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ABSTRACT: Downscaling of general circulation model (GCM) outputs extracted from CMIP5 datasets to monthly pre-
cipitation for the Gediz Basin, Turkey, under Representative Concentration Pathways (RCPs) was performed by statistical
downscaling models, multi-GCM ensemble and bias correction. The output databases from 12 GCMs were used for the pro-
jections. To determine explanatory predictor variables, the correlation analysis was applied between precipitation observed
at 39 meteorological stations located over the Basin and potential predictors of ERA-Interim reanalysis data. After setting
both artificial neural networks and least-squares support vector machine-based statistical downscaling models calibrated with
determined predictor variables, downscaling models producing the most suitable results were chosen for each meteorologi-
cal station. The selected downscaling model structure for each station was then operated with historical and future scenarios
RCP4.5, RCP6.0 and RCP8.5. Afterwards, the monthly precipitation forecasts were obtained from a multi-GCM ensemble
based on Bayesian model averaging and bias correction applications. The statistical significance of the foreseen changes for
the future period 2015-2050 was investigated using Student’s ¢ test. The projected decrease trend in precipitation is significant

for the RCP8.5 scenario, whereas it is less significant for the RCP4.5 and RCP6.0 scenarios.
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1. Introduction

General circulation models (GCMs) can be taken into con-
sideration to obtain climate change projections for hydro-
meteorological variables. In spite of their practical usage, the
main problem with the projections produced from GCMs is their
coarse resolution. Therefore, downscaling strategies have been
developed (Wilby and Wigley, 1997).

In the literature, downscaling methods have been classified
into two groups: dynamical and statistical downscaling (Wilby
etal., 1998). Dynamical downscaling is related to regional cli-
mate modelling. Simulating local climate characteristics can be
feasible using dynamical models (Leung et al., 2003), yet they
have several drawbacks in terms of their demanding design and
computational redundancy (Fowler et al., 2007).

Statistical downscaling methods are used to transform the
outputs from GCMs to the local scale by means of mathe-
matical relationships derived from different methods (Okkan
and Inan, 2015a). These kinds of methods require less com-
putational effort than dynamical downscaling applications and
are considered to be the most practical downscaling tech-
niques in the hydro-meteorology literature (Tripathi ez al., 2006).
Regression-based techniques (e.g. Wilby etal., 1998; Hessami
etal., 2008), weather generator (Semenov, 2008) and artificial
neural networks can be preferred. Successful downscaling stud-
ies carried out with artificial neural networks (ANNs) under dif-
ferent climate change scenarios can be found in the literature
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(Goyal and Ojha, 2012; Okkan and Fistikoglu, 2014; Okkan,
2015; Okkan and Inan, 2015b).

In spite of the many superiorities of ANNSs, they also have
drawbacks, including the local minima problem and complex-
ity in determining layered architecture (Suykens, 2001). Sup-
port vector machines (SVMs) and two-parameter version called
least-squares support vector machines (LSSVMs) can be consid-
ered as alternatives to ANNs without their disadvantages. SVMs
and LSSVMs have shown remarkable results in statistical down-
scaling content. In a study carried out by Tripathi ez al. (2006),
an LSSVM was applied to future forecasts from the CGCM2 to
obtain future projections of monthly precipitation for the mete-
orological sub-divisions in India. Similar methods were applied
by Anandhi eral. (2008) to downscale precipitation to a study
region in Karnataka State, India. A statistical downscaling strat-
egy based upon a modified SVM model was developed by Chen
etal. (2010) to forecast precipitation in a basin in China. Sachin-
dra eral. (2013) employed an LSSVM for transforming GCM
simulations to local scale flows observed in northwestern Victo-
ria, Australia.

Many of downscaling studies mentioned above have consid-
ered previous climate change scenarios, which are mentioned in
the Intergovernmental Panel on Climate Change (IPCC)-Fourth
Assessment Report (AR4) as the Special Report on Emis-
sion Scenarios (SRES). However, the Fifth Assessment Report
(ARS) of the IPCC published in 2014 provided new scenar-
ios termed ‘Representative Concentration Pathways’ (RCPs).
RCPs comprise groups of several scenarios that produce emis-
sion pathways related to the future emissions of greenhouse
gases, aerosols, ozone and land use/land cover changes, whereas
AR4 scenarios (SRES) included only forcing by greenhouse
gases and aerosols (Moss et al., 2010; Meinshausen et al., 2011).
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Figure 1. Location of Gediz Basin (Turkey), meteorological stations within the Basin and ERA-Interim grid coverage.

These emission pathways are classified with the radiative forcing
generated by the end of the 21* Century. In this context, Cou-
pled Model Inter-comparison Project Phase 5 (CMIP5) services
datasets of new-generation GCMs under different RCPs.

More recently, several studies in the literature have adopted
RCP scenarios to assess possible climatic change effects on
hydrological variables. In a study presented by Chong-hai and
Ying (2012), alteration in air temperature and precipitation over
regions located in China were described based on the outputs
of various GCMs with projections of 21% century climate under
different RCP scenarios. Kim eral. (2013) examined the sep-
arated and combined effects of probable changes in climate
and land use/land cover on streamflow for the Hoeya Basin,
South Korea, using two RCP scenarios. Ji and Kang (2013) used
a dynamical downscaling model with two RCP scenarios to
project precipitation and temperature over the Tibetan Plateau.
Lee etal. (2014) presented another dynamical downscaling
work about the evaluation of future climate change over East
Asia considering two RCPs. Analysis of precipitation lapse rate
over north Sikkim, eastern Himalayas, under RCPs was also
performed by Singh and Goyal (2016).

The present study explores the potential of statistical down-
scaling methods, evaluates the downscaled multiple GCMs with
an ensemble approach and uses new scenarios for project-
ing monthly precipitation over Gediz Basin in the Aegean
region of Turkey. The explanatory predictor selection work is
investigated prior to outlining the downscaling process. The
potential predictor selection was provided from the monthly
ERA-Interim reanalysis dataset. The calibrated and validated
downscaling model structure was integrated to 12 GCMs with
three RCP scenarios. The precipitation forecasts were obtained
from multi-GCM ensemble through a Bayesian model averaging

© 2016 Royal Meteorological Society

method followed by correcting biases. The bias-corrected fore-
casts produced for the near future period (2015-2050) were then
examined to understand the probable climate change impacts on
the precipitation regime.

To the best of our knowledge, a statistical downscaling study
concerning the use of RCP scenarios for climate projections
in Turkey has not been realized previously. Projected changes
of hydrometeorological variables for different basins in Turkey
under SRES of AR4 have been obtained from the simulation of
GCM s in version three of the Coupled Model Inter-comparison
Project, CMIP3 (e.g. Okkan and Fistikoglu, 2014; Okkan and
Inan, 2015a, 2015b) However, in the present work, projections
derived from statistical downscaling techniques are introduced
based on CMIPS5 data in the hope of providing a reference
for investigating the probable climatic change impacts on the
precipitation regime in the Basin under different RCPs.

