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Abstract. From two circle theorem described in terms of q-periodic functions, in the limit
q → 1 we have derived the strip theorem and the stream function for N vortex problem.
For regular N-vortex polygon we find compact expression for the velocity of uniform rotation
and show that it represents a nonlinear oscillator. We describe q-dispersive extensions of the
linear and nonlinear Schrödinger equations, as well as the q-semiclassical expansions in terms of
Bernoulli and Euler polynomials. Different kind of q-analytic functions are introduced, including
the pq-analytic and the golden analytic functions.

1. Introduction
The quantum or the so called q-calculus rises from classical works of Euler, Gauss, Fermat etc.,
but only recently, after discovering quantum integrable models and quantum groups, the subject
has attracted much attention. In present paper we are going to study several applications of
this calculus to problems of classical hydrodynamics, quantum theory and integrable systems.

1.1. Fermat partition
The Fermat partition plays the central role in q-calculus. Introduced first for calculation of
integrals, it divides an interval in geometric progression and has many applications. For guitar
frets it gives the scales L,Lq, Lq2, ..., Lq12, where q = e− ln 2/12 = 0.94387645. Another example
is given by intervals for vertical distance traveled by a bouncing ball if the height of each rebound
is reduced by the factor q < 1. The total distance is h+2hq+2hq2+... = −h+2h(1+q+q2+...) =
−h+ 2h[∞]q = h(1 + q)/(1− q).

In general, any real analytic function f(q) = a0 + a1q + a2q
2 + ..., convergent for 0 < q < 1,

has geometrical meaning as an area on Fermat partition (1, q, q2, ...),

A = a0(1− q) + a1(q − q2) + a2(q
2 − q3) + ... = (1− q)(a0 + a1q + a2q

2 + ...) = (1− q)f(q).

In particular case, when an = F (qn), this area becomes just the Jackson integral

A = (1− q)
∞∑
n=0

F (qn)qn =

∫ 1

0
F (x)dqx.

One more example is given by problem of point vortex in concentric annular domain, where
the set of vortex images is distributed according to the Fermat partition.
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2. Hydrodynamic images
As a first application we consider the hydrodynamic flow in annular domain and the two circle
theorem [1]. For incompressible and irrotational planar flow in annular domain r1 < |z| < r2,
between two concentric circles C1 : |z| = r21 and C2 : |z| = r22, the complex potential F (z)
is analytic function, q-periodically extended to the whole complex plane:F (qz) = F (z) or
Dz

qF (z) = 0. Explicit form of this function is given in terms of f(z), as a complex potential of
flow in the plain without boundaries:

F (z) = fq(z) + fq(z∗) =
∞∑

n=−∞
f(qnz) +

∞∑
n=−∞

f̄

(
qn
r21
z

)
, (1)

where z∗ = r21/z̄ is inversion of the point z, fq(z) ≡
∑∞

n=−∞ f(qnz) - q-periodic extension of

the flow to even annular, and fq(z∗) = f̄q(r
2
1/z) =

∑∞
n=−∞ f̄

(
qn

r21
z

)
- q-periodic extension to

the odd ones. This expression shows that restriction of the flow from whole plane to annular
domain is equivalent to the q-periodic flow in the plane. It happens due to the boundary
conditions ℑF (z)|C1,2 = 0, identifying imaginary parts of the analytic function on the circles
and as follows, identifying values of this function on the boundaries (up to irrelevant constant).
In addition to q-periodicity, function F (z) must be Q- periodic, with Q = e2πi, under rotations
on 2π around the origin. The real and imaginary parts of this function in polar coordinates
F (z) = Φ(r, θ) + iΨ(r, θ) are the velocity potential and the stream function respectively.
These functions are q-periodic in r, and periodic in θ: Φ(qr, θ) = Φ(r, θ), Φ(r, θ + 2π) =
Φ(r, θ); Ψ(qr, θ) = Ψ(r, θ), Ψ(r, θ + 2π) = Ψ(r, θ). In explicit form

Φ(r, θ) =
∞∑

n=−∞

(
φ(qnr, θ) + φ(qn

r21
r
, θ)

)
, Ψ(r, θ) =

∞∑
n=−∞

(
ψ(qnr, θ)− ψ(qn

r21
r
, θ)

