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The aim of the present study is to use antimicrobial edible film technology and natural phenolic anti-
microbials for inhibition of major bacterial plant pathogens such as Erwinia amylovora, Erwinia car-
otovora, Xanthomonas vesicatoria and Pseudomonas syringae. For this purpose phenolic acids (PAs) (gallic
(GA), vanillic (VA), cinnamic acids (CA)), essential oils (EOs) (carvacrol (CAR), thymol (THY), eugenol
(EUG) citral (CIT)), phenolic extracts (PEs) from clove (CE), oregano (OE), artichoke stem (ASE) and
walnut shells (WSE) were evaluated as antimicrobial zein film components. Films containing PAs be-
tween 1 and 4 mg/cm? inhibited all pathogens while EOs between 1 and 4 mg/cm? and CE between 4 and
8 mg/cm? inhibited pathogens except P. syringae. The most potent films were obtained by using GA
against E. amylovora and P. syringae, VA against E. carotovora, and CA, THY or CAR against X. vesicatoria.
The addition of phenolic compounds into films increased the porosity of films. The phenolic containing
films also become more flexible and lost their brittleness. This study is important in that it prepared the
basis of using edible antimicrobial coatings in outdoor applications on infected tree stems, soil surfaces
and agronomy tools or in classical fruit and seedling coating applications to control bacterial contami-

nation or spoilage.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The use of edible biopolymeric materials and natural antimi-
crobial compounds in antimicrobial packaging provides a prom-
ising alternative method to inhibit the growth of pathogenic and
spoilage microorganisms in food and to increase safety and quality
of food products. Thus, extensive studies have been conducted in
the recent years to develop edible films and coatings from bio-
polymers such as zein, whey proteins, soy proteins, chitosan, algi-
nate, carrageenan, pullulan, cellulose and its derivatives (Gniewosz
et al,, 2014; Joerger, 2007; Mendes de Souza, Ferndndez, Lopez-
Carballo, Gavara, & Hernandez-Munoz, 2010; Rojas-Grau et al.,
2007; Zhong, Cavender, & Zhao, 2014). Different natural antimi-
crobials including phenolic extracts, essential oils, bacteriocins and
antimicrobial enzymes have been incorporated into edible films to
obtain antimicrobial packaging materials (Alboofetileh, Rezaei,
Hosseini, & Abdollahi, 2014; Appendini & Hotchkiss, 2002;
Atares, Bonilla, & Chiralt, 2010; Benavides, Villalobos-Carvajal, &
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Reyes, 2012; Del Nobile, Conte, Incoronato, & Panza, 2008; Gomez-
Estaca, Lopez de Lacey, Lopez-Caballero, Gomez-Guillén, &
Montero, 2010; Li, Yin, Ynag, Tang, & Wei, 2012; Mastromatteo,
Mastromatteo, Conte, & Del Nobile, 2010; Salgado, Lopez-Caballero,
Gomez-Guillén, Mauri, & Montero, 2012).

The antimicrobial packaging targets mainly the inhibition of
human pathogenic bacteria such as Listeria monocytogenes, Staph-
ylococcus aureus, Escherichia coli 0157:H7, Pseudomonas fluores-
cence and Salmonella sp. in food (Du et al, 2009; Han, 2005;
Kanmani & Rhim, 2014; Shakeri, Shahidi, Beiraghi-Toosi, & Bah-
rami, 2011; Unalan, Arcan, Korel, & Yemenicioglu, 2013). The anti-
microbial packaging could also target food spoilage yeasts and
molds and non-pathogenic spoilage bacteria such as Bacillus spp.
and Lactobacillus spp. (Krasniewska et al., 2014; Manso, Cacho-
Nerin, Becerril, & Nerin, 2013; Mecitoglu et al., 2006). However,
there are no studies in the literature to employ antimicrobial edible
coating technology for the inhibition of bacterial plant pathogens.
The percent crop spoiled by the plant pathogens change between
10% and 16% of the total crop grown in the world (Chakrabarty &
Newton, 2011). Thus, severe use of toxic chemicals to prevent
economic losses in orchards and fields is a widespread problem
(Pimentel, 2002). As a novel approach the edible antimicrobial
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coatings containing natural active compounds could be applied in
the orchards for coating of contaminated tree stems, and in the
fields on plants, soil surfaces or agronomy tools and equipment to
suppress infections caused by bacterial plant pathogens without
using toxic chemicals. Such an application could help suppression
of diseases like Bacterial canker mediated by some pathovars of
Pseudomonas syringae and causes important damages in the stems
and leaves of Prunus (plums, cherries, apricots and peaches) trees.
Different authorities including the Royal Horticultural Society ad-
vises the application of copper-based chemicals like Bordeaux
mixture (originally a fungicide) on three stems to control Bacterial
canker (https:/www.rhs.org.uk.). However, the Bordeaux mixture
obtained by mixing copper-sulfate with lime is a hepatotoxin
persistent in the soil and it leads to documented health problems in
farm workers (Bolan et al., 2014; Dixon, 2004; Mackie, Miiller, &
Kandeler, 2012).