The paper is structured in four sections. The properties of
the study region, the reanalysis and GCM data, selection of the
predictor and statistical downscaling techniques are presented
in the next section. The results obtained are given in the third
section, and the summary and conclusions form the concluding
part of the paper.

2. Data and methodology

2.1.  Study region and preparing data

The application area covers the Gediz Basin in Turkey, which
is located in the Aegean Region (Figure 1). The Gediz River is
the second-largest river in Turkey flowing into the Aegean Sea.
The total drainage area of the Basin is 17 125km?. The Basin
is bordered by mountains and hills to the north, south and east.

Meteorol. Appl. 23: 514-528 (2016)
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Table 1. Meteorological stations in the Gediz Basin, Turkey, where observed precipitation data were used for the downscaling exercise.

Station name Station number MGM/DSI Altitude (m) Latitude (°) Longitude (°)
N E
Akhisar 17184 MGM 93 38.917 27.817
Ahmetli 5617 MGM 100 38.517 27.950
Alagehir 5974 MGM 189 38.350 28.517
Borlu 2425 MGM 250 38.750 28.467
Demirci 17746 MGM 851 39.050 28.650
Foga 5434 MGM 10 38.667 26.750
Gediz 17750 MGM 825 39.050 29.417
Golmarmara 5273 MGM 150 38.717 27917
Gordes 4930 MGM 550 38.933 28.300
Giire 5458 MGM 650 38.650 29.167
Kopriibagt 5278 MGM 250 38.750 28.400
Kula 5624 MGM 675 38.550 28.650
Manisa 17186 MGM 71 38.617 27.433
Menemen TS 9020 MGM 10 38.600 27.067
Muradiye 5440 MGM 25 38.667 27.333
Salihli 17792 MGM 111 38.483 28.133
Saphane 4765 MGM 925 39.033 29.233
Sarigol 6143 MGM 225 38.250 28.700
Saruhanl 5269 MGM 50 38.733 27.567
Selendi 5282 MGM 575 38.750 28.867
Turgutlu 5615 MGM 120 38.500 27.700
Avsar 05-026 DSI 275 38.250 28.283
Buldan 05-027 DSI 470 38.167 28.883
Demirkoprii 05-003 DSI 290 38.617 28.367
Dindarli 05-006 DSI 685 38.183 28.750
Esmataskoyii 05-001 DSI 930 38.333 28.883
Fakili 05-012 DSI 715 38.617 29.083
Hacirahmanl 05-002 DSI 45 38.733 27.633
Hanya 05-010 DSI 640 39.033 28.450
Icikler 05-018 DSI 710 38.783 28.617
Kavakalan 05-011 DSI 460 38.817 28.050
Kirangth 05-016 DSI 670 38.800 28.383
Marmara GR 05-023 DSI 75 38.583 28.083
Sarilar 05-008 DSI 340 39.117 28.017
Ugpinar 05-007 DSI 100 38.700 27.367
Y. Poyraz 05-013 DSI 630 38.683 28.233
Usak 17188 MGM 919 38.671 29.404
Simav 17748 MGM 809 39.093 28.979
Kemalpaga 5785 MGM 200 38.433 27.417

Turkish State Meteorological Service (MGM); General Directorate of State Hydraulic Works (DSI).

The region includes broad irrigation plains with an area of nearly
110000 ha where intensive agricultural practices are carried out.
Grape, maize, cotton and various other fruits and vegetables are
the main crops grown in the Basin. A major part of existing water
resources is used for irrigation purposes because agriculture is
the major economic activity in the region. The Demirkopru Dam
located in the centre of the Basin has the largest reservoir and
Marmara Lake is the other main water supply for irrigation. The
other dams in the Basin have relatively small reservoirs.

The monthly precipitation data measured at the Basin were
obtained from 39 meteorological stations for the period January
1980 to December 2005. The study area has a Mediterranean
climate. The average temperature in summer in the basin varies
from 23.5 to 25.5 °C, that of winter varies from 5.3 to 6.8 °C, and
the mean annual temperature is 15 °C. The majority of measured
rainfall is observed in the winter, whereas summer is much drier.
The total annual areal precipitation calculated from the Thiessen
polygon method is about 550 mm for the same period. In recent
years, like many basins with Mediterranean climate characteris-
tics, the Gediz Basin has suffered from water scarcity because of
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drought resulting from decreased precipitation, increased tem-
perature and rapid demographic development. Thus, projecting
precipitation under different climate change scenarios is impor-
tant for water resource planning in this region of Turkey.

The observed monthly precipitation records at 39 meteorologi-
cal stations located in the Gediz Basin (Figure 1; station numbers
and their geographical coordinates are given in Table 1) were
used for the statistical downscaling exercise. The station records
were provided from the Turkish State Meteorological Service
(MGM) and General Directorate of State Hydraulic Works (DSI).
Monthly precipitation data of each station from January 1980
to December 2005 were considered as the predictand, whereas
ERA-Interim monthly reanalysis data from the European Centre
for Medium-Range Weather Forecasts (ECMWF) were selected
as potential predictor variables for the observation period.

ERA-Interim reanalysis data have been used frequently as pos-
sible predictors for downscaling in the literature (Biirger et al.,
2012; Haas and Pinto, 2012; Vu etal., 2015). The variables
of the determined eight ERA-Interim grids (Figure 1) cover-
ing the basin, with latitudes 37.875-39.375° N and longitudes

Meteorol. Appl. 23: 514-528 (2016)
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Table 2. Information about selected general circulatin models (GCMs).