)
, (2)

where f(z) = φ(r, θ) + iψ(r, θ) is the flow in plane without boundaries, periodic in θ:
φ(r, θ + 2π) = φ(r, θ), ψ(r, θ + 2π) = ψ(r, θ). From the above formulas, the stream function
vanishes at boundary circles: Ψ(r1, θ) = 0 and Ψ(r2, θ) = 0. Moreover, if Γk : |z| = r1q

k, and
γk : |z| = r2q

k, k = 0,±1,±2, ... are the boundary circles images, then Ψ|Γk
= 0 and Ψ|γk = 0

as well.
Several extensions of the two circle theorem, requiring different type of q-calculus were

considered in [2] . The wedge theorem for the domain with angle α = 2π/N was given with the
base QN = 1. Geometry of the double circular wedge theorem requires calculus with two bases,
q = r22/r

2
1 and QN = 1. By using these theorems, the Kummer kaleidoscope of vortices was

described as well. In the limit q → ∞ our two circles theorem reduces to the Milne-Thomson one
circle theorem. However, more common in q-calculus limit q → 1 was not studied. It happens
due to the fact that for finite r1 and r2, at this limit the annular domain vanishes and problem
has no meaning. But, as we describe below, for infinite radiuses r1 → ∞, r2 → ∞, the finite
limit q = r22/r

2
1 → 1 of the domain exists and it is the strip domain.

2.1. The strip theorem
For incompressible and irrotational flow in the strip domain S: {z = x + iy;−h/2 < y < h/2},
the complex potential is

F (z) =
∞∑

n=−∞
f(z + (2n)ih) +

∞∑
n=−∞

f̄(z + (2n− 1)ih), (3)

where f(z) is flow in the whole plane. The proof is straightforward by checking the boundary
conditions: ℑF (z)|z=x+ih

2
= 0 and ℑF (z)|z=x−ih

2
= 0. The flow (3) satisfies periodicity and the
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combined periodicity conditions, respectively

F (z + 2ih) = F (z), F̄ (z + ih) = F (z). (4)

2.1.1. Vortex in strip For the point vortex f(z) = Γ
2πi ln(z − z0) in the strip, we have

F (z) =
−iΓ
2π

(
ln(z − z0) +

∞∑
n=1

ln
(z − z0)

2 + (2n)2h2

(z − z̄0)2 + (2n− 1)2h2

)
. (5)

By using infinite product representation

sinh z = z
∞∏
n=1

(
1 +

z2

π2n2

)

it can be rewritten as

F (z) =
−iΓ
2π

(
ln

∞∏
n=1

4h

π

(
2n

2n− 1

)2

+ ln
sinh π

2h(z − z0) sinh
π
2h(z − z̄0)

sinh π
h (z − z̄0)

)

and due to sinh π
h (z − z̄0) = 2 sinh π

2h(z − z̄0) cosh
π
2h(z − z̄0), up to irrelevant constant we get

F (z) =
−iΓ
2π

ln
sinh π

2h(z − z0)

cosh π
2h(z − z̄0)

. (6)

For N vortices Γ1, ...,ΓN at positions z1, ..., zN this gives the complex potential

F (z) =
N∑
k=1

−iΓk

2π
ln

sinh π
2h(z − zk)

cosh π
2h(z − z̄k)

, (7)

and the stream function Ψ = ℑF (z),

Ψ(x, y) =
N∑
k=1

−Γk

4π
ln

sinh2 π
2h(x− xk) + sin2 π

2h(y − yk)

sinh2 π
2h(x− xk) + cos2 π

2h(y + yk)
. (8)

For N = 2 this function was obtained in [3], though formula in the paper has some typos.

2.1.2. Gamma function To express (5) in terms of the Gamma function we split

F (z) =
−iΓ
2π

(
ln(z − z0) + ln

∞∏
n=1

(z − z0) + 2nih

(z − z̄0) + (2n− 1)ih

(z − z0)− 2nih

(z − z̄0)− (2n− 1)ih

)
.

