Poor and pi-poor Abelian groups

Rafail Alizade ${ }^{\text {a }}$ and Engin Büyükaşık ${ }^{\text {b }}$
${ }^{\text {a D Department of Mathematics, Yaşar University, Bornova, Izmir, Turkey; bepartment of Mathematics, Izmir Institute of }}$ Technology, Urla, Izmir, Turkey

Abstract

In this paper, poor abelian groups are characterized. It is proved that an abelian group is poor if and only if its torsion part contains a direct summand isomorphic to $\oplus_{p \in P} \mathbb{Z}_{p}$, where P is the set of prime integers. We also prove that pi-poor abelian groups exist. Namely, it is proved that the direct sum of $U^{(\mathbb{N})}$, where U ranges over all nonisomorphic uniform abelian groups, is pipoor. Moreover, for a pi-poor abelian group M, it is shown that M can not be torsion, and each p-primary component of M is unbounded. Finally, we show that there are pi-poor groups which are not poor, and vise versa.

ARTICLE HISTORY

Received 6 May 2015
Revised 3 November 2015
Communicated by A. Facchini

KEYWORDS

Injective module; pi-poor abelian groups; poor abelian groups; pure-injective module

2000 MATHEMATICS

 SUBJECT CLASSIFICATION13C05; 13C11; 13C99; 20E34; 20E99

1. Introduction

Let R be a ring with an identity element and Mod-R be the category of right R-modules. Recall that a right R-module M is said to be an N-injective (or injective relative to N) if for every submodule K of N and every morphism $f: K \rightarrow M$ there exists a morphism $\bar{f}: N \rightarrow M$ such that $\left.\bar{f}\right|_{K}=f$. For a module M, as in [2], the injectivity domain of M is defined to be the collection of modules N such that M is an N-injective, that is, $\mathfrak{I n}^{-1}(M)=\{N \in \operatorname{Mod}-R \mid M$ is N-injective $\}$. Clearly, for any right R-module M, semisimple modules in $M o d-R$ are contained in $\mathfrak{I n}^{-1}(M)$, and M is an injective if and only if $\mathfrak{I n}^{-1}(M)=M o d-R$. Following [1], M is called poor if for every right R-module N, M is an N-injective only if N is semisimple, i.e., $\mathfrak{I n}^{-1}(M)$ is exactly the class of all semisimple right R-modules. Poor modules exist over arbitrary rings [3, Proposition 1]. Although poor modules exist over arbitrary rings, their structure is not known over certain rings including also the ring of integers.

A right R-module N is pure-split if every pure submodule of N is a direct summand. Let K and N be right R-modules. K is an N-pure-injective if for each pure submodule L of N every homomorphism $f: L \rightarrow K$ can be extended to a homomorphism $g: N \rightarrow K$. Following [7], a right R-module M is called pure-injectively poor (or simply pi-poor) if whenever M is an N-pure-injective, then N is pure-split. It is not known whether pi-poor modules exist over arbitrary rings. In particular, in [7], some classes of abelian groups that are not pi-poor are given but the authors point out that they do not know whether a pi-poor abelian group exists.

The purpose of this paper is to give a characterization of poor abelian groups and also to prove that pi-poor abelian groups exist.

Namely, in Section 3, we prove that an abelian group G is poor if and only if the torsion part of G contains a direct summand isomorphic to $\oplus_{p \in P} \mathbb{Z}_{p}$, where P is the set of prime integers (Theorem 3.1).

Section 4 is devoted to the proof of the existence of pi-poor abelian groups. Let $\left\{A_{\gamma} \mid \gamma \in \Gamma\right\}$ be a complete set of representatives of isomorphism classes of reduced uniform groups. We prove that the
group $M=\bigoplus_{\gamma \in \Gamma} A_{\gamma}^{(\mathbb{N})}$ is pi-poor (Theorem 4.1). In addition, it is proved that if G is a pi-poor abelian group, then G is not torsion, and the p-primary component $T_{p}(G)$ of G is unbounded for each prime p.