GCM name Institution Modelling Resolution Centre coordinates of used grids
centre Latitude (°) X which cover the study area
Longitude (°)
BCC-CSM1 Beijing Climate Center, BCC 1.121 x 1.125 [38.69°N, 27 ° EJ; [38.69° N, 28.125° E];
China Meteorological [38.69°N, 29.25° E]
Administration, China
CCSM4 National Center for NCAR 0.942x 1.25 [38.17°N, 27.5°E]; [38.17° N, 28.75 ° EJ;
Atmospheric Research, USA [39.11°N, 28.75°E]; [39.11° N, 27.5° E]
CESMI1(CAM)S) National Center for NCAR 0.942x 1.25 [38.17°N, 27.5°E]; [38.17° N, 28.75 ° EJ;
Atmospheric Research, USA [39.11°N, 28.75°E]; [39.11° N, 27.5° E]
CSIRO-Mk3.6 Commonwealth Scientific CSIRO-QCCCE 1.865 % 1.875 [38.24° N, 26.25° EJ; [38.24° N,
and Industrial Research 28.125° EJ; [38.24° N, 30 ° E]
Organisation, Australia
GFDL-CM3 Geophysical Fluid Dynamics NOAA GFDL 2%x2.5 [39°N, 26.25°E]; [39°N, 28.75° E]
Laboratory, USA
GFDL-ESM2M Geophysical Fluid Dynamics NOAA GFDL 2.022%x2.5 [37.416° N, 26.25°E]; [37.416° N,
Laboratory, USA 28.75°E]; [39.438° N, 28.75° EJ;
[39.438° N, 26.25° E]
GISS-E2-H NASA Goddard Institute for NASA GISS 2%x2.5 [39°N, 26.25 °E]; [39 °N, 28.75 °E]
Space Studies, USA
GISS-E2-R NASA Goddard Institute for NASA GISS 2x2.5 [39°N, 26.25°E]; [39°N, 28.75° E]
Space Studies, USA
HadGEM2-ES Met Office Hadley Centre, MOHC 1.25x1.875 [38.75°N, 26.25° EJ; [38.75° N,
UK 28.125°EJ; [38.75° N, 30 ° E]
IPSL-CM5A-LR Institut Pierre-Simon IPSL 1.895%3.75 [38.842° N, 26.25 ° E]; [38.842° N, 30 ° E]
Laplace, France
MIROC-ESM Atmosphere and Ocean MIROC 2.791x2.813 [37.673 °N, 28.125 °E]
Research Institute, Japan
MRI-CGCM3 Meteorological Research MRI 1.12x 1.125 [38.69°N, 27 °E]; [38.69 ° N, 28.125 ° EJ;

Institute, Japan

[38.69°N, 29.25° E]

26.625-29.625 °E, were compiled from the ECMWF website
http://apps.ecmwf.int/datasets/. Each grid presented in Figure 1
has a spatial resolution of 0.75°. Thus, a box covering the basin
was obtained at a resolution of 1.5° x 3.0°.

The large-scale output databases from 12 GCMs, which
include both historical scenario outputs representing past
climates and future climate simulations under the RCP4.5,
RCP6.0, and RCP8.5 scenarios, were selected for the down-
scaling exercise in the Basin under RCP scenarios. Another
scenario, RCP 2.6, which is the most optimistic scenario in
terms of CO, emissions, was not examined in this study because
hydrometeorological tendencies observed in the Basin point
out probable warming and water scarcity problems that could
occur in the near future. In the present study, the 1980—2005
period was used for historical scenario simulations, whereas the
2015-2050 period was considered for RCP simulations. The
selected RCPs represent different radiative forcing pathways
from greenhouse gas emissions resulting from anthropogenic
actions, with radiative forcing of 4.5, 6.0 and 8.5Wm™2 by
2100, respectively. For the year 2100, the greenhouse gas con-
centrations for RCP4.5, RCP6.0, and RCP8.5 are equivalent
to 650, 850 and >1370 parts per million CO,, respectively.
Compared to other RCPs, RCP8.5 corresponds to the pathway
with the maximal greenhouse gas emission. It is assumed that
excessive population and slow income growth with modest rates
of technological change will be effective under RCP8.5 scenario
(Riahi etal., 2011).

The CMIP5 set of experiments shares RCP simulations of
various GCMs through several gateway websites operated by
the Earth System Grid Federation (ESGF). In the study, the
large-scale scenario outputs, which comprise both historical cli-
mate and future simulations forced by RCPs, were extracted from

© 2016 Royal Meteorological Society

the gateway website http://pcmdi9.1lnl.gov/esgf-web-fe/. Infor-
mation about selected GCMs and the centre co ordinates of the
grids covering the study region are given in Table 2.

In this study, 11 ERA-Interim variables, which were com-
mon to data involved in 12 GCMs having 3 RCP scenarios,
were extracted with the intention of establishing statistical down-
scaling models based on ANN/LSSVM techniques to transform
GCM outputs to the monthly precipitation for 39 meteorologi-
cal stations. The dataset consists of several variables including
mean air temperature (air), geo-potential height (hgt) and rela-
tive humidity (rhum) at different atmospheric levels (200, 500
and 850 hPa), large-scale precipitation (pr) and sea-level pressure
(slp) at Earth’s surface, which are the probable predictor vari-
ables. An interpolation procedure was also used to get the outputs
of GCMs at reanalysis grid box consisting of eight ERA-Interim
grids because the grid centers of employed GCMs may not be
consistent with reanalysis grid center.

2.2. Predictor selection

In the statistical downscaling literature, exercises confirm that
explanatory predictors can change from one location to another.
Any predictor can be considered before the downscaling step,
but only if it shows plausible correlation with the observa-
tions (Fistikoglu and Okkan, 2011). Determining the predictors
through correlation—regression analyses is frequently preferred
(Hessami etal., 2008; Fistikoglu and Okkan, 2011), although
the relationships between some variables can be nonlinear and
selecting the predictors via linear regression-based techniques
may not seem true at first sight. Wilby et al. (2002) also advised a
predictor selection procedure through regression analysis within
the context of some guidelines for scenario usage. There are

Meteorol. Appl. 23: 514-528 (2016)
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Table 3. Summary of All Possible Regression method (APREG) analyses for Manisa station.

Number of variables  C,  RMSE (mm) air850 hgt850 rhum850  air500  hgt500  rhum500  air200  hgt200  air  slp  pr
in the best subsets

1 9.7 28.35 v
2 8.1 28.23 v v
3 7.3 28.15 v vV
4 43 27.97 v Vv Vv Vv
5 22 27.83 \/ \/ \/ \/ \/
6 37 2785 v v Ni v v v
7 43 27.83 v v v v vV Y
g of sy v v VARV
0 R N N A v VERRVERVARN,
10 N A A Y v vV v VY
1 O N N A L A Y N N VARV

Air, mean air temperature (°C); slp, sea level pressure (hPa); pr, large-scale precipitation (kg m~2); hgt, geo-potential height (m); rhum, relative humidity (%).

200, 500, and 850 near the variables denote the related atmospheric level (hPa).

various ways of determining predictors, too. The All Possible
Regression method (APREG), which was also used in this study
context, is another effective tool to determine the best subset
of predictors (Fistikoglu and Okkan, 2011). In APREG applica-
tion assessment of subset regression combinations can be based
on conventional measurements such as the root mean squared
error (RMSE) and Mallows’ Cp co-efficient. Details about the
APREG procedure applied to downscaling studies were given by
Fistikoglu and Okkan (2011) and Okkan and Fistikoglu (2014).

In the APREG application for this study, the monthly precip-
itation values observed at 39 meteorological stations located in
the basin were the predictand variables, whereas variables in the
ERA-Interim reanalysis were the probable predictor data. The
predictors are composed of the average of the values belonging
to eight grids enclosing the basin. As a representative example,
a summary of the results obtained from the APREG for Man-
isa station is given in Table 3. According to Table 3, Mallows’
C, co-efficient decreases rapidly up to five-regressor model and
then increases with the use of further variables. It can be said also
that the large-scale pr variable of the reanalysis dataset, which
appeared in all input combination as a predictor, increased the
statistical relationship, confirming what other studies in the lit-
erature have emphasized previously (Salathé, 2003; Tatli et al.,
2004; Xoplaki et al., 2004; Schmidli ez al., 2006).

