Poor and pi-poor Abelian groups

Rafail Alizade^a and Engin Büyükaşık^b

^aDepartment of Mathematics, Yaşar University, Bornova, Izmir, Turkey; ^bDepartment of Mathematics, Izmir Institute of Technology, Urla, Izmir, Turkey

ABSTRACT

In this paper, poor abelian groups are characterized. It is proved that an abelian group is poor if and only if its torsion part contains a direct summand isomorphic to $\bigoplus_{p \in P} \mathbb{Z}_p$, where *P* is the set of prime integers. We also prove that pi-poor abelian groups exist. Namely, it is proved that the direct sum of $U^{(\mathbb{N})}$, where *U* ranges over all nonisomorphic uniform abelian groups, is pi-poor. Moreover, for a pi-poor abelian group *M*, it is shown that *M* can not be torsion, and each *p*-primary component of *M* is unbounded. Finally, we show that there are pi-poor groups which are not poor, and vise versa.

ARTICLE HISTORY

Received 6 May 2015 Revised 3 November 2015 Communicated by A. Facchini

KEYWORDS

Injective module; pi-poor abelian groups; poor abelian groups; pure-injective module

2000 MATHEMATICS SUBJECT CLASSIFICATION 13C05; 13C11; 13C99; 20E34; 20E99

1. Introduction

Let *R* be a ring with an identity element and *Mod-R* be the category of right *R*-modules. Recall that a right *R*-module *M* is said to be an *N*-injective (or injective relative to *N*) if for every submodule *K* of *N* and every morphism $f : K \to M$ there exists a morphism $\overline{f} : N \to M$ such that $\overline{f}|_K = f$. For a module *M*, as in [2], the injectivity domain of *M* is defined to be the collection of modules *N* such that *M* is an *N*-injective, that is, $\Im n^{-1}(M) = \{N \in Mod - R | M \text{ is } N\text{-injective}\}$. Clearly, for any right *R*-module *M*, semisimple modules in *Mod-R* are contained in $\Im n^{-1}(M)$, and *M* is an injective if and only if $\Im n^{-1}(M) = Mod-R$. Following [1], *M* is called *poor* if for every right *R*-module *N*, *M* is an *N*-injective only if *N* is semisimple, i.e., $\Im n^{-1}(M)$ is exactly the class of all semisimple right *R*-modules. Poor modules exist over arbitrary rings [3, Proposition 1]. Although poor modules exist over arbitrary rings, their structure is not known over certain rings including also the ring of integers.

A right *R*-module *N* is *pure-split* if every pure submodule of *N* is a direct summand. Let *K* and *N* be right *R*-modules. *K* is an *N*-*pure-injective* if for each pure submodule *L* of *N* every homomorphism $f : L \rightarrow K$ can be extended to a homomorphism $g : N \rightarrow K$. Following [7], a right *R*-module *M* is called *pure-injectively poor (or simply pi-poor)* if whenever *M* is an *N*-pure-injective, then *N* is pure-split. It is not known whether pi-poor modules exist over arbitrary rings. In particular, in [7], some classes of abelian groups that are not pi-poor are given but the authors point out that they do not know whether a pi-poor abelian group exists.

The purpose of this paper is to give a characterization of poor abelian groups and also to prove that pi-poor abelian groups exist.

Namely, in Section 3, we prove that an abelian group *G* is poor if and only if the torsion part of *G* contains a direct summand isomorphic to $\bigoplus_{p \in P} \mathbb{Z}_p$, where *P* is the set of prime integers (Theorem 3.1).

Section 4 is devoted to the proof of the existence of pi-poor abelian groups. Let $\{A_{\gamma} | \gamma \in \Gamma\}$ be a complete set of representatives of isomorphism classes of reduced uniform groups. We prove that the

CONTACT Engİn Büyükaşık ale enginbuyukasik@iyte.edu.tr Department of Mathematics, Izmir Institute of Technology, Gülbahçeköyü, Urla, Izmir 35430, Turkey.

group $M = \bigoplus_{\gamma \in \Gamma} A_{\gamma}^{(\mathbb{N})}$ is pi-poor (Theorem 4.1). In addition, it is proved that if *G* is a pi-poor abelian group, then *G* is not torsion, and the *p*-primary component $T_p(G)$ of *G* is unbounded for each prime *p*.