Rewriting the second term as

C∞ + ln
∞∏
n=1

(
1 + z−z0

2ihn

) (
1 + z−z̄0

2ihn

)(
1 + z−z̄0

ihn

) (
1 + z0−z

2ihn

) (
1 + z̄0−z

2ihn

)(
1 + z̄0−z

ihn

) (9)

we find

F (z) =
−iΓ
2π

(
ln(z − z0) + ln

Γ(1 + z−z̄0
ih )Γ(1− z−z̄0

ih )

Γ(1 + z−z0
2ih )Γ(1− z−z0

2ih )Γ(1 + z−z̄0
2ih )Γ(1− z−z̄0

2ih )

)
,

where we have used definition of the Gamma function as an infinite product

1

Γ(z)
= zeγz

∞∏
n=1

(
1 +

z

n

)
e−

z
n .
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2.2. Strip theorem as the limit q → 1
Now we are going to show that our two circle theorem (1) in the limit q → 1 reduces to the

strip theorem (3). Let r1 → ∞, r2 → ∞, so that r2 = r1 + h. Then q =
r22
r21

= (1 + h
r1
)2 and

qn = (1 + h
r1
)2n = 1 + 2n h

r1
+ O(h

2

r21
). To get the strip domain we need to shift our coordinate

system z with origin z=0, to the new one z′ with origin at i(r1 +
h
2 ). These coordinates are

related by equation z = z′ + i(r1 + h
2 ). Then qnz = (1 + 2n h

r1
+ O(h

2

r21
)(i(r1 + h

2 ) + z′) =

i(r1 +
h
2 ) + z′ + 2nhi + O( h

r1
). For analytic in plane function f(z) we have Taylor expansion

f(z) = f(i(r1 +
h
2 ) + z′) =

∑∞
n=0

f (n)(i(r1+
h
2
))

n! (z′)n ≡ g(z′), so that

f(qnz) = f((1 +
h

r1
)n(i(r1 +

h

2
) + z′)) = f(i(r1 +

h

2
) + z′ + 2nih+O(

h

r1
)) = g(z′ + 2nih).

This gives the first part of formula (1): fq(z) =
∑∞

−∞ g(z′ + 2nih). To get the second part we

expand r21/z = r21/(z
′ + i(r1 +

h
2 )) = r1/i(1 + z′/ir1 + h/2r1) = −i(r1 + h

2 ) + ih+ z′ +O(h/r1),

and qnr21/z = −i(r1 + h
2 ) + ih + z′ + O(h/r1). Then f̄(r21/z) = ḡ(z′ + ih) and f̄(qnr21/z) =

ḡ(z′ − (2n − 1)ih). For the second part of (1) it gives: f̄q(r
2
1/z) =

∑∞
n=−∞ f̄(qnr21/z) =∑∞

n=−∞ ḡ(z′ − (2n − 1)ih). Combining both terms together we find that in the limit q → 1
the two circle theorem (1) reduces to the strip theorem (3), (n→ −n, n→ n− 1),

G(z′) =
∞∑
−∞

g(z′ + 2nih) +
∞∑

n=−∞
ḡ(z′ + (2n− 1)ih).

3. N vortex polygon as nonlinear oscillator
From two circle theorem it is easy to get equations of motion for N point vortices [4]. When
vortices with equal strength Γ are located at vertices of the regular polygon in annular domain,
the problem admits exact solution zk(t) = r exp(iωt + i2πk/N), k = 1, ..., N , with uniform
rotation frequency

ω(r) =
Γ

2πr2
N − 1

2
+

Γ

2πr2
1

q − 1

N∑
j=1

[
Lnq

(
1− r22

r2
ei

2π
N

j

)
− Lnq

(
1− r2

r21
ei

2π
N

j

)]
. (10)

Summation in this formula can be performed explicitly if we notice that ζ = ei
2π
N is the primitive

root of unity and ζN = 1 implies ζN − 1 = (ζ − 1)(1 + ζ + ζ2 + ... + ζN−1) = 0. Then,
1 + ζ + ζ2 + ...+ ζN−1 = 0 and for the sum of q-logarithm functions we have

N∑
n=1

Lnq(1− xζn) = −
∞∑
k=1

xk

[k]q
(1 + ζk + ζ2k + ...+ ζk(N−1)). (11)

The sum 1 + ζk + ζ2k + ... + ζk(N−1) = N , if k = Nl and vanishes for k ̸= Nl, where
l = 1, 2, .... It can be easily undersood if we notice that ζ2, ζ3,...ζN−1 are primitive roots
and (ζk)N − 1 = (ζk − 1)(1 + ζk + ζ2k + ... + ζ(N−1)k) = 0 for k ̸= Nl. For k = Nl ,
1 + ζk + ζ2k + ...+ ζk(N−1) = 1 + 1 + ...+ 1 = N . Thus, in (11) nonvanishing terms are

