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ABSTRACT 
Mining1 frequent itemsets is an important part of association rule 
mining process. Handling dynamic aspect of databases and 
multiple support threshold requirements of items are two 
important challenges of frequent itemset mining algorithms. Most 
of the existing dynamic itemset mining algorithms are devised for 
single support threshold whereas multiple support threshold 
algorithms are static. This work focuses on dynamic update 
problem of frequent itemsets under multiple support thresholds 
and proposes tree-based Dynamic CFP-Growth++ algorithm. 
Proposed algorithm is compared to our previous dynamic 
algorithm Dynamic MIS [50] and a recent static algorithm CFP-
Growth++ [2] and, findings are; in dynamic database, 1) both of 
the dynamic algorithms are better than the static algorithm CFP-
Growth++, 2) as memory usage performance; Dynamic CFP-
Growth++ performs better than Dynamic MIS, 3) as execution 
time performance; Dynamic MIS is better than Dynamic CFP-
Growth++. In short, Dynamic CFP-Growth++ and Dynamic MIS 
have a trade-off relationship in terms of memory usage and 
execution time. 

KEYWORDS 
Association rule mining; itemset mining; dynamic itemset mining; 
multiple support thresholds 

1 INTRODUCTION 
Association rule mining is one of the main tasks of data mining. 
Lately, an intensive research focuses on it due to its applicability 
in many decision making processes in share market, retail sector, 
web log analysis, text mining, customer analysis, prediction, etc. 
[14]. Association rule was first introduced by Agrawal et al. [7] 
and is defined as, AB; meaning customers who buy item A also 
buy item B if the context is market basket analysis. Association 
rules are meant to find the impact of a set of items on another set 
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of items. An itemset (items that co-occur in a transaction) 
frequency is referred as the support count, which is the number of 
transactions that include the itemset. An itemset can be frequent if 
its support count satisfies the minimum support minsup threshold 
[27]. Confidence is another measure for association rules; 
confidence for an association rule XY is the ratio of 
transactions that include X∪Y to the count of transactions that 
include X [7, 9].  

Association rule mining process includes two basic steps; 1) 
finding frequent itemsets (patterns), 2) generating association 
rules [8]. The first step is more expensive so it is the concentration 
of many studies. Various algorithms have been proposed to find 
the frequent patterns from huge databases. The most classical one 
is the Apriori algorithm [8] that uses candidate generation and 
testing approach to discover frequent itemsets. Other subsequent 
algorithms using Apriori-like technique were introduced in [15, 
16, 17, 18, 19, 20, and 21]. Due to the drawback of “generate 
candidates and test” approach of Apriori-like algorithms, 
algorithms that don’t depend on candidate generation are 
introduced, such as FP-Growth [9] and Matrix Apriori [10 and 
11]. 

On the other side, the essential disadvantage of these itemset 
mining algorithms is their dependency on single user given 
minsup. Single support threshold is not sufficient to represent the 
characteristics of the items and causes rare item problem [13]. In 
many applications, the occurrence of some items is frequent in the 
data, whereas the occurrences of the others are rare. For example, 
the number of breads sold in comparison to the sales of the 
televisions cannot be similar in a supermarket therefore we cannot 
distinguish them as frequent with a unique support threshold. If 
minsup is set too high, the rules those have rare items like 
television will not be discovered. In order to find rules that 
involve both rare and frequent items, minsup has to be set very 
low but this may cause combinatorial explosion of frequent items 
[12].  Some algorithms as MSapriori [12], CFP-Growth [1], CFP-
Growth++ [2] and MISFP-Growth [29] are introduced to solve the 
problem of itemset mining under multiple itemset support (MIS) 
thresholds. 

One main hypothesis in most of the above algorithms is that 
database is static, but in real life, databases are continuously 
updated. This reveals that originally discovered association rules 
may no longer be valid and yet new interesting rules or frequent 
itemsets may arise as a result of an update on the database. The 
most straightforward way to update the rules or frequent itemsets 
would be to repeat all entire mining process from the start. 
However this is expensive in terms of execution time and 
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memory, in databases like supermarket sales database with big 
growth rate each day. Therefore various algorithms have been 
introduced in [3, 4, 5, 6, 22, 23, 24, and 25]. These algorithms 
perform faster and use less system resources since they update 
frequent association rules/itemsets by considering only the 
updates instead of repeating all mining process from the 
beginning. 

