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In this paper, we study the interaction between a nonlinear focusing Robin type
boundary source, a nonlinear defocusing interior source, and a weak damping term
for nonlinear Schrödinger equations posed on the infinite half-line. We construct
solutions with negative initial energy satisfying a certain set of conditions which
blow-up in finite time in the H1-sense. We obtain a sufficient condition relating
the powers of nonlinearities present in the model which allows construction of
blow-up solutions. In addition to the blow-up property, we also discuss the stabiliza-
tion property and the critical exponent for this model. C 2016 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4941459]

I. INTRODUCTION

In this paper, we consider the following nonlinear Schrödinger equation (NLS) model posed on
the infinite half-line:




i∂tu − uxx + k |u|pu + iau = 0, t > 0, x ∈ I = (0,∞),
u(x,0) = u0(x), x > 0,
ux(0, t) = −λ |u(0, t)|ru(0, t), t > 0,

(1)

where u = u(x, t) is a complex valued function, the real variables x and t are space and time coordi-
nates, subscripts denote partial derivatives, and u0 is the initial state. The constant parameters satisfy
λ,p, k,r > 0 and a ≥ 0. When λ = 0, the boundary condition reduces to the classical homogeneous
Neumann boundary condition. When r = 0, the boundary condition is the classical homogeneous
Robin boundary condition. When λ and r are both non-zero as in the present case, the boundary
condition can be considered a nonlinear variation of the Robin boundary condition.

NLS is a classical field equation whose popularity increased especially when it was shown
to be integrable in Ref. 23. Although it has many applications in physics, NLS does not model
the evolution of a quantum state, unlike the linear Schrödinger equation. Applications of NLS
include transmission of light in nonlinear optical fibers and planar waveguides, small-amplitude
gravity waves on the surface of deep inviscid water, and Langmuir waves in hot plasmas.20,13

NLS also appears as a universal equation governing the evolution of slowly varying packets of
quasi-monochromatic waves in weakly nonlinear dispersive media.20,13 Some other interesting
applications of NLS include Bose-Einstein condensates,18 Davydov’s alpha-helix solitons,2 and
plane-diffracted wave beams in the focusing regions of the ionosphere.10

There is a large literature on the qualitative behavior of solutions for NLS. Our particular
attention in this paper will be the blow-up and stabilization of solutions at the energy level. The
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blow-up theory for nonlinear Schrödinger equations in the presence of a damping term has attracted
the attention of several scientists. Some of the major work in this subject are Refs. 22, 8, and 12.
Stabilization of solutions for weakly damped nonlinear Schrödinger equations has been studied well
with homogeneous boundary conditions (see, for example, Ref. 21). Regarding nonhomogeneous
boundary conditions; see Refs. 15–17. The stabilization problem for nonlinear Schrödinger equa-
tions has also been studied with locally supported damping (i.e., damping is only effective on a
subregion of the given domain), see, for example, Refs. 5–7.

Model (1) with linear main equation (k = 0) and no damping (a = 0) has been studied in Ref. 1.
Local existence and uniqueness of H1 solutions have been obtained for sufficiently smooth data
(u0 ∈ H3(R+)). For those local solutions, global existence of H1 solutions has been obtained for
r < 2 in the case of arbitrarily large data, and for r = 2 in the case of small data. It has also been
shown that solutions with strictly negative energy blow up if r ≥ 2. We define the energy function
associated with (1) by

E(t) ≡ ∥ux(t)∥2
L2(I ) −

2λ
r + 2

|u(0, t)|r+2 +
2k

p + 2
∥u(t)∥p+2

Lp+2(I ) (2)

for t ≥ 0. Therefore, r = 2 was considered to be the critical exponent for the blow-up problem in
the linear model. There is another study (see Ref. 11) where the linear Schrödinger equation was
considered with nonlinear boundary conditions. In Ref. 11, the authors obtain well-posedness and
decay rate estimates at the L2-level for the Schrödinger equation with nonlinear, attractive, and
dissipative boundary conditions of type ∂u

∂ν
= ig(u), where g satisfies some monotonicity condi-

tions. Most recently, the nonlinear Schrödinger equation of cubic type was studied with nonlinear
dynamical boundary conditions, which are equivalent to so called (nonlinear) Wentzell bound-
ary conditions (see Ref. 3). However, this work also uses the fact that the structure of the given
boundary condition provides a nice monotonicity, which helps to get a semigroup in an appropriate
Sobolev space. The nature of our model is very different than those in Refs. 11 and 3 due to the lack
of monotonicity, since in our case λ is real.

Our first aim in this paper is to study the blow-up problem in a more general context than
in Ref. 1. In our model, the main equation also includes a nonlinear defocusing term (k |u|pu,
k > 0) and damping (iau,a ≥ 0). In particular, we want to understand the nature of the competition
between the bad term (nonlinear Robin boundary condition of focusing type) and the good terms
(defocusing nonlinearity and damping). We show that there are solutions which blow up in finite
time. More precisely, we prove that solutions cannot exist globally in H1 sense if the initial data and
powers of nonlinearities satisfy a certain set of conditions.