2. Definitions and preliminaries

We recall some definitions and results which will be useful in the sequel. For more details, we refer the reader to [5]. By group, we will mean an abelian group throughout the paper. Let $p \in P$ be a prime integer. A group *G* is called *p*-group if every nonzero element of *G* has order p^n for some $n \in \mathbb{Z}^+$. For a group *G*, T(G) denotes the torsion submodule of *G*. The set $T_p(G) = \{a \in G | p^k a = 0 \text{ for some } k \in \mathbb{Z}^+\}$ is a subgroup of *G*, which is called the *p*-primary component of *G*. For every torsion group *G*, we have $G = \bigoplus_{p \in P} T_p(G)$. A subgroup *A* of a group *B* is pure in *B* if $nA = A \cap nB$ for each integer *n*. A monomorphism (resp. epimorphism) $\alpha : A \to B$ of abelian groups is called *pure* if $\alpha(A)$ (resp. Ker(α)) is pure in *B*. For any group *G*, the subgroups T(G) and $T_p(G)$ are pure in *G*. A group *G* is said to be *bounded* if nG = 0, for some nonzero integer *n*. Bounded groups are direct sum of cyclic groups [5, Theorem 17.2]. A group *G* is called a *divisible group* if nG = G for each positive integer *n*. A group *G* contains a largest divisible subgroup. Therefore, *G* can be written as $G = N \oplus D$, where *N* is reduced and *D* is divisible subgroup of *G*.

Definition 2.1 (see [5]). Let $p \in P$. A subgroup *B* of a group *A* is called a *p*-basic subgroup of *B* if it satisfies the following three conditions:

- (i) *B* is a direct sum of cyclic *p*-groups and infinite cyclic groups;
- (ii) B is p-pure in A;
- (iii) A/B is *p*-divisible, i.e., p(A/B) = A/B.

Lemma 2.2.

- (a) [5, Theorem 32.3] Every group G contains a p-basic subgroup for each $p \in P$.
- (b) [5, Theorem 27.5] If H is a pure and bounded subgroup of a group G, then H is a direct summand of G.

For $q \neq p$ *q*-basic subgroups of *p*-groups are 0, so only *p*-basic subgroups of *p*-groups may be nontrivial. Therefore, they are usually called simply basic subgroups. Clearly, basic subgroups of *p*groups are pure. Subgroups of the group of the rational integers \mathbb{Q} are called *rational* groups. Let *A* be a uniform group. Then, it is easy to see that either *A* is isomorphic to a rational group or $A \cong \mathbb{Z}_{p^n}$ for some $p \in P$ and $n \in \mathbb{Z}^+$. For a torsion-free group *G*, we shall denote the (torsion-free) rank (=uniform dimension) of *G* by $r_0(G)$ [5]. By [5, page 86, Example 3], $r_0(G) = r_0(H) + r_0(G/H)$ for each subgroup *H* of *G*. A torsion-free group *G* is said to be *completely decomposable* if $G = \bigoplus_{i \in I} K_i$, where *I* is an index set and each K_i is isomorphic to a rational group, i.e., $r_0(K_i) = 1$ for each $i \in I$.

3. Poor Abelian groups

In this section, we give a characterization of poor groups. The authors prove that the group $\bigoplus_{p \in P} \mathbb{Z}_p$ is poor [1]. The following result shows that this group is crucial in investigation of poor groups.

Theorem 3.1. A group is poor if and only if its torsion part has a direct summand isomorphic to $\bigoplus_{p \in P} \mathbb{Z}_p$.

Proof. To prove the necessity, let *G* be a poor group and let *p* be any prime. If $T_p(G) = 0$, then *G* is an *N*-injective for every *p*-group *N*, therefore $T_p(G) \neq 0$. If every element of order *p* of *G* is divisible by *p*, then *G* is \mathbb{Z}_{p^2} -injective since \mathbb{Z}_{p^2} has only one nontrivial subgroup: $p\mathbb{Z}_{p^2}$. So there is at least one element a_p with $|a_p| = p$, that is, not divisible by *p*. Then the cyclic group $< a_p >$ is a *p*-pure subgroup of $T_p(G)$, therefore a pure subgroup of $T_p(G)$. Since bounded pure subgroups are direct summands, $< a_p >$ is a

direct summand of $T_p(G)$. Hence $\bigoplus_{p \in P} \langle a_p \rangle$ is a direct summand of $\bigoplus_{p \in P} T_p(G) = T(G)$. Clearly, $\bigoplus_{p \in P} \langle a_p \rangle \cong \bigoplus_{p \in P} \mathbb{Z}_p$.