N∑
n=1

Lnq(1− xζn) = −
∞∑
l=1

xNl

[Nl]q
N = −N(q − 1)

∞∑
l=1

xNl

qNl − 1
= −N(q − 1)

∞∑
l=1

(qN − 1)xNl

(qNl − 1)(qN − 1)

and
N∑

n=1

Lnq(1− xζn) = − N

[N ]q

∞∑
l=1

(xN )l

[l]qN
=

N

[N ]q
LnqN (1− xN ). (12)
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By applying formula (12) finally we rewrite frequency (10) in a simple form

ω(r) =
Γ(N − 1)

4πr2
+

ΓN

2πr2(qN − 1)

[
LnqN

(
1− r2N2

r2N

)
− LnqN

(
1− r2N

r2N1

)]
. (13)

The result shows that frequency ω(r) is function of r, and uniformly rotating polygon of vortices
represents nonlinear oscillator. Quantization of this polygon as a nonlinear oscillator can be done
in a similar way as for the one vortex case [2].

4. q-semiclassical expansion
Quantization of nonlinear oscillators as q-dispersive equations has been studied in [2]. Here we
develop the q-semiclassical expansion for the q-deformed theories. Expansion formulas in powers
of λ = ln q are based on the Bernoulli polynomials and the Euler polynomials with generating
functions correspondingly

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
, |t| < 2π;

2ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
, |t| < π. (14)

4.1. Non-symmetric q-calculus
We have expansion of q-number

[n]q =
qn − 1

q − 1
=

∞∑
m=0

(Bm(n)−Bm)
(ln q)m−1

m!
, (15)

for e−2π < q < e2π, where Bm = Bm(0) are the Bernoulli numbers. By using B0(x) = 1, B1(x) =
x− 1/2 for any real or complex number, or even an arbitrary operator A we get

[A]q = A+
∞∑
k=1

(Bk+1(A)−Bk+1)
λk

(k + 1)!
. (16)

4.1.1. Nonsymmetric q-dispersive Schrödinger equation The q-dispersive linear Schrödinger
equation is derived as

ih̄
∂Ψ

∂t
=

[
− h̄2

2m

∂2

∂x2

]
q

Ψ,

and it admits the q-deformed Galilean boost operator

K = x+ t
ln q

q − 1

ih̄

m

d

dx
q−

h̄2

2m
d2

dx2 ,

generating dynamical symmetry and producing solutions of the equation. By expansion (16) we
get higher derivative corrections to the Schrödinger equation

ih̄
∂Ψ

∂t
+
h̄2

2m

∂2

∂x2
Ψ =

∞∑
k=1

(ln q)k

(k + 1)!

(
Bk+1

(
− h̄2

2m

∂2

∂x2

)
−Bk+1

)

and to the Galilean boost

K =

(
x+

t

m
ih̄

d

dx

)
+

t

m
ih̄

d

dx

∞∑
k=1

(ln q)k

k!
Bk

(
− h̄2

2m

d2

dx2

)
.
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4.2. Symmetric q-calculus
For symmetric q-numbers, in a similar way we get

[n]q̃ =
qn − q−n

q − q−1
= n+

∞∑
m=1

(
Bm+1

(
1 + n

2

)
−Bm+1

(
1− n

2

))
2m(ln q)m

(m+ 1)!
. (17)

Due to symmetry Bm(1 − x) = (−1)mBm(x),m = 0, 1, 2... this formula can be simplified and
extended to any operator

[A]q̃ =
sinh(A ln q)

sinh(ln q)
= A+

∞∑
k=1

B2k+1

(
I +A

2

)
22k+1(ln q)2k

(2k + 1)!
. (18)

4.2.1. q-symmetric quantum oscillator For the spectrum of q-oscillator [5], [6], [7], (h̄ = 1, ω =
1), we have q-semiclassical expansion

En =
1

2
([n]q̃ + [n+ 1]q̃) =

1

2
[2n+ 1]√̃

q
= (n+

1

2
) +

∞∑
k=1

B2k+1(n+ 1)
(ln q)2k

(2k + 1)!
.