2. Definitions and preliminaries

We recall some definitions and results which will be useful in the sequel. For more details, we refer the reader to [5]. By group, we will mean an abelian group throughout the paper. Let $p \in P$ be a prime integer. A group G is called p-group if every nonzero element of G has order p^{n} for some $n \in \mathbb{Z}^{+}$. For a group $G, T(G)$ denotes the torsion submodule of G. The set $T_{p}(G)=\left\{a \in G \mid p^{k} a=0\right.$ for some $k \in$ $\left.\mathbb{Z}^{+}\right\}$is a subgroup of G, which is called the p-primary component of G. For every torsion group G, we have $G=\oplus_{p \in P} T_{p}(G)$. A subgroup A of a group B is pure in B if $n A=A \cap n B$ for each integer n. A monomorphism (resp. epimorphism) $\alpha: A \rightarrow B$ of abelian groups is called pure if $\alpha(A)$ (resp. $\operatorname{Ker}(\alpha)$) is pure in B. For any group G, the subgroups $T(G)$ and $T_{p}(G)$ are pure in G. A group G is said to be bounded if $n G=0$, for some nonzero integer n. Bounded groups are direct sum of cyclic groups [5, Theorem 17.2]. A group G is called a divisible group if $n G=G$ for each positive integer n. A group G is called a reduced group if G has no proper divisible subgroup. Note that, since \mathbb{Z} is Noetherian, every group G contains a largest divisible subgroup. Therefore, G can be written as $G=N \oplus D$, where N is reduced and D is divisible subgroup of G.

Definition 2.1 (see [5]). Let $p \in P$. A subgroup B of a group A is called a p-basic subgroup of B if it satisfies the following three conditions:
(i) B is a direct sum of cyclic p-groups and infinite cyclic groups;
(ii) B is p-pure in A;
(iii) $\quad A / B$ is p-divisible, i.e., $p(A / B)=A / B$.

Lemma 2.2.
(a) [5, Theorem 32.3] Every group G contains a p-basic subgroup for each $p \in P$.
(b) [5, Theorem 27.5] If H is a pure and bounded subgroup of a group G, then H is a direct summand of G.

For $q \neq p q$-basic subgroups of p-groups are 0 , so only p-basic subgroups of p-groups may be nontrivial. Therefore, they are usually called simply basic subgroups. Clearly, basic subgroups of p groups are pure. Subgroups of the group of the rational integers \mathbb{Q} are called rational groups. Let A be a uniform group. Then, it is easy to see that either A is isomorphic to a rational group or $A \cong \mathbb{Z}_{p^{n}}$ for some $p \in P$ and $n \in \mathbb{Z}^{+}$. For a torsion-free group G, we shall denote the (torsion-free) rank (=uniform dimension) of G by $r_{0}(G)$ [5]. By [5, page 86, Example 3], $r_{0}(G)=r_{0}(H)+r_{0}(G / H)$ for each subgroup H of G. A torsion-free group G is said to be completely decomposable if $G=\oplus_{i \in I} K_{i}$, where I is an index set and each K_{i} is isomorphic to a rational group, i.e., $r_{0}\left(K_{i}\right)=1$ for each $i \in I$.

3. Poor Abelian groups

In this section, we give a characterization of poor groups. The authors prove that the group $\oplus_{p \in P} \mathbb{Z}_{p}$ is poor [1]. The following result shows that this group is crucial in investigation of poor groups.

Theorem 3.1. A group is poor if and only if its torsion part has a direct summand isomorphic to $\oplus_{p \in P} \mathbb{Z}_{p}$.
Proof. To prove the necessity, let G be a poor group and let p be any prime. If $T_{p}(G)=0$, then G is an N-injective for every p-group N, therefore $T_{p}(G) \neq 0$. If every element of order p of G is divisible by p, then G is $\mathbb{Z}_{p^{2}}$-injective since $\mathbb{Z}_{p^{2}}$ has only one nontrivial subgroup: $p \mathbb{Z}_{p^{2}}$. So there is at least one element a_{p} with $\left|a_{p}\right|=p$, that is, not divisible by p. Then the cyclic group $<a_{p}>$ is a p-pure subgroup of $T_{p}(G)$, therefore a pure subgroup of $T_{p}(G)$. Since bounded pure subgroups are direct summands, $<a_{p}>$ is a
direct summand of $T_{p}(G)$. Hence $\oplus_{p \in P}<a_{p}>$ is a direct summand of $\oplus_{p \in P} T_{p}(G)=T(G)$. Clearly, $\oplus_{p \in P}<a_{p}>\cong \oplus_{p \in P} \mathbb{Z}_{p}$.

Conversely, suppose that $T(G)$ contains a direct summand isomorphic to $\oplus \mathbb{Z}_{p}$. Let V be a direct summand of $T(G)$ such that $V \cong \mathbb{Z}_{p}$. Then, V is pure in G because $T(G)$ is pure in G. So V is a direct summand in G by [5, Theorem 27.5]. This implies, for each prime p, G contains a direct summand isomorphic to \mathbb{Z}_{p}. Now, suppose G is an N-injective for some group N. Then \mathbb{Z}_{p} is an N-injective for each prime p. Suppose that N is not semisimple (not elementary in terminology of [5]). Then, there is an element a of infinite order or with $o(a)=p^{n}$, where p is a prime and $n>1$. In first case, $\langle a\rangle=\mathbb{Z}$ and in second case, $\langle a\rangle=\mathbb{Z}_{p^{n}}$. So \mathbb{Z}_{p} must be \mathbb{Z}-injective or $\mathbb{Z}_{p^{n}}$-injective by [8, Proposition 1.4]. But the homomorphism $f: p \mathbb{Z} \rightarrow \mathbb{Z}_{p}$ with $f(p)=1$ cannot be extended to $g: \mathbb{Z} \rightarrow \mathbb{Z}_{p}$ since otherwise $1=f(p)=g(p)=p g(1)=0$ and \mathbb{Z}_{p} is isomorphic to the subgroup $\left\langle p^{n-1}\right\rangle$ of $\mathbb{Z}_{p^{n}}$, which is not a direct summand of $\mathbb{Z}_{p^{n}}$. So in both cases we get a contradiction, that is, N is semisimple.

