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Neural Network Based Repetitive Learning Control of Robot Manipulators

Necati Cobanoglu, Enver Tatlicioglu*, and Erkan Zergeroglu

Abstract— Control of robot manipulators performing peri-
odic tasks is considered in this work. The control problem is
complicated by presence of uncertainties in the robot manip-
ulator’s dynamic model. To address this restriction, a model
free repetitive learning controller design is aimed. To reduce
the heavy control effort, a neural network based compensation
term is fused with the repetitive learning controller. The
convergence of the tracking error to the origin is ensured
via Lyapunov based techniques. Numerical simulations and
experiments are performed to demonstrate the viability of the
proposed controller.

I. INTRODUCTION

Several tasks performed by robot manipulators require the
joints to track periodic reference positions. In performing
these periodic tasks, in addition to standard robot controllers,
learning controllers are also preferred. When robot manipu-
lator’s dynamic model is uncertain learning controllers have
the advantage of learning the uncertainties of the dynamic
model via an update law. More can be found about learning
controllers in the surveys [1], [2] and in [3].

A good amount of past research was devoted to repetitive
learning controller design and their extensions. The main us-
age of repetitive learning controllers is for tracking or reject-
ing periodic signals with known period. Some of the earlier
works are [4], [5], [6], [7]. Later to ensure boundedness of
the closed loop signals saturation function based update laws
were proposed in [8] and [9]. In some recent works, such as
[10], a linearized update law was obtained from the saturation
function based by using Pade approximants. While this
approach allowed utilizing linear controllers in conjunction
with the learning law, asymptotic stability obtained in the
previous works was lost and convergence of the tracking
error to a hyperball centered at the origin (whose size can
be reduced with increasing control gains) can be ensured.
Some other extensions [11] and several applications [12] of
repetitive learning controllers are also available.

A shortcoming of the repetitive learning controllers is the
learning of the uncertainties in the dynamic model as a
whole. This yields an increased feedback gain in the learning
update rule which may cause chattering like problems at the
end of the periods. To propose a solution, in this work, neural
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networks are considered to be used in conjunction with repet-
itive learning controllers having a saturation function based
update rule. The main reason of preferring neural networks
is their performance in learning modeling uncertainties [13],
[14]. Specifically, the uncertainties in the dynamic model
are combined in a vector and a one layer neural network
model of this vector is considered. A novel nonlinear propor-
tional derivative (PD) controller having a repetitive learning
component and a neural network component is designed.
Neural networks are considered to learn some part of the
modeling uncertainties while repetitive learning controller
will compensate for the rest of the modeling uncertainties.
Stability of the closed loop system is investigated with
Lyapunov based stability analysis methods and asymptotic
stability of the joint position tracking error is ensured. To
back the stability analysis up, results of simulations and
experiments are presented.

II. DYNAMIC MODEL AND MODEL PROPERTIES

The dynamic/mathematical model of an n degree of free-
dom revolute joint robot manipulator is given as [15]

M(q)i+C(q,4)4+G(q) +Fag=7 (1)

where ¢(t), ¢(t), ¢(t) € R™ denote joint positions, velocities,
and accelerations respectively, M (q) € R™*™ is the inertia
matrix, C(g,q) € R™*™ is the centripetal Coriolis matrix,
G(q) € R”™ represents the gravitational effects, Fy € R™"*™
denotes the constant frictional effects, and 7(¢) € R™ is the
control input torque.

The dynamic model terms satisfy the standard properties
given below.