The second aim of this paper is to obtain decay rate estimates. We will prove exponential
stabilization of solutions where the decay rates are determined according to the relation between
the powers of the nonlinearities. We obtain different decay rates depending on the given relation
between the powers of nonlinearities r and p.

We comment on the critical exponent in the last chapter of the paper. Recall that the critical
exponent in the case k = 0,a = 0 is r∗ = 2 (see Ref. 1). However, in the presence of the defocusing
nonlinearity, we deduce that the critical exponent must also depend on p. For example, we show
that every local solution is also global if 2 ≤ r < p

2 in Proposition 4.4. This shows that sufficiently
strong defocusing nonlinearity in the main equation has a dominating effect on the nonlinear
boundary condition.

Remark 1.1. We do not study the local well-posedness of (1). We assume that (1) has a unique
classical local solution on a maximal time interval [0,Tmax) (0 < Tmax ≤ ∞), which lies in a Sobolev
space of sufficiently high order and also satisfies the blow-up alternative in H1 sense: either
Tmax = ∞ or else Tmax < ∞ and ∥ux(t)∥L2(I ) → ∞ as t ↑ Tmax. For simplicity, we assume that the
initial data are from H s(R+) with s big enough and satisfy the necessary compatibility condition
that guarantees the existence of a local classical solution. Indeed, the second author’s recent paper4

proves the following local well-posedness theorem for the case a = 0, but the proof can be trivially
adapted to the case a > 0.
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Theorem 1.2 (Local well-posedness). Let T > 0 be arbitrary, s ∈
� 1

2 ,
7
2

�
−
� 3

2

	
, p,r > 0, k, λ ∈

R − {0}, u0 ∈ H s(R+) together with u′0(0) = −λ |u0(0)|ru0(0) whenever s > 3
2 . We in addition assume

the following restrictions on p and r.

(A1) If s is integer, then p ≥ s if p is an odd integer and [p] ≥ s − 1 if p is non-integer.
(A2) If s is non-integer, then p > s if p is an odd integer and [p] ≥ [s] if p is non-integer.
(A3) r > 2s−1

4 if r is an odd integer and [r] ≥ � 2s−1
4

�
if r is non-integer.

Then, the following hold true.

(i) Local existence and uniqueness: There exists a unique local solution u ∈ X s
T0

of (1) for some
T0 = T0

�∥u0∥H s(R+)
�
∈ (0,T], where X s

T0
is the set of those elements in

C([0,T0]; H s(R+)) ∩ C(Rx
+; H

2s+1
4 (0,T0))

that are bounded with respect to the norm ∥ · ∥X s
T0

. This norm is defined by

∥u∥X s
T0
B sup

t ∈[0,T0]
∥u(·, t)∥H s(R+) + sup

x∈R+
∥u(x, ·)∥

H
2s+1

4 (0,T0)
.

(ii) Continuous dependence: If B is a bounded subset of H s(R+), then there is T0 > 0 (depends
on the diameter of B) such that the flow u0 → u is Lipschitz continuous from B into X s

T0
.

(iii) Blow-up alternative: If S is the set of all T0 ∈ (0,T] such that there exists a unique local solu-
tion in X s

T0
, then whenever Tmax B sup

T0∈S
T0 < T, it must be true that lim

t↑Tmax
∥u(t)∥H s(R+) = ∞.

II. MAIN THEOREMS

Here are our main results.

Theorem 2.1 (Blow-up). Suppose r > max{2,p − 2}, E(0) ≤ 0, and

(a − b)
2

 ∞

0
x2|u0(x)|2dx < Im

 ∞

0
xu0(x)′ū0(x)dx, (3)

where b = a(r+2)(4−M )
4(r+2)−2M < 0, M = max{8,2p}. Then, there exists T > 0 such that the corresponding

local solution u of (1) (see Remark 1.1) satisfies

lim
t→T−

∥ux(t)∥L2(I ) = ∞.

Remark 2.2. Note that in the case a = 0, assumption (3) reduces to

Im
 ∞

0
xu′0ū0dx > 0.

This is the same assumption on the initial data in the context of the classical paper.9

Remark 2.3. Note that we do not assume that the initial energy is strictly negative. In the case
E(0) = 0, solutions do not have to blow-up if one disregards (3), e.g., the zero solution. As we
will see in the proof, condition (3) forces solutions to blow-up in this case. However, if one puts a
stronger assumption on the initial energy, such as strict negativeness in the case a = 0, we believe
that by using a compactly supported weight function, see, for example, Ref. 14, one might remove
condition (3) and still obtain the blow-up in H1 sense.

Theorem 2.4 (Stabilization). Suppose u is a local solution of (1) (see Remark 1.1). Then we
have the following.