Although the application of edible coatings in orchards and
fields is a novel approach, the application of edible films for coating
of fresh fruits and vegetables is a well-known practical process used
to reduce their respiration rates and senescence (Park, 1999). For a
successful fruit and vegetable coating application, the gas perme-
ability characteristics of the coating material and the product
respiration rate should be compatible. This helps to obtain the
“modified atmosphere effect” that forms by reduction of fruit or
vegetable respiration rate under reduced O; and elevated CO; at-
mospheres and to extend the shelf life of the coated product (Park,
1999; Rojas-Graii, Oms-Oliu, Soliva-Fortuny, & Martin-Belloso,
2009). The biopolymers like cellulose, casein, zein, soy proteins and
chitosan are frequently applied for fruit coating due to their desired
gas permeability characteristics and other characteristics such as
being odorless, tasteless and transparent (Lin & Zhao, 2007; Rojas-
Grai et al., 2009). The application of zein as a fruit coating material
attracts a particular interest since zein is the major co-product of
the oil industry and rapidly growing bio-ethanol industry. The zein
is also one of the rare hydrophobic proteins and it gives excellent
coatings with good gas and moisture barrier properties (Lin & Zhao,
2007). Moreover, the zein films provide an effective delivery system
for different natural active compounds including phenolic com-
pounds (Arcan & Yemenicioglu, 2011, 2014). Thus, the zein coatings
have been successfully applied on different fruits including apples
(Bai, Baldwin, & Hagenmaier, 2002), pears (Scramin et al., 2011),
mangoes (Gol & Rao, 2014) and tomatoes (Zapata et al., 2008) to
delay their ripening process and to reduce their moisture loss
during storage. However, no studies have been conducted to design
antimicrobial edible zein fruit coatings specifically against bacterial
plant pathogens so far. The natural antimicrobial coatings could
also be applied to control postharvest spoilage of root vegetables
like cold stored potatoes spoiled largely by specific bacterial plant
pathogens (Mills, Platt, & Hurta, 2006; Wood, Miles, & Wharton,
2013). Such an antimicrobial coating application could also be
beneficial for tubers separated as seedling and it might reduce the
disease problems in the field without using classical chlorine based
potentially toxic and odorous chemicals. Thus, the aim of the pre-
sent study is to adopt the principles of antimicrobial edible pack-
aging for inhibition of major bacterial plant pathogens such as
Erwinia amylovora, Erwinia carotovora, Xanthomonas vesicatoria and
P. syringae which cause different plant diseases and great economic
losses in fruits and vegetables at preharvest and postharvest stages
(Hao & Brackett, 1994; Mills et al., 2006). For this purpose, edible
zein films were incorporated with different antimicrobial phenolic
acids, and phenolic rich essential oils and plant extracts. The use of
natural phenolic agents in edible films has become increasingly
popular since these compounds are not only potent antimicrobials,
but they also have different bioactive effects on human including
antioxidant, anticancerogenic, antidiabetic and antihypertensive

activities (Basgedik, Aysel, & Nurdan, 2014; Moure et al., 2001;
Wojdyto, Teleszko, & Oszmianski, 2014). In the literature, the ef-
fects of different phenolic rich essential oils on fungal plant path-
ogens and development of antifungal edible fruit coatings for
postharvest decay control have been studied (Sivakumar &
Bautiata-Banos, 2014). However, there are only few studies
related to antimicrobial potential of phenolic compounds on bac-
terial plant pathogens. For example, the inhibitory effects of
phenolic compounds towards growth of Xylella fastidiosa, a plant
pathogen that causes diseases in different crop species, has been
reported by Maddox, Laur, and Tian (2010). Luzzatto et al. (2007)
found that the use of different plant defense activators with
phenolic compounds contributes to increased resistance against
soft-rot pathogen Pectobacterium carotovorum. Mohana and
Raveesha (2006) reported the antimicrobial effects of Caesalpinia
coriaria (Jacq.) Willd extracts on Xanthomonas pathovars. However,
the present study was the first one in the literature which inves-
tigated the potential application of natural phenolic antimicrobials
and edible film technology against major bacterial plant pathogens.
This work made a contribution to increase use of antimicrobial
edible coatings not only for fruit coating, but also for coating of soil
surfaces and agronomic tools, tree stems, and seedlings.