Property 1: The inertia matrix is positive definite and
symmetric and satisfies the following inequalities [15]

m |l <n"M(q)n <m|nl VneR" 2)

where m, m are known positive bounding constants.
Property 2: The inertia matrix and the centripetal Coriolis
matrix satisfy the skew symmetry property [15]

nT(M—C>n:OVneR". 3)
Property 3: The norms of the dynamic model terms can
be upper bounded as [15]

1C(0: Dllioe < Celldll » I1G (@I <G

[Falljo0 < Cr
4)
where (., (4, (7 are known positive bounding constants, and

||-||;oc is the induced infinity norm of a matrix.
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III. ERROR SYSTEM DEVELOPMENT AND CONTROL
DESIGN

The main objective of the control input torque design
is to ensure tracking of a periodic desired joint position
vector. Mathematically speaking, ¢ (t) — g¢q(t) is aimed
where ¢4 (t) € R™ is periodic with a known period T in
the sense that g4 (t) = qu(t —T), ga(t) = qa(t—T),
Ga (t) = Ga (t — T). Desired joint position vector and its time
derivatives are bounded functions of time.

The control problem is constrained by the dynamic model
terms in (1) being uncertain and thus are not available for
control design. In view of this, the control design should be
model independent.

The joint position tracking error e (¢t) € R™ is defined as

e qq—q. (5)
Another error, shown with r (t) € R", is defined as
r&é4 ae (6)

where o € R™ "™ is a constant, positive definite, diagonal
control gain matrix. In an attempt to obtain open loop error
system for r (¢), first the time derivative of (6) is taken which
is then multiplied with the inertia matrix to yield

Mr=—-Cr—174+Q @)

where (1) and (6) were utilized and Q2 (q, ¢, e, ¢, Gq) € R™ is
defined as

Q£ M (q) (§a+ o€) + C(q,4) (4a + ce) + G (q) + Fag.

(®)
An auxiliary vector, shown with Qg (g4, da,da) € R™, is
obtained by setting ¢ — ¢4 and ¢ — ¢4 in ) which is
given as

Qa = M (qa) Ga + C (qa, 4a) da + G (¢ga) + Fada. (9

Property 4: Via utilizing the universal approximation
property of neural networks [13], [14], [16], [17], the aux-
iliary vector €24 is considered to be written with one layer
neural network as [15]

Qi=¢lo+e (10)

where ¢ € R3"*" is the constant ideal weight ma-
trix, o (zqy) € R3" is the activation function, €(z4) €
R™ is the functional reconstruction error, and z4(t) =
[qi 47 ay }T € R3" is the combined form of desired
joint position and its time derivatives. For feedback control
using neural networks, usually the activation function is
required to be smooth enough so that at least its first time
derivative exists. To meet this requirement, in this work,
hyperbolic tangent function is preferred as the activation
function. The entries of the functional reconstruction error

are bounded in the sense that [13]
€ > e (xg)| Vi=1,---,n (11

where €; are constant, positive bounding scalars. Further-
more, since the functional reconstruction error is a function

of only the desired joint position and its time derivatives, it
is also periodic with period 7.

An auxiliary error-like term, shown with x (¢) € R", is
defined as

Y2Q- 0, (12)

It is remarked that, as shown in [8], the norm of x can be
upper bounded as

IxIl < o (el =] (13)

where p (|le]|) € R is a known, positive bounding function
and z(t) £ [ el o7 ]T € R?" is the combined error
vector.

In view of (10) and (12), (7) can be rewritten as

Mi=—-Cr—14+¢ o+e+x. (14)

Based on the open loop error system in (14), the control
input torque is designed as

=K+ kap?r+e4+ée(t)+Q(1t) (15)

where K. € R™*" is a constant, positive definite, diagonal
control gain matrix, k, € R is a constant, positive scalar
damping gain. In (15), € (¢) € R™ is the learning component
of the control input torque that is updated according to

é(t) = Sat; (¢ (t —T)) + kyr (16)

where k; € R is a constant, positive scalar control gain,
Sat is the vector form of the standard saturation function
where € £ [ & En ]T denotes its limits. Also in (15),
Q (t) € R™ is the neural network component of the control
input torque that is generated as

O=¢%0 (17)

where ¢ (t) € R3"X™ is the estimated weight matrix gener-
ated online according to

¢ = kpnor’ (18)

where k., € R is a constant, positive scalar control gain.
When boundedness of the entries of ¢ (¢) is a concern, a
projection algorithm (such as the one in [18]) can be utilized
on the right hand side of (18) to keep them remain between
some lower and upper bounds.