(i) If a > 0,r < 2, then u is global and

∥u(t)∥2
H1(I ) ≤ Ce−(2a−ϵ)t, t ≥ 0,

where ϵ > 0 is fixed and small (can be chosen arbitrarily small), and C = C(u0, ϵ ,r) is a
non-negative constant.
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(ii) If a > 0,2 ≤ r < p
2 , then u is global and

∥u(t)∥2
H1(I ) ≤ Ce−(aµ−ϵ)t, t ≥ 0,

where

µ =
(p + 2)(p − 2r)
p(p + 2) − 2r

, (4)

and ϵ > 0 is fixed and small (can be chosen arbitrarily small), and C = C(u0, ϵ ,r,p) is a
non-negative constant.

(iii) if a > 0,r = 2,p ≤ 4, and u0 is sufficiently small in L2 sense, then u is global and

∥u(t)∥2
H1(I ) ≤ Ce−2at, t ≥ 0,

where C = C(u0,p) is a non-negative constant.
(iv) if a > 0,r > 2,r ≥ p

2 , and u0 is sufficiently small in H1 ∩ Lp+2 sense, then u is global and

∥u(t)∥2
H1(I ) ≤ Ce−2at, t ≥ 0,

where C = C(u0,r,p) is a non-negative constant.

Remark 2.5. The following problem remains open.

• Is it possible to construct blow up solutions in the two cases r = 2,p ≤ 4 and r > 2,p − 2 ≥
r ≥ p

2 ?

In our analysis, we show that this is not possible whenever we choose small enough initial data.
However, this does not mean one cannot construct blow-up solutions with arbitrary initial data. An
answer to the above problem will also help to determine the critical exponent for our model, see
Section IV.

We summarize our results in Table I.

III. BLOW-UP SOLUTIONS: PROOF OF THEOREM 2.1

A. Case a , 0

In this section, we prove Theorem 2.1 for the case a , 0, slightly modifying the proof in
Ref. 22.

TABLE I. Blow-up, local/global solutions, and stabilization.

Nonlinear powers Blow-up (a ≥ 0) Local⇒Global (a ≥ 0) Exp. stabilization (a > 0)

r<2 NO YES YES
Decay rate ∼O(e−(2a−ϵ)t)

2 ≤ r <
p
2 NO YES YES

Decay rate ∼O(e−(aµ−ϵ)t) (See (4))

r = 2, p ≤ 4 Small Sol. Small Sol.
Decay rate ∼O(e−2at)

OPEN Large Sol: OPEN Large Sol: OPEN

r > 2, p−2 ≥ r ≥ p
2 Small Sol. Small Sol.

Decay rate ∼O(e−2at)
OPEN Large Sol: OPEN Large Sol:OPEN

r > 2, r > p−2 ONLY Small Sol. ONLY Small Sol.
Decay rate ∼O(e−2at)

YES
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Lemma 3.1. Let u be a local solution of (1) (see Remark 1.1) and b ∈ R. Then,

(i) ∥u(t)∥2
L2(I ) = e−2at∥u0∥2

L2(I ),
(ii) E(t)e2bt = E(0) +  t

0 e2bsρ(s)ds

for T0 > t ≥ 0, where ρ is given by (8), and E(t) is defined in (2).

Proof. We multiply (1) by ū, take the imaginary parts, integrate over I ≡ (0,∞), and obtain the
exponential decay of the L2-norm (conservation when a = 0) of the solution,

1
2

d
dt

∥u(t)∥2
L2(I ) = −a∥u(t)∥2

L2(I )⇒ ∥u(t)∥2
L2(I ) = e−2at∥u0(x)∥2

L2(I ).

Now, we multiply (1) by ūt, take two real parts, integrate the obtained relation over I, and get

d
dt

(
∥ux(t)∥2

L2(I ) −
2λ

r + 2
|u(0, t)|r+2 +

2k
p + 2

∥u(t)∥p+2
Lp+2(I )

)
= 2Re

 ∞

0
iaūutdx = 2aRe

 ∞

0
ū(x, t) (uxx − k |u|pu − iau) dx

= −2a
(
∥ux(t)∥2

L2(I ) − λ |u(0, t)|r+2 + k∥u(t)∥p+2
Lp+2(I )

)
= −2a

(
∥ux(t)∥2

L2(I ) −
2λ

r + 2
|u(0, t)|r+2 +

2k
p + 2

∥u(t)∥p+2
Lp+2(I )

)
− 2akp

p + 2
∥u(t)∥p+2

Lp+2(I ) +
2aλr
r + 2

|u(0, t)|r+2. (5)

Then, the identity in (5) is simply

E ′(t) = −2aE(t) − 2akp
p + 2

∥u(t)∥p+2
Lp+2(I ) +

2aλr
r + 2

|u(0, t)|r+2. (6)

Adding 2bE(t) to both sides, where b ∈ R and b < a, we have

E ′(t) + 2bE(t) = (2b − 2a)E(t) − 2akp
p + 2

∥u(t)∥p+2
Lp+2(I ) +

2aλr
r + 2

|u(0, t)|r+2. (7)

Rewriting the right hand side of (7) by using the definition of E(t), we have

E ′(t) + 2bE(t) = −(2a − 2b)∥ux(t)∥2
L2(I ) −

4λb
r + 2

|u(0, t)|r+2

+
4kb
p + 2

∥u(t)∥p+2
Lp+2(I ) + 2aλ |u(0, t)|r+2 − 2ak∥u(t)∥p+2

Lp+2(I ).