The common belief is that the subset regression model with
the lowest RMSE and C, should be chosen as the best one.
However, performances of k-regressor models having k predictor
are nearly the same as that of the one-regressor model including
only the pr variable; that is, the RMSE values calculated from
one-regressor and k-regressor models are nearly equal for all
stations. In other words, it can be observed that the change in
RMSE is no longer meaningful when the number of predictors
exceeds one (Figure 2). Thus, the predictor selection process
determined the model with one variable as optimum, which
implies that only large-scale pr is sufficient for the downscaling
of monthly precipitation over the whole Basin.

2.3. ANNand LSSVM

One of the downscaling models used in this study is based on arti-
ficial neural networks (ANNs). ANNs can be defined as a black
box technique producing output against input(s) and is one of
the preferred statistical downscaling techniques. Among various
algorithms applied to a typical ANN structure composed of feed
forward and back propagation steps, a second-order optimization

© 2016 Royal Meteorological Society

algorithm called the Levenberg—Marquardt algorithm (LM) is
quite successful because it is generally faster and more suitable
than other algorithms. Hagan and Menhaj (1994) presented a
comprehensive description of ANNs with LM.

The Support Vector Machine (SVM) is another artificial intel-
ligence algorithm constructed with statistical learning theory.
Despite successful modelling performance of SVM, it has sev-
eral disadvantages which were discussed in Suykens (2001).
However, the least squares support vector machine (LSSVM)
shows a computational benefit over the conventional support vec-
tor machine method by transforming the quadratic optimization
experience into a linear equation system. Tripathi eral. (2006)
presented a detailed description of the LSSVM applied to down-
scaling modelling.

2.4. Performance metrics for ANN/LSSVM models

Moriasi etal. (2007) indicated the significance of the use of
three metrics, namely, Nash—Sutcliffe efficiency (NS), root mean
squared error-observations standard deviation ratio (RSR) and
bias percentage (PBIAS), to examine predicting capabilities.
These metrics were also employed in this study for compar-
ing two statistical downscaling models, although originally they
were intended for hydrological model assessment. The formula-
tions of these metrics and ratings pertaining to metrics were given
by Moriasi et al. (2007).

3. Results

3.1. Training and testing of statistical downscaling models

First, and before starting the downscaling modelling, all data
were divided into two periods for application: the training period
(January 1980 to December 1992) and the testing period (January
1993 to December 2005). The downscaling strategy proposed in
this study was designed with a MATLAB code and summarized
in Figure 3. In this study, all data were standardized before being
input into two statistical models because z-score standardization
makes the training of a downscaling model capable. This stan-
dardization procedure also was applied to scenario data of GCMs
as mentioned in Figure 3.

In the training period of the ANN/LSSVM using reanalysis
data, estimation of optimal values for the related parameters were
important. In the training of the ANN with the LM algorithm,
the numbers of neurons in the hidden layer (n.n.h) made RMSE

Meteorol. Appl. 23: 514-528 (2016)
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Figure 2. RMSE statistics calculated from k-regressor and one-regressor models.

statistics the lowest were determined iteratively (Table 4). The
parameters of the LM algorithm, which are the initial Marquardt
parameter (4,) and decay rate (f), were selected as 0.010 and
0.1, respectively. In addition, by monitoring the relative changes
on RMSE statistics, the optimal epoch number could be chosen
after several trials operated in the MATLAB-ANN toolbox.

The LSSVM model needs the calibration of two parameters:
the regularization parameter (y) and the Gaussian radial basis
function (GRBF) width (o). In the LSSVM training period, the
grid-search method under k-fold cross-validation was applied to
estimate optimal LSSVM parameters (see Table 4), which made
RMSE the lowest in the training. After different trials for this
study, the number of folds was selected as 10. The grid search
method can yield an optimal parameter set and employing a
cross-validation procedure can prevent the downscaling model
from over-fitting. The authors refer readers to a MATLAB tool-
box available at http://www.esat.kuleuven.ac.be/sista/lssvmlab.

After the training period of the ANN- and LSSVM-based sta-
tistical downscaling models, the performances of two models
were assessed by means of NS, RSR and PBIAS. Determination
co-efficient R? values also were computed to interpret the amount
of explained variance. In the study, only testing period perfor-
mances were introduced because both the ANN and LSSVM
showed similar capabilities in terms of performance metrics dur-
ing the training period. Table 4 shows performance indices of
models for the testing period (January 1993 to December 2005)
to compare their generalization capabilities. As a representative
example, time-series plots and scatter plots of monthly precipita-
tion predictions at Akhisar station are presented in Figure 4, both
for the training and testing periods.

The results of the ANN model show that NS co-efficients in the
basin range from 0.57 to 0.84 during the testing period. Although
the RSR efficiencies for the ANN model in the basin vary from
0.39 to 0.66, the computed PBIAS statistics are between 9.5 and
—20.5%. The PBIAS performances of the ANN model for 36
stations are considered as ‘very good’. Moreover, stations mod-
elled with ANN show ‘good’ and ‘very good’ performances in
terms of RSR and NS, except for five stations. On the other hand,
NS and RSR measures computed from the LSSVM are nearly
the same as those of the ANN model. In this sense, the LSSVM
also provides ‘good’ and ‘very good’ modelling performances
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except for two stations (Fakilli and Ucpinar stations), whereas
the PBIAS values for the LSSVM point out ‘very good’ perfor-
mance at 36 stations. The performance ratings are available at
Moriasi et al. (2007).

During the training and testing of the models, both the ANN
and LSSVM gave quite similar results in terms of the perfor-
mance indices. Although the two models produced satisfactory
results in general, it turned out that slightly better results were
obtained with some stations using one of the models rather than
the other. According to overall performance criteria during the
testing period for each station, it was decided which downscaling
model would be used in the stage of downscaling GCM outputs
to station scale (see last column in Table 4).

Although the results achieved from the two models showed
a good/very good consistency in precipitation predictions at
nearly all stations, the capability for extreme value estimation
of employed models was found to be restricted at some stations.
In the literature, it has been emphasized that this scenario is quite
possible because the statistical models may not explain the entire
variance of the modelled predictand (Tripathi ez al., 2006).