Conversely, suppose that T(G) contains a direct summand isomorphic to $\oplus \mathbb{Z}_p$. Let V be a direct summand of T(G) such that $V \cong \mathbb{Z}_p$. Then, V is pure in G because T(G) is pure in G. So V is a direct summand in G by [5, Theorem 27.5]. This implies, for each prime p, G contains a direct summand isomorphic to \mathbb{Z}_p . Now, suppose G is an N-injective for some group N. Then \mathbb{Z}_p is an N-injective for each prime p. Suppose that N is not semisimple (not elementary in terminology of [5]). Then, there is an element a of infinite order or with $o(a) = p^n$, where p is a prime and n > 1. In first case, $\langle a \rangle = \mathbb{Z}$ and in second case, $\langle a \rangle = \mathbb{Z}_p^{n}$. So \mathbb{Z}_p must be \mathbb{Z} -injective or \mathbb{Z}_{p^n} -injective by [8, Proposition 1.4]. But the homomorphism $f : p\mathbb{Z} \to \mathbb{Z}_p$ with f(p) = 1 cannot be extended to $g : \mathbb{Z} \to \mathbb{Z}_p$ since otherwise 1 = f(p) = g(p) = pg(1) = 0 and \mathbb{Z}_p is isomorphic to the subgroup $\langle p^{n-1} \rangle$ of \mathbb{Z}_{p^n} , which is not a direct summand of \mathbb{Z}_{p^n} . So in both cases we get a contradiction, that is, N is semisimple.

The following is a consequence of Theorem 3.1.

Corollary 3.2. For a group *G*, the following are equivalent.

- (1) G is poor.
- (2) The reduced part of G is poor.
- (3) T(G) is poor.
- (4) For each prime p, G has a direct summand isomorphic to \mathbb{Z}_p .

4. Pi-poor Abelian groups

The authors investigate the notion of pi-poor module and study properties of these modules over various rings [7]. In particular, they give some classes of groups that are not pi-poor and point out that they do not know whether a pi-poor group exists or not. In this section, we shall prove that pi-poor groups exist.

Theorem 4.1. Let $\{A_{\gamma} | \gamma \in \Gamma\}$ be a complete set of representatives of isomorphism classes of uniform groups. Then the group

$$M = \bigoplus_{\gamma \in \Gamma} A_{\gamma}^{(\mathbb{N})}$$

is pi-poor.

Before proving the theorem, we will first give some lemmas. Throughout this section, M denotes the group given in Theorem 4.1.

The following result is well known. We include it for completeness.

Lemma 4.2. Let R be a ring and L, N be right R-modules. Let K be a pure submodule of N. If L is an N-pure-injective, then L is both K-pure-injective and N/K-pure-injective.

Proof. Let *A* be a pure submodule of *K* and $f : A \to L$ be a homomorphism. Then *A* is pure in *N*, and so *f* extends to a map $g : N \to L$. Clearly, $g|_K : K \to L$ is an extension of *f* to *K*. Hence *L* is *K*-pure-injective. Now, let *X*/*K* be a pure submodule of *N*/*K* and $f : X/K \to L$ be a homomorphism. Since *K* is pure in *N* and *X*/*K* is pure in *N*/*K*, *X* is pure in *N*. Therefore, there is a homomorphism $g : N \to L$ such that $f\pi' = gi$, where $i : X \to N$ is the inclusion and $\pi' : X \to X/K$ is the usual epimorphism. Since g(K) = 0, Ker $(\pi) \subseteq$ Ker(g), where $\pi : N \to N/K$ is the usual epimorphism. Therefore, there is a homomorphism $h : N/K \to L$ such that $h\pi = g$. Then for each $x \in X$, $h(x + K) = h(\pi(x)) = g(x) = (f\pi')(x) = f(x + K)$. That is, *h* extends *f*. Hence, *L* is an *N*/*K*-pure-injective.

Lemma 4.3. Let G be a reduced torsion group. The following are equivalent.

- (1) *M* is *G*-pure-injective.
- (2) $T_p(G)$ is bounded for each $p \in P$.
- (3) *G* is pure-split.

Proof.

