
Comparison of Dynamic Itemset Mining Algorithms for Multiple
Support Thresholds

Nourhan N. Abuzayed
Department of Computer Engineering,

Izmir Institute of Technology
Izmir, Turkey

nourhan.nagee2015@gmail.com

Belgin Ergenç
Department of Computer Engineering,

Izmir Institute of Technology
Izmir, Turkey

belginergenc@iyte.edu.tr

ABSTRACT
Mining1 frequent itemsets is an important part of association rule
mining process. Handling dynamic aspect of databases and
multiple support threshold requirements of items are two
important challenges of frequent itemset mining algorithms. Most
of the existing dynamic itemset mining algorithms are devised for
single support threshold whereas multiple support threshold
algorithms are static. This work focuses on dynamic update
problem of frequent itemsets under multiple support thresholds
and proposes tree-based Dynamic CFP-Growth++ algorithm.
Proposed algorithm is compared to our previous dynamic
algorithm Dynamic MIS [50] and a recent static algorithm CFP-
Growth++ [2] and, findings are; in dynamic database, 1) both of
the dynamic algorithms are better than the static algorithm CFP-
Growth++, 2) as memory usage performance; Dynamic CFP-
Growth++ performs better than Dynamic MIS, 3) as execution
time performance; Dynamic MIS is better than Dynamic CFP-
Growth++. In short, Dynamic CFP-Growth++ and Dynamic MIS
have a trade-off relationship in terms of memory usage and
execution time.

KEYWORDS
Association rule mining; itemset mining; dynamic itemset mining;
multiple support thresholds

1 INTRODUCTION
Association rule mining is one of the main tasks of data mining.
Lately, an intensive research focuses on it due to its applicability
in many decision making processes in share market, retail sector,
web log analysis, text mining, customer analysis, prediction, etc.
[14]. Association rule was first introduced by Agrawal et al. [7]
and is defined as, AB; meaning customers who buy item A also
buy item B if the context is market basket analysis. Association
rules are meant to find the impact of a set of items on another set

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
IDEAS '17, July 12 – 14 2017, Bristol, England
Copyright © 2017 ACM ISBN 978-1-4503-5220-8/17/7 $15.00
http://dx.doi.org/10.1145/3105831.3105846

of items. An itemset (items that co-occur in a transaction)
frequency is referred as the support count, which is the number of
transactions that include the itemset. An itemset can be frequent if
its support count satisfies the minimum support minsup threshold
[27]. Confidence is another measure for association rules;
confidence for an association rule XY is the ratio of
transactions that include X∪Y to the count of transactions that
include X [7, 9].

Association rule mining process includes two basic steps; 1)
finding frequent itemsets (patterns), 2) generating association
rules [8]. The first step is more expensive so it is the concentration
of many studies. Various algorithms have been proposed to find
the frequent patterns from huge databases. The most classical one
is the Apriori algorithm [8] that uses candidate generation and
testing approach to discover frequent itemsets. Other subsequent
algorithms using Apriori-like technique were introduced in [15,
16, 17, 18, 19, 20, and 21]. Due to the drawback of “generate
candidates and test” approach of Apriori-like algorithms,
algorithms that don’t depend on candidate generation are
introduced, such as FP-Growth [9] and Matrix Apriori [10 and
11].

On the other side, the essential disadvantage of these itemset
mining algorithms is their dependency on single user given
minsup. Single support threshold is not sufficient to represent the
characteristics of the items and causes rare item problem [13]. In
many applications, the occurrence of some items is frequent in the
data, whereas the occurrences of the others are rare. For example,
the number of breads sold in comparison to the sales of the
televisions cannot be similar in a supermarket therefore we cannot
distinguish them as frequent with a unique support threshold. If
minsup is set too high, the rules those have rare items like
television will not be discovered. In order to find rules that
involve both rare and frequent items, minsup has to be set very
low but this may cause combinatorial explosion of frequent items
[12]. Some algorithms as MSapriori [12], CFP-Growth [1], CFP-
Growth++ [2] and MISFP-Growth [29] are introduced to solve the
problem of itemset mining under multiple itemset support (MIS)
thresholds.

One main hypothesis in most of the above algorithms is that
database is static, but in real life, databases are continuously
updated. This reveals that originally discovered association rules
may no longer be valid and yet new interesting rules or frequent
itemsets may arise as a result of an update on the database. The
most straightforward way to update the rules or frequent itemsets
would be to repeat all entire mining process from the start.
However this is expensive in terms of execution time and

IDEAS’07, July 12-14 2017, Bristol, United Kingdom N.Abuzayed and B.Ergenc

2

memory, in databases like supermarket sales database with big
growth rate each day. Therefore various algorithms have been
introduced in [3, 4, 5, 6, 22, 23, 24, and 25]. These algorithms
perform faster and use less system resources since they update
frequent association rules/itemsets by considering only the
updates instead of repeating all mining process from the
beginning.