From the control input torque in (15) and its components
in (16) and (17), it is clear that knowledge of dynamic model
terms in (1) is not required by the control input torque design.
The control input torque in (15) can be considered as a
nonlinear PD controller with repetitive learning and neural
network components. Each term of the control input torque
in (15) are now discussed briefly. The term K,.r is a feedback
term, the term k,, p?r is introduced to damp out the negative
effects of x in the open loop error system, the term e will
cancel a cross term that will appear in the Lyapunov type
stability analysis, the term O (t) is introduced to update the
neural network weight matrix, while € (¢) will compensate
for the negative effects of the functional reconstruction error.
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Substituting the control input torque in (15) into the open
loop error system in (14) gives the following closed loop
error system

Mi=—-Cr—Ko—e+x—kpp*r+e—é+@lo (19)

where ¢ (t) € R3"*" is the difference between the ideal
weight matrix and the estimated weight matrix

~ A ~

p=¢9 - (20)

IV. STABILITY ANALYSIS

Now the stability of the closed loop error system will be
investigated. Lyapunov based stability analysis method will
be preferred. Following theorem is introduced.

Theorem 1: Let V (t) € R be defined as
L7

56 e—|—2

1 t
+— Satz (e (v)) —
el )

Vo2 r Mr +

ann tw{@" ¢}

Satz (¢ (v))||? dv(21)

where tr{-} is the trace operator. From the above definition,
V (t) is non-negative. Taking the time derivative of the
Lyapunov function gives
. 1 - 1 .
Vo= eletr"Mi+ ST Mr + —u{@p" ¢}
2 Knn

+2Lkl ISate (e (t)) — Sate (¢ ()|

1
— s lISate (e (t = 7)) = Sate (¢ ¢ - T)|*22)
1
where Leibniz rule [19] was utilized. Substitutions from the
error system will be done subsequently. Before that the term
in the last line of the time derivative of the Lyapunov function

is examined

Sate (e (t —T)) — Sate (¢ (t — T))
Satz (e (t)) — € (t) + kyr
= e(t)—€e(®t)+kr

where for the first equality the periodicity of € (¢) and (16)
were utilized, while the boundedness of the entries of € ()
in (11) yielded the second equality. Substituting (6) for é,
(19) for M, (18) along with the time derivative of (20) for
gZ, and (23) into (22) is found as

(23)

V _ eT(T7a€)+TT(7CT7KTT*6+X*knp2T
1
+e—e+ga cr)+2r —u{g’or’}
L sate (e (1) — sate (¢ (1))
—&(t) + k|| 24)

Following property of the trace operator is essential [15]

tr{p or’} =rTplo. (25)

From (24), canceling out common terms, utilizing skew
symmetry property in (3), substituting (25), rewriting the last
term, and then regrouping results in

V = —eTae—rTK.r +17 (x = kup?r) +177 (e — €)
o Isate (e (6) = Sate (e (1)
o @) = eI = (e(t) - ()" ¥
2 e 26)

from which canceling out common terms gives
Vv = —fae—rTK,r— 51 r)® + 77 (x — knp®r)
. 2
ok |152te (1)) = Sate (€ ()]
2
lell e(t) —e@I".

Utilizing (13) with the bracketed term in the first line gives

T (= k) < plirl 2] = kup? Il
_ —(van—

=

27)

2
. ||Z||>
2V kn

4k

2
< — . 28
< ol e8)
If |le(t)—¢ (t)H2 can be proven to be greater than
||Satz (e (t)) — Satz (€ (t))||2 then asymptotic stability can be
achieved. From [9], it is clear that

e (t) — € (1)]|* > ||Sate (e () — Sate (e (1) (29)
Combining (28) and (29) with (27) gives
vV < —eT&e—TTKrT— 2 lIr [ + ||Z||