Multiplying both sides by e2bt and integrating over (0, t), we have

E(t)e2bt = E(0) +
 t

0
e2bsρ(s)ds,

where

ρ(t) = −(2a − 2b)
(
∥ux(t)∥2

L2(I ) −
(

a(r + 2) − 2b
2a − 2b

)
2λ

r + 2
|u(0, t)|r+2

+

(
a(p + 2) − 2b

2a − 2b

)
2k

p + 2
∥u(t)∥p+2

Lp+2(I )

)
. (8)

�

Let us set

θ(t) ≡ ∥ux(t)∥2
L2(I ) −

(
a(r + 2) − 2b

2a − 2b

)
2λ

r + 2
|u(0, t)|r+2 +

2k
p + 2

∥u(t)∥p+2
Lp+2(I ). (9)

Note that a(r+2)−2b
2a−2b ≥ 1, which implies θ(t) ≤ E(t). Therefore, a(p+2)−2b

2a−2b − 1 = ap
2a−2b > 0, and by

Lemma 3.1
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θ(t)e2bt ≤ E(t)e2bt = E(0) − (2a − 2b)
 t

0

(
θ(s) +

( ap
2a − 2b

) 2k
p + 2

∥u(s)∥p+2
Lp+2(I )

)
e2bsds

≤ E(0) − (2a − 2b)
 t

0
θ(s)e2bsds. (10)

Multiplying (10) by e(2a−2b)t, we get

d
dt

(
e(2a−2b)t

 t

0
e2bsθ(s)ds

)
≤ E(0)e(2a−2b)t (11)

from which it follows that  t

0
θ(s)e2bsds ≤ 0 (12)

provided that E(0) ≤ 0.
Now, we set

I(t) =
 ∞

0
x2|u|2dx,V (t) = −4Im

 ∞

0
ūxuxdx, and y(t) = −1

4
V (t). (13)

We have the following lemma.

Lemma 3.2. I and y satisfy the following identities:

(i) e2bt I(t) + (2a − 2b)  t

0 e2bsI(s)ds = I(0) +  t

0 V (s)e2bsds,
(ii) ẏ + 2ay = − 1

4 θ1, and
(iii) V (t)e2bt = V (0) + (2b − 2a)  t

0 V (s)e2bsds +
 t

0 θ1(s)2bsds

for T0 ≥ t ≥ 0, where θ1 is given in (27).

Proof. Differentiating I(t), we have

d
dt

I(t) =
 ∞

0
x2(uūt + utū)dx = 2Re

 ∞

0
x2utūdx

= 2Im
 ∞

0
(uxx − k |u|pu − iau)x2ūdx = −2Im

 ∞

0
(x2ū)xuxdx − 2a

 ∞

0
x2|u|2dx

= −4Im
 ∞

0
ūxuxdx − 2a

 ∞

0
x2|u|2dx. (14)

Therefore,

I ′(t) + 2aI(t) = −4Im
 ∞

0
ūxuxdx. (15)

Adding 2bI(t) to both sides,

I ′(t) + 2bI(t) = −(2a − 2b)I(t) + V (t). (16)

Multiplying both sides by e2bt,

�
I(t)e2bt�′ = −(2a − 2b)I(t)e2bt + V (t)e2bt . (17)

Integrating over (0, t), we have

e2bt
 ∞

0
x2|u|2dx + (2a − 2b)

 t

0
e2bs

 ∞

0
x2|u|2dxds =

 ∞

0
x2|u0|2dx +

 t

0
V (s)e2bsds. (18)

Differentiating y(t), we have

d
dt

y(t) = d
dt

Im
 ∞

0
ūxuxdx = Im

 ∞

0
(ūtxux + ūxuxt)dx. (19)
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Integrating by parts we obtain

Im
 ∞

0
ūxuxtdx = −Im

 ∞

0
(ūx)xutdx = −Im

 ∞

0
ūxxutdx − Im

 ∞

0
ūutdx. (20)

Hence,

d
dt

y(t) = 2Im
 ∞

0
ūtxuxdx − Im


ūutdx. (21)

The first term on the right hand side of (21) is

2Im
 ∞

0
ūtxuxdx = 2Im

 ∞

0
(iūxx − ik |u|pū − aū) xuxdx

= 2Re
 ∞

0
ūxxxuxdx − 2Re

 ∞

0
k x |u|pūuxdx − 2aIm

 ∞

0
xūuxdx, (22)

where

2Re
 ∞

0
ūxxxuxdx = Re

 ∞

0
x(|ux |2)xdx = −

 ∞

0
|ux |2dx (23)

and

−2Re
 ∞

0
k x |u|pūuxdx = − 2k

p + 2
Re

 ∞

0
x(|u|p+2)xdx

=
2k

p + 2

 ∞

0
|u|p+2dx =

2k
p + 2

∥u∥p+2
Lp+2(I ). (24)