Most mentioned works handle either the dynamic itemset
mining with single support threshold or itemset mining with
multiple support thresholds (MIS), assuming that the database is
static. There are few existing solutions for dynamic itemset
mining under MIS [24, 26, 40 and 50]. In our previous work [50]
we had proposed an algorithm (Dynamic MIS) that handles the
problem of dynamic itemset mining under multiple item support
thresholds in order to show the efficiency and limits of that
algorithm; it was compared with a static algorithm CFP-
Growth++ [2]. We had found out that Dynamic MIS requires huge
memory since it keeps whole growth tree in the memory all the
time. In this paper, new dynamic algorithm which is called
Dynamic CFP-Growth++ is introduced. It allows dynamic itemset
mining under multiple support thresholds in a style of “build once,
update many and mine anytime”. It 1) uses pattern growth tree, 2)
avoids candidate generation and testing, 3) handles all kinds of
increments as additions, additions with new items and deletions,
4) assumes that MIS thresholds do not change during increments
and 5) uses discarding property in its pre-mining phase, that
allows pruning of items with the support less than minimum of
MIS and provides better memory usage.

Proposed algorithm; Dynamic CFP-Growth++, is compared to
our previous dynamic algorithm; Dynamic MIS [50] and static
algorithm CFP-Growth++ [2] by using four databases. Execution
time and memory usage performance of both dynamic algorithms
over static algorithm is observed while changing the increment
size. The findings are; as the time consumption 1) Dynamic MIS
and Dynamic CFP-Growth++ perform better than CFP-Growth++
since they run only on increments, 2) Dynamic MIS can achieve
Speed-up2 of 56 times against CFP-Growth++, whereas the speed-
up of Dynamic CFP-Growth++ cannot exceed 2 times, 3)
Dynamic CFP-Growth++ is better than CFP-Growth++ until
increment size is less than 85% with large and sparse database,
25% with small and dense database. However the memory usage
of Dynamic CFP-Growth++ is better than Dynamic MIS with all
the datasets, this is due to its advantage provided by pruning and
merging of the tree in pre-mining phase while Dynamic MIS
keeps the whole tree in memory all the time.

The organization of this paper is as follows: Section 2
introduces Dynamic CFP-Growth++ algorithm with tree builder
and increment handling parts. Section 3 shows the performance
evaluation. Section 4 discusses the related work and Section 5 is
dedicated to the conclusion remarks.

2 DYNAMIC ITEMSET MINING
In this section, a new dynamic itemset mining algorithm-Dynamic
CFP-Growth++ is introduced. It maintains tree structure to keep

2 Speed-up = Execution timeCFP-Growth++ / Execution timeDynamic algorithm

the signatures of the transactions like FP-Growth algorithm [1].
Dynamic CFP-Growth++ is customized version of CFP-
Growth++ algorithm [2] in a way to handle increments. In the first
subsection, a motivating example is illustrated.

2.1 Motivating Example
Throughout the text, the following example illustrated in two
tables is used. Table 1 presents a sample database D that is
composed of five transactions. Table 2 illustrates the user given
multiple item support (MIS) for each item in decreasing order.
The last row of Table 2 presents items’ actual support in the
database D. As seen from Table 2, MIN MIS (minimum of MIS)
is 40%. In the right most column of Table 1, the transactions’
items are in order of support values as given in Table 2.

Table 1: Transaction database D [1]
TID Items Items (ordered)
100 D, C,A, F A, C, D, F
200 G, C, A, F, E A, C, E, F, G
300 B, A, C, F, H A, B, C, F, H
400 G, B, F B, F, G
500 B, C B, C

Table 2: MIS and actual support of items [1]
Item A B C D E F G H
MIS value (%) 80 80 80 60 60 40 40 40
Actual Support (%) 60 60 80 20 20 80 40 20

2.2 Dynamic CFP-Growth++
This algorithm builds MIS-tree as in [2] from the original
database D. Each time an incremental database d arrives, it is
added to the existing tree. This tree is preserved during the arrival
of updates; pruning and merging operations are carried on as a
preparation phase before mining.

Figure 1: MIS-tree builder.

2.2.1 Building MIS-tree. Building the tree is similar to CFP-
Growth++ in [2] and the result tree is shown in Figure 2 for our
motivating example. Let us explain the pseudo code of MIS-tree
builder algorithm with our motivating example. MISsorted list is
created from the MIS values of Table 2. in decreasing order as
indicated (Line 1). After that the root of MIS-tree and Min
frequent item header table is created (Lines 2-3). Then the ordered
items of the MISsorted are inserted into this table with item’s count
0 (Line 4). The database D is scanned, and the transactions are

INPUT: database D, Minimum support MIS
OUTPUT: MISsorted, MIS-tree

BEGIN
1 Build MISsorted list(in decreasing order)
2 Create the root of MIS-tree as null
3 Create Min frequent item header table
4 Insert items in the table (count=0)
5 Scan D
6 FOR each transaction T in D do:
7 Sort items in T (like MISsorted)
8 Add T to the tree
9 END FOR
10 Calculate the support of items in D
11 Update supports in the header table
END

Comparison of Dynamic Itemset Mining Algorithms for MIS IDEAS’07, July 12-14 2017, Bristol, United Kingdom

 3

added to the-tree (Lines 5-9). The items counts and supports are
updated. (Lines 10-11). Fig. 2 shows the incompact tree generated
with the motivating example.

Figure 2: MIS-tree for the motivating example.

2.2.2 Adding Increments. Let us explain the pseudo code of
additions in Dynamic CFP-growth++ algorithm shown in Fig. 3.

Figure 3: Additions.

When new transactions arrive, they are scanned to be added to
the tree. The items in the new transaction are sorted in decreasing
order as MISsorted. Then transactions are added to the tree one by
one. Each item’s count in this transaction is updated by
incrementing its count in the primary header table by 1. Then the
nodes of same item are linked all through the tree to the item in
the header table of the same figure. The supports of all items in
the whole database are calculated then updated in the Min
frequent item header table.