The following is a consequence of Theorem 3.1.
Corollary 3.2. For a group G, the following are equivalent.
(1) G is poor.
(2) The reduced part of G is poor.
(3) $T(G)$ is poor.
(4) For each prime p, G has a direct summand isomorphic to \mathbb{Z}_{p}.

4. Pi-poor Abelian groups

The authors investigate the notion of pi-poor module and study properties of these modules over various rings [7]. In particular, they give some classes of groups that are not pi-poor and point out that they do not know whether a pi-poor group exists or not. In this section, we shall prove that pi-poor groups exist.

Theorem 4.1. Let $\left\{A_{\gamma} \mid \gamma \in \Gamma\right\}$ be a complete set of representatives of isomorphism classes of uniform groups. Then the group

$$
M=\bigoplus_{\gamma \in \Gamma} A_{\gamma}^{(\mathbb{N})}
$$

is pi-poor.
Before proving the theorem, we will first give some lemmas. Throughout this section, M denotes the group given in Theorem 4.1.

The following result is well known. We include it for completeness.
Lemma 4.2. Let R be a ring and L, N be right R-modules. Let K be a pure submodule of N. If L is an N-pure-injective, then L is both K-pure-injective and N / K-pure-injective.

Proof. Let A be a pure submodule of K and $f: A \rightarrow L$ be a homomorphism. Then A is pure in N, and so f extends to a map $g: N \rightarrow L$. Clearly, $\left.g\right|_{K}: K \rightarrow L$ is an extension of f to K. Hence L is K-pureinjective. Now, let X / K be a pure submodule of N / K and $f: X / K \rightarrow L$ be a homomorphism. Since K is pure in N and X / K is pure in $N / K, X$ is pure in N. Therefore, there is a homomorphism $g: N \rightarrow L$ such that $f \pi^{\prime}=g i$, where $i: X \rightarrow N$ is the inclusion and $\pi^{\prime}: X \rightarrow X / K$ is the usual epimorphism. Since $g(K)=0, \operatorname{Ker}(\pi) \subseteq \operatorname{Ker}(g)$, where $\pi: N \rightarrow N / K$ is the usual epimorphism. Therefore, there is a homomorphism $h: N / K \rightarrow L$ such that $h \pi=g$. Then for each $x \in X, h(x+K)=h(\pi(x))=g(x)=$ $\left(f \pi^{\prime}\right)(x)=f(x+K)$. That is, h extends f. Hence, L is an N / K-pure-injective.

Lemma 4.3. Let G be a reduced torsion group. The following are equivalent.
(1) M is G-pure-injective.
(2) $T_{p}(G)$ is bounded for each $p \in P$.
(3) G is pure-split.

Proof.
(1) \Rightarrow (2) Write $G=\oplus_{p \in P} T_{p}(G)$. Let $B_{p}(G)$ be a basic subgroup of $T_{p}(G)$. Then $B_{p}(G)$ is pure in $T_{p}(G)$, and so in G and $T_{p}(G) / B_{p}(G)$ is divisible. We claim that $B_{p}(G)$ is bounded. Suppose the contrary that $B_{p}(G)$ is not bounded. Then for every positive integer $n, B_{p}(G)$ contains an element of order p^{n}. In this case, since $B_{p}(G)$ is a direct sum of cyclic p-groups, there is an epimorphism