The second term on the right hand side of (21) is

−Im
 ∞

0
ūutdx = −Im

 ∞

0
ū(−iuxx + ik |u|pu − au)dx

= Re
 ∞

0

(
ūuxxdx − k∥u∥p+2

Lp+2(I )

)
dx

= −
 ∞

0

(
|ux |2dx + λ |u(0, t)|r+2 − k∥u∥p+2

Lp+2(I )

)
dx. (25)

Combining (21)-(25), we obtain

d
dt

y(t) = −2∥ux∥2
L2(I ) −

kp
p + 2

∥u∥p+2
Lp+2(I ) + λ |u(0, t)|r+2 − 2aIm

 ∞

0
xūuxdx. (26)

Multiplying (26) by −4 and rearranging the terms, we have

d
dt

V (t) + 2aV (t) = 8∥ux∥2
L2(I ) +

4kp
p + 2

∥u∥p+2
Lp+2(I ) − 4λ |u(0, t)|r+2 ≡ θ1(t). (27)

Adding (2b − 2a)V (t) to both sides of (27), multiplying the obtained relation by e2bt and integrating
over the interval (0, t), we obtain

V (t)e2bt = V (0) + (2b − 2a)
 t

0
V (s)e2bsds +

 t

0
θ1(s)e2bsds. (28)

�

Let M = max{8,2p} and b = a(r+2)(4−M )
4(r+2)−2M , then b < 0 since r > max{2,p − 2}, and moreover

−M
(

a(r + 2) − 2b
2a − 2b

)
2λ

r + 2
|u(0, t)|r+2 ≥ −4λ |u(0, t)|r+2.

On the other hand, M∥ux∥2 ≥ 8∥ux∥2 and

M
2k

p + 2
∥u∥p+2

Lp+2(I ) ≥
4kp
p + 2

∥u∥p+2
Lp+2(I ).
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Therefore, θ1(t) ≤ θ(t), and by (12) and (28),

V (t)e2bt ≤ V (0) + (2b − 2a)
 t

0
V (s)e2bsds, (29)

which can also be written as

d
dt

(
e(2a−2b)t

 t

0
V (s)e2bsds

)
≤ V (0)e(2a−2b)t . (30)

Integrating (30) over (0, t), we obtain t

0
V (s)e2bsds ≤ 1

2a − 2b
(1 − e−(2a−2b)t)V (0).

From this inequality, one obtains the blow-up of the solutions. Indeed, let

z(t) ≡ e2bt
 ∞

0
x2|u|2dx.

Then by (18),

z(t) ≤
 ∞

0
x2|u0|2dx +

1
2a − 2b

(1 − e−(2a−2b)t)V (0).
Hence,

lim
t→T

z(t) = 0,

where T ≡ − 1
2a−2b ln

( (2a−2b)  x2|u0|2dx+V (0)
V (0)

)
. We choose u0 in such a way that T > 0 by assumption

(3). Now, using the decay of the L2 norm which was proved in Lemma 3.1, we deduce the inequality

∥u(t)∥2
L2(I ) = −2Re

 ∞

0
xuūxdx ≤ 2∥xu(x, t)∥L2(I ) · ∥ux(t)∥L2(I ).

The last inequality implies

∥ux(t)∥L2(I ) ≥
∥u0(x)∥2

L2(I )e
−(2a−2b)t

z(t) → ∞

as t → T.

B. Case a = 0

In this section, we prove Theorem 2.1 for a = 0 by obtaining a nonlinear ordinary differential
inequality which yields blow-up of solutions. The proof follows by adapting the same argument
in Ref. 9 to our model.

1
2
∥ux(t)∥2

L2(I ) +
k

p + 2
∥u(t)∥p+2

Lp+2(I ) = E(0) + λ

r + 2
|u(0, t)|r+2.

Then,

r + 2
2

∥ux(t)∥2
L2(I ) +

k(r + 2)
p + 2

∥u(t)∥p+2
Lp+2(I ) ≤ λ |u(0, t)|r+2,

provided that E(0) ≤ 0,

y ′(t) ≥ (r − 2
2

)∥ux∥2
L2(I ) +

k(r − p + 2)
p + 2

∥u(t)∥p+2
Lp+2(I ).

Then y ′(t) ≥ κ∥ux(t)∥2
L2(I ) for some κ > 0 provided that r > max{2,p − 2}. Therefore y(t) > 0,

since y(0) > 0. This means I ′(t) = −4y(t) ≤ 0. Hence, I(t) ≤ I(0). By definition of y(t), we have
|y(t)| ≤ 

I(0)∥ux∥L2(I ). Hence, y ′(t) ≥ κ y2(t)
I (0) . Separating the variables and integrating this differ-

ential inequality over the interval (0, t), and using y(0) > 0, we get
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 t

0

dy
y2 =

 t

0

κ

I(0)ds ⇒ y(t) ≥ y(0)I(0)
I(0) − κ y(0)t .

That is to say,

∥ux∥L2(I ) ≥
y(t)
I(0) ≥

y(0)I(0)
I(0) − κ y(0)t .