Most mentioned works handle either the dynamic itemset 
mining with single support threshold or itemset mining with 
multiple support thresholds (MIS), assuming that the database is 
static. There are few existing solutions for dynamic itemset 
mining under MIS [24, 26, 40 and 50]. In our previous work [50] 
we had proposed an algorithm (Dynamic MIS) that handles the 
problem of dynamic itemset mining under multiple item support 
thresholds in order to show the efficiency and limits of that 
algorithm; it was compared with a static algorithm CFP-
Growth++ [2]. We had found out that Dynamic MIS requires huge 
memory since it keeps whole growth tree in the memory all the 
time. In this paper, new dynamic algorithm which is called 
Dynamic CFP-Growth++ is introduced. It allows dynamic itemset 
mining under multiple support thresholds in a style of “build once, 
update many and mine anytime”. It 1) uses pattern growth tree, 2) 
avoids candidate generation and testing, 3) handles all kinds of 
increments as additions, additions with new items and deletions, 
4) assumes that MIS thresholds do not change during increments 
and 5) uses discarding property in its pre-mining phase, that 
allows pruning of items with the support less than minimum of 
MIS and provides better memory usage.   

Proposed algorithm; Dynamic CFP-Growth++, is compared to 
our previous dynamic algorithm; Dynamic MIS [50] and static 
algorithm CFP-Growth++ [2] by using four databases. Execution 
time and memory usage performance of both dynamic algorithms 
over static algorithm is observed while changing the increment 
size. The findings are; as the time consumption 1) Dynamic MIS 
and Dynamic CFP-Growth++ perform better than CFP-Growth++ 
since they run only on increments, 2) Dynamic MIS can achieve 
Speed-up2 of 56 times against CFP-Growth++, whereas the speed-
up of Dynamic CFP-Growth++ cannot exceed 2 times, 3) 
Dynamic CFP-Growth++ is better than CFP-Growth++ until 
increment size is less than 85%  with large and sparse database, 
25% with small and dense database. However the memory usage 
of Dynamic CFP-Growth++ is better than Dynamic MIS with all 
the datasets, this is due to its advantage provided by pruning and 
merging of the tree in pre-mining phase while Dynamic MIS 
keeps the whole tree in memory all the time. 

The organization of this paper is as follows: Section 2 
introduces Dynamic CFP-Growth++ algorithm with tree builder 
and increment handling parts. Section 3 shows the performance 
evaluation. Section 4 discusses the related work and Section 5 is 
dedicated to the conclusion remarks. 

2 DYNAMIC ITEMSET MINING 
In this section, a new dynamic itemset mining algorithm-Dynamic 
CFP-Growth++ is introduced. It maintains tree structure to keep 
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the signatures of the transactions like FP-Growth algorithm [1]. 
Dynamic CFP-Growth++ is customized version of CFP-
Growth++ algorithm [2] in a way to handle increments. In the first 
subsection, a motivating example is illustrated.  

2.1  Motivating Example 
Throughout the text, the following example illustrated in two 
tables is used. Table 1 presents a sample database D that is 
composed of five transactions. Table 2 illustrates the user given 
multiple item support (MIS) for each item in decreasing order. 
The last row of Table 2 presents items’ actual support in the 
database D. As seen from Table 2, MIN MIS (minimum of MIS) 
is 40%. In the right most column of Table 1, the transactions’ 
items are in order of support values as given in Table 2. 

Table 1: Transaction database D [1] 
TID Items Items (ordered) 
100 D, C,A, F A, C, D, F 
200 G, C, A, F, E A, C, E, F, G 
300 B, A, C, F, H A, B, C, F, H 
400 G, B, F B, F, G 
500 B, C B, C 

Table 2: MIS and actual support of items [1] 
Item  A B C D E F G H 
MIS value (%) 80 80 80 60 60 40 40 40 
Actual Support (%) 60 60 80 20 20 80 40 20 

2.2  Dynamic CFP-Growth++ 
This algorithm builds MIS-tree as in [2] from the original 
database D. Each time an incremental database d arrives, it is 
added to the existing tree. This tree is preserved during the arrival 
of updates; pruning and merging operations are carried on as a 
preparation phase before mining. 

 
Figure 1: MIS-tree builder.  