(1) \Rightarrow (2) Write $G = \bigoplus_{p \in P} T_p(G)$. Let $B_p(G)$ be a basic subgroup of $T_p(G)$. Then $B_p(G)$ is pure in $T_p(G)$, and so in G and $T_p(G)/B_p(G)$ is divisible. We claim that $B_p(G)$ is bounded. Suppose the contrary that $B_p(G)$ is not bounded. Then for every positive integer n, $B_p(G)$ contains an element of order p^n . In this case, since $B_p(G)$ is a direct sum of cyclic p-groups, there is an epimorphism

$$B_p(G) \stackrel{g}{\to} \mathbb{Z}_{p^{\infty}} \to 0,$$

where the restrictions of g to the cyclic summands of $B_p(G)$ are monic. It can be proved as in [5, Lemma 30.1] that g is a pure epimorphism, i.e., K = Ker(g) is a pure submodule of $B_p(G)$. Now, K is pure in $B_p(G)$ and is a direct sum of cyclic p-groups. Since M contains a direct summand isomorphic to K, and $B_p(G)$ is a pure subgroup of G, K is $B_p(G)$ -pure-injective. Therefore $B_p(G) \cong K \oplus \mathbb{Z}_{p^{\infty}}$. This contradicts with the fact that $B_p(G)$ is reduced. Hence $B_p(G)$ is bounded, and so $B_p(G)$ is a direct summand of G. The fact that G is reduced and $T_p(G)/B_p(G)$ divisible implies that $B_p(G) = T_p(G)$.

(2) \Rightarrow (3) Let *H* be a pure subgroup of *G*. Since $G = \bigoplus_{p \in P} T_p(G)$ and $H = \bigoplus_{p \in P} T_p(H)$, $T_p(H)$ is a pure subgroup of $T_p(G)$. Then, $T_p(H)$ is a direct summand of $T_p(G)$ by [5, Theorem 27.5]. Let $T_p(G) = T_p(H) \oplus N_p$, where $N_p \leq G$. Then $G = \bigoplus_{p \in P} [T_p(H) \oplus N_p] = (\bigoplus_{p \in P} T_p(H)) \oplus (\bigoplus_{p \in P} N_p) = H \oplus (\bigoplus_{p \in P} N_p)$. Hence *G* is pure-split.

 $(3) \Rightarrow (1)$ Clear by the definition.

Remark 4.4. Pure-split groups are completely characterized in [4]. The implications (2) \Leftrightarrow (3) in Lemma 4.3 also can be found in [4].

Lemma 4.5. Let B be a p-group. Suppose that M is B-pure-injective. Then B is pure-split.

Proof. Let *D* be the divisible subgroup of *B* and *A* be a pure subgroup of *B*. Then $B = C \oplus D$ for some reduced group *C*. Let D_A be the divisible subgroup of *A*. Then $D_A \leq D$ and $D = D_1 \oplus D_A$ for some $D_1 \leq D$. So $B = C \oplus D_1 \oplus D_A = E \oplus D_A$, where $E = C \oplus D_1$. By modular law, $A = (E \cap A) \oplus D_A$. Then $L = E \cap A$ is a pure submodule of *B*. Hence, *M* is *L*-pure-injective, and $L \cong A/D_A$ is reduced. Therefore, *L* is bounded by Lemma 4.3. Since *L* is pure in *B*, *L* is also pure in *E*. Then, $E = K \oplus L$ for some $K \leq E$ by [5, Theorem 27.5]. Then $B = E \oplus D_A = K \oplus L \oplus D_A = K \oplus A$. So *A* is a direct summand in *B*. Hence *B* is pure-split.

Lemma 4.6. If N is a reduced torsion-free group such that M is an N-pure-injective then N is pure-split. *Moreover,* N is completely decomposable with finite rank.

Proof. Take any $0 \neq a_1 \in N$ and let $G_1 = \{x \in N \mid mx \in \langle a_1 \rangle$ for some $0 \neq m \in \mathbb{Z}\}$ (that is, G_1 is the subgroup purely generated by a_1). Clearly, G_1 is a pure subgroup of N and isomorphic to a rational group, so M has a direct summand isomorphic to G_1 . Therefore, G_1 is a direct summand of N, that is, $N = G_1 \oplus N_1$ for some $N_1 \leq N$. If $N_1 \neq 0$, we can find in similar way a pure subgroup G_2 of N_1 purely generated by an element a_2 . Clearly, M is an N_1 -pure-injective, so $N_1 = G_2 \oplus N_2$. The same can be done for N_2 if $N_2 \neq 0$ and so on. If this process continues infinitely, then N contains a subgroup $\bigoplus_{i=1}^{\infty} G_i$ which is pure as a direct limit of pure subgroups. Therefore, M is $\bigoplus_{i=1}^{\infty} G_i$ -pure-injective. For each a_i , $i = 1, 2, \ldots$, there is a homomorphism $f_i : \langle a_i \rangle \to \mathbb{Q}$ with $f(a_i) = \frac{1}{i}$. Since \mathbb{Q} is an injective, there is