3.2. Downscaling outputs of 12 GCM:s to precipitation and
multi-GCM ensemble application

In the previous section, a convenient statistical downscaling
model that had a better performance than the other one was
sought in order to downscale reliably the raw RCP outputs of
used GCMs to precipitation at 39 stations. After the model con-
struction for each station, values of pr for individual grids were
arranged for the GCMs of the historical scenario and for RCP4.5,
RCP6.0, and RCPS.5 future scenarios. According to the down-
scaling scheme introduced in Figure 3, after preparing interpo-
lated data for each GCM, which are a combination of the values
of the nearest grids covering the Gediz Basin (given in the last
column of Table 2) and those of neighbouring grids, the RCP
datasets were standardized with the historical scenario statistics
of the corresponding GCM. These standardized series were con-
sidered as the input vector for the selected statistical downscaling
models calibrated through the reanalysis variables compiled from
eight ERA-Interim grids. Thus, for each GCM, standardized val-
ues representing the historical and future scenarios were made

Meteorol. Appl. 23: 514-528 (2016)
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Figure 3. Proposed downscaling strategy applied in the study.

for all meteorological stations. Following the simulation process
by trained downscaling model, the obtained standardized values
were turned into precipitation unit (in millimetre).

The statistically downscaled precipitation series of 12 GCMs at
meteorological station scales were inspected through the box plot
graphs under different scenarios. It was seen from the graphs that
some descriptive statistics, especially the medians, interquartile
ranges and upper whiskers in RCPs, varied relatively from one
GCM to another (Figure 5 (a)—(d) for an example at Simav
station).

In the literature, there are several inspirational studies focus-
ing on the uncertainties originating from the differences between

© 2016 Royal Meteorological Society

forecasts obtained from different GCMs (Dibike etal., 2007;
Mujumdar and Ghosh, 2008; Okkan and Inan, 2015a). It is
apparent that no single GCM is superior to other GCMs for all
kinds of downscaling work and under all climatic circumstances.
In this respect, the multi-GCM ensemble procedure operating
with a group of comparable GCM simulations has been sug-
gested by some researchers to deliver more accurate projec-
tions (Knutti e al., 2010; Chong-hai and Ying, 2012; Okkan and
Inan, 2015a). An ensemble strategy used in hydrological mod-
elling studies may also help to improve the uncertainty estima-
tion (Duan et al., 2007). A comprehensive review on multi-GCM
ensemble applications in the literature and some frequently used

Meteorol. Appl. 23: 514-528 (2016)
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Table 4. Overall performance measures of the artificial neural network (ANN) and least-squares support vector machine (LSSVM) statistical
downscaling models for the testing period.

Stations ANN LSSVM Selected
nnh  R? NS RSR  PBIAS (%) y c R? NS RSR  PBIAS (%) Downscaling model
Akhisar 5 0.7775 0.7762 0.4715 3.68 5.64E+01  0.43 07756 0.7742 04736  3.60 ANN
Ahmetli 4 0.561 0.7354 05128  0.30 1.69E+03 31.78 0.7471 0.7365 0.5117 0.47 LSSVM
Alasehir 6 0.6657 0.6620 0.5795 3.03 590E+00 042 0.6593 0.6530 0.5871 125 ANN
Borlu 3 07750 0.7461 0.5022  —4.94  9.68E+00  0.37 0.7749 0.7472 0.5012  —5.50 LSSVM
Demirci 13 0.7838 0.7795 0.4681 -292  2.18E+04 089 0.7771 0.7722 04757  -3.55 ANN
Foca 3 0.7808 0.7795 0.4681 3.13 520E+07 57.56 0.7782 0.7773 0.4704 3.21 ANN
Gediz 6 0.7261 0.7256 0.5221 —132  735E+07 1593 0.7217 0.7211 0.5264  —0.88 ANN
Golmarmara 13 0.7635 0.7600 0.4883 3.07 2.02E+04 86.02 0.7605 0.7587 04896  2.12 ANN
Gordes 4 07541 0.7392 0.5091 _0.83  284E+04 130.70 0.7610 0.7435 0.5048  —1.76 LSSVM
Giire 2 0.6696 0.6573 0.5835  —3.67 297E+04 117.04 0.6759 0.6738 0.5693 —-1.70 LSSVM
Kopriibagt 5  0.7386 0.6868 0.5579 —14.42 1.62E+03 37.01 0.7488 0.6974 0.5483 —16.36 LSSVM
Kula 1 06655 0.6423 0.5962  —2.54 1.52E+04  29.65 0.6811 0.6677 0.5746  —1.83 LSSVM
Manisa 6 0.8417 0.8363 0.4033 —5.86  623E4+05 1.14 0.8355 0.8332 0.4071 —-5.19 ANN
Menemen 2 0.8108 0.8091 0.4355  —3.41 3.08E+02  1.53 0.8060 0.8044 0.4408  —3.69 ANN
Muradiye 4 0.8364 0.8351 0.4048 —249 6.53E+06  1.34 0.8417 0.8386 0.4005 —4.20 LSSVM
Salihli 6 0.7230 0.7183 0.5291 -0.66 7.70E+01  6.66 0.7155 0.7132 0.5338  —1.19 ANN
Saphane 1 07056 0.6439 0.5948 —10.21 3.70E+05 270.45 0.7251 0.6756 0.5677  =7.04 LSSVM
Sarigol 3 0.6696 0.6599 0.5813 2.37 425E4+05 7552 0.6836 0.6786 0.5651 2.28 LSSVM
Saruhanl 5 0.8372 0.8212 0.4214 —-8.99  3.64E+04 29.10 0.8283 0.8154 0.4283 -9.79 ANN
Selendi 2 0.6463 0.6194 0.6149 3.05 474E+04 36.88 0.6800 0.6655 0.5765 1.59 LSSVM
Turgutlu 14 07926 0.7921 0.4545 —1.16  8.70E+01  0.81 0.7867 0.7865 0.4606  —0.88 ANN
Avsar 4 0.7080 0.7040 0.5423 525  341E+04 64.18 0.7052 0.6962 0.5494  5.03 ANN
Buldan 11 07316 0.7124 0.5346  —-9.23 1.65E+06 304.03 0.7322 0.7277 0.5201 —-5.50 LSSVM
Demirkoprii 6 07713 0.7637 0.4846  —0.96  532E4+04 15826 0.7742 0.7701 0.4780  —0.44 LSSVM
Dindarli 6 0.6947 0.6901 0.5549  4.24 1.26E+06 99.83 0.7016 0.6932 0.5522 430 LSSVM
Esmetagkoyii 7  0.6865 0.6681 0.5743 8.41 529E+05 539 0.6701 0.6500 0.5897  8.13 ANN
Fakill 4 05814 0.5650 0.6575 9.59 9.61E+02 13.95 0.5809 0.5560 0.6642 10.02 ANN
Hacirahmanli 8 0.7728 0.7727 04752  —1.04  3.60E+01  0.39 0.7752 0.7734 0.4745 -3.15 LSSVM
Hanya 4 0.7636 0.7390 0.5092  —3.83 1.28E+04 73.46 0.7718 0.7329 0.5151 -7.35 ANN
Icikler 1 0.6666 0.6600 0.5812  0.37 1.28E+05 50.64 0.6779 0.6682 0.5742 2.61 LSSVM
Kavakalan 11 08164 08114 04329 099  244E+03 3513 0.8225 0.8130 0.4310  —2.64 LSSVM
Kirangth 8 0.7752 0.7505 0.4979  —4.03 1.78E+01 025 0.7740 0.7475 0.5009  —4.98 ANN
Marmara GR 4 0.7422 0.7356 0.5126 3.41 2.50E+03  43.68 0.7470 0.7447 0.5037 2.96 LSSVM
Sarilar 8 0.8255 0.8126 04315 =553 183E+04 099 0.8272 0.8142 04297  —6.00 LSSVM
Ugprnar 5 07085 0.6362 0.6012 —2049 225E+06 27.94 0.7223 0.6366 0.6009 —22.18 LSSVM
Y.poyraz 12 0.7665 0.7464 0.5020 —4.86  640E+00 024 0.7537 0.7425 0.5058  —4.39 ANN
Usak 6 0.7206 0.7199 0.5275 2.09 244E+01 046 0.7104 0.7095 0.5373 2.15 ANN
Simav 1 08024 07815 0.4660  —6.57  L5IE+03 27.90 0.8075 0.7857 0.4614  —6.97 LSSVM
Kemalpagsa 14 0.8474 0.8437 0.3941 —530 479E+06  1.28 0.8445 0.8402 0.3985 —6.25 ANN