4.2.2. Symmetric q-dispersive Schrödinger equation For the linear Schrödinger equation with
symmetric q-dispersion [2] we find following expansion with higher order derivatives

ih̄
∂Ψ

∂t
+
h̄2

2m

∂2Ψ

∂x2
=

∞∑
k=1

22k+1(ln q)2k

(2k + 1)!
B2k+1

(
1

2
− h̄2

4m

∂2

∂x2

)
Ψ. (19)

4.2.3. q-symmetric dispersive NLS Nonlinearization of model (19) consists in replacement of
momentum operator by the recursion operator of NLS hierarchy [2], so that

iσ3

(
ψ
ψ̄

)
t

=
sinhλ h̄2

2mR2

sinhλ

(
ψ
ψ̄

)
=

[
h̄2

2m
R2

]
q̃

(
ψ
ψ̄

)
.

Then, we have expansion

iσ3

(
ψ
ψ̄

)
t

− h̄2

2m
R2

(
ψ
ψ̄

)
=

∞∑
k=1

22k+1(ln q)2k

(2k + 1)!
B2k+1

(
I

2
+
h̄2

4m
R2

)(
ψ
ψ̄

)
,

which gives q-corrections to the NLS equation (h̄ = 1, m = 1/2),(
iψt + ψxx + 2κ2|ψ|2ψ
−iψ̄t + ψ̄xx + 2κ2|ψ|2ψ̄

)
=

∞∑
k=1

22k+1(ln q)2k

(2k + 1)!
B2k+1

(
I

2
+

1

2
R2
)(

ψ
ψ̄

)
,

preserving integrability at any order of ln q. The Lax pair can be expanded in a similar way.

4.3. Fibonacci polynomials for symmetric q-fermions
For p = −1/q in pq calculus we have

[n]q,−q−1 =
qn − (−q)−n

q − (−q)−1
=
qn − (−1)nq−n

q + q−1
=
e(1+n) ln q − (−1)ne(1−n) ln q

e2 ln q + 1
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and expanding in terms of Euler polynomials

[n]q,−q−1 =
1 + (−1)n+1

2
+

1

2

∞∑
m=1

(
Em

(
1 + n

2

)
− (−1)nEm

(
1− n

2

))
2m(ln q)m

m!
. (20)

By the relation Em(1− x) = (−1)mEm(x) for even and odd numbers we get

[2k]q,−q−1 =
∞∑
s=0

E2s+1

(
k +

1

2

)
22s+1(ln q)2s+1

(2s+ 1)!
,

[2k + 1]q,−q−1 = 1 +
∞∑
s=1

E2s (k + 1)
22s(ln q)2s

(2s)!
.

From (20) for q = 1 we find that the ”classical” fermion number [n]1,−1 =
1+(−1)n+1

2 is the parity
number, vanishing if n = 2s is an even number, and equal to 1, if n = 2s+ 1 is an odd number.
In terms of it we find following compact expression

[n]q,−q−1 = [n]1,−1 +
∞∑

m=1

Em

(
n+ 1

2

)
[n+m]1,−1

2m(ln q)m

(m)!
. (21)

4.4. Fibonacci numbers and Euler polynomials
From Binet formula for Fibonacci numbers

Fn =
φn − φ′n

φ− φ′ = [n]φ,φ′ ≡ [n]F (22)

we find

Fn = [n]1,−1 +
∞∑

m=1

Em

(
n+ 1

2

)
[n+m]1,−1

2m(lnφ)m

(m)!
. (23)

This provides an expansion of Fibonacci numbers in powers of lnφ and Euler polynomials

F2k =
∞∑
s=0

E2s+1

(
k +

1

2

)
22s+1(lnφ)2s+1

(2s+ 1)!
,

F2k+1 = 1 +
∞∑
s=1

E2s (k + 1)
22s(lnφ)2s

(2s)!
.

4.4.1. Golden oscillator By these formulas spectrum of the golden oscillator [8], En =
h̄ω
2 (Fn+1 + Fn) =

h̄ω
2 Fn+2, can be expanded in golden ratio as

E2k =
h̄ω

2

∞∑
s=0

E2s+1

(
k +

3

2

)
22s+1

(2s+ 1)!

(
ln

1 +
√
5

2

)2s+1

,

E2k+1 =
h̄ω

2
+
h̄ω

2

∞∑
s=1

E2s (k + 2)
22s

(2s)!

(
ln

1 +
√
5

2

)2s

.