a homomorphism $f : \bigoplus_{i=1}^{\infty} G_i \to \mathbb{Q}$ with $f(a_i) = f_i(a_i) = \frac{1}{i}$. Clearly, f is an epimorphism. Since \mathbb{Q} is torsion-free, $K = \operatorname{Ker}(f)$ is a pure subgroup of $\bigoplus_{i=1}^{\infty} G_i$. Let Γ be the set of all completely decomposable pure subgroups of K and R be the set of all subgroups of K of rank 1. Define order \leq on Γ as follows: $\bigoplus_{S \in I} S \leq \bigoplus_{S \in J} S$ if $I \subseteq J \subseteq R$. If P is any chain in Γ , then $\bigcup_{X \in P} X$ is clearly a completely decomposable and pure subgroup of K, since the direct limit of pure subgroups is pure. So by Zorn's Lemma, there is a maximal element $B = \bigoplus_{S \in T} S$ in Γ . Since K is countable T is also countable, so B is a direct summand of K, that is, $K = B \oplus C$ for some $C \leq K$. If $C \neq 0$, then as at the beginning of the proof, we can find a pure subgroup of X of C of rank 1. Clearly, $B \oplus X \in \Gamma$. Contradiction with maximality of B. So C = 0. Then, K is a direct summand of $\bigoplus_{i=1}^{\infty} G_i$. So $\bigoplus_{i=1}^{\infty} G_i \cong K \oplus \mathbb{Q}$. But $\bigoplus_{i=1}^{\infty} G_i$ is reduced. Contradiction. Thus, the process must be finite, that is, $N = G_1 \oplus G_2 \oplus \cdots \oplus G_n$ for some $n \in \mathbb{Z}^+$. To show that N is pure-split, let L be a pure subgroup of N. Then M is L-pure-injective, so it is the direct sum of groups of rank one of finite number as we have proved above. Then, L is a direct summand of N, because N-pure-injectiveness of M implies that the inclusion $L \to N$ is splitting. Hence, N is pure-split and completely decomposable with finite rank. This completes the proof.

Lemma 4.7. Let N be a torsion-free group. If M is an N-pure-injective, then N is pure-split.

Proof. Let *K* be a pure subgroup of $N = A \oplus D$, where *D* is the divisible subgroup of *N*. Let D_K be the divisible subgroup of *K*. Then $D_K \leq D$, and so $D = D_1 \oplus D_K$ for some $D_1 \leq D$. So $N = A \oplus D_1 \oplus D_K = E \oplus D_K$, where $E = A \oplus D_1$. By modular law, $K = (E \cap K) \oplus D_K$. Denote $E \cap K = L$. Then, $L \cong K/D_K$ is reduced and pure in *N*. Hence, *M* is an *L*-pure-injective, and so $L \cong \bigoplus_{i=1}^n R_i$ for some rational groups R_1, \ldots, R_n , by Lemma 4.6. Then, *M* contains a direct summand isomorphic to *L*. So the inclusion $L \to N$ splits, i.e., $N = L \oplus H$ for some $H \leq N$. Since *L* is reduced, $D_K \leq H$. Then $N = L \oplus D_K \oplus H' = K \oplus H'$. This implies that *N* is pure-split.

Definition 4.8 (See, [6]). Let *G* be a torsion-free group and $a \in G$. Given a prime *p*, the largest integer *k* such that $p^k | a$ holds is called the *p*-height $h_p(a)$ of *a*; if no such maximal integer *k* exists, then we set $h_p(a) = \infty$. The sequence of *p*-heights

$$\chi(a) = (h_{p_1}(a), h_{p_2}(a), \dots, h_{p_n}(a), \dots)$$

is said to be the characteristic of *a*. Two characteristics $(k_1, k_2, ...)$ and $(l_1, l_2, ...)$ are *equivalent* if $k_n \neq l_n$ holds only for a finite number of *n* such that in case $k_n \neq l_n$ both k_n and l_n are finite. An equivalence class of characteristics is called a *type*. *G* is called *homogeneous* if all nonzero elements of *G* are of the same type.

Corollary 4.9. Let N be a torsion-free reduced group. The following are equivalent.

- (1) *M* is an *N*-pure-injective.
- (2) *N* is pure-split.

(3) N is a completely decomposable homogeneous group of finite rank.

Proof.

(1) \Leftrightarrow (2) By Lemma 4.6.

(2) \Leftrightarrow (3) See [4] or [6, Example 8, page 116].