The underlined values in table represent the optimal results.

methods was discussed at the ‘IPCC Expert Meeting on Assess-
ing and Combining Multi Model Climate Projections’ by Knutti
etal. (2010). Their work provided useful practical advice for
using multi-GCM ensembles in climate projections which should
be essential for impact-adaptation exercises. In this regard, crite-
ria for modelling quality and performance indices, and weighting
of employed models were discussed.

Concerning the recommendations of Knutti eral. (2010), the
weighted multi-GCM mean approach was preferred, which is
an average across all forecasts from multi-GCM simulations,
that does not treat the used GCMs equally. In this approach,
the weights can be derived from some measures assessing GCM
capability in simulating the observed climate conditions (Knutti
etal., 2010). The ensemble procedure for this study was per-
formed with the Bayesian Model Averaging (BMA) method. This
is a statistical scheme designed to obtain probabilistic forecasts
with greater ability and reliability than the forecasts obtained by
any single model. In some studies, BMA was shown to yield
convenient results when it was compared with other ensemble

© 2016 Royal Meteorological Society

techniques (Raftery ez al., 2005). BMA has been used formerly
in hydro-meteorological applications. For example, Raftery et al.
(2005) used BMA in order to calibrate forecast ensembles in
numerical weather modelling. To the best of our knowledge, a
multi-GCM ensemble exercise focusing on the BMA scheme has
not been found in the downscaling literature. The BMA method
is given concisely as follows.

Consider a quantity y to be the modelled variable, D = [y 1
Yobs2> -+ » Yobs.7) t0 be the observed data with data size T, and
J; forecasts obtained from the K-model (K =12 for this study),
where the a posteriori distribution of y is represented as the
conditional probability p; (y|f;, D).

Referencing the total probability law, the probabilistic forecast
of BMA is defined as the probability density function shown in
Equation ((1):

K
pGID) = p (| D) pi (v |finD) )
k=1

Meteorol. Appl. 23: 514-528 (2016)
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Figure 4. Precipitation predictions (in millimetre) derived from (a) ANN and (b) LSSVM for the historical period (1980-2005) at Akhisar station.
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Figure 5. Scenario precipitation forecasts obtained from downscaled values of 12 GCMs at Simav station: (a) historical, (b) RCP4.5, (c) RCP6.0
and (d) RCP8.5.

This term also measures how well model forecasts match the
observations. To gain a computational convenience in practice,
Gaussian distribution is assumed for p,(y|f;, D), which is also
denoted as g(y|f;, 6,%). Assuming that the probability distribution
of precipitation error is non-Gaussian, data are subjected to the
Box—Cox transformation before applying BMA. If weights are
defined as w, = p(fi|D), then BMA gives Xw, =1, where w, are
all positive. The posterior mean of the BMA forecast is defined
as shown in Equation ((2):

E [yl D]

3 (415) [ (515

k=1
K

wi - fi @
k=1

To apply the BMA method, weights (w,) and the variance of
model forecast (o-kz) must be estimated. The maximization of
a log-likelihood function (Equation ((3)) suggested by Raftery
etal. (2005) can be used for this step:

K

10)=1(wy. ... .wi 01, ... ,0p) =logl D wy - g (Vfi 0y )]
k=1

3)
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However, obtaining an analytical solution of § by conven-
tional methods is quite difficult. For that reason, Raftery eral.
(2005) has recommended an iterative procedure based on the
Expectation—Maximization algorithm (E-M). For a detailed
description of both the BMA scheme and E-M, readers are
referred to Duan ez al. (2007).

In order to apply the BMA method for precipitation projection,
an ensemble of competing forecasts from 12 GCMs (historical
scenario forecasts) was considered. In the study, precipitation
forecasts were divided into two periods as wet (from October
to March) and dry (from April to September) and then applied
the BMA to each period separately. Thus, a different set of
BMA weights was obtained for each period. The computed
weights for 39 stations were not given due to space limitations.
After computing weights for each station during the historical
scenario period, downscaled values of 12 GCMs for 3 RCPs were
multiplied by these weights and then summed to obtain future
scenario results.

3.3. Bias correction

Some studies in the literature have revealed that the results
derived from the multi-model mean approach generally outper-
form those from single GCMs compared to measured values

Meteorol. Appl. 23: 514-528 (2016)
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Figure 6. Histogram plots of (a) observed precipitation, (b) uncorrected
ensemble forecasts under historical scenario and (c) corrected ensemble
forecasts under historical scenario at Akhisar station.

(Gleckler eral., 2008). However, some biases may be observed
in ensemble simulations (Knutti ez al., 2010). In this section, fol-
lowing the ensemble process based on the BMA scheme given in
the previous section, a bias correction technique was used so as
to lessen possible biases in ensemble forecasts. It is possible that
the forecasts produced from statistical downscaling models may
contain some biases due to several reasons attributed to GCM
resolution, the predictors, preferred downscaling model type and
the climate period. Sachindra et al. (2014) have emphasized that
correcting biases is required before use of projections in climate
impact studies.