2. Materials and methods
2.1. Materials

Zein, GA, CA, VA, CAR, THY, EUG, and CIT used in film making
were obtained from Sigma Chem Co. (St. Louis, MO). Glycerol and
ethanol were purchased from Merck (Darmstadt, Germany).
Nutrient broth and buffered peptone water were obtained from
Oxoid Ltd. (Hampshire, United Kingdom). Nutrient agar used in
antimicrobial tests was obtained by adding 1.4% agar (Applichem,
Darmstadt, Germany) in nutrient broth prepared according to the
user's manual. All the other chemicals were reagent grade.

2.2. Bacterial cultures

The four plant pathogenic bacteria; E. carotovora (RK-EC-462),
X. vesicatoria (RK-XCV-110C), E. amylovora (RK-EA-228) and
P. syringae (P.syr-RK-453) were kindly provided by Assoc. Prof.
Recep Kotan from the Faculty of Agriculture at Atatiirk University,
Turkey.

2.3. Preparation of plant extracts

The extraction of phenols from plant materials was carried out
according to Chun, Vattem, Lin, and Shetty (2005) with slight
modification. Plant materials (1-5 g) (dry mortar crushed oregano,
clove and walnut shells and chopped fresh artichoke stems) were
placed into a beaker containing 100 mL of ethanol (60%) and the
extraction was carried out at room temperature under continuous
magnetic stirring for 24 h. The mixture was then centrifuged at
9000 rpm for 14 min. After that the supernatant was collected and
concentrated in a rotary evaporator working under vacuum at
100 mbar and 40 °C. The concentrated extract was then lyophilized
to obtain dry PE powder. The PEs suitable for film making were
selected depending on their minimum inhibitory concentration
(MIC) on plant pathogens.

2.4. Antimicrobial activity of plant extracts
The MICs of PE were determined in broth medium using 96-well

microplates. A stock solution of each PE was prepared in nutrient
broth at a concentration of 41 mg/mL and then series of two-fold
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dilutions of these solutions were prepared until obtaining the
lowest concentration of 0.01 mg/mL. The inoculums of microor-
ganisms were prepared using 48 h cultures, and suspensions were
adjusted to 2 McFarland standard turbidity. The wells of 96-well
plate were filled with 10 pL of inoculants, 90 pL of nutrient broth,
and 100 pL of various concentrations of PEs. Three wells were
prepared for each concentration of PEs. A positive control (con-
taining inoculums, but not PEs) and negative controls (containing
PEs, but not inoculums) were included on each microplate. Plates
were incubated at 27 °C for 24 h under aerobic conditions and their
absorbencies were recorded at 600 nm in every 15 min to detect
microbial growth. The controls and cultures containing plant ex-
tracts were tested in triplicate wells at each studied concentrations,
and averages of absorbance values versus time (minutes) were
plotted to obtain growth curves. The degree of inhibition was
calculated using the formula: % inhibition = 100 - [(S1/S2) x 100],
where S1 is the slope of the best-fitting curve for a culture with
plant extracts and S2 is the slope of the best-fitting curve for the
control (culture) at the linear growth phase of absorbance—time
curves.

2.5. Phenolic content of plant extracts

The total phenolic content of plant extracts was determined by
using the Folin—Ciocalteu reagent as described in Singleton and
Rossi (1965). The reaction mixture contained 100 uL of plant ex-
tracts, 1 mL of the Folin—Ciocalteu reagent and 0.8 mL of sodium
carbonate (20% w/v). The final volume was made up to 2 mL with
distilled water. After 2 h of reaction, the absorbance at 765 nm was
measured. The calibration curve was formed by using GA as stan-
dard. Phenolic content was expressed as milligrams of GA equiva-
lents (GAE) per gram of the extract powder. The amount of GA, the
major active nonvolatile phenolic compound in the clove extracts,
was determined by an HPLC analysis using an HPLC System (Perkin
Elmer series 200 Shelton, CT USA), equipped with a binary pump
and a diode-array detector (DAD) and a Nucleosil 100-C18 column
(5 um, 250 x 4 mm). Phenolic compounds in the CE were analyzed
using the HPLC method described by Shan, Cai, Sun, and Corke
(2005). The HPLC method was carried out with the following
gradient elution program (solution A, 2.5% formic acid, and solution
B, 100% methanol): 0 min, 5% B; 15 min, 30% B; 40 min, 40% B;
60 min, 50% B; 65 min, 55% B; and 90—95 min, 100% B. The flow rate
was 0.8 mL/min, and the injection volume was 20 pL. The phenolic
compounds were detected at 280 nm. Individual peaks identified in
CE were analyzed by comparison with that of the external standard
of GA used to form the calibration curve. Results were reported as
mg GA/g of extract powder.