Now, we can prove our theorem.

Proof of Theorem 4.1. Let M be G-pure-injective for some group G. We have $G = N \oplus D$ for some reduced group N and a divisible group D. Then M is an N-pure-injective, and since T(N) is a pure subgroup of N, M is T(N)-pure-injective and M is an N/T(N)-pure-injective. Then, by Lemmas 4.3 and 4.6, $T(N) = \bigoplus_{p \in P} B_p(N)$ and $N/T(N) = \bigoplus_{i \in I} K_i$, where for each $p \in P$, $B_p(N)$ is a bounded

p-group, *I* is a finite index set, and each K_i is isomorphic to a rational group. We claim that T(N) is a direct summand in *N*, that is, the short exact sequence:

$$\mathbb{E}: 0 \to T(N) \to N \to N/T(N) \to 0$$

is splitting. By [5, Theorem 52.2], there is a natural isomorphism

$$\operatorname{Ext}(N/T(N), T(N)) = \operatorname{Ext}\left(\bigoplus_{i \in I} K_i, T(N)\right) \cong \prod_{i \in I} \operatorname{Ext}(K_i, T(N))$$

induced by the inclusions $\alpha_j : K_j \to \bigoplus_{i \in I} K_i$. Therefore, it is sufficient to prove that each short exact sequence:

$$\mathbb{E}\alpha_j: 0 \to T(N) \to N' \xrightarrow{f} K_j \to 0$$

is splitting. We have the following commutative diagram with exact columns and rows.

Since $\bigoplus_{i \in I} K_i$ is torsion free, N' is a pure subgroup of N, therefore M is an N'-pure-injective. There is a countable set $\{n_k | k = 1, 2, ...\}$ in N' such that the elements $f(n_k)$ generate K_j . By [5, Proposition 26.2], there is a countable pure subgroup L of N' containing the subgroup $\sum_{k=1}^{\infty} \mathbb{Z}n_k$. Then, M is an L-pure-injective as well. Clearly, $f(L) = K_j$ and $\text{Ker}(f|_L) = T(L)$. Since L is countable, T(L) is a countable subgroup of T(N). But T(N) is a direct sum of cyclic primary groups, therefore T(L) is a countable direct sum of cyclic primary groups and hence is isomorphic to a direct summand of M. Since T(L) is a subgroup of L and M is an L-pure-injective, T(L) is a direct summand of L. We have the following commutative diagram with exact rows:

where β is the inclusion. Since \mathbb{E}' is splitting $\mathbb{E}\alpha_j = \beta \mathbb{E}$ is also splitting. So $N = T(N) \oplus K$, where T(N) and *K* are groups as in Lemmas 4.3 and 4.6, respectively. This proves our claim.

To prove that G is pure-split, take a pure subgroup A of G. By the first part of the proof, we have

$$G = N \oplus D = T(N) \oplus K \oplus T(D) \oplus D' = (T(N) \oplus T(D)) \oplus (K \oplus D') = T(G) \oplus G'.$$

Then for each $p \in P$, $T_p(A)$ is a pure subgroup of $T_p(G)$. Therefore, $T_p(A)$ is a direct summand of $T_p(G)$ by Lemma 4.5. Then, T(A) is a direct summand of T(G). We have a homomorphism $f : A/T(A) \rightarrow G/T(G)$ defined by f(a + T(A)) = a + T(G). If f(a + T(A)) = 0, then $a \in T(G) \cap A = T(A)$, hence a + T(A) = 0, so f is a monomorphism. Now claim that Im(f) is a pure subgroup of G/T(G). To show this, let a + T(G) = m(b + T(G)) for some $a \in A$, $b \in G$, $0 \neq m \in \mathbb{Z}$. Then $a - mb \in T(G)$, therefore ka = kmb for some $0 \neq k \in \mathbb{Z}$. Since *A* is pure in *G*, ka = kma' for some $a' \in A$. Then $a - ma' \in T(A)$, hence a + T(A) = m(a' + T(A)). So Im(f) is pure. Since $G/T(G) \cong G'$ is pure-split by Lemma 4.7, *f* is splitting. As *A* is a pure subgroup of *G*, *M* is *A*-pure-injective. So again by the first part of the proof $A = T(A) \oplus K'$ for some $K' \leq A$ with $K' \cong A/T(A)$. Then the inclusion map $A = T(A) \oplus K' \to G = T(G) \oplus G'$ is splitting, that is, *A* is a direct summand in *G*. This completes the proof.