There are various bias correction methods applied to raw GCM
outputs and also to the downscaled values. The most frequently
used technique is quantile mapping (QM) that can be capable
of correcting the statistical moments. In this method, cumula-
tive distribution functions (CDFs) of downscaled past scenario
results are mapped onto the CDFs of observations. For future
climate scenarios, first, corresponding to the downscaled values
for future periods, the CDFs are computed from the CDFs relat-
ing to the past scenario results. Finally, the corrected values of

© 2016 Royal Meteorological Society
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a variable for future periods can be extracted from the CDFs
of the observations (Sachindra etal., 2014). Lafon etal. (2013)
used linear-nonlinear scaling, Gamma distribution-based QM
and empirical distribution-based QM (EMQM) in their work.
According to their comparisons, EMQM was determined as the
best-performing method. EMQM also displayed successful per-
formance in a study presented by ThemeBl etal. (2011). Ines
and Hansen (2006) compared the performances of QM and the
multiplicative shift method (MSF) in correcting the bias for
precipitation values. They concluded that MSF corrected the
long-term monthly mean precipitation. However, this method
is unsuccessful for correcting systematic errors in precipitation
distribution. Sachindra et al. (2014) presented a comprehensive
study involving the usage of equidistant QM (EDQM), monthly
bias-correction (MBC) and nested bias-correction (NBC) meth-
ods. When considering the performances of three methods,
EDQM was preferred for preparing future precipitation projec-
tions in their work.

In this study, QM based bias correction strategy was applied.
The approach employed, which was formulized by Ghosh and
Mujumdar (2008), used CDFs to reduce the biases existing in
scenario forecasts. In this bias-correction application, monthly
precipitation values at 39 stations, which were obtained from the
multi-GCM ensemble, were assessed for the reference period
1980-2005 under the historical scenario. Then, the probability
plot correlation co-efficient test revealed that the two-parameter
Gamma distribution fitted well at 39 stations. The CDFs per-
taining to the observed data and the ensemble forecasts of four
scenarios were computed. However, they are not presented due
to page number restriction. The yield of the bias correction appli-
cation in facilitating the distributional features of the forecasted
precipitation values under the historical scenario to be conve-
nient with those of observations at Akhisar station can be seen
in Figure 6. The computed statistics of precipitation forecasts
for the same example are given in Figure 6, also. Although the
arithmetical mean, standard deviation, variation (C,), median
and maximum value statistics of the observed precipitation
at Akhisar station are 46.45 mm, 52.43 mm, 1.129, 28.45 mm
and 351.2 mm, respectively, those of precipitation forecasts for
the historical scenario before correcting biases were 45.89 mm,
29.46 mm, 0.642, 41.98 mm and 124.17 mm, respectively. After
correcting biases, these parameters under the historical scenario
were 46.24mm, 51.61 mm, 1.116, 31.37mm and 309.6 mm,
respectively. These results show that the biases were reduced
meaningfully for the Akhisar station example. Similar inferences
were found to be acceptable for the other 38 stations as well.

3.4. Hypothesis testing on historical scenario results

In order to have confidence in the climate change scenarios
downscaled statistically from GCMs, assurance is required that
the downscaled values can represent past climatic conditions
closely (Dibike et al., 2007). After bias correction, a method was
employed in the study to analyse the confidence levels of both
the downscaled results of the 12 GCMs and ensemble simula-
tions derived from the BMA scheme, namely hypothesis testing
based on the Mann—Whitney U-test, which was suggested by
Dibike etal. (2007) also in uncertainty analyses of downscaled
precipitation regimes. The formulations of this test were given
by Okkan and Inan (2015a).

If the obtained asymptomatic significance values are greater
than or equal to 5%, then there is no meaningful difference
between observed and forecasted values in terms of the medians.
As shown in Table 5 for Akhisar station, the Mann—Whitney

Meteorol. Appl. 23: 514-528 (2016)
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Table 5. Asymptomatic significance values derived from hypothesis testing for Akhisar station.

Climate model Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec

BCC-CSM1.1 (%) 38.97 21.33 36.98 0.75 18.16 27.22 24.52 35.54 1.65 027  59.56 19.38
CCSM4 (%) 38.97 18.76  100.00 66.05 16.43 0.06 8.37 33.66 95.62 34.13 39.99 95.62
CESM1(CAMS) (%) 16.99 82.62 25.65 2.81 2.56 0.01 44.76 66.05 98.54 74.18 19.38 63.42
Csiro-Mk3.6 (%) 2.32 9.22 52.18 8.21 11.55 53.38 64.73 6.19 25.65 386 8548 74.18
GFDL-CM3 (%) 38.97 91.26 34.13 7.89 441 0.00 46.41 10.14 18.16 72.80 95.62 95.62
GFDL-ESM2M (%) 13.82 39.99 5.94 11.55 6.19 0.07 24.89 82.62 41.02 68.05 54.59 16.43
GISS-E2-H (%) 82.62 55.81 5.24 0.11 94.16 11.98 0.03 1.74 21.33 18.16 45.30 43.13
GISS-E2-R (%) 54.59 18.16 1.16 0.04 76.97 0.11 1.74 0.01 3.23 13.82 70.07 338
HADGEM2-ES (%) 62.12 52.18 67.38 15.34 4.61 0.04 0.12 64.73 70.07 3.95 570  79.78
IPSL-CMS5A-LR (%) 36.98 20.67 79.78 0.27 74.18 0.00 0.00 64.73 7.89 31.86 0.41 71.43
MIROC-ESM (%) 42.07 86.92 21.33 12.42 16.43 13.34 16.71 16.99 24.15 66.71 62.12 5.70
MRI-CGCM3 (%) 13.34 0.51 6.72 10.34 2.01 0.03 0.08 46.97 24.15 0.01 95.62 31.41
ENSEMBLE (%) 91.26 86.92 92.71 85.48 85.48 74.18 25.65 9.95 36.02 98.54 92.71 84.05

The shaded characters in table displays that there is a significant difference between the observation and forecasted values for the median statistics.
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Figure 7. Precipitation changes (in %) in relation to the 1980-2005
historical scenario period for (a) RCP4.5, (b) RCP6.0 and (c) RCP8.5
scenarios.

U-test was implemented at the 5% level of significance to exam-
ine whether precipitation forecasts in the historical scenario were
meaningfully different from observation statistics or not. Accord-
ing to analyses, it is interpreted that the corrected ensemble simu-
lations are better than those of single GCMs. In other words, the
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combined use of the BMA-based ensemble procedure and bias
correction approach was able to reproduce the median charac-
teristics of monthly precipitation reasonably well. Similar results
were obtained for the corrected ensemble simulations at the other
38 stations which were not presented here.

3.5. Foreseen changes in future precipitation

It is hoped that produced forecasts are not only reliable because
multi-GCM ensemble application is more consistent than a
single GCM usage, but also de-biased after the bias correction
procedure. The distributions of precipitation changes are shown
in Figure 7 for the considered future period (2015-2050) under
three RCP scenarios. In the present study, in order to investigate
whether the mean statistics related to produced forecasts under
the three RCP scenarios reflecting the future period were statis-
tically distinct from those of the historical scenario (1980-2005
climate), a two-sample #-test was operated at the 5% significance
level.