2.2.3 Adding Increments with New Items. The input tree for
this case is the MIS-tree of Fig. 2, incremental database and MIS
values of new items. The first step is combining the new MIS
values with the MIS values of the old items to get MISsorted as
indicated in the Line 1 of the algorithm shown in of Fig. 4.

New items in MISnew are inserted in the Min frequent item
header table with item’s count 0, this insertion is done by taking
into account the MISsorted order (Line 2). Now the increment d is
scanned, and then sorted according to sorted list of all items. After
that; the transactions are added to the tree, then the item’s counts
and node links are updated. From these counts the supports are
calculated and updated in the header table.

Figure 4: Additions with new items.

2.2.4 Adding Increments with Deletions. The pseudo code of
deletions in Dynamic CFP-growth++ algorithm is shown in Fig. 5.
First, deletions are scanned. And then deleted from the MIS-tree,
some items’ counts are decremented. From these counts supports
are calculated and updated in the header tables of tree.

Figure 5: Deletions.

2.2.5 Pre-mining with Dynamic CFP-Growth++. In order to
construct the compact MIS-tree; pruning and merging operations
are applied as a preparation phase before mining as in the case of
CFP-Growth++ algorithm [2]. The MIS-tree is constructed with
every item in the transaction database. So, LMS (lowest multiple
supports) and infrequent leaf node pruning, are used to reduce the
search space. LMS Procedure [2] is used to prune the items that
cannot generate any frequent pattern. After the tree-pruning
operation ends; all the supports of the remaining items in the MIS-
tree are greater than LMS value.

After LMS tree-pruning, tree-merging process (MisMerge[2])
is carried out to merge the child nodes of a parent node that share
a common item. After that; the process of infrequent leaf node
pruning (InfrequentLeafNodePruning Procedure [2]) is carried on
the resultant MIS-tree to decrease its size. In this process, among
the remaining items in the MIS-list of MIS-tree, the items that
have support less than their required support are deleted only if
they are leaf nodes.

Let us apply an example for the preparation of pruning and
merging on the tree of Fig. 2. The MIS-tree is constructed with
every item in the transaction database. So, lowest multiple support
(MIN MIS) and infrequent leaf node pruning are used in pruning
step to decrease the search space. MIN MIS is 2 (40%) from the
MIS-tree. As a result, any item that has support less than 2 is
discarded (i.e., D, H, E). The last item in the MIS-list is G that is
frequent item. Hence, no tree-pruning operation is done for the

INPUT: MIS-tree, MISsorted, incremental database d
OUTPUT: Dynamic MIS-tree

BEGIN
1 Scan d
2 FOR each transaction T in d do:
3 Sort items in T (like MISsorted)
4 Add T to the tree
5 END FOR
6 Calculate the support of all items
7 Update the supports
END

INPUT: MIS-tree, MISsorted,increment d, MISnew
OUTPUT: MISsorted, Dynamic MIS-tree

BEGIN
1 Build MISsorted (MISsorted + MISnew)
2 Insert new items into primary header table

(count=0)
3 Scan d
4 FOR each transaction T in d do:
5 Sort items in T (like MISsorted)
6 Add T to the tree
7 END FOR
8 Calculate the support of all items
9 Update the supports in the table
END

INPUT: MIS-tree, MISsorted, increment d
OUTPUT: Dynamic MIS-tree

BEGIN
1 Scan d
2 FOR each transaction T in d do:
3 Sort items in T (like MISsorted)
4 Delete T from the tree
5 END FOR
6 Calculate the support of all items
7 Update the supports in header table
END

IDEAS’07, July 12-14 2017, Bristol, United Kingdom N.Abuzayed and B.Ergenc

4

item G. The tree-pruning operation ends as the supports of the
remaining items in the MIS-tree are greater than MIN MIS = 2.

Tree-merging process is carried out to merge the child nodes
of a parent node that share a common item like FP-growth given
in [1] after tree pruning. The result MIS-tree is called compact
MIS-tree as given in Fig. 6. The process of infrequent leaf node
pruning is carried on the compact MIS-tree to decrease its size.
The process is as follows, among the remaining items in the MIS-
list of MIS-tree, A and B are infrequent items (i.e., their support is
less than the required minsup value). Therefore, using the node-
links of A and B, all the branches containing A or B are collected.
The branches containing A are {{A, C, F, G: 1}, {A, B, C, F: 1}}.
In these branches A is not leaf node so it cannot be deleted. B also
is not a leaf node, it can’t not be removed since the next pattern
that contains B may be frequent.

Figure 6: Compact MIS-tree.

3 PERFORMANCE EVALUATION
In this section, the proposed algorithm; Dynamic CFP-Growth++
is compared to Dynamic MIS [50] and popular tree based
algorithm, CFP-Growth++ [2]. Before explaining the simulation
environment and the results of the tests we give complexity
analysis of the algorithms in the first subsection.

3.1 Complexity Analysis of Algorithms
Computational complexity of building the initial tree is same for
the three compared algorithms. It is O (T * V); where T is the
number of transactions, and V the average transaction length. It is
reasonable to conclude that building the tree is directly
proportional to the density of the dataset.