$$
B_{p}(G) \xrightarrow{g} \mathbb{Z}_{p^{\infty}} \rightarrow 0,
$$

where the restrictions of g to the cyclic summands of $B_{p}(G)$ are monic. It can be proved as in [5, Lemma 30.1] that g is a pure epimorphism, i.e., $K=\operatorname{Ker}(g)$ is a pure submodule of $B_{p}(G)$. Now, K is pure in $B_{p}(G)$ and is a direct sum of cyclic p-groups. Since M contains a direct summand isomorphic to K, and $B_{p}(G)$ is a pure subgroup of G, K is $B_{p}(G)$-pure-injective. Therefore $B_{p}(G) \cong K \oplus \mathbb{Z}_{p} \infty$. This contradicts with the fact that $B_{p}(G)$ is reduced. Hence $B_{p}(G)$ is bounded, and so $B_{p}(G)$ is a direct summand of G. The fact that G is reduced and $T_{p}(G) / B_{p}(G)$ divisible implies that $B_{p}(G)=T_{p}(G)$.
(2) \Rightarrow (3) Let H be a pure subgroup of G. Since $G=\oplus_{p \in P} T_{p}(G)$ and $H=\oplus_{p \in P} T_{p}(H), T_{p}(H)$ is a pure subgroup of $T_{p}(G)$. Then, $T_{p}(H)$ is a direct summand of $T_{p}(G)$ by [5, Theorem 27.5]. Let $T_{p}(G)=T_{p}(H) \oplus N_{p}$, where $N_{p} \leq G$. Then $G=\oplus_{p \in P}\left[T_{p}(H) \oplus N_{p}\right]=\left(\oplus_{p \in P} T_{p}(H)\right) \oplus\left(\oplus_{p \in P} N_{p}\right)=$ $H \oplus\left(\oplus_{p \in P} N_{p}\right)$. Hence G is pure-split.
(3) \Rightarrow (1) Clear by the definition.

Remark 4.4. Pure-split groups are completely characterized in [4]. The implications (2) \Leftrightarrow (3) in Lemma 4.3 also can be found in [4].

Lemma 4.5. Let B be a p-group. Suppose that M is B-pure-injective. Then B is pure-split.
Proof. Let D be the divisible subgroup of B and A be a pure subgroup of B. Then $B=C \oplus D$ for some reduced group C. Let D_{A} be the divisible subgroup of A. Then $D_{A} \leq D$ and $D=D_{1} \oplus D_{A}$ for some $D_{1} \leq D$. So $B=C \oplus D_{1} \oplus D_{A}=E \oplus D_{A}$, where $E=C \oplus D_{1}$. By modular law, $A=(E \cap A) \oplus D_{A}$. Then $L=E \cap A$ is a pure submodule of B. Hence, M is L-pure-injective, and $L \cong A / D_{A}$ is reduced. Therefore, L is bounded by Lemma 4.3. Since L is pure in B, L is also pure in E. Then, $E=K \oplus L$ for some $K \leq E$ by [5, Theorem 27.5]. Then $B=E \oplus D_{A}=K \oplus L \oplus D_{A}=K \oplus A$. So A is a direct summand in B. Hence B is pure-split.

Lemma 4.6. If N is a reduced torsion-free group such that M is an N-pure-injective then N is pure-split. Moreover, N is completely decomposable with finite rank.

Proof. Take any $0 \neq a_{1} \in N$ and let $G_{1}=\left\{x \in N \mid m x \in\left\langle a_{1}\right\rangle\right.$ for some $\left.0 \neq m \in \mathbb{Z}\right\}$ (that is, G_{1} is the subgroup purely generated by a_{1}). Clearly, G_{1} is a pure subgroup of N and isomorphic to a rational group, so M has a direct summand isomorphic to G_{1}. Therefore, G_{1} is a direct summand of N, that is, $N=G_{1} \oplus N_{1}$ for some $N_{1} \leq N$. If $N_{1} \neq 0$, we can find in similar way a pure subgroup G_{2} of N_{1} purely generated by an element a_{2}. Clearly, M is an N_{1}-pure-injective, so $N_{1}=G_{2} \oplus N_{2}$. The same can be done for N_{2} if $N_{2} \neq 0$ and so on. If this process continues infinitely, then N contains a subgroup $\oplus_{i=1}^{\infty} G_{i}$ which is pure as a direct limit of pure subgroups. Therefore, M is $\oplus_{i=1}^{\infty} G_{i}$-pure-injective. For each a_{i}, $i=1,2, \ldots$, there is a homomorphism $f_{i}:\left\langle a_{i}\right\rangle \rightarrow \mathbb{Q}$ with $f\left(a_{i}\right)=\frac{1}{i}$. Since \mathbb{Q} is an injective, there is
a homomorphism $f: \oplus_{i=1}^{\infty} G_{i} \rightarrow \mathbb{Q}$ with $f\left(a_{i}\right)=f_{i}\left(a_{i}\right)=\frac{1}{i}$. Clearly, f is an epimorphism. Since \mathbb{Q} is torsion-free, $K=\operatorname{Ker}(f)$ is a pure subgroup of $\oplus_{i=1}^{\infty} G_{i}$. Let Γ be the set of all completely decomposable pure subgroups of K and R be the set of all subgroups of K of rank 1. Define order \leq on Γ as follows: $\oplus_{S \in I} S \preceq \oplus_{S \in J} S$ if $I \subseteq J \subseteq R$. If P is any chain in Γ, then $\cup_{X \in P} X$ is clearly a completely decomposable and pure subgroup of K, since the direct limit of pure subgroups is pure. So by Zorn's Lemma, there is a maximal element $B=\oplus_{S \in T} S$ in Γ. Since K is countable T is also countable, so B is a direct summand of K, that is, $K=B \oplus C$ for some $C \leq K$. If $C \neq 0$, then as at the beginning of the proof, we can find a pure subgroup of X of C of rank 1 . Clearly, $B \oplus X \in \Gamma$. Contradiction with maximality of B. So $C=0$. Then, K is a direct summand of $\oplus_{i=1}^{\infty} G_{i}$. So $\oplus_{i=1}^{\infty} G_{i} \cong K \oplus \mathbb{Q}$. But $\oplus_{i=1}^{\infty} G_{i}$ is reduced. Contradiction. Thus, the process must be finite, that is, $N=G_{1} \oplus G_{2} \oplus \cdots \oplus G_{n}$ for some $n \in \mathbb{Z}^{+}$. To show that N is pure-split, let L be a pure subgroup of N. Then M is L-pure-injective, so it is the direct sum of groups of rank one of finite number as we have proved above. Then, L is a direct summand of N, because N-pure-injectiveness of M implies that the inclusion $L \rightarrow N$ is splitting. Hence, N is pure-split and completely decomposable with finite rank. This completes the proof.