5. Structure of pi-poor Abelian groups

In this section, we prove some results concerning a possible structure of pi-poor groups.

Proposition 5.1. If G is pi-poor group, then $T_p(G)$ is unbounded for each $p \in P$.

Proof. Suppose G is pi-poor and $T_p(G)$ is bounded for some $p \in P$. Then $T_p(G)$ is pure-injective and $T_p(G)$ is a direct summand of G, because $T_p(G)$ is also pure in G. Consider the group $\bigoplus_{n=1}^{\infty} \mathbb{Z}_{p^n}$. We claim that G is $\bigoplus_{n=1}^{\infty} \mathbb{Z}_{p^n}$ -pure-injective. Let H be a pure subgroup of $\bigoplus_{n=1}^{\infty} \mathbb{Z}_{p^n}$ and $f : H \to G$ be a homomorphism. Since H is a p-group, $f(H) \subseteq T_p(G)$. So that f extends to a homomorphism $h : \bigoplus_{n=1}^{\infty} \mathbb{Z}_{p^n} \to G$ because $T_p(G)$ is pure-injective. This proves our claim.

We shall see that $\bigoplus_{n=1}^{\infty} \mathbb{Z}_{p^n}$ is not pure-split. There is an exact sequence:

$$\mathbb{E}: 0 \to K \to \bigoplus_{n=1}^{\infty} \mathbb{Z}_{p^n} \xrightarrow{g} \mathbb{Z}_{p^{\infty}} \to 0.$$

By the same arguments as in the proof of Lemma 4.3, \mathbb{E} is pure, i.e., *K* is pure in $\bigoplus_{n=1}^{\infty} \mathbb{Z}_{p^n}$. Since $\bigoplus_{n=1}^{\infty} \mathbb{Z}_{p^n}$ is reduced, \mathbb{E} does not split. Hence $\bigoplus_{n=1}^{\infty} \mathbb{Z}_{p^n}$ is not pure-split. This contradicts with the fact that *G* is pi-poor. Therefore, $T_p(G)$ can not be bounded.

Let \mathbb{Q}_p be the localization of \mathbb{Z} at the prime ideal $p\mathbb{Z}$. Note that the elements of \mathbb{Q}_p are of the form ab^{-1} , where $a, b \in \mathbb{Z}$, $b \neq 0$, and gcd(b, p) = 1

Lemma 5.2. Let p be a prime integer and N be a reduced torsion group. Then for every homomorphism $f : \mathbb{Q}_p \to N$, Imf is bounded.

Proof. For every prime $q \neq p$, it is clear that $q\mathbb{Q}_p = \mathbb{Q}_p$, i.e., \mathbb{Q}_p is *q*-divisible, and $T_q(N)$ is reduced. Then for $\pi_q \circ f : \mathbb{Q}_p \to T_q(N)$, where $\pi_q : N \to T_q(N)$ is the natural projection, $(\pi_q \circ f)(\mathbb{Q}_p)$ is a *q*-divisible subgroup of $T_q(N)$. Therefore, $(\pi_q \circ f)(\mathbb{Q}_p)$ is divisible, and so $\pi_q \circ f = 0$ because $T_q(N)$ is reduced. Thus $\mathrm{Im}f = f(\mathbb{Q}_p) \subseteq T_p(N)$. Put a = f(1) and $o(a) = p^n$, where o(a) the order of a. Let bc^{-1} be any element of \mathbb{Q}_p with $\gcd(c, p) = 1$. Then $\gcd(c, p^n) = 1$, therefore $cy + p^n z = 1$ for some $y, z \in \mathbb{Z}$. Now $b = bcy + bp^n z$, so $bc^{-1} = by + bp^n zc^{-1}$. Note that $cf(bp^n zc^{-1}) = bzp^n f(1) = zp^n a = 0$. Let $x = f(bp^n zc^{-1})$ and $o(x) = p^m$. Since $\gcd(c, p^m) = 1$, we have $cu + p^m v = 1$ for some $u, v \in \mathbb{Z}$. Then $x = ucx + vp^m x = ucx = 0$, and so $f(bc^{-1}) = f(by) + x = f(by) = byf(1) \in \langle f(1) \rangle$. Hence Imf is contained in $\langle f(1) \rangle$, and so it is bounded.

A *cotorsion* group *G* is a group satisfying $Ext(\mathbb{Q}, G) = 0$.

Theorem 5.3. There is a group G such that G is not pure-split and every reduced torsion group N is *G*-pure-injective. Hence a pi-poor group can not be torsion.