The complexity of the pruning procedure in CFP-Growth++
[2] and Dynamic CFP-Growth++ is O (N * C) where N is the
number of nodes holding the items to be pruned, C is the number
of their children. However in Dynamic MIS [50] the pruning
procedure is replaced by relocating items between header tables
which has a complexity of O (N) where N is the number of items
to be transferred. The merging procedure in CFP-Growth++ and
Dynamic CFP-Growth++ is O (N2 * K) where N is number of
nodes in the tree and K is the node links.

The complexity of adding increments to the tree in the two
dynamic algorithms (Dynamic MIS and Dynamic CFP-
Growth++) for increments with (Addition, Addition with new
items and Deletion) is O (T * V) where T is the number of the
incremental transactions, and V the average transaction length, so
it is proportional to the number of transactions in the incremental
database d and its density.

3.2 Simulation Environment
Two sets of experiments are carried out in order to measure the
speed up and memory usage of the algorithms. Four datasets with
different properties are used in these experiments [28]. Properties
of two real datasets (D1 and D4) and one synthetic datasets (D2);
average size of the transactions (T), number of transactions (D),
number of items (N) and the density of a dataset that indicates the
similarity of the transactions are shown in Table 3.

Table 3: Properties of datasets

Dataset Type T D N Density
%

D1 (Retail) Real 10.3 88162 16470 0.06
D2 (T40I1D100K) Synthetic 40 100K 942 4.25
D4 (Kosarak) Real 8.1 990002 41270 0.02

All experiments are implemented on an Intl(R) core i7 -5500u
CPU@ 2.40 GHz with 8GB main memory, and running on
Microsoft Windows 10 operating system. All programs are
implemented on C# environment.

For the experiments, a method to assign MIS values to items in
the dataset is needed. The actual supports of the items in the
dataset are used as the basis for MIS assignments. Specifically,
the following formulas [12] are used:

f(i) is the actual frequency (or the support expressed in

percentage of the data set size) of item i in the data. LS is the user-
specified lowest minimum item support allowed. β (0 ≤ β ≤ 1) is
a parameter that controls how the MIS values for items should be
related to their actual frequencies. Thus, to set MIS values for
items; two parameters (β and LS) are used. If β = 0, there is only
one minimum support, LS, which is the same as the traditional
association rule mining. If β = 1 and f(i) ≥ LS, f(i) is the MIS
value for i [12]. This formula is used to generate MIS values to
algorithms which use multiple support thresholds as in [1, 2, 12
and 26].

3.3 Execution Time
In this set of experiment the execution time performance of the
dynamic algorithms Dynamic CFP-Growth++ and Dynamic MIS
over static algorithm CFP-Growth++ is observed on real and
synthetic datasets.

3.3.1 Increments (additions). In this experiment the
execution time performance of the dynamic algorithms (Dynamic
MIS and Dynamic CFP-Growth++) and CFP-Growth++ on the
increments with additions are compared. For this purpose; two
real datasets D1 and D4 and one synthetic dataset D2 are used.

In the increments with additions tests, each dataset is divided
into two parts. The part with D = (100 - x)% from the beginning
of the transactions forms the initial dataset and the remaining part
with d = x% of the transactions forms the increments. This
subsection includes the performance analysis of the algorithms on

Comparison of Dynamic Itemset Mining Algorithms for MIS IDEAS’07, July 12-14 2017, Bristol, United Kingdom

 5

datasets varying the x (d). The purpose is to observe how the
addition size of increments affects the performance of the
algorithms for the datasets. In all splits, the MIS values are kept
same. To allow variation in MIS values, beta and LS are selected
as (beta = 0.5 and LS = 0.01). The execution time of Dynamic
MIS, Dynamic CFP-Growth++ and CFP-Growth++ are measured
with thirteen splits of 1% - 13% for. Ten splits of 5% to 50% for
D2, eighteen splits of 5% - 90% for D4.

The speed-up of the proposed algorithms for additions on
dataset D1 is illustrated in Fig. 7. For Dynamic MIS; the speed-up
increases from 22.21 to 55.94 while the split size decreases. For
Dynamic CFP-Growth++; the speed-up increases from 1.19 to
1.32 while the split size decreases. The speed-up of the dynamic
algorithms for additions on dataset D2 is shown in Fig. 8. Speed-
up of Dynamic MIS is from 1.15 to 1.33. For Dynamic CFP-
Growth++; the speed-up decreases from 1.60 to 1.35 while the
split size increases.

The speed-up of the dynamic algorithms for additions on
dataset D4 is shown in Fig. 9. Speed-up of Dynamic MIS is from
37.67 to 3.61. For Dynamic CFP-Growth++; the speed-up
decreases from 1.37 to 0.99 while the split size increases.

It is observed that the highest speed-up occurs when the
Dynamic MIS runs on D1. The reason for the speed-up of
dynamic algorithms over CFP-Growth++ is running dynamic
algorithms on the addition only instead of running from the
beginning. Speed-up of Dynamic MIS is higher than Dynamic
CFP-Growth++ because of the structure of the MIS Builder
algorithm.

3.3.2 Increments (deletions). The last comparison is to
determine how the size of deletions affects the performances of
algorithms. In these tests, the real datasets D1, D4 and the
synthetic dataset D2 are used. First the datasets are divided into
two parts like the addition tests. In this experiment, the three
algorithms are run. The part with D = 100% from the beginning of
the transactions forms the initial dataset and the remaining part
with d = x% of the transactions forms the additions. For the tests

on D = 100% of the transactions of D1 are the initial dataset and
20% of the transactions of D1 are the additions with deletions. In
this case of running CFP-Growth++; the number of transactions of
dataset will be equal to (D - d)%; which is 80% of the database.
The MIS values are kept same as those in the addition tests.