2.6. Film making

Zein films were produced as described in Padgett, Han, and
Dawson (1998). Briefly, 1.4 g corn zein was dissolved with 8.2 mL
of ethanol (97%) by mixing at 200 rpm with a magnetic stirrer for
25 min. Then, 0.4 mL glycerol was added into the mixture, and the
temperature of the mixture was increased until it started to boil.
The mixing was then ceased and the film solution was boiled for
5 min. After cooling to room temperature different phenolic acids,
essential oils or plant extracts were added into film forming solu-
tions (0.03—0.9 g per g of film forming solution). The final con-
centrations of active compounds in the films obtained by this
procedure changed between 0.25 and 8 mg per cm? of dried films.
The mixtures were then homogenized (Heidolph, Germany, rotor
® = 6.6 mm tip) at 10,000 rpm for 4 min and 4.3 g portions of
homogenates were poured into glass templates (W x L x H:
8.5 x 8.5 x 0.4 cm). All films were dried at 25 °C for 19 h in an

incubator. However, for only films used in mechanical testing an
additional conditioning was applied to films at 25 °C for 24 h under
50% relative humidity using a controlled test cabinet (TK 120, Niive,
Turkey). The dried films peeled from the glass templates carefully
were used in different tests.

2.7. Antimicrobial activity of films

Fifteen discs (1.3 cm in diameter) were prepared from films by a
cork borer under aseptic conditions. During tests, 3 discs were
placed carefully onto each Petri dish containing nutrient agar
previously inoculated with different plant pathogens. The in-
oculums of microorganisms were prepared in peptone water using
a 48 h culture of plant pathogens incubated at aerobic conditions at
27 °C. Before tests, the cell concentration was set to 0.5 McFarland
(corresponded to 150 x 10° cfu/mL) and Petri dishes were inocu-
lated by spread plate method by using 0.2 mL of culture diluted
1:10 with peptone water. The inoculated Petri dishes containing
film discs were incubated at aerobic conditions at 27 °C for 24 h and
the diameter of the zones formed was measured by using a caliper.
Results were expressed as average zone areas (mm?).

2.8. Mechanical properties of films

Tensile strength at break, elongation at break, and Young's
modulus were determined using a Texture Analyzer TA-XT2 (Stable
Microsystems, Godalming, United Kingdom) according to ASTM
Standard Method D 882-02 (ASTM, 2002). Films were cut into
8 mm wide and 80 mm length strips. The initial grip distance was
50 mm, and the crosshead speed was 25 mm/min. Five replicates of
each film were tested.

2.9. Scanning electron microscopy (SEM) of films

The photographs of film cross-sections and film thickness were
determined by SEM (Philips XL 30S FEG, FEI Company,
Netherlands). The films were prepared for SEM by crashing,
following freezing in liquid nitrogen. The thickness of the films was
measured from SEM cross-sectional views of films by using Scan-
dium software (Olympus Soft Imaging Solutions).

2.10. Statistical analysis

Data including measurements obtained from mechanical prop-
erties of films were analyzed by analysis of variance (ANOVA).
Fisher's protected least significant difference method was used for
comparison of means. Differences were considered significant if
P < 0.05.

3. Results and discussion
3.1. Antimicrobial activity of PA containing films

The photographs of selected inhibition zones are displayed in
Fig. 1 while overall results of antimicrobial activities of GA, VA, and
CA incorporated zein films on different plant pathogens are dis-
played in Fig. 2A to D. The films containing PAs between 1 and
4 mg/cm? showed antibacterial effect on all of the four plant
pathogens. The most potent and dose dependent antimicrobial
films were obtained by using GA against E. amylovora and
P. syringae, and VA against E. caratovora, and X. vesicatoria. The CA
containing films were also highly effective against X. vesicatoria, but
the concentration of PA in films could not be increased above 2 mg/
cm? since films produced at higher concentrations of CA could not
be peeled from the cast surfaces. The GA was the only phenolic acid
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Fig. 1. Photographs of inhibition zones formed by GA containing films on E. amylovora (A: Controls, B: 0.25 mg/cm? GA containing films, C: 2.0 mg/cm? GA containing films).