Hence, we deduce that

lim
t→T−

∥ux(t)∥L2(I ) = ∞,

where T ≡ I (0)
κ y(0) .

IV. CRITICAL EXPONENT AND EXPONENTIAL DECAY ESTIMATES

A. Critical exponent conjecture

It is not difficult to obtain uniform boundedness (in time variable) of the H1 norm if r < 2 for
arbitrarily large initial data and if r = 2,p ≤ 4 for small initial data. In order to prove this, one can
simply proceed as in Ref. 1 for a = 0. Regarding the damped situation (a > 0), see Section IV B
below. However, we expect that the situation in our model should be better than this due to the
defocusing source term k |u|pu, k > 0. We conjecture that if p > 4, then one can control the H1 norm
of the solutions with arbitrarily large initial data, even if 2 ≤ r < p − 2. In addition, one should be
able to control the H1 norm with small data for r ≥ p − 2 whenever p > 4. More precisely, we have
the following conjecture.

Conjecture 4.1. The critical exponent for nonlinear model (1) is

r∗ = max{2,p − 2}.
One can try to use interpolation on Lp-spaces to obtain some partial results. Let us assume

a = 0 for simplicity. Observe that

∥ux(t)∥2
L2(I ) +

2k
p + 2

∥u(t)∥p+2
p+2 ≤ |E(0)| + 2λ

r + 2
|u(0, t)|r+2. (31)

By ϵ-Young’s inequality and Hölder’s inequality,

2λ
r + 2

|u(0, t)|r+2 = − 2λ
r + 2

 ∞

0
(|u|r+2)xdx = −2λRe

 ∞

0
|u|ruūxdx

≤ ϵ ∥ux∥2
L2(I ) + Cϵ

 ∞

0
|u|2r+2dx = ϵ ∥ux∥2

L2(I ) + Cϵ

 ∞

0
|u|2r+2−δ |u|δdx

≤ ϵ ∥ux∥2
L2(I ) + Cϵ∥u∥

δ
2
L2(I )∥u∥

2−δ
2

2(2r+2−δ)
2−δ

, (32)

where ϵ > 0 is fixed and can be chosen arbitrarily small.
If we choose δ = 2 − 4r

p
, which is positive if p > 2r , use the mass identity (mass is conserved if

a = 0), and Hölder’s inequality again, then we obtain

|u(0, t)|r+2 ≤ ϵ ∥ux(t)∥2
L2(I ) + Cϵ∥u(t)∥

p−2r
p

L2(I ) ∥u(t)∥
2r
p

p+2 ≤ ϵ ∥ux(t)∥2
L2(I )

+ Cϵ∥u0∥
(p+2)(p−2r )
p(p+2)−2r

L2(I ) +
2kϵ
p + 2

∥u(t)∥p+2
p+2.

Using this in (31), we get

(1 − ϵ)
(
∥ux(t)∥2

L2(I ) +
2k

p + 2
∥u(t)∥p+2

p+2

)
≤ |E(0)| + Cϵ∥u0∥

(p+2)(p−2r )
p(p+2)−2r

L2(I ) .

Hence we have ∥ux∥L2(I ) ≤ C for some C > 0.
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One can improve the above analysis by involving the case r > 2, r ≥ p
2 under a smallness

assumption on the initial data. Indeed, by (31) and (37), we have

∥ux(t)∥2
L2(I ) ≤ ∥u′0∥2

L2(I ) +
2k

p + 2
∥u0∥p+2

p+2 +
2

r+4
2 λ

r + 2
∥u0∥

r+2
2

L2(I )∥ux∥
r+2

2
L2(I ). (33)

If we set Φ(t) ≡ ∥ux(t)∥2
L2(I ), then (33) can be rewritten as

Φ(t) ≤ C1 + C2Φ(t)σ, (34)

where

C1 ≡ ∥u′0∥2
L2(I ) +

2k
p + 2

∥u0∥p+2
p+2, C2 ≡

2
r+4

2 λ

r + 2
∥u0∥

r+2
2

L2(I ) (35)

and σ ≡ r+2
4 > 1. Since, Φ(0) ≤ C1, then for sufficiently small u0, one can have C1C

1
σ−1

2 ≤ σ−1

σ
σ

σ−1
,

we conclude that Φ(t) ≤ σ
σ−1C1. For a justification of the smallness argument we carried out, we use

the following lemma.

Lemma 4.2 (Ref. 19). Suppose

Φ(t) ≤ C1 + C2Φ(t)σ, ∀t ∈ [0,T),
where Φ : [0,T) → R is non-negative, continuous, Ci > 0 (i = 1,2), σ > 1, and γ = 1

σ−1 . If Φ(0) ≤
C1 and C1C

γ
2 ≤ (σ − 1)σ−γ−1. Then

Φ(t) ≤ σ

σ − 1
C1, ∀t ∈ [0,T).