2.2.1  Building MIS-tree. Building the tree is similar to CFP-
Growth++ in [2] and the result tree is shown in Figure 2 for our 
motivating example. Let us explain the pseudo code of MIS-tree 
builder algorithm with our motivating example. MISsorted list is 
created from the MIS values of Table 2. in decreasing order as 
indicated (Line 1). After that the root of MIS-tree and Min 
frequent item header table is created (Lines 2-3). Then the ordered 
items of the MISsorted are inserted into this table with item’s count 
0 (Line 4). The database D is scanned, and the transactions are 

INPUT: database D, Minimum support MIS 
OUTPUT: MISsorted, MIS-tree 
 
BEGIN 
1 Build MISsorted list(in decreasing order)  
2 Create the root of MIS-tree as null 
3 Create Min frequent item header table 
4 Insert items in the table (count=0)  
5 Scan D 
6 FOR each transaction T in D do: 
7 Sort items in T (like MISsorted)       
8 Add T to the tree 
9 END FOR 
10 Calculate the support of items in D 
11 Update supports in the header table 
END 
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added to the-tree (Lines 5-9). The items counts and supports are 
updated. (Lines 10-11). Fig. 2 shows the incompact tree generated 
with the motivating example. 

 
Figure 2:  MIS-tree for the motivating example. 

 

2.2.2  Adding Increments. Let us explain the pseudo code of 
additions in Dynamic CFP-growth++ algorithm shown in Fig. 3. 

 
Figure 3:  Additions. 

When new transactions arrive, they are scanned to be added to 
the tree. The items in the new transaction are sorted in decreasing 
order as MISsorted. Then transactions are added to the tree one by 
one. Each item’s count in this transaction is updated by 
incrementing its count in the primary header table by 1. Then the 
nodes of same item are linked all through the tree to the item in 
the header table of the same figure.  The supports of all items in 
the whole database are calculated then updated in the Min 
frequent item header table. 

2.2.3 Adding Increments with New Items. The input tree for 
this case is the MIS-tree of Fig. 2, incremental database and MIS 
values of new items. The first step is combining the new MIS 
values with the MIS values of the old items to get MISsorted as 
indicated in the Line 1 of the algorithm shown in of Fig. 4.  

New items in MISnew are inserted in the Min frequent item 
header table with item’s count 0, this insertion is done by taking 
into account the MISsorted order (Line 2). Now the increment d is 
scanned, and then sorted according to sorted list of all items. After 
that; the transactions are added to the tree, then the item’s counts 
and node links are updated. From these counts the supports are 
calculated and updated in the header table. 

 

 
Figure 4: Additions with new items. 

2.2.4  Adding Increments with Deletions. The pseudo code of 
deletions in Dynamic CFP-growth++ algorithm is shown in Fig. 5. 
First, deletions are scanned. And then deleted from the MIS-tree, 
some items’ counts are decremented. From these counts supports 
are calculated and updated in the header tables of tree. 

 
Figure 5: Deletions. 

2.2.5 Pre-mining with Dynamic CFP-Growth++. In order to 
construct the compact MIS-tree; pruning and merging operations 
are applied as a preparation phase before mining as in the case of 
CFP-Growth++ algorithm [2]. The MIS-tree is constructed with 
every item in the transaction database. So, LMS (lowest multiple 
supports) and infrequent leaf node pruning, are used to reduce the 
search space. LMS Procedure [2] is used to prune the items that 
cannot generate any frequent pattern. After the tree-pruning 
operation ends; all the supports of the remaining items in the MIS-
tree are greater than LMS value. 

After LMS tree-pruning, tree-merging process (MisMerge[2]) 
is carried out to merge the child nodes of a parent node that share 
a common item. After that; the process of infrequent leaf node 
pruning (InfrequentLeafNodePruning Procedure [2]) is carried on 
the resultant MIS-tree to decrease its size. In this process, among 
the remaining items in the MIS-list of MIS-tree, the items that 
have support less than their required support are deleted only if 
they are leaf nodes.  