having a considerable dose dependent antimicrobial effect on all
plant pathogens. However, E. amylovora and P. syringae were
particularly susceptible to the action of GA and inactivated much
more effectively than E. carotovora and X. vesicatoria by this
phenolic acid. In the literature, the potent antimicrobial activity of
GA and its derivatives have been reported in several studies
(Fogliani, Raharivelomanana, Bianchini, Bouraima-Madjebi, &
Hnawia, 2005; Shukla, Srivastava, Kumar, & Kumar, 1999). The
mechanism of action for GA was also investigated for E. coli, Pseu-
domonas aeruginosa, S. aureus, and L. monocytogenes and it was
attributed to physicochemical changes in integrity and perme-
ability of bacterial membranes caused by GA (Borges, Ferreira,
Saavedra, & Simoes, 2013). The GA has one carboxylic acid and
three hydroxyl groups and its bioactive properties including anti-
oxidant and antimicrobial activity originate from number and po-
sitions of these functional groups (Fig. 3). The VA, the second most
effective PA after GA, contains one carboxyl and one hydroxyl
groups while CA, the least effective PA, contains only a single
carboxyl group. Thus, it is clear that the number of hydroxyl group
for the PAs is a quite critical factor for their antimicrobial potential.

3.2. Antimicrobial activity of EO containing films

The films containing EOs between 1 and 4 mg/cm? inhibited all
plant pathogens except P. syringae which is the most resistant
bacteria against EOs (Fig. 2E to H). The EUG was the only EO
effective on P. syringae, but its antimicrobial activity was very low
and it was observed only at the highest concentration (4 mg/cm?).
The most potent films were obtained by using 4 mg/cm? concen-
trations of THY, CAR and CIT against X. vesicatoria, CIT against
E. amylovora and THY and CIT against E. carotovora. It is worth to
note that the films containing THY, CAR or CIT at 4 mg/cm? con-
centration caused effective inactivation of the indicated inoculated
bacteria and prevented their growth in the Petri dishes completely.
These results showed that the CIT, potent on three of the bacteria, is
the most effective EO on plant pathogens. The THY, potent on two of
the bacteria, and CAR, potent on one of the bacteria, are the second
and third effective EOs on plant pathogens, respectively. In contrast,
the EUG is the least effective EO and did not show potent antimi-
crobial activity against any of the plant pathogens. The careful
analysis of the formulas for EUG, THY and CAR suggested that the
lacking branched methylene groups could be the factor limiting the
potency of EUG. On the other hand, the CIT might owe its potency to
its different conformation than the other EOs. The CIT is an acyclic
monoterpene aldehyde (Fig. 3) and it might face less steric hin-
drance and barrier effect from pores at the bacterial membranes.
The most sensitive bacteria against EOs is X. vesicatoria which was

completely inhibited on the Petri dishes with films containing three
of the EOs (THY, CAR and CIT) at 4 mg/cm? concentration. It was
also only X. vesicatoria which showed considerable inhibition by
films containing EOs (CAR, THY) at 2 mg/cm?. The analysis of the
inhibition curves for EOs clearly showed the relationships between
zone area and EO concentrations. The inhibition of all plant path-
ogens by EOs was concentration dependent manner. However, the
relationship between zone area and EO concentration for a given
bacteria turned linear to logarithmical as EO concentration was
increased. The inactivation of bacteria by phenolic compounds may
occur by multiple mechanisms including complex formation with
cell walls, membrane disruption, inhibition of bacterial adhesion or
inactivation of bacterial enzyme systems (Cowan, 1999). Thus, it
seemed that the number of mechanism effective on inhibition
increased by the increased concentrations of EOs which contain
mixture of different phenolic compounds.

3.3. Antimicrobial activity of PEs

Different PEs, OE, ASE, WSE and CE, containing 176.0 + 9.3,
354 + 2.1,110.2 + 5.2, 274.1 + 36.5 mg GAE/g, respectively, were
first tested directly against plant pathogens to evaluate their po-
tential application as antimicrobial film component. The antimi-
crobial tests were conducted in broth growth medium to determine
the MICs of different PEs between 0.01 and 41 mg/mL concentra-
tion range and to select the most potent PE for film making. The
results of the present study clearly showed that the CE was the
most potent PE and it was effective on all plant pathogens. The MIC
determined for CE was 10.24 mg/mL for all of the four plant path-
ogens. In the presence of CE at concentrations below MIC, for
example at 5.12 mg/mlL, E. carotovora, X. vesicatoria and E. amylovora
showed 44%, 77% and 82% inhibitions, respectively. In contrast,
P. syringae did not show any inhibition at the CE concentration of
5.12 mg/mL (Table 1). In presence of CE at 2.56 mg/mlL, E. carotovora
and P. syringae did not show any inhibition while E. amylovora and
X. vesicatoria showed 42% and 57% inhibition, respectively. The PEs
other than CE did not cause complete inhibition in growth of the
bacteria at broth medium between 0.01 and 41 mg/mL concentra-
tion range. However, the OE at 41 mg/mL showed 47%, 90% and 91%
inhibition against E. carotovora, X. vesicatoria and E. amylovora,
respectively. Moreover, ASE at 41 mg/mL showed 48%, 48% and 68%
inhibition against E. carotovora, E. amylovora and X. vesicatoria,
respectively. However, both ASE and OE did not show any inhibition
on P. syringae in broth medium at the studied concentration range.
These results suggested that the most resistant bacterium against
PEs was P. syringae. The E. caratovora was the second most resistant
bacteria against tested PEs while E. amylovora and X. vesicatoria
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Fig. 2. Antimicrobial activities of phenolic acid and essential oil containing zein films on different plant pathogens.