Lemma 4.7. Let N be a torsion-free group. If M is an N-pure-injective, then N is pure-split.
Proof. Let K be a pure subgroup of $N=A \oplus D$, where D is the divisible subgroup of N. Let D_{K} be the divisible subgroup of K. Then $D_{K} \leq D$, and so $D=D_{1} \oplus D_{K}$ for some $D_{1} \leq D$. So $N=A \oplus D_{1} \oplus D_{K}=$ $E \oplus D_{K}$, where $E=A \oplus D_{1}$. By modular law, $K=(E \cap K) \oplus D_{K}$. Denote $E \cap K=L$. Then, $L \cong K / D_{K}$ is reduced and pure in N. Hence, M is an L-pure-injective, and so $L \cong \oplus_{i=1}^{n} R_{i}$ for some rational groups $R_{1}, \ldots R_{n}$, by Lemma 4.6. Then, M contains a direct summand isomorphic to L. So the inclusion $L \rightarrow N$ splits, i.e., $N=L \oplus H$ for some $H \leq N$. Since L is reduced, $D_{K} \leq H$. Then $N=L \oplus D_{K} \oplus H^{\prime}=K \oplus H^{\prime}$. This implies that N is pure-split.

Definition 4.8 (See, [6]). Let G be a torsion-free group and $a \in G$. Given a prime p, the largest integer k such that $p^{k} \mid a$ holds is called the p-height $h_{p}(a)$ of a; if no such maximal integer k exists, then we set $h_{p}(a)=\infty$. The sequence of p-heights

$$
\chi(a)=\left(h_{p_{1}}(a), h_{p_{2}}(a), \ldots, h_{p_{n}}(a), \ldots\right)
$$

is said to be the characteristic of a. Two characteristics $\left(k_{1}, k_{2}, \ldots\right)$ and $\left(l_{1}, l_{2}, \ldots\right)$ are equivalent if $k_{n} \neq l_{n}$ holds only for a finite number of n such that in case $k_{n} \neq l_{n}$ both k_{n} and l_{n} are finite. An equivalence class of characteristics is called a type. G is called homogeneous if all nonzero elements of G are of the same type.

Corollary 4.9. Let N be a torsion-free reduced group. The following are equivalent.
(1) M is an N-pure-injective.
(2) N is pure-split.
(3) N is a completely decomposable homogeneous group of finite rank.

Proof.
(1) \Leftrightarrow (2) By Lemma 4.6.
(2) $\Leftrightarrow(3) \quad$ See [4] or [6, Example 8, page 116].