Let us apply an example for the preparation of pruning and 
merging on the tree of Fig. 2. The MIS-tree is constructed with 
every item in the transaction database. So, lowest multiple support 
(MIN MIS) and infrequent leaf node pruning are used in pruning 
step to decrease the search space. MIN MIS is 2 (40%) from the 
MIS-tree. As a result, any item that has support less than 2 is 
discarded (i.e., D, H, E). The last item in the MIS-list is G that is 
frequent item. Hence, no tree-pruning operation is done for the 

INPUT: MIS-tree, MISsorted, incremental database d 
OUTPUT: Dynamic MIS-tree 
 
BEGIN 
1 Scan d 
2 FOR each transaction T in d do: 
3       Sort items in T (like MISsorted) 
4       Add T to the tree 
5 END FOR 
6 Calculate the support of all items 
7 Update the supports 
END 

 
 

INPUT: MIS-tree, MISsorted,increment d, MISnew 
OUTPUT: MISsorted, Dynamic MIS-tree 
 
BEGIN 
1 Build MISsorted (MISsorted + MISnew) 
2 Insert new items into primary header table 

(count=0) 
3 Scan d 
4 FOR each transaction T in d do: 
5     Sort items in T (like MISsorted ) 
6     Add T to the tree 
7 END FOR 
8 Calculate the support of all items 
9 Update the supports in the table 
END 

INPUT: MIS-tree, MISsorted, increment d 
OUTPUT: Dynamic MIS-tree 
 
BEGIN 
1 Scan d 
2 FOR each transaction T in d do: 
3  Sort items in T (like MISsorted) 
4 Delete T from the tree 
5 END FOR 
6 Calculate the support of all items 
7 Update the supports in header table 
END 
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item G. The tree-pruning operation ends as the supports of the 
remaining items in the MIS-tree are greater than MIN MIS = 2. 

Tree-merging process is carried out to merge the child nodes 
of a parent node that share a common item like FP-growth given 
in [1] after tree pruning. The result MIS-tree is called compact 
MIS-tree as given in Fig. 6. The process of infrequent leaf node 
pruning is carried on the compact MIS-tree to decrease its size. 
The process is as follows, among the remaining items in the MIS-
list of MIS-tree, A and B are infrequent items (i.e., their support is 
less than the required minsup value). Therefore, using the node-
links of A and B, all the branches containing A or B are collected. 
The branches containing A are {{A, C, F, G: 1}, {A, B, C, F: 1}}. 
In these branches A is not leaf node so it cannot be deleted. B also 
is not a leaf node, it can’t not be removed since the next pattern 
that contains B may be frequent. 

 
Figure 6:  Compact MIS-tree. 

3 PERFORMANCE EVALUATION  
In this section, the proposed algorithm; Dynamic CFP-Growth++ 
is compared to Dynamic MIS [50] and popular tree based 
algorithm, CFP-Growth++ [2]. Before explaining the simulation 
environment and the results of the tests we give complexity 
analysis of the algorithms in the first subsection. 

3.1 Complexity Analysis of Algorithms  
Computational complexity of building the initial tree is same for 
the three compared algorithms. It is O (T * V); where T is the 
number of transactions, and V the average transaction length. It is 
reasonable to conclude that building the tree is directly 
proportional to the density of the dataset. 

The complexity of the pruning procedure in CFP-Growth++ 
[2] and Dynamic CFP-Growth++ is O (N * C) where N is the 
number of nodes holding the items to be pruned, C is the number 
of their children. However in Dynamic MIS [50] the pruning 
procedure is replaced by relocating items between header tables 
which has a complexity of O (N) where N is the number of items 
to be transferred. The merging procedure in CFP-Growth++ and 
Dynamic CFP-Growth++ is O (N2 * K) where N is number of 
nodes in the tree and K is the node links.  

The complexity of adding increments to the tree in the two 
dynamic algorithms (Dynamic MIS and Dynamic CFP-
Growth++) for increments with (Addition, Addition with new 
items and Deletion) is O (T * V) where T is the number of the 
incremental transactions, and V the average transaction length, so 
it is proportional to the number of transactions in the incremental 
database d and its density. 

3.2 Simulation Environment 
Two sets of experiments are carried out in order to measure the 
speed up and memory usage of the algorithms. Four datasets with 
different properties are used in these experiments [28].  Properties 
of two real datasets (D1 and D4) and one synthetic datasets (D2); 
average size of the transactions (T), number of transactions (D), 
number of items (N) and the density  of a dataset that indicates the 
similarity of the transactions are shown in Table 3. 

Table 3: Properties of datasets 

Dataset Type T D N Density 
% 

D1 (Retail) Real 10.3 88162 16470 0.06 
D2 (T40I1D100K) Synthetic 40 100K 942 4.25 
D4 (Kosarak) Real 8.1 990002 41270 0.02 

 

All experiments are implemented on an Intl(R) core i7 -5500u 
CPU@ 2.40 GHz with 8GB main memory, and running on 
Microsoft Windows 10 operating system. All programs are 
implemented on C# environment. 