. k‘l 2
< — |min{Amin (@), Amin (K) + — 5 k [E
— Bl (30)
. .. A . kl 1

with positive 5 = [ min{Amin (@) , Amin (Kr) + — 5

where Apin (@) and Ay (K-) denote the minimum
eigenvalue of o and K., respectively. From the structures
of (21) and (30), V (t) € Lo can be concluded. And from
1), e(t), r (t) € Lo follows. From (6), é (t) € L, can be
shown. From (5) and its time derivative, ¢ (¢), ¢ (t) € L
are proven. Utilizing the above boundedness statements
along with the boundedness of the desired trajectory and its
time derivatives, from (8), 2 (t) € L can be proven. Since
the output of the saturation function is always bounded then
from (16), € (t) € L is ensured. Provided that ¢ (t) € L
(which can be ensured via utilizing a bounding projection
algorithm as in [18]), from (17), Q (t) € L. These
boundedness statements can be used with (15) to prove
7(t) € L. And from (7), 7 (t) € Lo can be ensured,
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from which ¢ (t) € Lo can be guaranteed. The remaining
terms can be proven as bounded via utilizing standard signal
chasing techniques.

Integrating (30) in time from the initial time ¢ to ¢ = +00
yields

+oo

Bllz@®)[>dt <V (to) — V (+00) < V (to)  (31)

to

from which z (t) € L5 is proven. Since z (1), 2 (t) € Lo was
shown as well, then from Barbalat’s Lemma in [18], [20],
Iz (t)]] — 0 as t — +oo is guaranteed and thus achieving
asymptotic joint position tracking.

V. SIMULATION RESULTS

Numerical simulations were performed with the dynamic
model of a two degree of freedom planar robot manipulator.
The dynamic model in (1) was considered with the following
terms

M o= [ p1+2psca p2+ psco ] (32)
| D2 +p3c2 D2

o - [ —P3saga —p3s2(gi + ga) } (33)

P352q1 0

a = [ paci +pserz } (34)
L PsC12

Fpo= | P80 } (35)
| 0 pr

in which sy = sin(gz), ca = cos(q2), c12 = cos(q1 + ¢2),
p1 = 3.473, po = 0.193, ps = 0.242, py = 12.936,
ps = 3.528, pg = 5.3, p;y = 1.1. It is highlighted that, when
performing the numerical simulations, the above dynamic
model was utilized only to simulate the motion of the robot
manipulator and was not utilized as part of the control input
torque.

The periodic desired joint position vector was selected as

0.3sin(1.5¢)

9= | 057+ 0.3sin(1.5¢) |24

(36)
The robot manipulator is considered to be at rest with the
initial joint position as ¢ (0) = [0.3,0.3]" rad. The initial
values of the entries of the estimated weight matrix were
set to zero while hyperbolic tangnt function was chosen as
the activation function. The control gains were adjusted via
trial and error and the gain of r (¢) in (15) is considered
to be constant and combined in K,. Satisfactory tracking
performance is obtained when the control gains were chosen
as K. =515, a=1, k;,=0.1 and k,,, = 15.

The results of the simulation are given in Figures 1-4. The
joint position tracking error e (t) is given in Figure 1 while
the actual and desired joint positions are presented in Figure
2. From Figures 1 and 2 it is clear that the tracking control
objective was met. The control input torque is demonstrated
in Figure 3 while the entries of the estimated weight matrix
are shown in Figure 4.