The results in Figure 7 reveal that the precipitation over the
basin tended to decrease in the future for all three RCP scenarios.
However, remarkable decreases were found only in the RCP8.5
results, where the foreseen changes were statistically significant
by t-test for nearly all stations. According to the RCP8.5 sce-
nario, decreasing precipitation in the western part of the basin
and some regions nearest to Golmarmara Lake and Demirkopru
Dam and Gordes Dam reservoirs was more obvious than in the
northwestern and northeastern parts of the Basin, whereas effec-
tive decreases also were found in the southeastern part of the
basin, where the decreasing proportion was foreseen as 18.5%.

In order to interpret foreseen changes in precipitation over
the whole basin, Thiessen weighted precipitation (TWP) val-
ues were obtained from all 39 stations. TWP obtained from
the scenario forecasts for the 39 stations for both seasonal and
annual periods are given (Figure 8). Although decreases were
foreseen in all seasons under RCP8.5, it was much more dis-
tinctive in autumn. Moreover, the decreases foreseen in win-
ter and autumn will affect annual precipitation regime because
the total precipitation measured in winter and autumn repre-
sents nearly half of the total precipitation potential of the basin.
When the annual mean statistics were considered, 8, 10 and 17%
decreases were foreseen related to RCP4.5, RCP6.0, and RCP8.5
scenarios, respectively. Moreover, the box-plot graphs given in
Figure 8 show that there will be decreases in the forecasts of
third quartiles (high-rainfall), particularly in the RCP8.5 results.
When the projected surface air temperature, which is expected

Meteorol. Appl. 23: 514528 (2016)
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Figure 8. TWP calculated from the scenario forecasts of 39 stations for (a) winter, (b) spring, (¢) summer, (d) autumn and (e) annual periods.

to increase markedly in all three RCP scenarios, is also taken
into account, it becomes inevitable that the basin may experience
water scarcity problem between the years 2015 and 2050.

4. Conclusions

The analysis of precipitation has a very important role to play
in water resource management, such as planning of irriga-
tion systems, dam reservoir operation, water budget studies
and watershed modelling. In this study, projection of monthly
precipitation over the Gediz Basin under several Representative
Concentration Pathways (RCP) scenarios mentioned in the
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IPCC 5™ Assessment Report (AR5) was performed by a mod-
elling strategy consisting of artificial neural network (ANN)
/ least-squares support vector machine (LSSVM) techniques,
multi-general circulation model (GCM) ensemble and bias
correction.

The statistical downscaling models were calibrated and tested
using both observed precipitation and the ERA-Interim reanal-
ysis predictor. The performance examination of the downscaled
precipitation predictions at 39 stations denoted that the trained
models generated consistent results, in contrast to various works
in the literature where daily precipitation downscaling was car-
ried out (e.g. Dibike et al., 2007). In other words, the good or very
good agreement between observed and predicted monthly values

Meteorol. Appl. 23: 514-528 (2016)
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at meteorological stations indicated that the trained models with
the set of optimized parameters could be applied to examine the
responses of precipitation due to climate changes in the Basin.

Hence, the effectiveness of statistical downscaling models
was illustrated through their integration to a historical scenario
(1980-2005) and three RCP future scenarios (2015-2050). At
this stage, simulations from 12 GCMs, which are available at
CMIPS5, were considered to obtain projections of precipitation at
39 stations. The eventual precipitation forecasts were produced
from a multi-GCM ensemble application based on a Bayesian
Model Averaging (BMA) method and bias correction technique.
The quantile mapping based-bias correction (QM) approach
employed in this study, which uses cumulative distribution func-
tions (CDFs), especially for hydrological variables coming from
a skewed distribution, was also preferred by other researchers.
By using hypothesis testing, the ability of corrected ensemble
forecasts to simulate the historical climate in terms of statisti-
cal moments was assessed. Sachindra ez al. (2014) have empha-
sized that quantile mapping is not able to correct the time series
explicitly. Otherwise, methods such as monthly bias-correction
and nested bias-correction are able to correct some of the statis-
tics without disrupting the temporal sequence (Sachindra et al.,
2014). Therefore, the QM approach presented herein will be
compared with other bias correction methods in a future work
in order to ensure the validation of the results derived from this
study.

Following the investigation of historical scenario results, the
significances of the computed changes for the 2015-2050 future
period were examined statistically. According to statistical inves-
tigations for different emission scenarios, insignificant decreases
are foreseen over the Basin for RCP4.5 and RCP6.0, whereas sig-
nificant decreasing trends in precipitation are identified for the
RCP8.5 scenario. Considering that the RCP8.5 scenario results
can be defined as a pessimistic scenario with comparatively high
greenhouse gas emissions, it is foreseen that there will be around
17% decrease in mean areal precipitation over the basin com-
pared to the reference climate period.

As is well-known, in downscaling works the possible effects
of climatic change on variables operating within the hydro-
logical cycle are all related within the uncertainty/reliability
frame. It was uttered that uncertainties are related to GCMs,
used scenarios, data features, and the used downscaling tech-
niques (Mujumdar and Ghosh, 2008; Okkan and Inan, 2015a).
In spite of the aforementioned uncertainties, statistical down-
scaling techniques will remain the most frequently used tools
for researchers to examine the effects of climate change on
hydrological processes owing to their computational practical-
ity compared to dynamic downscaling (Anandhi ezal., 2008).
Moreover, the use of 12 GCMs with 3 RCP scenarios, two statis-
tical downscaling models trained with optimal predictor selection
and an ensemble procedure should serve as inspiration for pre-
cipitation projections of other important basins in Turkey and
beyond.

Duan eral. (2007) stated that different models may have
strengths in capturing different aspects of hydro-meteorological
processes. Enough knowledge about the uncertainty relevant
to the forecasts derived from single models currently may not
be available. However, the uncertainties and structural errors
observed in any single model are at insignificant orders for
ensemble applications. In this regard, focusing on both Bayesian
model averaging and bias correction methods for this study
resulted in robust climate modelling and a reliable projection.

The inferences obtained from this work point out that the
developed strategy is a conceivable option for downscaling
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precipitation to a basin scale. Hence, a similar study concerning
surface air temperature projection for the same basin will be per-
formed in a future study. However, it is proposed that dynamical
downscaling tools (e.g. REGCM4, PRECIS) and other statistical
models used in the literature can be used to check for inter-model
robustness of the downscaled forecasts for the study area. A com-
prehensive research effort in this direction is also planned.

The results presented herein will also be assessed in future
work through the integration of rainfall—runoff models. Follow-
ing building a rainfall-runoff model for the sub-basins in the
Basin, the downscaled precipitation and temperature values can
be converted into streamflows by operating a calibrated hydro-
logical model.
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