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Abstract— In this study, a partial state feedback controller
is proposed for the link position tracking control problem of
flexible tendon driven robotic systems. Specifically; a nonlinear
model based controller is formulated for tendon driven robot
manipulators under the constraint that only the link position
and tendon expansion force measurements are available. Despite
the lack of link and actuator side velocity and actuator position
measurements, the proposed controller ensures exponential link
position tracking. To eliminate the need of actuator position and
velocity measurements, a model based velocity observer has
been utilized. Stability of the closed loop system and bounded-
ness of system states are proven via Lyapunov based arguments.
The performance of the purposed observer–controller couple is
then verified by a set of numerical simulations.

I. INTRODUCTION

Tendon transmission systems present clean, shock ab-
sorbent and have less noisy characteristics compared to other
power transmission systems. Owing to these advantages
tendon driven mechanisms can be used in many applications
to separate the actuators from the robot links as actuating
each joint remotely would decrease the link size, mass and
inertia. Previous research on this field have been conducted
on both small size and large scale robotic systems. To
name some; [1],[2],[3] can be given as an example to small
size applications like robotic hands and [4], [5], [6] are
some examples for large size manipulators. However, in
applications where the main performance criteria is to track
a desired trajectory in the task space, the use of tendon
driven mechanisms are limited. This is mostly due to the
elastic nature of the tendons and the extra dynamical terms
inserted to the system due to this nonlinear elasticity. For
accurate position control performance, considering the whole
system dynamics in the controller design is essential. For
tendon driven systems, it necessary to include the elastic
tendon dynamics to the system model nevertheless with this
inclusion control problem becomes more complicated due to
the extra dynamics [5] [7].

For some background on tendon driven robot manipulators
and classical linear control approaches on tendon driven
systems, the reader is referred to [8], [9],[10] and references
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therein. Focusing on the model based controllers for tendon
driven systems, formulations including system dynamics are
limited. In [5] Kobayashi and Ozawa presented adaptive and
an adaptive neural-network based controller for tendon driven
robotic mechanisms with elastic tendons. In [11], Nakayama
and Fujimoto tackled the tracking control of tendon driven
robots by applying the delayed reflexive force feedback. In
[12] and [13], Haiya et al. proposed controller for multi-
ple degree-of-freedom tendon mechanisms using nonlinear
springs with hysteresis characteristics. For the proposed
controllers, error of the equation of spring was estimated
by a disturbance observer and compensated by utilizing the
estimated disturbance. In recent years, backstepping type
model based controllers including tendon elasticity in the
system model have been published [7], [14], [15].

In this study, a nonlinear model based partial state feed-
back controller for tendon driven robot manipulators that
does not require neither acceleration nor velocity measure-
ments. More over purposed controller do not need actuator
side position measurements. The purposed controller only
requires link position measurements, tensile force measure-
ments of each tendons and exact knowledge of the model
parameters. Need for link velocity measurements are elimi-
nated by utilizing a nonlinear link velocity filter during the
error system development and the lack of actuator position
and velocity measurements have been overcome with the
help of a model based velocity filter design. Taking into
consideration of the tendon elasticity and power transmission
dynamics results a more complicated overall system model
which requires usage of the backstepping technique twice.
The semi-global exponential stability of the link position
error and boundedness of all the signals under the closed loop
operation have been proved using Lyapunov type analysis
tools and performance of the purposed controller is verified
via numerical simulations.

Compared to our previous studies, the proposed controller
does not require the full state information as [7]. And
when compared to [14] the proposed controller removes
the need of actuator side position measurements. However
while the adaptive controller of [14] can coupe for the
system uncertainties, the proposed controller requires the
exact knowledge of the system dynamics.

The rest of the paper is organised as follows. The mod-
elling of the tendon driven robot manipulator is given in
Section II. In Section III error system development and
controller-observer formulations are presented in detail. Sta-
bility analysis is given Section IV. Section V presents the
simulation results and finally our conclusions can be seen in
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Section VI.