The speed-up of the dynamic algorithms for deletions on
dataset D1 is shown in Fig. 10. For Dynamic MIS; the speed-up
increases from 2.26 to 44.88 while the split size decreases in D1.
For Dynamic CFP-Growth++; the speed-up increases from 1.07 to
1.29 while the split size decreases in D1. The speed-up of the
dynamic algorithms for deletions on dataset D4 is illustrated in
Fig. 11. For Dynamic MIS; the speed-up increases from 2.06 to
40.16 while the split size decreases in D4. For Dynamic CFP-
Growth++; the speed-up increases from 0.15 to 1.28 while the
split size decreases. The speed-up of the dynamic algorithms for
deletions on dataset D2 is demonstrated in Fig. 12. For Dynamic
MIS; the speed-up increases from 1.12 to 1.25 while the split size
decreases. For Dynamic CFP-Growth++; the speed-up increases
from 0.84 to 1.22 while the split size decreases.

The Dynamic MIS and Dynamic CFP-Growth++ have speed-
up over CFP-Growth++, since dynamic algorithms are run on the
increment only instead of running from the beginning. Also the
speed-up of Dynamic MIS is higher than Dynamic CFP-
Growth++ because of the structure of the MIS Builder algorithm
which has two header tables for the items that allow the algorithm
to execute mining without pruning and merging operations.

The minimum speed-up of Dynamic CFP-Growth++ algorithm
is less than 1 since CFP-Growth++ has better performance than
Dynamic CFP-Growth++ after 10% on D1 and after 15% on D4
of the incremental size. Speed-up with Dynamic MIS on D2 is
very small compared to D1 and D4 since dataset D2 is dense and
has less number of items, whereas D1 and D4 are sparse and have
larger number of items.

Figure 7: D1 (Retail)–additions Figure 8: D2 (T40I1D100K)–additions Figure 9: D4 (Kosarak)-additions

Figure 10: D1 (Retail)–deletions Figure 11: D4 (Kosarak)–deletions Figure 12: D2 (T40I1D100K)–deletions

IDEAS’07, July 12-14 2017, Bristol, United Kingdom N.Abuzayed and B.Ergenc

6

3.4 Memory Usage
In this set of experiment the memory usage performance of the
dynamic algorithms Dynamic CFP-Growth++ and Dynamic MIS
is observed on real and synthetic datasets.

3.4.1 Increments (additions). In this experiment memory
usage performance of the Dynamic MIS and Dynamic CFP-
Growth++ algorithms on the increments with additions are
compared. For this purpose; two real datasets D1 and D4 and one
synthetic dataset D2 are used. Datasets are divided using the same
strategy in subsection 3.3.1.

The memory usage performance with different datasets is
illustrated in the Figures 13, 14 and 15, it is clear that the memory
consumption by running Dynamic CFP-Growth++ is less that it
in Dynamic MIS in all cases. This is due to the pruning strategy
The Memory gain 3 summary of Dynamic CFP-Growth++ over
Dynamic MIS algorithm for additions is measured. On D1;
memory gain increases from 2.44 to 3.66 while the split size
increases. On D2; memory gain increases from 2.82 to 3.03 while
the split size increases. On D4; memory gain increases from 1.15
to 2.76 while the split size increases. This memory gain is due to
the compact structure of the MIS-tree that needs less memory in
Dynamic CFP-Growth++ compared with Dynamic MIS
algorithm.

3.4.2 Increments (deletions). In this experiment memory
usage performance of the Dynamic MIS and Dynamic CFP-
Growth++ algorithms on the increments with deletions are
compared. For this purpose; two real datasets D1 and D4 and one
synthetic dataset D2 are used. Datasets are divided using the same

3 Memory gain = ((memory usageDynamic MIS - memory usageDynamic CFP-Growth++) /
memory usage Dynamic MIS) * 100.

strategy in subsection 3.3.2. The memory usage performance with
different datasets is illustrated in the figures 16, 17 and 18. From
that figures it is clear that the memory consumption by running
Dynamic CFP-Growth++ is less that it in Dynamic MIS in all
cases. This is due to the pruning strategy that used in Dynamic
CFP-Growth++ while Dynamic MIS keep the whole tree in
memory. On D1; memory gain increases from 3.70 to 6.09 while
the split size increases. On D2; the speed-up increases from 2.61
to 6.30 while the split size decreases. On D4; memory gain
increases from 2.53 to 3.05 while the split size increases. This
memory gain is due to the compact structure of the MIS-tree.

4 RELATED WORK
Dynamic itemset mining algorithms introduced so far achieve
some level of dynamicity with different interests. Characteristics
of twenty seven different algorithms are compared in Table 4. The
type of the algorithm is indicated in the third column as follows.
“A” means that algorithm is Apriori based; “F” indicates that
algorithm is FP-Growth algorithm based; “B” presents that
algorithm uses Border based approach and “O” indicates that
algorithm uses other data structures like tries and matrices.
Columns 4-7 indicate attributes corresponding to the behavior of
the algorithm in handling insertions and deletions in the updates,
permitting support change and new items in the increments. 8th
column shows if the algorithm works with or without candidate
itemsets generation in the itemset mining process. The last column
shows if the algorithm handles single or multiple support
thresholds.