Now, we can prove our theorem.
Proof of Theorem 4.1. Let M be G-pure-injective for some group G. We have $G=N \oplus D$ for some reduced group N and a divisible group D. Then M is an N-pure-injective, and since $T(N)$ is a pure subgroup of N, M is $T(N)$-pure-injective and M is an $N / T(N)$-pure-injective. Then, by Lemmas 4.3 and 4.6, $T(N)=\oplus_{p \in P} B_{p}(N)$ and $N / T(N)=\oplus_{i \in I} K_{i}$, where for each $p \in P, B_{p}(N)$ is a bounded
p-group, I is a finite index set, and each K_{i} is isomorphic to a rational group. We claim that $T(N)$ is a direct summand in N, that is, the short exact sequence:

$$
\mathbb{E}: 0 \rightarrow T(N) \rightarrow N \rightarrow N / T(N) \rightarrow 0
$$

is splitting. By [5, Theorem 52.2], there is a natural isomorphism

$$
\operatorname{Ext}(N / T(N), T(N))=\operatorname{Ext}\left(\bigoplus_{i \in I} K_{i}, T(N)\right) \cong \prod_{i \in I} \operatorname{Ext}\left(K_{i}, T(N)\right)
$$

induced by the inclusions $\alpha_{j}: K_{j} \rightarrow \oplus_{i \in I} K_{i}$. Therefore, it is sufficient to prove that each short exact sequence:

$$
\mathbb{E} \alpha_{j}: 0 \rightarrow T(N) \rightarrow N^{\prime} \xrightarrow{f} K_{j} \rightarrow 0
$$

is splitting. We have the following commutative diagram with exact columns and rows.

Since $\oplus_{i \in I} K_{i}$ is torsion free, N^{\prime} is a pure subgroup of N, therefore M is an N^{\prime}-pure-injective. There is a countable set $\left\{n_{k} \mid k=1,2, \ldots\right\}$ in N^{\prime} such that the elements $f\left(n_{k}\right)$ generate K_{j}. By [5, Proposition 26.2], there is a countable pure subgroup L of N^{\prime} containing the subgroup $\sum_{k=1}^{\infty} \mathbb{Z} n_{k}$. Then, M is an L-pureinjective as well. Clearly, $f(L)=K_{j}$ and $\operatorname{Ker}\left(\left.f\right|_{L}\right)=T(L)$. Since L is countable, $T(L)$ is a countable subgroup of $T(N)$. But $T(N)$ is a direct sum of cyclic primary groups, therefore $T(L)$ is a countable direct sum of cyclic primary groups and hence is isomorphic to a direct summand of M. Since $T(L)$ is a subgroup of L and M is an L-pure-injective, $T(L)$ is a direct summand of L. We have the following commutative diagram with exact rows:

where β is the inclusion. Since \mathbb{E}^{\prime} is splitting $\mathbb{E} \alpha_{j}=\beta \mathbb{E}$ is also splitting. So $N=T(N) \oplus K$, where $T(N)$ and K are groups as in Lemmas 4.3 and 4.6 , respectively. This proves our claim.

To prove that G is pure-split, take a pure subgroup A of G. By the first part of the proof, we have

$$
G=N \oplus D=T(N) \oplus K \oplus T(D) \oplus D^{\prime}=(T(N) \oplus T(D)) \oplus\left(K \oplus D^{\prime}\right)=T(G) \oplus G^{\prime}
$$

Then for each $p \in P, T_{p}(A)$ is a pure subgroup of $T_{p}(G)$. Therefore, $T_{p}(A)$ is a direct summand of $T_{p}(G)$ by Lemma 4.5. Then, $T(A)$ is a direct summand of $T(G)$. We have a homomorphism $f: A / T(A) \rightarrow$ $G / T(G)$ defined by $f(a+T(A))=a+T(G)$. If $f(a+T(A))=0$, then $a \in T(G) \cap A=T(A)$, hence $a+T(A)=0$, so f is a monomorphism. Now claim that $\operatorname{Im}(f)$ is a pure subgroup of $G / T(G)$. To show this, let $a+T(G)=m(b+T(G))$ for some $a \in A, b \in G, 0 \neq m \in \mathbb{Z}$. Then $a-m b \in T(G)$,
therefore $k a=k m b$ for some $0 \neq k \in \mathbb{Z}$. Since A is pure in $G, k a=k m a^{\prime}$ for some $a^{\prime} \in A$. Then $a-m a^{\prime} \in T(A)$, hence $a+T(A)=m\left(a^{\prime}+T(A)\right)$. So $\operatorname{Im}(f)$ is pure. Since $G / T(G) \cong G^{\prime}$ is puresplit by Lemma 4.7, f is splitting. As A is a pure subgroup of G, M is A-pure-injective. So again by the first part of the proof $A=T(A) \oplus K^{\prime}$ for some $K^{\prime} \leq A$ with $K^{\prime} \cong A / T(A)$. Then the inclusion map $A=T(A) \oplus K^{\prime} \rightarrow G=T(G) \oplus G^{\prime}$ is splitting, that is, A is a direct summand in G. This completes the proof.