II. SYSTEM DYNAMICS AND PROPERTIES

The dynamics of n−DOF robot manipulator driven by an
m−tendon mechanism is assumed to have the following form
[5]

M(q)q̈+Vm(q, q̇)q̇+Fd q̇+G(q) =−JT
j (q) ft(l) (1)

Jθ̈ +Bθ̇ +Ra ft (l) = τa (2)

l̇ = J j (q) q̇+Raθ̇ (3)

where q(t) , q̇(t) , q̈(t)∈Rn represent the link position, veloc-
ity and acceleration vectors respectively, θ (t) , θ̇ (t) , θ̈ (t) ∈
Rm represents the actuator position, velocity and accelera-
tion vectors respectively, l, l̇ ∈ Rm are the m−dimensional
tendon expansion vector and its time derivative, M (q) ∈
Rn×n denotes the link inertia effects, Vm(q, q̇) ∈ Rn×n repre-
sents the centripedal-Coriolis effects,G(q) ∈ Rn denotes the
gravitational terms related to the robot, Fd ∈ Rn×n is the
constant diagonal link viscous friction matrix, J,B ∈ Rm×m

are the diagonal actuator inertia and actuator viscous friction
matrices respectively, Ra ∈ Rm×m is the diagonal matrix
containing the radius of pulleys mounted on each actuator,
J j(q) ∈ Rm×n Jacobian matrix that maps the joint space to
the tendon expansion space, ft (l) ∈ Rm is the vector of
tendon tensile forces generated by the tendon expansions
and finally τa ∈ Rm is the control input vector applied
the actuators. The dynamic equations of (1), exhibit the
following useful properties, which will be utilized in the
controller development and the subsequent stability analysis;

Property 1: The inertia matrix can be bounded from above
and below by the following inequalities [16]

m1In ≤M(q)≤ m2In (4)

where m1 and m2 are positive constants, and In is the n×n
identity matrix. Likewise the inverse of of the inertia matrix
can be bounded as follows

1
m2

In ≤M−1(q)≤ 1
m1

In (5)

Property 2: The inertia and the centripetal-Coriolis ma-
trices satisfy the following relationship [17]

ξ
T
(

1
2

Ṁ(q)−Vm(q, q̇)
)

ξ = 0 ∀ξ ∈ Rn (6)

where Ṁ(q) represents the time derivative of the inertia
matrix.

Property 3: The centripetal-Coriolis matrix satisfies the
following relationship [18]

Vm(q,ν)ξ =Vm(q,ξ )ν ∀ξ ,ν ∈ Rn. (7)

Property 4: The norm of the centripetal-Coriolis and
friction matrices can be upper bounded as follows [16]

‖Vm(q,ξ )‖i∞ ≤ ζc1 ‖ξ‖ , ‖Fd‖i∞ ≤ ζ f , (8)
‖G(q)‖ ≤ ζg ∀ξ ∈ Rn. (9)

where ζc1,ζ f , and ζg are known positive bounding constants
and ‖·‖i∞ denotes the infinity norm of a matrix.

Property 5: The robot dynamics given in (1) can be
linearly parameterized as follows [16]

Y (q, q̇, q̈)φr = M(q)q̈+Vm(q, q̇)q̇+G(q)+Fd q̇ (10)

where φr ∈ Rp contains the constant system parameters, and
Y (q, q̇, q̈) ∈ Rn×p denotes the regression matrix that is a
function only of q(t), q̇(t), and q̈(t). The formulation of
(10) can also written in terms of the desired trajectory in
the following manner

Yd(qd , q̇d , q̈d)φr = M(qd)q̈d +Vm(qd , q̇d)q̇d (11)
+G(qd)+Fd q̇d

where the desired regression matrix Yd(qd , q̇d , q̈d) ∈ Rn×p

is a function of the desired link position, velocity, and
acceleration vectors denoted by qd(t), q̇d(t), q̈d(t) ∈ Rn,
respectively.