The first group of dynamic algorithms is represented with “A”
in the third column of Table 4, uses apriori property and employs
iterative level wise search. Since these algorithms are Apriori
based, candidate generation and scanning the original database
several times in some cases are the major disadvantages in terms
of running time performance. Another disadvantage is that the

Figure 13: D1 (Retail)–addition Figure 14: D2 (T40i10d100K)–addition Figure 15: D4 (Kosarak)–addition

Figure 16: D1 (Retail)–deletion Figure 17: D2(T40i10d100K)–deletion Figure 18: D4 (Kosarak)–deletion

Comparison of Dynamic Itemset Mining Algorithms for MIS IDEAS’07, July 12-14 2017, Bristol, United Kingdom

 7

algorithms do not allow support changes during the process. The
second group of dynamic algorithms is based on the FP-Growth
Algorithm is presented by “F” in the third column of Table 4. All
algorithms of this group handle single support threshold except
the algorithm in Incremental Tuning Tree [26] and Dynamic MIS
[50].

Table 4: Dynamic frequent pattern algorithms

*Type: A: Apriori, F: FP-Growth, B: Border, O: Other data structures
**Support: S: Single Support, M: Multiple Support, UT: Utility

The third group of dynamic algorithms shown with “B” in the
third column of Table 4, is based on the notion of border theory.
The Dynamic Borders Algorithm [22] works by constantly
maintaining the count information for all frequent and border sets
in the current relation. When an increment arrives, the update is

scanned to obtain its support for previous frequent and border
sets. Additional scans of the entire relation are performed only if
the support of some border set has reached the minimum support
threshold. There are two algorithms that are border based,
BORDERS [22] and DARM [34]. The last one is for deletion only
and does not allow support change. Both algorithms handle single
support threshold. The last group presents algorithms that use
different data structures to maintain up-to-date itemsets and are
shown with “O” in the third column of Table 4. Most of them are
for single support threshold except Dynamic Matrix with MIS
[40] that handles multiple support thresholds and the last one
handles utility thresholds Utility-list [41].

5 CONCLUSION
This study focuses on dynamic update problem of frequent
itemsets under multiple support thresholds; the challenge is to
mine frequent itemsets under multiple support thresholds. In this
study, a new dynamic itemset mining under multiple support
thresholds algorithm which is called Dynamic CFP-Growth++ is
introduced and explained, it is tree based, scans the databases only
once and avoids the candidate generation problem. It handles
increments of additions, additions with new items and deletions.
Proposed algorithm is compared to Dynamic MIS [50] and CFP-
Growth++ [2] algorithms which are able to find frequent itemsets
under multiple support thresholds in dynamic and static databases
respectively.

In the performance evaluation work, it is observed that in
dynamic database, both of the dynamic algorithms are better than
the static algorithm CFP-Growth++, since they run only for the
increments, while the static algorithm run from the scratch. It is
found out that Dynamic CFP-Growth++ performs better than
Dynamic MIS in terms of memory usage since Dynamic MIS
algorithm keeps the whole tree in memory without any
compacting. As execution time performance; Dynamic MIS is
better than Dynamic CFP-Growth++ since Dynamic CFP-
Growth++ loses time in compacting the tree using pruning and
merging procedures that have high complexities and as a result
they need more execution time. As it is observed from the
experiments, Dynamic CFP-Growth++ and Dynamic MIS have a
trade-off relationship in terms of memory usage and execution
time.

ACKNOWLEDGMENTS
This work is partially supported by the Scientific and Technological Research
Council of Turkey (TUBITAK) under ARDEB 3501 Project No: 114E779. The
authors would like to thank Sadeq Darrab for converting the code of CFP-Growth++
algorithm [2].

REFERENCES
[1] Y. Hu and Y. Chen. 2006. Mining association rules with multiple minimum

supports: a new mining algorithm and a support tuning mechanism. Decision
Support Systems, 42(1), 1–24.

[2] R. U. Kiran and P. K. Reddy. 2011. Novel Techniques to Reduce Search Space
in Multiple Minimum Supports-Based Frequent Pattern Mining Algorithms. In
The 14th International Conference on Extending Database Technology, ACM,
New York, USA, 11–20.

[3] D. W. Cheung, J. Han, V.T. Ng, and C.Y. Wong. 1996. Maintenance of
discovered association rules in large databases. An incremental updating
technique, In the 12th IEEE International Conference on Data Engineering,
Upsala, Sweden, 106–114.

[4] D. W. Cheung, S. D. Lee, and B. Kao. 1997. A general incremental technique
for maintaining discovered association rules. In the 5th International
Conference on Database Systems for Advanced Applications, Melbourne,

Algorithm

Year

Ty
pe

 *

In
se

rti
on

D
el

et
io

n

Su
pp

or
t C

ha
ng

e

N
ew

 It
em

C
an

di
da

te
G

en
.

