui|) =
∑

j

aij (uj + |uj |). (B.5)
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Then, uj = −|uj | for every j. If we assume that ui > 0 for some i and subtracting eq. (B.4) from (B.1), we obtain
uj = |uj |. That means uj = ±|uj | and by applying the same procedure, we also have vj = ±|vj |. Therefore,

∑

j

vj uj = ±
∑

j

|vj uj |. (B.6)

Since |uj |, |vj | �= 0 for all j, |vj uj | �= 0 which means that u and v cannot be orthogonal. Because of the contradiction
with the first assumption, we conclude that λ is non-degenerate.

As for the last part, let (wj) be a normalized eigenvector associated with μ such that μ < λ,

∑

j

aij wj = μwi. (B.7)

From the variational property and the non-degeneracy of λ, we have

λ >
∑

ij

aij |wi| |wj | ≥

∣∣∣∣∣∣

∑

ij

aij wi wj

∣∣∣∣∣∣
= |μ|. (B.8)

Appendix C. A proof of the Cauchy interlacing theorem

Here we give a simple proof of the Cauchy interlacing theorem using intermediate value theorem. This proof was
originally given in [35] and we give it here in order to be self-contained. Without loss of generality, the submatrix B
occupies rows 2, 3, . . . , N and columns 2, 3, . . . , N . Then, the matrix A has the following form:

A =
(

a y†

y B

)
, (C.1)

where † denotes the Hermitian conjugation. Since B is also Hermitian, we can diagonalize it by a unitary transformation
U ,

U † B U = D, (C.2)

where D = diag(μ2, μ3, . . . , μN ). For simplicity, let us define a new vector z = (z2, z3, . . . , zN )T := U† y, where T
denotes the transposition. Here we only give the proof for the special case, where μN < μN−1 < . . . , < μ3 < μ2 and
zi �= 0 for all i = 2, 3, . . . , N . The complete proof can be found in [35]. Let

V =
(

1 0T

0 U

)
, (C.3)

where 0 is the zero vector. Since U is unitary, V is also unitary. It is easy to see that

V † AV =
(

a z†

z D

)
. (C.4)

Let us define the following function f :
f(x) := det(xI − A), (C.5)

where I denotes the identity matrix. Since the determinant is invariant under unitary transformations, we have
f(x) = det(xI − V † AV ) or, explicitly,

f(x) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x − a −z2
∗ −z3

∗ · · · −zN−1
∗ −zN

∗

−z2 x − μ2 0 0 · · · 0

−z3 0 x − μ3 0
. . .

...
...

...
...

...
. . . 0

−zN−1 0 · · · 0 x − μN−1 0
−zN 0 0 0 0 x − μN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C.6)
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If we expand this determinant along the first row, we get

f(x) = (x − a)(x − μ2) · · · (x − μN ) −
N∑

i=2

fi(x), (C.7)

where fi(x) = |zi|2(x−μ2) . . . ̂(x − μi) . . . (x−μN ) for i = 2, 3, . . . , N . Here the factor with a hat is deleted. Note that
fi(μj) = 0 for j �= i and

fi(μi)

{
> 0 if i is even,

< 0 if i is odd.
(C.8)

Since f(μi) = −fi(μi), the sign of f(μi) is opposite to that of fi(μi). It is easy to see that f(x) is a polynomial of
degree N with positive leading coefficient. Using this and the fact f(x) is the characteristic equation for the matrix
A, and intermediate value theorem [36], we conclude that there exist N roots λ1, λ2, . . . , λN of the equation f(x) = 0,
such that

λN < μN < λN−1 < μN−1 < . . . < λ2 < μ2 < λ1. (C.9)

This is the result we wanted to show.
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