III. PROBLEM STATEMENT AND CONTROLLER
FORMULATION

The control objective is to design a link position tracking
controller for the tendon driven robot manipulator model
given by (1),(2) and (3) under the constraints that accel-
eration and velocity measurements of links and actuators
and more over position measurements of actuators are not
available. Specifically, the controller should force the robot
links to exponentially follow a desired trajectory despite
the lack of link/actuator velocity measurements and actuator
position measurements. In order to quantify the control
objective, we define the link position tracking error e(t)∈Rn

as follows

e , qd−q (12)

where it is assumed that the desired link position signal,qd (t)
and its first four time derivatives are sufficiently smooth and
bounded functions of time. We define a filtered tracking
error-like term η(t) ∈ Rn as follows

η = ė+α1e+α2e f (13)

where α1,α2 are positive constant filter gains and e f (t)∈Rn

is an auxiliary filter variable having the following dynamic
relationship

ė f =−α3e f +α2e− kη ; e f (0) = 0 (14)

where α3 is a positive constant filter gain, k is apositive
constant control gain. After taking the time derivative of (13),
premultiplying both sides by M(q), substituiting (1), (13)
and (14), adding and substructing Ydφr and Vm(q, q̇)η to the
right side of the resulting equation, we obtain the following
expression.

M(q)η̇ = −Vm(q, q̇)η +Ydφr−α2kM(q)η (15)
+JT

j (q) ft(l)+χ
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where

χ = M(q)q̈d +Vm(q, q̇d)q̇d +Fd q̇+G(q) (16)
−Ydφr +α1M(q)

(
η−α1e−α2e f

)
+α2M(q)

(
−α3e f +α2e

)
−Vm(q,η)

(
q̇d +α1e+α2e f

)
+Vm(q, q̇d)

(
α1e+α2e f

)
+Vm(q, q̇d +α1e+α2e f )

(
α1e+α2e f

)
.

Based on the bounds of the model matrices, boundedness
of the desired trajectory and its derivatives and several
properties of the robot dynamics it can be shown that

‖χ‖ ≤ ρ0 ‖x‖+ρ1 ‖x‖2 (17)

where ρ0, ρ1 are positive bounding constants, and x(t)∈R3n

is defined as follows

x =
[
eT eT

f ηT ]T . (18)

In order to apply backstepping procedure to reach the tendon
dynamics we define an auxiliary error term η f (t) ∈ Rm as
follows

η f = ft(l)− fd (19)

where fd(t) ∈ Rm is an auxiliary control input. Adding and
substructing JT

j (q) fd to the equation (15) we have the
following form.

M(q)η̇ = −Vm(q, q̇)η +Ydφr−α2kM(q)η (20)
+χ + JT

j (q)η f + JT
j (q) fd .

To stabilize the open loop robot dynamics given in (20)
we design the axillary control input fd according to the
subsequent stability analysis as follows.

fd ,
[
JT

j (q)
]+{−Ydφr + kKse f −Kse

}
(21)

where (.)+ is used to represent the pseudo inverse of a matrix
Ks is a positive constant diagonal control gain matrix and the
control gain k is defined as follows

k =
1

m1

[
1+ kn1

(
ρ

2
0 +ρ

2
1
)]

(22)

where kn1 is a positive constant nonlinear damping gain and
m1 was defined in (4). Closed loop dynamics can be obtained
as follows.

M(q)η̇ = −Vm(q, q̇)η−α2kM(q)η (23)
+χ + JT

j (q)η f + kKse f −Kse.

From (23) and subsequent stability analysis, it can be seen
that to ensure the stability and the convergence of the
tracking error signal we need to ensure η f (t) converges to
zero.