5. Diversity of q-analytic functions
Here we introduce several types of q-analytic functions. These functions are determined by the
q-binomials and represent quantum states in the q-analytic Fock-Bargman representation. The
q-binomials itself correspond to states |n > and are the generalized analytic functions.
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5.1. Nonsymmetric q-analytic functions
By q-translation

e
iyDx

q

1/q xn = (x+ iy)nq

from any real analytic function f(x) we get the q-analytic function [9],

f(x+ iy)q = e
iyDx

q

1/q f(x) =
∞∑
n=0

an(x+ iy)nq ,

satisfying ∂̄q equation, (Dx
q + iDy

1/q)f(x + iy)q = 0. The real part u(x, y) = cos1/q(yD
x
q )f(x)

and imaginary part v(x, y) = sin1/q(yD
x
q )f(x) of this function are q-harmonic and satisfy the

q-Cauchy-Riemann equations

Dx
qu(x, y) = Dy

1/qv(x, y), Dy
1/qu(x, y) = −Dx

q v(x, y).

5.2. Symmetric q-analytic functions
For symmetric q-binomials we have q-translation

e
iyDx

q̃

q̃ xn = (x+ iy)nq̃ ,

which determines symmetric q-analytic function

f(x+ iy)q̃ = e
iyDx

q̃

q̃ f(x) =
∞∑
n=0

an(x+ iy)nq̃ ,

satisfying ∂̄q̃ equation
1

2
(Dx

q̃ + iDy
q̃ )f(x+ iy)q̃ = 0.

As an example,

e(z; q̃) =
∞∑
n=0

(x+ iy)nq̃
[n]q̃!

is an entire symmetric q-analytic function. The real part u(x, y) = cosq̃(yD
x
q̃ )f(x) and imaginary

part v(x, y) = sinq̃(yD
x
q̃ )f(x) of the function satisfy the q-Cauchy-Riemann equations

Dx
q̃u(x, y) = Dy

q̃v(x, y), Dy
q̃u(x, y) = −Dx

q̃ v(x, y),

and are q-harmonic: (Dx
q̃ )

2u(x, y) + (Dy
q̃ )

2u(x, y) = 0.

5.3. pq-analytic function
For pq-calculus we have binomials

e
iyDx

pq
1
p

1
q

xn = (x+ iy)npq,

where

(x+iy)npq = (x+ipn−1y)(x+ipn−2qy)...(x+ipqn−2y)(x+iqn−1y) =
n∑

k=0

[
n
k

]
pq

(pq)
k(k−1)

2 xn−kikyk
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and

epq(x) =
∞∑
n=0

xn

[n]pq!
.

Then, the pq-analytic function generated by pq-translation

f(x+ iy)pq = e
iyDx

pq
1
p

1
q

f(x) =
∞∑
n=0

an(x+ iy)npq,

satisfies ∂̄pq equation
1

2
(Dx

pq + iDy
1
p

1
q

)f(x+ iy)pq = 0.

For u(x, y) = cos 1
p

1
q
(yDx

pq)f(x) and v(x, y) = sin 1
p

1
q
(yDx

pq)f(x) we have the pq-Cauchy-Riemann

equations
Dx

pqu(x, y) = Dy
1
p

1
q

v(x, y), Dy
1
p

1
q

u(x, y) = −Dx
pqv(x, y)

and the pq-Laplace equation

(Dx
pq)

2u(x, y) + (Dy
1
p

1
q

)2u(x, y) = 0.

5.4. Golden analytic function
Complex golden binomials, defined as

(x+ iy)nF = (x+ iφn−1y)(x− iφn−3y)...(x+ i(−1)n−1φ1−ny) =
n∑

k=0

[
n
k

]
F

(−1)
k(k−1)

2 xn−kikyk,

can be generated by the golden translation

E
iyDx

F
F xn = (x+ iy)nF ,

where

Ex
F =

∞∑
n=0

(−1)
n(n−1)

2
xn

Fn!
.

They determine the golden analytic function

f(z, F ) = E
iyDx

F
F f(x) =

∞∑
n=0

an
(x+ iy)nF

Fn!
,

satisfying the golden ∂̄F equation 1
2(D

x
F + iDy

−F )f(z;F ) = 0, where D−F = (−1)x
d
dxDF .

For u(x, y) = CosF (yD
x
F )f(x) and v(x, y) = SinF (yD

x
F )f(x), the golden Cauchy-Riemann

equations are
Dx

Fu(x, y) = Dy
−F v(x, y), Dy

−Fu(x, y) = −Dx
F v(x, y),

and the golden-Laplace equation is (Dx
F )

2u(x, y) + (Dy
−F )

2u(x, y) = 0.
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