showed highest susceptibilities against PEs at the test conditions.
3.4. Antimicrobial activity of PE containing films

The CE was selected as the most suitable PE for film making
since it showed antimicrobial activity on all plant pathogens grown
in broth medium. The CE is a crude phenolic extract with a total
phenolic content of 274 mg GAE/g. Thus, the CE concentration in
the films should be minimum at 4 mg/cm? to obtain antimicrobial
films against E. amylovora and X. vesicatoria while the inhibition of
more resistant E. caratovora needs incorporation of CE into films
minimum at 6 mg/cm? (Fig. 4). In contrast, no antimicrobial effect
was observed on P. syringae even when the CE concentration in the
films was increased as high as 8 mg/cm?. This result was expected
since resistance of P. syringae on CE was also observed during MIC

determination in the broth medium. Shan et al. (2005) determined
that the GA and its derivatives and volatile phenolic oils like
eugenol and acetyl eugenol are the main phenolic components of
clove methanolic extracts. These workers determined GA as the
major nonvolatile phenolic compound in the clove and reported
presence of 7.8 mg GA per g (d.w.) of this spice. The CE is free from
volatile phenolic oils, since it was extensively dried in powder by
lyophilization following concentration with rotary evaporator.
However, the HPLC analysis of CE clearly showed the presence of
22 mg GA per g of CE. Thus, the amount of GA in films with highest
amount of CE (8 mg CE/cm? of dried film) might be maximum
0.18 mg per cm?. The inhibitory concentration of pure GA in the
films on P. syringae determined in the current work was 1 mg/cm?.
Therefore, it is clear that the CE should be further purified and
concentrated and/or enriched with pure GA to be effective on
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Table 1
Antimicrobial effects of different plant extracts in broth medium.
Plant Pathogens Plant extracts Concentrations of the phenolic compounds (mg/ml)
(0.01-1.28) 2.56 5.12 10.24 20.48 40.96
E. carotovora
OE NI? NI NI NI NI 47%°
WSE NI NI NI
ASE NI NI NI NI NI 48%
CE NI NI 44% 100% 100% 100%
E. amylovora
OE NI NI NI NI NI 91%
WSE NI NI NI
ASE NI NI NI NI NI 48%
CE NI 42% 82% 100% 100% 100%
P. syringae
OE NI NI NI NI NI NI
WSE NI NI NI
ASE NI NI NI NI NI NI
CE NI NI NI 100% 100% 100%
X. vesicatoria
OE NI NI NI NI 73% 90%
WSE NI NI NI
ASE NI NI NI 39% 67% 68%
CE NI 57% 77% 100% 100% 100%

2 No inhibition.
b % value refers the inhibition in bacterial growth.

P. syringae.

3.5. Morphologies of films

The morphology of control film clearly showed the porous
structure of zein films formed by many homogenously distributed
tiny pores and limited number of larger pores (Fig. 5A). The
incorporation of different PAs and EOs, and CE into zein films
caused different degrees of morphological changes in the films
depending on the type of each phenolic component. The addition of
GA and CAR caused the most limited changes in morphologies of
films (Fig. 5B and C). In contrast, other PAs, EOs and CE caused
considerable changes in number and/or size of pores in the films.
The addition of CA and VA increased the number of large pores that

were also observed in the control films (Fig. 5D and E). In contrast,
the tiny pores in the films were almost disappeared by the addition
of CA and VA. On the other hand, the addition of THY and EUG into
films caused dramatic increases in both size and number of pores in
the films (Fig. 5F and G). The most dramatic increases in pore sizes
were observed in films containing CIT and CE, but these films also
contained many tiny pores.