A. Model based observer design for actuator side velocity
measurements

From the actuator dynamics given in (2) we obtain the
following expression

θ̈ = J−1 [
τa−Bθ̇ −Ra ft (l)

]
. (24)

To write the actuator dynamics in a useful state space form
we define state variables x1(t) = θ , x2(t) = θ̇ ∈ Rm and
obtain the state space form of actuator dynamics as follows[

ẋ1
ẋ2

]
=

[
x2

J−1τa− J−1Bx2− J−1Ra ft (l)

]
. (25)

According to the subsequent stability analysis we design the
actuator side velocity observer as follows

·
x̂2 = J−1

τa− J−1Bx̂2− J−1Ra ft (l) (26)

+
∂ ft(l)

∂ l
Raη f +Ω4ηb

Observation error can be obtained in the following manner
·
x̃2 = ẋ2−

·
x̂2 =−J−1Bx̃2−

∂ ft(l)
∂ l

Raη f −Ω4ηb. (27)

From the closed loop dynamics of η given by (23) and
observation error dynamics given by (27) it is clear that we
need to show that auxiliary error signal η f converges to zero.
Taking the time derivative of (19),

η̇ f =
∂ ft(l)

∂ l

[
J j (q) q̇+Raθ̇

]
(28)

−
[
JT

j (q)
]+{−Ẏdφ + kKsė f −Ksė

}
− d

dt

[
JT

j (q)
]+{−Ydφ + kKse f −Kse

}
.

The time derivative of the pseudo inverse of the Jacobian
matrix which can be seen in last line of the previous equation
can be formulated by the sum of two functions: one of them
includes only time dependent terms and the other includes
terms of the multiplier of η . So the last line of the previous
equation can be separated as follows

d
dt

[
JT

j (q)
]+ {·}, Ψ1(e,e f , t)+Ψ2(e,e f , t)η . (29)

It is clear that if the Jacobian matrix is not a function of time
this part will be zero. To investigate the dynamics of η f , we
make use of equations (13), (14), (29) and add and subtruct
∂ ft (l)

∂ l Rax̂2 to obtain

η̇ f = Ω0 +Ω1η +
∂ ft(l)

∂ l
Rax̃2 +

∂ ft(l)
∂ l

Rax̂2 (30)

where

Ω0 =
∂ ft(l)

∂ l
J j (q)(q̇d +α1e+α2e f )−Ψ1 (31)

−
[
JT

j (q)
]+ [−Ẏdφ + kKs

(
−α3e f +α2e

)]
+
[
JT

j (q)
]+

Ks
(
−α1e−α2e f

)
and

Ω1 =−
∂ ft(l)

∂ l
J j (q)+

[
JT

j (q)
]+

(kKsk+Ks)−Ψ2. (32)
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Here Ω0 ∈Rm and Ω1 ∈Rm×n include known and measurable
terms. We define a new auxiliary input tracking error ηb(t)∈
Rm as follows

ηb(t), x̂2− x2d . (33)

And we apply back-stepping procedure to the open loop

dynamics of η f by adding and subtracting
∂ ft(l)

∂ l
Rax2d

η̇ f = Ω0 +Ω1η +
∂ ft(l)

∂ l
Rax̃2 (34)

+
∂ ft(l)

∂ l
Raηb +

∂ ft(l)
∂ l

Rax2d

According to the subsequent stability analysis we design
auxiliary input uL in the following manner

x2d = Λ
(
−K f η f −Ω0

)
(35)

where the auxiliary variable Λ(l) ∈ Rm×m is defined as

Λ ,

[
∂ ft(l)

∂ l
Ra

]−1

(36)

and K f ∈ Rm×m is the controller gain matrix and defined as

K f , k f + kn2 ‖Ω1‖2
i∞ + kn3λmax

(
JT

j (q)
)2

(37)

where k f ∈Rm×mis a constant, diagonal control gain matrix,
kn2,kn3 ∈ R1 are constant scalar nonlinear damping gains.
After substituting (35) in to the (34) closed loop dynamics
for η f can be obtained as

η̇ f =−K f η f +Ω1η +
∂ ft(l)

∂ l
Rax̃2 +

∂ ft(l)
∂ l

Raηb. (38)

In this step we continue the control design to show that
auxiliary error signal ηb converges to zero. To investigate the
dynamics of ηb we take the time derivative of (33), take the
other necessary derivatives in the resulting equation and than
substitute (26) (30), (3), (13) and do some more mathematical
manipulations to obtain