For the experiments, a method to assign MIS values to items in 
the dataset is needed. The actual supports of the items in the 
dataset are used as the basis for MIS assignments. Specifically, 
the following formulas [12] are used: 

 
f(i) is the actual frequency (or the support expressed in 

percentage of the data set size) of item i in the data. LS is the user-
specified lowest minimum item support allowed. β (0  ≤  β ≤ 1) is 
a parameter that controls how the MIS values for items should be 
related to their actual frequencies. Thus, to set MIS values for 
items; two parameters (β and LS) are used. If β = 0, there is only 
one minimum support, LS, which is the same as the traditional 
association rule mining. If β = 1 and f(i) ≥ LS, f(i) is the MIS 
value for i [12]. This formula is used to generate MIS values to 
algorithms which use multiple support thresholds as in [1, 2, 12 
and 26]. 

3.3  Execution Time  
In this set of experiment the execution time performance of the 
dynamic algorithms Dynamic CFP-Growth++ and Dynamic MIS 
over static algorithm CFP-Growth++ is observed on real and 
synthetic datasets. 

3.3.1  Increments (additions). In this experiment the 
execution time performance of the dynamic algorithms (Dynamic 
MIS and Dynamic CFP-Growth++) and CFP-Growth++ on the 
increments with additions are compared. For this purpose; two 
real datasets D1 and D4 and one synthetic dataset D2 are used. 

In the increments with additions tests, each dataset is divided 
into two parts. The part with D = (100 - x)% from the beginning 
of the transactions forms the initial dataset and the remaining part 
with d = x% of the transactions forms the increments. This 
subsection includes the performance analysis of the algorithms on  
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datasets varying the x (d). The purpose is to observe how the 
addition size of increments affects the performance of the 
algorithms for the datasets. In all splits, the MIS values are kept 
same. To allow variation in MIS values, beta and LS are selected 
as (beta = 0.5 and LS = 0.01). The execution time of Dynamic 
MIS, Dynamic CFP-Growth++ and CFP-Growth++ are measured 
with thirteen splits of 1% - 13% for. Ten splits of 5% to 50% for 
D2, eighteen splits of 5% - 90% for D4.  

The speed-up of the proposed algorithms for additions on 
dataset D1 is illustrated in Fig. 7. For Dynamic MIS; the speed-up 
increases from 22.21 to 55.94 while the split size decreases. For 
Dynamic CFP-Growth++; the speed-up increases from 1.19 to 
1.32 while the split size decreases. The speed-up of the dynamic 
algorithms for additions on dataset D2 is shown in Fig. 8. Speed-
up of Dynamic MIS is from 1.15 to 1.33. For Dynamic CFP-
Growth++; the speed-up decreases from 1.60 to 1.35 while the 
split size increases. 

The speed-up of the dynamic algorithms for additions on 
dataset D4 is shown in Fig. 9. Speed-up of Dynamic MIS is from 
37.67 to 3.61. For Dynamic CFP-Growth++; the speed-up 
decreases from 1.37 to 0.99 while the split size increases. 

It is observed that the highest speed-up occurs when the 
Dynamic MIS runs on D1. The reason for the speed-up of 
dynamic algorithms over CFP-Growth++ is running dynamic 
algorithms on the addition only instead of running from the 
beginning. Speed-up of Dynamic MIS is higher than Dynamic 
CFP-Growth++ because of the structure of the MIS Builder 
algorithm. 

3.3.2  Increments (deletions). The last comparison is to 
determine how the size of deletions affects the performances of 
algorithms. In these tests, the real datasets D1, D4 and the 
synthetic dataset D2 are used. First the datasets are divided into 
two parts like the addition tests. In this experiment, the three 
algorithms are run. The part with D = 100% from the beginning of 
the transactions forms the initial dataset and the remaining part 
with d = x% of the transactions forms the additions. For the tests 

on D = 100% of the transactions of D1 are the initial dataset and 
20% of the transactions of D1 are the additions with deletions. In 
this case of running CFP-Growth++; the number of transactions of 
dataset will be equal to (D - d)%; which is 80% of the database. 
The MIS values are kept same as those in the addition tests.  