3.6. Mechanical properties of films

Some selected stress vs. strain curves are displayed in Fig. 6. The
effects of different active compounds on tensile strength, elonga-
tion and elastic modulus of zein films are also displayed in Table 2.
In majority of the films, the addition of active compounds caused a
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Fig. 4. Antimicrobial activities of clove extract containing zein films on different plant pathogens.

concentration dependent reduction in tensile strength and Young's only at a very high active compound concentration (CE at 8 mg/

modulus, and a concentration dependent increase in elongation. cm?). The VA containing films also differentiated from the others in
However, films containing CIT and CE have different mechanical that they gained a considerable elongation capacity at the con-
properties and showed almost no change in their elongation and centration of 2 mg/cm?, but lost this capacity when VA concen-

tensile strengths or showed a limited change in these parameters tration was increased to 4 mg/cm?. It might be interesting to report

Fig. 5. SEM photographs of different film cross-sections. (A) Control zein film, (B) GA, (C) CAR, (D) CA, (E) VA, (F) THY, (G) EUG, (H) CIT, (I) CE containing films. (Magnifications
were x 5000; concentration of PEs and EOs in films was 2 mg/cm?; concentration of CE was 4 mg/cm?).
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Fig. 6. An example curve showing effects of CA on mechanical properties of zein films.

that addition of CIT and CE caused the most limited changes in
mechanical properties such as tensile strength and elongation
while causing the formation of largest pores within the zein film
matrix. Thus, it is clear that it is very hard to relate mechanical
properties and morphologies in zein edible films. However, it
seemed that the CIT and CE had a solubility problem within the
films during drying and this caused formation of large pores within
the film matrix. The plasticizing effect of phenolic compounds in
zein film systems was quite expected since this effect of phenolic
compounds was well documented not only in zein films (Alkan
et al,, 2011; Arcan & Yemenicioglu, 2011), but also in zein based
blend and composite films (Arcan & Yemenicioglu, 2013, 2014;
Unalan et al., 2013). Most plasticizers owe their positive effects
on film flexibility to their hydroxyl groups which form hydrogen
bonds with polymers and increase the free volume of film matrix
(Sothornvit & Krochta, 2005). Thus, the plasticizing effect of
phenolic compounds on zein has been attributed to their ability to
form H-bonds with their -hydroxyl and -carboxyl groups to peptide
amino or carbonyl groups of zein to form a weak flexible network

Table 2
Mechanical properties of different zein films.

within the film matrix (Alkan et al., 2011; Arcan & Yemenicioglu,
2011; Arcan & Yemenicioglu, 2013). The zein contains only very
limited number of positively charged groups due to its low amounts
of basic amino acids (<6%) (Geraghty, Peifer, Rubenstein, &
Messing, 1981). Thus, binding of negatively charged phenolic
compounds on the positively charged groups of zein film matrix is
not considered as a major driving force in the plastisization of zein
films (Arcan & Yemenicioglu, 2011). Recent studies on phenolic
release profiles of zein films proved that a portion of incorporated
phenolic compounds (change between 12% and 51%) is bounded by
the zein film matrix, while the remaining phenolic compounds
exist in free soluble form (Alkan et al., 2011; Arcan & Yemenicioglu,
2011; Arcan & Yemenicioglu, 2013, 2014; Del Nobile et al., 2008).
The brittleness and lack of flexibility in zein films is mainly due to
the hydrophobic interactions that keep the zein molecules together
to maintain film integrity (Guo, Liu, An, Li, & Hu, 2005). Thus, the
reduced hydrophobicity of zein film matrix by the increased
phenolic hydroxyl groups was also considered as a main factor in
increased flexibility of phenolic containing zein films (Alkan et al.,
2011). In contrast, the antiplasticizing effect of VA at high concen-
tration (4 mg/cm?) could be due to its tendency to show poly-
merization and increased binding on zein that caused reduced
mobility of the film matrix. The report of Emmambux, Stading, and
Taylor (2004) who incorporated condensed tannins like tannic acid
(TA) into films from sorghum Kafirin, a zein like prolamin, and
observed an antiplasticizing effect of this polymeric phenolic
compound also supports this hypothesis. The change of flexibility
in zein films depending on phenolic concentration was also re-
ported by Alkan et al. (2011). Alkan et al. (2011) determined plas-
ticizing and antiplasticizing effects in zein films at GA
concentrations of 2.5 and 5 mg/cm?, respectively. In the current
study, the antiplasticizing effect of GA was not observed since it was
not tested above 4 mg/cm?.