Proof. Fix any prime *p*. Since \mathbb{Q}_p is not cotorsion, $\text{Ext}(\mathbb{Q}, \mathbb{Q}_p) \neq 0$ (see [5], page 226, Example 15). So there is a nonsplitting pure sequence:

$$0 \to \mathbb{Q}_p \to G \to \mathbb{Q} \to 0.$$

Hence, *G* is not pure-split. For every prime $q \neq p$, \mathbb{Q}_p and \mathbb{Q} are *q*-divisible, therefore *G* is also *q*-divisible. We claim that N is G-pure injective. Without loss of generality, we can assume that \mathbb{Q}_p is a subgroup of *G* and $G/\mathbb{Q}_p = \mathbb{Q}$. Let *K* be any nonzero pure subgroup of *G* and $f : K \to N$ be any homomorphism, where N is a torsion reduced group. Then, K is q-divisible for every prime $q \neq p$ since K is a pure subgroup of G and G is q-divisible. Clearly, the rank of K is at most 2. So have two cases:

 $r_0(K) = 1$. If K is also p-divisible, then K is divisible. So $K \cong \mathbb{Q}$, and the inclusion $K \to G$ splits, so f can be extended to a homomorphism $f': G \to N$. Now, let K be not p-divisible. K and \mathbb{Q}_p are of the same type, and so $K \cong \mathbb{Q}_p$ (see [5, Theorem 85.1]). Therefore, Imf is bounded by Lemma 5.2. Then, Imf is pure-injective, hence $\hat{f}: K \to N$ can be extended to a homomorphism $f': G \to \text{Im} f \leq N$.

Case II: $r_0(K) = 2$: We claim that K = G. Otherwise, since G/K is a nonzero torsion-free group, $r_0(G/K) \ge 1$. Then $2 = r_0(G) = r_0(K) + r_0(G/K) > 2$, a contradiction. Hence G = K.

As a consequence, N is G-pure-injective. This implies that N is not pi-poor.

Corollary 5.4. Let M be a pi-poor group. Then $M \neq T(M)$ and $T_p(M)$ is unbounded for every $p \in P$.

Lemma 5.5. Let M and N be right R-modules. Assume that N is (pure-)injective. Then, $M \oplus N$ is (pi-)poor if and only if M is (pi-)poor.

Proof. For a right R-module B, it is clear that $M \oplus N$ is B-(pure-)injective if and only if M is B-(pure-)injective.

Example 5.6. Let $G = \bigoplus_{p \in P} \mathbb{Z}_p$. Then *G* is poor by Theorem 3.1. On the other hand, since $T_p(G) = \mathbb{Z}_p$ is bounded, *G* is not pi-poor by Proposition 5.1.

Example 5.7. Let M be as in Theorem 4.1 and let V be the sum of all direct summands isomorphic to \mathbb{Z}_p . If $M = V \oplus K$, then K is pi-poor by Lemma 5.5. But K is not poor by Theorem 3.1, since K does not contain a direct summand isomorphic to \mathbb{Z}_p . So pi-poor modules need not be poor.

Acknowledgment

The authors are grateful to the referee for the suggestions and comments which improved the presentation of the paper.

References

- [1] Alahmadi, A. N., Alkan, M., López-Permouth, S. (2010). Poor modules: The opposite of injectivity. Glasg. Math. J. 52(A):7-17
- [2] Anderson, F. W., Fuller, K. R. (1992). Rings and Categories of Modules. New York: Springer.
- [3] Er, N., López-Permouth, S., Sökmez, N. (2011). Rings whose modules have maximal or minimal injectivity domains. *J. Algebra* 330:404–417.
- [4] Fuchs, L., Kertész, A., Szele, T. (1953). Abelian groups in which every serving subgroup is a direct summand. Publ. Math. Debrecen 3:95-105 (1954).
- [5] Fuchs, L. (1970). Infinite Abelian Groups. Vol. I. Pure and Applied Mathematics, Vol. 36. New York: Academic Press.
- [6] Fuchs, L. (1973). Infinite Abelian Groups. Vol. II. Pure and Applied Mathematics. Vol. 36-II. New York: Academic Press.
- [7] Harmancı, A., López-Permouth, S., Üngör, B. (2015). On the pure-injectivity profile of a ring. Commun. Algebra, 43-11:4984-5002.
- [8] Mohamed, S. H., Müller, B. J. (1990). Continuous and Discrete Modules. London Mathematical Society Lecture Note Series, Vol. 147. Cambridge: Cambridge University Press.