Error for Link 1

0.2 T T T T T T T T T
ok
°
o
0.2 1
0.4 . . . . . . . . .
0 10 20 30 40 50 60 70 80 90 100
time(sec)
Error for Link 2
1.5 T T "
1 ]
8 05 i
ok
05 . . . . . . . . .
0 10 20 30 40 50 60 70 80 90 100
time(sec)
Fig. 1. Joint position tracking error e (¢)
For Link 1
0.4 T T T T T T T T T
0
0.2
/
§ of
0.2 ¥ Actual position
***** Desired position
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0 10 20 30 40 50 60 70 80 90 100
time
For Link 2
2 T T T T . T T T T
05} Actual position
0 X X X X X N Desired position
0 10 20 30 40 50 60 70 80 90 100
time
Fig. 2. Joint position ¢ (¢) and desired joint position g4 (t)

VI. EXPERIMENTAL RESULTS

Preliminary experiments were performed by utilizing the
last two links (i.e., links 2 and 3) of the in—house developed 3
degree of freedom planar robot manipulator shown in Figure
5. In the experiments, the desired joint positions given in
(36) were utilized. The robot manipulator was considered to
be at rest with the initial joint position as ¢ (0) = [0.0,0.0]"
rad. The entries of the estimated weight matrix were initiated
from zero while activation function was chosen as hyperbolic
tangent function. Similar to the numerical simulations, the
control gains were adjusted via trial and error and the gain
of r(¢) in (15) is considered to be constant and combined
in K,.

Satisfactory tracking performance was obtained when the
control gains were chosen as K,, =5, a = 2, k; = 0.05 and
knn = 15.

The experiment results are given in Figures 6-9. The joint
position tracking error e (t) is given in Figure 6 while the
actual and desired joint positions are presented in Figure 7.
From Figures 6 and 7 it is clear that the tracking control
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Fig. 4. Entries of the estimated weight matrix ¢ (t)

objective was met. The control input torque is demonstrated
in Figure 8 while the entries of the estimated weight matrix
are shown in Figure 9.

VII. SUMMARY, COMPARISONS AND FUTURE WORKS

In this paper, control of robot manipulators performing a
periodic task was considered. Robot manipulator’s dynamic
model was considered to be unavailable for the control
design. Restricted by these, a neural network based repetitive
learning controller was designed. Stability of the closed
loop system was investigated via Lyapunov type tools and
asymptotic stability of the joint position tracking error was
guaranteed. Simulations and initial experiments were per-
formed that demonstrated the performance of the proposed
controller.

A brief comparison of the proposed study with some
of the closest works in the literature will be given. When
compared with the saturation function based repetitive learn-
ing controller in [9], the proposed controller includes a
neural network compensation component which results in

Fig. 5. The 3 degree of freedom robot manipulator
Error for Link 1

0.05 T T T T T T T : :

JAVAVAVAVAVAVAVAVAVAVAVAY

k<)
o
-0.05 1
04 . . . . . . . . .
0 5 10 15 20 25 30 35 40 45 50
[time(sec)]
Error for Link 2

2 T T T . . : T T T

’ i
i<)
o

ok

A . . . . . . . . .

0 5 10 15 20 25 30 35 40 45 50
[time(sec)]
Fig. 6. Joint position tracking error e (t)

the feedback gain of the learning update rule to be reduced
significantly. In [9], an adaptive repetitive controller was also
designed and when compared with it, the proposed controller
is globally model independent and thus does not require
a regressor matrix to be obtained. On the other hand, a
comparison can be made with some of the neural network
controllers in the literature. With the standard neural network
controllers, usually only an ultimately bounded result can
be obtained mostly because of the functional reconstruction
error. An attempt to obtain asymptotic stability with a neural
network controller was presented in [21] where asymptotic
stability was obtained for a variable structure controller. On
the other hand, in our work, asymptotic stability was ensured.

There are several possible research avenues that may be
considered for future work. One line of future research will
focus on rewriting the uncertain vector {5 with a two layer
neural network model. The nonlinearity of the two layer
neural networks avoided us to design the update rules for
the weight matrices, thus, first future work will be based
on modeling the uncertain vector with two layer neural
networks. Other line of future work will focus on performing
comparative simulations and experiments with some of the
closest works in the literature. Designing an output feedback
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Fig. 7. Joint position ¢ (¢) and desired joint position g4 (t)
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Fig. 8. Control input torque 7 (t)

form of the proposed control which is equivalent to removing
the need for joint velocity measurements is also aimed.
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