The speed-up of the dynamic algorithms for deletions on 
dataset D1 is shown in Fig. 10. For Dynamic MIS; the speed-up 
increases from 2.26 to 44.88 while the split size decreases in D1. 
For Dynamic CFP-Growth++; the speed-up increases from 1.07 to 
1.29 while the split size decreases in D1. The speed-up of the 
dynamic algorithms for deletions on dataset D4 is illustrated in 
Fig. 11. For Dynamic MIS; the speed-up increases from 2.06 to 
40.16 while the split size decreases in D4. For Dynamic CFP-
Growth++; the speed-up increases from 0.15 to 1.28 while the 
split size decreases. The speed-up of the dynamic algorithms for 
deletions on dataset D2 is demonstrated in Fig. 12. For Dynamic 
MIS; the speed-up increases from 1.12 to 1.25 while the split size 
decreases. For Dynamic CFP-Growth++; the speed-up increases 
from 0.84 to 1.22 while the split size decreases.  

The Dynamic MIS and Dynamic CFP-Growth++ have speed-
up over CFP-Growth++, since dynamic algorithms are run on the 
increment only instead of running from the beginning. Also the 
speed-up of Dynamic MIS is higher than Dynamic CFP-
Growth++ because of the structure of the MIS Builder algorithm 
which has two header tables for the items that allow the algorithm 
to execute mining without pruning and merging operations.  

The minimum speed-up of Dynamic CFP-Growth++ algorithm 
is less than 1 since CFP-Growth++ has better performance than 
Dynamic CFP-Growth++ after 10% on D1 and after 15% on D4 
of the incremental size. Speed-up with Dynamic MIS on D2 is 
very small compared to D1 and D4 since dataset D2 is dense and 
has less number of items, whereas D1 and D4 are sparse and have 
larger number of items.  

 

   

Figure 7:  D1 (Retail)–additions Figure 8: D2 (T40I1D100K)–additions Figure 9: D4 (Kosarak)-additions 

   
Figure 10:  D1 (Retail)–deletions Figure 11: D4 (Kosarak)–deletions Figure 12: D2 (T40I1D100K)–deletions 
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3.4  Memory Usage  
In this set of experiment the memory usage performance of the 
dynamic algorithms Dynamic CFP-Growth++ and Dynamic MIS 
is observed on real and synthetic datasets. 

3.4.1 Increments (additions). In this experiment memory 
usage performance of the Dynamic MIS and Dynamic CFP-
Growth++ algorithms on the increments with additions are 
compared. For this purpose; two real datasets D1 and D4 and one 
synthetic dataset D2 are used. Datasets are divided using the same 
strategy in subsection 3.3.1.   

The memory usage performance with different datasets is 
illustrated in the Figures 13, 14 and 15, it is clear that the memory 
consumption by running Dynamic CFP-Growth++   is less that it 
in Dynamic MIS in all cases. This is due to the pruning strategy 
The Memory gain 3 summary of Dynamic CFP-Growth++ over 
Dynamic MIS algorithm for additions is measured. On D1; 
memory gain increases from 2.44 to 3.66 while the split size 
increases. On D2; memory gain increases from 2.82 to 3.03 while 
the split size increases. On D4; memory gain increases from 1.15 
to 2.76 while the split size increases. This memory gain is due to 
the compact structure of the MIS-tree that needs less memory in 
Dynamic CFP-Growth++ compared with Dynamic MIS 
algorithm. 

3.4.2  Increments (deletions).  In this experiment memory 
usage performance of the Dynamic MIS and Dynamic CFP-
Growth++ algorithms on the increments with deletions are 
compared. For this purpose; two real datasets D1 and D4 and one 
synthetic dataset D2 are used. Datasets are divided using the same 
                                                                 
3  Memory gain = ((memory usageDynamic MIS - memory usageDynamic CFP-Growth++) / 
memory usage Dynamic MIS) * 100. 

strategy in subsection 3.3.2. The memory usage performance with 
different datasets is illustrated in the figures 16, 17 and 18. From 
that figures it is clear that the memory consumption by running 
Dynamic CFP-Growth++   is less that it in Dynamic MIS in all 
cases. This is due to the pruning strategy that used in Dynamic 
CFP-Growth++ while Dynamic MIS keep the whole tree in 
memory. On D1; memory gain increases from 3.70 to 6.09 while 
the split size increases. On D2; the speed-up increases from 2.61 
to 6.30 while the split size decreases. On D4; memory gain 
increases from 2.53 to 3.05 while the split size increases. This 
memory gain is due to the compact structure of the MIS-tree. 