4. Conclusions

This work clearly showed the possibility of using edible zein
films containing antimicrobial phenolic compounds, essential oils

Concentration (mg/cm?) Active compounds Tensile strength (MPa)

Young's modulus (MPa) Elongation (%) Film thickness (um)

- 10.73 + 0.59f°

1 GA 8.59 + 0.42e
2 GA 4.30 + 0.45c
4 GA 0.87 + 0.09a
1 CA 747 + 1.19e
2 CA 1.07 £ 0.16 ab
1 VA 6.99 + 2.38de
2 VA 1.64 + 0.17b
4 VA 033 +0.16a
1 THY 5.09 + 0.92cd
2 THY 2.71 £ 0.36b
4 THY 1.24 + 0.09 ab
1 CAR 4.68 + 0.95cd
2 CAR 2.85 + 0.22b
4 CAR 1.11 + 0.53 ab
1 EUG 7.56 + 0.81e
2 EUG 2.15 + 0.07b
4 EUG 1.31 + 0.07 ab
1 CIT 4.32 + 0.25cd
2 CIT 4.52 + 0.38c
4 CIT 4.51 + 0.29¢
2 CE 5.82 + 0.86d
4 CE 5.51 + 0.84cd
6 CE 592 +0.91d
8 CE 3.09 + 0.26b

648.28 + 19.78f 3.69 + 0.44a 115.40 + 1.06a
428.50 + 27.10d 352 +0.23a 115.66 + 1.77a
230.27 £ 7.18b 31.50 + 9.43a 99.92 + 0.95a
28.89 + 7.37a 276.60 + 37.16¢ 86.40 + 1.02a
517.37 + 29.50e 4.15 + 1.68a 130.17 £ 0.78c
168.73 + 4.74b 95.08 + 44.80b 137.60 + 0.99¢
44549 + 28.11d 275+ 1.41a 124.98 + 0.97b
159.55 + 28.75b 146.26 + 90.36b 142.53 + 0.67d
90.05 + 6.26a 12.15 + 3.04a 142.50 + 4.33d
345.79 + 62.59¢ 1.55 + 0.08a 128.25 + 1.22bc

180.33 + 24.80b
53.25 + 7.62a
226.82 + 30.92b
183.92 + 18.63b
37.36 + 15.03a
344.05 + 23.07c
163.16 + 6.50b
52.57 + 2.07a
412.16 = 47.39d
383.80 + 20.94cd
370.88 + 23.65¢
553.92 + 50.14e
431.36 + 52.27d
336.55 + 45.68¢
151.27 + 10.92b

33.61 + 17.26 ab
366.67 + 19.45d
879 + 1.12a
52.74 + 15.90 ab
220.50 + 128.19c
7.83 + 3.94a
238.61 + 86.00c
394.02 + 11.61d
121 +0.17a
1.84 + 0.22a
3.59 + 0.69a
0.96 + 0.24a
1.30 £ 0.34 ab
2.18 +0.32a
9.72 + 0.69a

144.83 + 1.00d
140.08 + 1.57d
129.27 + 1.07c
137.84 + 2.60c
158.67 + 1.52e
134.63 + 0.73c
171.08 + 1.44e
151.59 + 2.41e
157.80 + 3.22e
122.07 + 1.70b
138.71 + 3.33¢c
133.29 + 0.77b
131.25 + 1.60b
161.18 + 1.41e
156.84 + 0.88e

¢ Different letters in each column show significant difference P < 0.05.
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and phenolic extracts against bacterial plant pathogens. The
application of the developed edible coatings containing natural
phenolic antimicrobials in orchards for coating of tree stems could
be very beneficial to suppress the bacterial origin plant diseases,
maximize product yield and minimize pre and postharvest loss of
the products without using toxic chemicals and coatings including
Bordeaux mixture. The antimicrobial coatings could also be applied
onto surface of contaminated soil or agronomy tools to control and
minimize bacterial infections. The edible zein coatings have already
been applied successfully on different fruits and vegetables at the
post-harvest stage solely to suppress their respiration rates and
delay ripening and senescence. Thus, phenolic containing edible
zein coatings developed in this work could also provide an addi-
tional post-harvest benefit by delaying bacterial spoilage of coated
fresh fruits and vegetables. Moreover, the antimicrobial zein coat-
ings could also be applied on seedlings as alternative to toxic and
odorous chlorine based disinfectants. The present study is signifi-
cant in that it is the first study in the literature that uses edible film
technology and natural antimicrobial phenolic compounds against
bacterial plant pathogens. Further studies are needed to solve the
exact mechanisms of inhibition for the bacterial plant pathogens by
phenolic compounds and to determine the performance and sta-
bility of developed edible coatings on tree stems, fruit and vege-
tables, and alternative contaminated surfaces in the orchards.
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