B. Effect of damping: Proof of Theorem 2.4

Our analysis above shows that although it is more difficult to prove the blow-up result in the
presence of the damping term iau,a > 0, damping actually plays no particular role in the blow-up
condition r > max{2,p − 2}. This is analogous to the result in Ref. 22. Nevertheless, damping may
have a stabilizing effect in the case that global solutions exist. See, for example, Ref. 21. For our
model, this is easy to show in the case r < 2 but is difficult to show if 2 ≤ r < p − 2 whenever
p > 4, as in Section IV A.

Indeed, by Lemma 3.1, we have

|u(0, t)|2 = −
 ∞

0
(|u|2)xdx = −2Re

 ∞

0
uūxdx

≤ 2∥u∥L2(I )∥ux∥L2(I ) ≤ 2∥u0∥L2(I )e
−at∥ux∥L2(I ), (36)

which implies

|u(0, t)|r+2 ≤ 2
r+2

2 ∥u0∥
r+2

2
L2(I )e

−a (r+2)
2 t∥ux∥

r+2
2

L2(I ). (37)

Now, if r < 2, then by ϵ-Young’s inequality, the right hand side of the above inequality is bounded
by

Cϵe−aµt + ϵ ∥ux∥2
L2(I )

where ϵ,Cϵ > 0 (generic constants) and µ = 2(r+2)
2−r . Observe that µ = 2 + 4r

2−r > 2. Multiplying iden-
tity (6) by e2at and integrating over the time interval (0, t),

E(t)e2at = E(0) − 2akp
p + 2

 t

0
∥u(s)∥p+2

Lp+2(I )e
2asds +

2aλr
r + 2

 t

0
|u(0, s)|r+2e2asds, (38)

which gives
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∥ux∥2
L2(I )e

2at ≤ 2λ
r + 2

|u(0, t)|r+2e2at − 2k
p + 2

∥u(t)∥p+2
Lp+2(I )e

2at

+ E(0) − 2akp
p + 2

 t

0
∥u(s)∥p+2

Lp+2(I )e
2asds +

2aλr
r + 2

 t

0
|u(0, s)|r+2e2asds

≤ 2λ
r + 2

|u(0, t)|r+2e2at + E(0) + 2aλr
r + 2

 t

0
|u(0, s)|r+2e2asds

≤ Cϵea(2−µ)t + ϵ ∥ux∥2
L2(I )e

2at + |E(0)| +
 t

0
Cϵea(2−µ)sds + ϵ

 t

0
∥ux∥2

L2(I )e
2asds (39)

which implies

∥ux∥2
L2(I )e

2at ≤ Cϵ + ϵ

 t

0
∥ux∥2

L2(I )e
2asds. (40)

By Gronwall’s lemma,

∥ux∥2
L2(I )e

2at ≤ Cϵeϵt ⇒ ∥ux∥2
L2(I ) ≤ Cϵe−(2a−ϵ)t . (41)

Combining the above result with the L2 decay (see Lemma 3.1), we obtain the following result.

Proposition 4.3 (Stabilization I). Let a > 0,r < 2 and u be a local solution of (1) (see
Remark 1.1). Then u is global and decays to zero exponentially fast in the following sense:

∥u(t)∥2
H1(I ) ≤ Ce−(2a−ϵ)t, t ≥ 0,

where ϵ > 0 is fixed and can be chosen arbitrarily small.

Regarding the powers r ≥ 2, one can also obtain similar decay estimates, but only under a
smallness assumption on the initial data for some values of p.

Let us start with the case 2 ≤ r < p
2 . By an argument similar to that in Section IV A, we have

the following estimate:
2λ

r + 2
|u(0, t)|r+2 ≤ ϵ ∥ux∥2

L2(I ) + Cϵ∥u0∥µL2(I )e
−aµt +

2kϵ
p + 2

∥u∥p+2
p+2,

where

µ =
(p + 2)(p − 2r)
p(p + 2) − 2r

> 0. (42)

By (38), we have

∥ux∥2
L2(I )e

2at +
2k

p + 2
∥u(t)∥p+2

Lp+2(I )e
2at ≤ 2λ

r + 2
|u(0, t)|r+2e2at−

+ E(0) − 2akp
p + 2

 t

0
∥u(s)∥p+2

Lp+2(I )e
2asds +

2aλr
r + 2

 t

0
|u(0, s)|r+2e2asds

≤ 2λ
r + 2

|u(0, t)|r+2e2at + E(0) + 2aλr
r + 2

 t

0
|u(0, s)|r+2e2asds

≤ |E(0)| + Cϵea(2−µ)t +
 t

0
Cϵea(2−µ)sds

+ ϵ

(
∥ux∥2

L2(I ) +
2k

p + 2
∥u∥p+2

p+2

)
e2at + ϵ

 t

0

(
∥ux∥2

L2(I ) +
2k

p + 2
∥u∥p+2

p+2

)
e2asds. (43)

Observe that  t

0
Cϵea(2−µ)sds =

Cϵ

a(2 − µ)
(
ea(2−µ)t − 1

)
≤ Cϵ

a(2 − µ) ea(2−µ)t .