Su
pp

or
t *

*

FUP [3] 1996 A

+ + + S

FUP2 [4] 1997 A

+ + + + S

DELI [48] 1998 A + + + + S
BORDERS [22] 1999 B + + + + + S
UWEP [49] 1999 A + + + S
FOLDRAM [35] 2001 O + + + + S
MAAP [38] 2001 A + + + + S
PELICAN[37] 2001 O + + + + + S
DB-tree & PotFp-
tree [42]

2002 F + + + S

FELINE [25] 2003 F + + + + S
MMA_ITTE [43] 2006 A + + + + M
EDUA [44] 2007 O

 + + + S

PROMISING [39] 2007 A + + + S
Incremental FP-
Tree [31]

2008 F + + + S

FUFP-TREE [30] 2008 F + + + S
I-CON [31] 2008 F + + + + S
PRELARGE-
TREE [36]

2008 F + + + S

IULFP [32] 2010 F + + S
TIARM [33] 2010 F + + + + S
DARM [34] 2011 B + + S
Incremental
Tuning Tree [26]

2011 F + + + M

IMA [5] 2012 O + + + S
Frequent Itemset
Generation [46]

2012 O + + S

(I-Is) tree [45] 2012 O + + + S
RUPF [47] 2013 O + + + + S
DMA [6] 2013 O + + + + S
Dynamic Matrix
with MIS [40]

2014 O + + + + M

Utility-list [41] 2015 O

+ + UT

Dynamic MIS [50] 2016 F + + + M

IDEAS’07, July 12-14 2017, Bristol, United Kingdom N.Abuzayed and B.Ergenc

8

Australia, 185–194.
[5] D. Oğuz and B. Ergenç. 2012. Incremental Itemset Mining Based on Matrix

Apriori. In DaWaK'12 Proceedings of the 14th international conference on Data
Warehousing and Knowledge Discovery, Vienna, Austria, 192–204.

[6] D. Oğuz, B. Yıldız, and B. Ergenç. 2013. Matrix-Based Dynamic Itemset
Mining Algorithm. International Journal of Data Warehousing and Mining,
9(4), 62–75.

[7] R. Agrawal, T. Imielinski, and A. Swami. 1993. Mining association rules
between sets of items in large databases. In ACM SIGMOD international
conference on Management of data, Washington DC, 207–216.

[8] R. Agrawal and R. Srikant. 1994. Fast algorithms for mining association rules
in large databases. In the 20th International Conference on Very Large Data
Bases, San Francisco, CA, 487–499.

[9] J. Han, J. Pei, and Y. Yin. 2000. Mining frequent patterns without candidate
generation. In ACM SIGMOD International Conference on Management of
Data, ACM New York, 1–12.

[10] J. Pavon, S. Viana, and S. Gomez. 2006. Matrix Apriori: Speeding up the
search for frequent patterns. In the 24th IASTED International Conference on
Database and Applications, Innsbruck, Austria, 75–82.

[11] B. Yıldız and B. Ergenç. 2010. Comparison of Two Association Rule Mining
Algorithms without Candidate Generation. In the 10th IASTED International
Conference on Artificial Intelligence and Applications, Innsbruck, Austria,
450–457.

[12] B. Liu, W. Hsu, and Y. Ma. 1999. Mining association rules with multiple
minimum supports. In the 5th ACM SIGKDD International Conference on
KDD, San Diego, CA, 337–341.

[13] H. Mannila. 1998. Database methods for data mining. Tutorial notes, the 4th
ACM SIGKDD International Conference on KDD, Technical report, AAAI,
Menlo Park, CA.

[14] M. Chen, J. Han, and P. S. Yu. 1996. Data mining: An overview from a
database perspective. IEEE Transaction on knowledge and Data Engineering,
8(6), 866–883.

[15] H. Mannila, H. Toivonen, and A. I. Verkamo. 1994. Efficient algorithms for
discovering association rules. In AAAI Workshop on KDD, Seattle, WA, 181–
192.

[16] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. 1996.
Fast discovery of association rules. In Advances in KDD. MIT Press, 12(1),
307–328.

[17] A. Savasere, E. Omiecinski, and S. B. Navathe. 1995. An efficient algorithm
for mining association rules in large databases. In the 21st VLDB Conference,
Zurich, Switzerland, 432–443.

[18] J. S. Park, M. Chen, and P. S. Yu. 1995. An effective hash-based algorithm for
mining association rules. In ACM SIGMOD International Conference on
Management of Data, San Jose, CA, 175–186.

[19] R. Srikant, Q. Vu, and R. Agrawal. 1997. Mining association rules with item
constraints. In ACM KDD International Conference, Newport Beach, CA, 67–
73.

[20] R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. 1998. Exploratory mining
and pruning optimizations of constrained associations rules. In ACM-SIGMOD
International Conference on Management of Data, Seattle, WA, 13–24.

[21] G. Grahne, L. Lakshmanan, and X. Wang. 2000. Efficient mining of
constrained correlated sets. In the 16th International Conference on Data
Engineering, San Diego, CA, 512–521.

[22] Y. Aumann, R. Feldman, O. Lipshtat, and H. Manilla. 1999. Borders: An
efficient algorithm for association generation in dynamic databases. Journal of
Intelligent Information System, 12(1), 61–73.

[23] S. Shan, X. Wang, and M. Sui. 2010. Mining Association Rules: A continuous
incremental updating technique. In: International Conference on WISM, IEEE
Computer Society, Sanya, China, 62–66.

[24] B. Dai and P. Lin. 2009. iTM: An Efficient algorithm for frequent pattern
mining in the incremental database without rescanning. In the 22nd
International Conference on Industrial, Engineering and Other Applications of
Applied Intelligent Systems, Tainan, Taiwan, 757–766.