η̇b = Ω2 +Ω3η +Ω4x2 + J−1
τa (39)

where Ω2 ∈ Rm, Ω4 ∈ Rm×m and Ω3 ∈ Rm×n include the
known terms. According to the subsequent stability analysis
we design the actuator control input as follows

τa = J
{
−Kbηb−Ω2−Ω4x̂2−

∂ ft(l)
∂ l

Raη f

}
(40)

with
Kb = kb + kn4 ‖Ω3‖2

i∞ (41)

where kb ∈Rm×mis a constant, diagonal control gain matrix,
kn4 ∈ R1 is constant scalar nonlinear damping gain. After
substituting (40) in to the (39) closed loop dynamics for ηb
can be obtained as

η̇b =−Kbηb +Ω3η +Ω4x̃2−
∂ ft(l)

∂ l
Raη f . (42)

IV. STABILITY ANALYSIS

The stability of the closed loop system will be investigated
by utilizing Lyapunov-based arguments. Semi-global expo-
nential stability of the link position tracking error is presented
in the following theorem.

Theorem 1: For the tendon driven robot manipulator sys-
tem given by dynamic equations (1), (2) and (3), link position
tracking adaptive controllers given by (21), (35), (40) used
in conjunction with link velocity error generating filter given
by (13), (14) and actuator velocity observer given by (26)
ensures the semi-global exponential stability of the link
position tracking error in the sense that

‖e(t)‖ ≤

√
λ2

λ1
‖z(0)‖2 exp(−β t) (43)

where z(t) ∈ R3n+3m is defined as follows

z ,
[

xT x̃T
2 ηT

f ηT
b
]T

(44)

and provided the nonlinear damping gains are selected to
satisfy the following conditions

kn >
λ2

λ1
‖z(0)‖2 +1 (45)

where λ1 ∈ R1, λ2 ∈ R1 are defined as follows

λ1 ,
1
2

min{m1,λmin (Ks) ,1} (46)

λ2 ,
1
2

max{m2,λmax (Ks) ,1} (47)

Note that λmin (·) and λmax (·) are used to denote the mini-
mum eigenvalue and maximum eigenvalue of a matrix.

Proof: We define a non-negative Lyapunov-like func-
tion V (t) as follows

V =
1
2

η
T M(q)η +

1
2

eT Kse+
1
2

eT
f Kse f (48)

+
1
2

η
T
f η f +

1
2

η
T
b ηb +

1
2

x̃T
2 x̃2 (49)

which can be bounded from below and above as follows

λ1 ‖z‖2 ≤V ≤ λ2 ‖z‖2 . (50)

Taking the time derivative of (48) along (13), (14), (23), (38)
and (42) then using the well known skew symmetric property,
cancelling the same terms, using the definition of gains k, K f
and Kb given in (22), (37) and (41), applying upper bouds
with the help of the nonlinear damping tool, we can write
the following upper bound for V̇

V̇ ≤ −α2 ‖η‖2−α1Ks ‖e‖2−α3Ks
∥∥e f
∥∥2 (51)

−k f
∥∥η f

∥∥2− kb ‖ηb‖2− J−1B‖x̃2‖2

+
1

4α2kn1
‖x‖2 +

1
4α2kn1

‖x‖4

+
‖η‖2

4kn2
+
‖x̃2‖2

4kn3
+
‖η‖2

4kn4
.
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Using the definition of z given in (44), upper bound can be
simplified as follows

V̇ ≤−
(

β − 1
kn

(
1+‖z‖2

))
‖z‖2 (52)

where β ,kn are some positive constants. Making use of
bounds of V given in (50) results the final form for the upper
bound for V̇ as

V̇ ≤−
(

β − 1
kn

(
1+

V
λ1

))
‖z‖2 . (53)

To conclude the negative semi-definiteness of V̇ , the term
in the outer parenthesis need to be positive.That is we must
have

V ≤ λ1(kn−1) (54)

for (53) to be negative semi-definite. This requirement en-
sures the negative semi-definiteness of (53) but makes our
stability region semi-global [19]. From (53) and (54) the
resulting upper bound for V̇ can be obtained as