4 RELATED WORK  
Dynamic itemset mining algorithms introduced so far achieve 
some level of dynamicity with different interests. Characteristics 
of twenty seven different algorithms are compared in Table 4. The 
type of the algorithm is indicated in the third column as follows. 
“A” means that algorithm is Apriori based; “F” indicates that 
algorithm is FP-Growth algorithm based; “B” presents that 
algorithm uses Border based approach and “O” indicates that 
algorithm uses other data structures like tries and matrices. 
Columns 4-7 indicate attributes corresponding to the behavior of 
the algorithm in handling insertions and deletions in the updates, 
permitting support change and new items in the increments. 8th 
column shows if the algorithm works with or without candidate 
itemsets generation in the itemset mining process. The last column 
shows if the algorithm handles single or multiple support 
thresholds. 

The first group of dynamic algorithms is represented with “A” 
in the third column of Table 4, uses apriori property and employs 
iterative level wise search. Since these algorithms are Apriori 
based, candidate generation and scanning the original database 
several times in some cases are the major disadvantages in terms 
of running time performance. Another disadvantage is that the 

   
Figure 13: D1 (Retail)–addition Figure 14: D2 (T40i10d100K)–addition Figure 15: D4 (Kosarak)–addition 

 
 

 

Figure 16: D1 (Retail)–deletion Figure 17: D2(T40i10d100K)–deletion Figure 18: D4 (Kosarak)–deletion 
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algorithms do not allow support changes during the process. The 
second group of dynamic algorithms is based on the FP-Growth 
Algorithm is presented by “F” in the third column of Table 4. All 
algorithms of this group handle single support threshold except 
the algorithm in Incremental Tuning Tree [26] and Dynamic MIS 
[50].  

Table 4:  Dynamic frequent pattern algorithms 

*Type:  A: Apriori, F: FP-Growth, B: Border, O: Other data structures 
**Support:    S: Single Support,  M: Multiple Support,  UT: Utility  

 

The third group of dynamic algorithms shown with “B” in the 
third column of Table 4, is based on the notion of border theory. 
The Dynamic Borders Algorithm [22] works by constantly 
maintaining the count information for all frequent and border sets 
in the current relation. When an increment arrives, the update is 

scanned to obtain its support for previous frequent and border 
sets. Additional scans of the entire relation are performed only if 
the support of some border set has reached the minimum support 
threshold. There are two algorithms that are border based, 
BORDERS [22] and DARM [34]. The last one is for deletion only 
and does not allow support change. Both algorithms handle single 
support threshold. The last group presents algorithms that use 
different data structures to maintain up-to-date itemsets and are 
shown with “O” in the third column of Table 4. Most of them are 
for single support threshold except Dynamic Matrix with MIS 
[40] that handles multiple support thresholds and the last one 
handles utility thresholds Utility-list [41]. 

5 CONCLUSION 
This study focuses on dynamic update problem of frequent 
itemsets under multiple support thresholds; the challenge is to 
mine frequent itemsets under multiple support thresholds. In this 
study, a new dynamic itemset mining under multiple support 
thresholds algorithm which is called Dynamic CFP-Growth++ is 
introduced and explained, it is tree based, scans the databases only 
once and avoids the candidate generation problem. It handles 
increments of additions, additions with new items and deletions. 
Proposed algorithm is compared to Dynamic MIS [50] and CFP-
Growth++ [2] algorithms which are able to find frequent itemsets 
under multiple support thresholds in dynamic and static databases 
respectively. 

In the performance evaluation work, it is observed that in 
dynamic database, both of the dynamic algorithms are better than 
the static algorithm CFP-Growth++, since they run only for the 
increments, while the static algorithm run from the scratch. It is 
found out that Dynamic CFP-Growth++ performs better than 
Dynamic MIS in terms of memory usage since Dynamic MIS 
algorithm keeps the whole tree in memory without any 
compacting. As execution time performance; Dynamic MIS is 
better than Dynamic CFP-Growth++ since Dynamic CFP-
Growth++ loses time in compacting the tree using pruning and 
merging procedures that have high complexities and as a result 
they need more execution time. As it is observed from the 
experiments, Dynamic CFP-Growth++ and Dynamic MIS have a 
trade-off relationship in terms of memory usage and execution 
time. 
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