Let us set Ψ(t) ≡
(
∥ux∥2

L2(I ) +
2k
p+2 ∥u∥p+2

p+2

)
e2at, then the above inequality reads

(1 − ϵ)Ψ(t) ≤ α(t) + ϵ
 t

0
Ψ(s)ds,
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where α(t) ≡ |E(0)| + Cϵ

(
1 + 1

a(2−µ)
)

ea(2−µ)t. Note that α is a non-decreasing function since µ < 2.
Now, by Gronwall’s lemma, we have

Ψ(t) ≤ 1
1 − ϵ

α(t) exp
(

ϵt
1 − ϵ

)
,

which gives

∥ux∥2
L2(I ) ≤ Ce−(aµ−ϵ)t, t ≥ 0.

This is a slower rate of decay than in Proposition 4.3. Hence, we proved the following proposition.

Proposition 4.4 (Stabilization II). Let a > 0,2 ≤ r < p
2 and u be a local solution of (1) (see

Remark 1.1). Then u is global and decays to zero exponentially fast in the following sense:

∥u(t)∥2
H1(I ) ≤ Ce−(aµ−ϵ)t, t ≥ 0,

where µ is given by (42), and ϵ > 0 is fixed and can be chosen arbitrarily small.

Now, let us consider the case r = 2 and p ≤ 4. Using (37), we obtain

|u(0, t)|4 ≤ 22∥u0∥2
L2(I )e

−2at∥ux∥2
L2(I ). (44)

Now, by (38), we have

∥ux∥2
L2(I )e

2at ≤ λ |u(0, t)|4e2at + |E(0)| + aλ
 t

0
|u(0, t)|4e2asds

≤ |E(0)| + 4λ∥u0∥2
L2(I )e

−2at∥ux∥2
L2(I )e

2at + 4aλ∥u0∥2
L2(I )

 t

0
e−2as∥ux∥2

L2(I )e
2asds. (45)

Now, if we assume ∥u0∥2
L2(I ) <

1
4λ , and since e−2at ≤ 1, we have

(1 − 4λ∥u0∥2
L2(I ))∥ux∥2

L2(I )e
2at ≤ |E(0)| + 4aλ∥u0∥2

L2(I )

 t

0
e−2as∥ux∥2

L2(I )e
2asds, (46)

from which it follows that

∥ux∥2
L2(I )e

2at ≤ |E(0)|
1 − 4λ∥u0∥2

L2(I )
+

4aλ∥u0∥2
L2(I )

1 − 4λ∥u0∥2
L2(I )

 t

0
e−2as∥ux∥2

L2(I )e
2asds. (47)

Applying Gronwall’s inequality to the above, we get

∥ux∥2
L2(I )e

2at ≤ |E(0)|
1 − 4λ∥u0∥2

L2(I )
exp *.

,

4aλ∥u0∥2
L2(I )

1 − 4λ∥u0∥2
L2(I )

 t

0
e−2asds+/

-

≤ |E(0)|
1 − 4λ∥u0∥2

L2(I )
exp *.

,

2λ∥u0∥2
L2(I )

1 − 4λ∥u0∥2
L2(I )

+/
-
. (48)

Hence, there exists C > 0 such that ∥ux(t)∥2
L2(I ) ≤ Ce−2at for t ≥ 0. Therefore, we have proved the

following result.

Proposition 4.5 (Stabilization III). Let a > 0,r = 2,p ≤ 4 and u be a local solution of (1) (see
Remark 1.1) such that u0 is sufficiently small in L2 sense. Then u is global and moreover u decays to
zero exponentially fast in the following sense:

∥u(t)∥2
H1(I ) ≤ Ce−2at, t ≥ 0.

Observe that the decay rate obtained in Proposition 4.5 is faster than the decay rates in Proposi-
tions 4.3 and 4.4.

Now, let us consider the case r > 2,r ≥ p
2 .
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By (38) and (37),

∥ux∥2
L2(I )e

2at ≤ C1 + C2∥ux∥
r+2

2
L2(I )e

2at + arC2

 t

0
e−a(

r+2
2 )s∥ux∥

r+2
2

L2(I )e
2asds, (49)

where C1 and C2 are given in (35).
Let us define S(t) = sup

[0, t]
{∥ux∥2

L2(I )e
2as}. Then since r+2

4 > 1, we have

S(t) ≤ C1 + C2S(t) r+2
4 + arC2S(t) r+2

4

 t

0
e−a(

r+2
2 )sds ≤ C1 +

(
1 +

4r
r + 2

)
C2S(t) r+2

4 . (50)

By the same smallness argument in (34) or Lemma 4.2, we obtain

S(t) ≤ 2(r + 2)
r − 2

C1.

Hence, we proved the following proposition,

Proposition 4.6 (Stabilization IV). Let a > 0,r > 2,r ≥ p
2 , and u be a local solution of (1) (see

Remark 1.1) such that u0 is sufficiently small in H1 ∩ Lp+2 sense. Then u is global and moreover u
decays to zero exponentially fast in the following sense:

∥u(t)∥2
H1(I ) ≤ Ce−2at, t ≥ 0.
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