V̇ ≤−γ ‖z‖2 (55)

where γ is a some positive bounding constant. The expression
given in (55) can be further upper bounded by the help of
using the definition of z(t) and the upper bound of V (t) given
in (50) as follows

V̇ ≤−δV (56)

where δ is a some positive bounding constant. The solution
of the above differential inequality yields

V (t)≤V (0)exp(−δ t) (57)

and from direct application of (50) we can obtain the
following upper bound for z(t)

‖z(t)‖ ≤

√
λ2

λ1
‖z(0)‖2 exp(−δ t) (58)

where λ1,λ2 were previously defined in (46) and (47). Based
on the definition of z(t) and (58), it can be shown that
the tracking error term e(t) is bounded as stated in (43).
Moreover applying standard signal chasing argument we can
show that all signals in the closed-loop error system are
bounded.

V. SIMULATIONS

To see the performance of the purposed controller we
make simulations on a two link robotic arm which is driven
by 6 tendons as shown in Fig. (1). The 2 link robotic
manipulator has the following model matrices according to
the (1)

M =

[
p1 +2p3 cos(q2) p2 + p3 cos(q2)
p2 + p3 cos(q2) p2

]
(59)

Vm =

[
−p3 sin(q2)q̇2 −p3 sin(q2)(q̇1 + q̇2)
p3 sin(q2)q̇1 0

]
(60)

Fd =

[
fd1 0
0 fd2

]
(61)

Fig. 1. 2 link planar robot driven by 6 tendons
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Fig. 2. Link Errors

and the Jocobian matrix is defined as follows [5]

JT
j (q) = s1

[
1 −1 1 −1 1 −1
0 0 −1 1 1 −1

]
. (62)

Tendon tensile forces can be calculated as a function of
tendon expansions in the following manner [5]

ft(li) =
{

s2li + s3l3
i li > 0

0 li < 0

}
, i = 1, ..,6 (63)

where li are the tendon expansions and ft(li) are the members
of the vector of the tendon tensile forces which is defined as
follows

ft(l) =
[

ft(l1) ft(l2) ft(l3) ft(l4) ft(l5) ft(l6)
]T

(64)
The robot parameters are taken as p1 = 0.006 kgm2, p2 =
0.003 kgm2, p3 = 0.002 kgm2, fd1 = 0.005 Nm ∗ sec, fd2 =
0.001 Nm ∗ sec, s1 = 0.015, s2 = 7907.5 N/m and s3 =
1.7898× 108 N/m3 [5] for the simulations. The actuator
part of the tendon mechanism has identical six dc motors
which have the inertia of 0.142 kgm2 and viscous friction
of 0.025 Nm ∗ sec/rad and the pulleys mounted on the
actuators have radius of 10 cm. The desired trajectory of the
robot is selected as qd1 = qd2 = 0.5sin(t)(1−exp(−3t3)) rad
and initial positions of the robot links are set to 0.5 rad.
Controller gain matrices are selected as α1 = diag{6,6},
α2 = diag{1.5,1.5}, α3 = diag{1,1}, k = diag{0.9,0.8},
Ks = diag{13,15}, K f = 100I6 and Kb = 100I6. The sim-
ulation results are shown in Figures 2–4. Figure 2 shows the
link position tracking errors. Figure 3 presents the control
torques applied to each actuator, while Figure 4 presents the
tendon tensile forces.

VI. CONCLUSIONS

In this study, a nonlinear model based partial state feed-
back controller for a flexible tendon driven robotic manipu-
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Fig. 3. Actuator inputs

lator with the exact knowledge of the model parameters have
been presented. Despite the unavailability of the velocity
measurements of both links and actuators and position mea-
surements of the actuators, the proposed controller ensured
that the link trajectory tracking error signal converges to
zero exponentially. Semi-global stability of the closed-loop
system and boundedness of system states are proven via Lya-
punov based arguments. Simulation studies are performed
to illustrate the effectiveness and viability of the proposed
method.
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Fig. 4. Tendon tensile Forces
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