5. Structure of pi-poor Abelian groups

In this section, we prove some results concerning a possible structure of pi-poor groups.
Proposition 5.1. If G is pi-poor group, then $T_{p}(G)$ is unbounded for each $p \in P$.
Proof. Suppose G is pi-poor and $T_{p}(G)$ is bounded for some $p \in P$. Then $T_{p}(G)$ is pure-injective and $T_{p}(G)$ is a direct summand of G, because $T_{p}(G)$ is also pure in G. Consider the group $\oplus_{n=1}^{\infty} \mathbb{Z}_{p^{n}}$. We claim that G is $\oplus_{n=1}^{\infty} \mathbb{Z}_{p^{n}}$-pure-injective. Let H be a pure subgroup of $\oplus_{n=1}^{\infty} \mathbb{Z}_{p^{n}}$ and $f: H \rightarrow G$ be a homomorphism. Since H is a p-group, $f(H) \subseteq T_{p}(G)$. So that f extends to a homomorphism h : $\oplus_{n=1}^{\infty} \mathbb{Z}_{p^{n}} \rightarrow G$ because $T_{p}(G)$ is pure-injective. This proves our claim.

We shall see that $\oplus_{n=1}^{\infty} \mathbb{Z}_{p^{n}}$ is not pure-split. There is an exact sequence:

$$
\mathbb{E}: 0 \rightarrow K \rightarrow \oplus_{n=1}^{\infty} \mathbb{Z}_{p^{n}} \xrightarrow{g} \mathbb{Z}_{p^{\infty}} \rightarrow 0
$$

By the same arguments as in the proof of Lemma 4.3, \mathbb{E} is pure, i.e., K is pure in $\oplus_{n=1}^{\infty} \mathbb{Z}_{p^{n}}$. Since $\oplus_{n=1}^{\infty} \mathbb{Z}_{p^{n}}$ is reduced, \mathbb{E} does not split. Hence $\oplus_{n=1}^{\infty} \mathbb{Z}_{p^{n}}$ is not pure-split. This contradicts with the fact that G is pi-poor. Therefore, $T_{p}(G)$ can not be bounded.

Let \mathbb{Q}_{p} be the localization of \mathbb{Z} at the prime ideal $p \mathbb{Z}$. Note that the elements of \mathbb{Q}_{p} are of the form $a b^{-1}$, where $a, b \in \mathbb{Z}, b \neq 0$, and $\operatorname{gcd}(b, p)=1$

Lemma 5.2. Let p be a prime integer and N be a reduced torsion group. Then for every homomorphism $f: \mathbb{Q}_{p} \rightarrow N, \operatorname{Im} f$ is bounded.

Proof. For every prime $q \neq p$, it is clear that $q \mathbb{Q}_{p}=\mathbb{Q}_{p}$, i.e., \mathbb{Q}_{p} is q-divisible, and $T_{q}(N)$ is reduced. Then for $\pi_{q} \circ f: \mathbb{Q}_{p} \rightarrow T_{q}(N)$, where $\pi_{q}: N \rightarrow T_{q}(N)$ is the natural projection, $\left(\pi_{q} \circ f\right)\left(\mathbb{Q}_{p}\right)$ is a q-divisible subgroup of $T_{q}(N)$. Therefore, $\left(\pi_{q} \circ f\right)\left(\mathbb{Q}_{p}\right)$ is divisible, and so $\pi_{q} \circ f=0$ because $T_{q}(N)$ is reduced. Thus $\operatorname{Im} f=f\left(\mathbb{Q}_{p}\right) \subseteq T_{p}(N)$. Put $a=f(1)$ and $o(a)=p^{n}$, where $o(a)$ the order of a. Let $b c^{-1}$ be any element of \mathbb{Q}_{p} with $\operatorname{gcd}(c, p)=1$. Then $\operatorname{gcd}\left(c, p^{n}\right)=1$, therefore $c y+p^{n} z=1$ for some $y, z \in \mathbb{Z}$. Now $b=b c y+b p^{n} z$, so $b c^{-1}=b y+b p^{n} z c^{-1}$. Note that $c f\left(b p^{n} z c^{-1}\right)=b z p^{n} f(1)=z p^{n} a=0$. Let $x=f\left(b p^{n} z c^{-1}\right)$ and $o(x)=p^{m}$. Since $\operatorname{gcd}\left(c, p^{m}\right)=1$, we have $c u+p^{m} v=1$ for some $u, v \in \mathbb{Z}$. Then $x=u c x+v p^{m} x=u c x=0$, and so $f\left(b c^{-1}\right)=f(b y)+x=f(b y)=b y f(1) \in\langle f(1)\rangle$. Hence $\operatorname{Im} f$ is contained in $\langle f(1)\rangle$, and so it is bounded.

A cotorsion group G is a group satisfying $\operatorname{Ext}(\mathbb{Q}, G)=0$.
Theorem 5.3. There is a group G such that G is not pure-split and every reduced torsion group N is G-pure-injective. Hence a pi-poor group can not be torsion.