[25] W. Cheung and O. R. Zaiane. 2003. Incremental mining of frequent patterns
without candidate generation or support constraint. In IDEAS, Hong Kong,
China, 111–116.

[26] F. A. Hoque, M. Debnath, N. Easmin, and K. Rashad. 2011. Frequent Pattern
mining for multiple minimum supports with support tuning and tree
maintenance on incremental database. Research Journal of Information
Technology, 3(2), 79–90.

[27] J. Han, M. Kamber, and J. Pei. 2006. Data mining concepts and techniques.
Morgan Kaufmann Publishers, Location-Based Services Jochen Schiller, Agnes
Voisard, 157–218.

[28] Frequent Itemset Mining Implementations Repository, http://fimi.ua.ac.be/data/
[29] S. Darrab and B. Ergenç. 2016. Frequent pattern mining under multiple support

thresholds. In: The 16th Applied Computer Science Conference, Wseas
Transactions on Computer Research, Istanbul, Turkey, 4, 1–10.

[30] T. Hong, C. Lin, and Y. Wu. 2008. Incrementally fast updated frequent pattern
trees. Expert Systems with Applications, 4(34), 2424–2435.

[31] M, R. Alhajj, and K. Barker. 2008. Alternative method for incrementally
constructing the FP-Tree. Studies in Computational Intelligence 109, 361–377.

[32] T. Li and X. Li. 2010. An efficient incremental updating algorithm based on
LFP-tree for mining association rules. In Proceedings of the International
Conference on Computer Application and System Modeling, Taiyuan, China,
426–430.

[33] G. Pradeepini, S. Jyothi. 2010. Tree-based in¬cremental association rule
mining without candidate itemset generation. In Proceedings of the Conference
on Trendz in Information Sciences & Computing, Chennai, India, 78–81.

[34] M. Taha, T. Gharib, and H. Nassar. 2011. DARM: Decremental association
rules mining. Journal of Intelligent Learning Systems and Applications 3(3),
181–189.

[35] Y. Woon, W. Ng, and A. Das. 2001. Fast online dynamic association rule
mining. In Proceedings of the 2nd International Conference on Web
Information Systems Engineering, 278–287.

[36] C. Lin, T. Hong, W. Lu, and B. Chien. 2008. Incremental mining with prelarge
trees. In Proceedings of the 21st International Conference on Industrial,
Engineering and Other Applications of Applied Intelligent Systems, Wroclaw,
Poland, 169–178.

[37] A. Veloso, B. Possas, W. M. Jr., and M. B. de Carvalho. 2001. Knowledge
management in association rule mining. Workshop on Integrating Data Mining
and Knowledge Management, held in conjuction with IEE International
Conference on Data Mining.

[38] Z. Zhou and C. I. Ezeife. 2001. A low-scan incremental association rule
maintenance method. In Proceedings of the 14th Canadian Conference on
Artificial Intelligence, Ottawa.

[39] R. Amornchewin and W. Kreesuradej. 2007. Incremental association rule
mining using promising frequent itemset algorithm. In Proceedings of the 6th
International Conference on Information, Com¬munications and Signal
Processing, Singapore.

[40] V. Chaudhary. 2014. Multiple Minimum Support Implementations with
Dynamic Matrix Apriori Algorithm For Efficient Mining of Association Rules.
International journal for Scientific Research and Development 2(7), 489 –500.

[41] J. C. Lin, W. Gan, T. Hong, and B. Zhang. 2015. An incremental high-utility
mining algorithm with transaction insertion. The Scientific World Journal.

[42] C. Ezeife, Y. Su. 2002. Mining incremental association rules with generalized
FP-tree. Proceedings of the 15th Conference of the Canadian Society for
Computational Studies of Intelligence on Advances in Artificial Intelligence,
Calgary, Canada, 147–160.

[43] M. Tseng, W. Lin, and R. Jeng. 2006. Incremental maintenance of generalized
multi-supported association rules under transaction update and taxonomy
evolution. In IEEE International Conference on Systems, Man and Cybernetics,
Taipei, Taiwan, 2142–2147.

[44] S. Zhang, J. Zhang, and C. Zhang. 2007. EDUA: An efficient algorithm for
dynamic database mining. Information Sciences 177(13), 1–12.

[45] P. Vispute and S. Sane. 2012. Incremental learning algorithm for association
rule mining. International Journal of Scientific and Engineering Research 3(11),
1–5.

[46] R. Y. Ajay, S. Kumar, P. Kumar, and R. M. Pai. 2012. An improved frequent
itemset generation algorithm based on correspondence, Computer Science and
Information Technology 2(5), 253–258.

[47] A. Mundra, P. Tomar, and D. Kulhare. 2013. Rapid Update in Frequent Pattern
form Large Dynamic Database to Increase Scalability. International Journal of
Soft Computing and Engineering 2(6), 307– 310.

[48] S. D. Lee, D. W. Cheung, and B. Kao. 1998. Is sampling useful in data mining?
A case in the maintenance of discovered association rules. Data mining and
Knowledge Discovery 2(3), 233– 262.

[49] N. Ayan, A. Tansel, and M. Arkun. 1999. An efficient algorithm to update
large itemsets with early pruning. In Proceedings of the Fifth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San
Diego, CA, 287–291.

[50] N. Abuzayed and B. Ergenç. 2016. Dynamic itemset mining under multiple
support thresholds. 2nd International Conference on Fuzzy Systems and Data
Mining, China Macau, 11-14.