Proof. Fix any prime p. Since \mathbb{Q}_{p} is not cotorsion, $\operatorname{Ext}\left(\mathbb{Q}, \mathbb{Q}_{p}\right) \neq 0$ (see [5], page 226, Example 15). So there is a nonsplitting pure sequence:

$$
0 \rightarrow \mathbb{Q}_{p} \rightarrow G \rightarrow \mathbb{Q} \rightarrow 0 .
$$

Hence, G is not pure-split. For every prime $q \neq p, \mathbb{Q}_{p}$ and \mathbb{Q} are q-divisible, therefore G is also q-divisible. We claim that N is G-pure injective. Without loss of generality, we can assume that \mathbb{Q}_{p} is a subgroup of G and $G / \mathbb{Q}_{p}=\mathbb{Q}$. Let K be any nonzero pure subgroup of G and $f: K \rightarrow N$ be any homomorphism, where N is a torsion reduced group. Then, K is q-divisible for every prime $q \neq p$ since K is a pure subgroup of G and G is q-divisible. Clearly, the rank of K is at most 2 . So have two cases:

Case I: $\quad r_{0}(K)=1$. If K is also p-divisible, then K is divisible. So $K \cong \mathbb{Q}$, and the inclusion $K \rightarrow G$ splits, so f can be extended to a homomorphism $f^{\prime}: G \rightarrow N$. Now, let K be not p-divisible. K and \mathbb{Q}_{p} are of the same type, and so $K \cong \mathbb{Q}_{p}$ (see [5, Theorem 85.1]). Therefore, $\operatorname{Im} f$ is bounded by Lemma 5.2. Then, $\operatorname{Im} f$ is pure-injective, hence $f: K \rightarrow N$ can be extended to a homomorphism $f^{\prime}: G \rightarrow \operatorname{Im} f \leq N$.

Case II: $\quad r_{0}(K)=2$: We claim that $K=G$. Otherwise, since G / K is a nonzero torsion-free group, $r_{0}(G / K) \geq 1$. Then $2=r_{0}(G)=r_{0}(K)+r_{0}(G / K)>2$, a contradiction. Hence $G=K$.

As a consequence, N is G-pure-injective. This implies that N is not pi-poor.
Corollary 5.4. Let M be a pi-poor group. Then $M \neq T(M)$ and $T_{p}(M)$ is unbounded for every $p \in P$.
Lemma 5.5. Let M and N be right R-modules. Assume that N is (pure-)injective. Then, $M \oplus N$ is (pi-)poor if and only if M is (pi-)poor.

Proof. For a right R-module B, it is clear that $M \oplus N$ is B-(pure-)injective if and only if M is B -(pure-)injective.

Example 5.6. Let $G=\oplus_{p \in P} \mathbb{Z}_{p}$. Then G is poor by Theorem 3.1. On the other hand, since $T_{p}(G)=\mathbb{Z}_{p}$ is bounded, G is not pi-poor by Proposition 5.1.

Example 5.7. Let M be as in Theorem 4.1 and let V be the sum of all direct summands isomorphic to \mathbb{Z}_{p}. If $M=V \oplus K$, then K is pi-poor by Lemma 5.5 . But K is not poor by Theorem 3.1, since K does not contain a direct summand isomorphic to \mathbb{Z}_{p}. So pi-poor modules need not be poor.

Acknowledgment

The authors are grateful to the referee for the suggestions and comments which improved the presentation of the paper.

References

[1] Alahmadi, A. N., Alkan, M., López-Permouth, S. (2010). Poor modules: The opposite of injectivity. Glasg. Math. J. 52(A):7-17.
[2] Anderson, F. W., Fuller, K. R. (1992). Rings and Categories of Modules. New York: Springer.
[3] Er, N., López-Permouth, S., Sökmez, N. (2011). Rings whose modules have maximal or minimal injectivity domains. J. Algebra 330:404-417.
[4] Fuchs, L., Kertész, A., Szele, T. (1953). Abelian groups in which every serving subgroup is a direct summand. Publ. Math. Debrecen 3:95-105 (1954).
[5] Fuchs, L. (1970). Infinite Abelian Groups. Vol. I. Pure and Applied Mathematics, Vol. 36. New York: Academic Press.
[6] Fuchs, L. (1973). Infinite Abelian Groups. Vol. II. Pure and Applied Mathematics. Vol. 36-II. New York: Academic Press.
[7] Harmancı, A., López-Permouth, S., Üngör, B. (2015). On the pure-injectivity profile of a ring. Commun. Algebra, 43-11:4984-5002.
[8] Mohamed, S. H., Müller, B. J. (1990). Continuous and Discrete Modules. London Mathematical Society Lecture Note Series, Vol. 147. Cambridge: Cambridge University Press.

