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SUMMARY

In this paper, we propose a numerical algorithm for time-dependent convection–diffusion–reaction problems
and compare its performance with the well-known numerical methods in the literature. Time discretization is
performed by using fractional-step � -scheme, while an economical form of the residual-free bubble method
is used for the space discretization. We compare the proposed algorithm with the classical stabilized finite
element methods over several benchmark problems for a wide range of problem configurations. The effect
of the order in the sequence of discretization (in time and in space) to the quality of the approximation is
also investigated. Numerical experiments show the improvement through the proposed algorithm over the
classical methods in either cases. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The unsteady convection–diffusion–reaction equations model a variety of phenomenons in physi-
cal, chemical and biological sciences [1–6]. Because their analytical solutions are only known under
specific circumstances, the numerical simulation of those problems is needed. Further, the deriva-
tives of the analytical solution may be very large in the case of small diffusion, in some small
subregions called layers. As the numerical solution of problems containing the layer structures is
even a difficult task for problems in steady-state case, the construction of accurate numerical algo-
rithms for such problems in time-dependent cases presents a bigger challenge and less number of
work on the subject appears in the literature. [7–11].

There are several approaches for the numerical treatment of the unsteady convection–diffusion–
reaction problems [12–21]. The common approach in transient problems is to carry out discretiza-
tions in two separate stages: spatial discretization by some form of the stabilized finite element
methods and temporal integration by time-marching finite difference schemes. Such algorithms
enable us to combine various discretization methods for the target problem. Depending on the
order of discretization, there are apparently two possibilities: In the first, we achieve full dis-
cretization by keeping time continuous, discretizing the equation in space with a stabilized method,
and then discretizing the resulting system of ODEs in time with the fractional-step �-scheme.
The overall algorithm is known as vertical method of lines [10, 22]. The most popular finite ele-
ment stabilization for the spatial discretization is the streamline upwind Petrov–Galerkin (SUPG)
method. The stability of the SUPG method for transient convection–diffusion equations is studied in
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[19, 23] and convection–diffusion–reaction equations in [24]. Variations of the SUPG method such
as Galerkin/least-square is also reported in [25]. The advantage of the SUPG-type stabilized meth-
ods is their applicability to a wide range of problem configurations and their simplicity in computer
implementations; however, the solutions obtained with the SUPG method possess often spurious
oscillations (overshoots or undershoots) in narrow regions around sharp layers. These oscillations
can even be amplified if high-order finite elements are used [26]. A detailed review of SUPG-related
methods can be found in [27, 28]. Therefore, improved numerical algorithms to produce more accu-
rate and stable results in spatial stabilization are required. The introduction of bubble functions
can be seen as further attempt toward that direction. Through their application to convection–
diffusion–reaction equations, it is possible to get better approximations in a wide range of problem
configurations [9, 10, 29–34]. However, those functions are defined by a set of local differential
equations posed inside each element, which may not be easier to solve than the original one, except
that the problem domains are simple element geometries. Taking advantage of that fact gives rise
another and more recent spatial discretizations for such problems [35–38]. Those type of methods
are based on approximating the bubble functions on a suitably chosen subgrid inside each element,
in which the locations of subgrid points are of critical importance, and therefore, they are chosen spe-
cially so that fine scale-effect of the exact solution can accurately be represented in the coarse scale
numerical approximation. As a first example to those classes, the Link Cutting Bubbles, first intro-
duced in [39] for convection–diffusion–reaction problems and later applied to its time-dependent
form in [40], produces improved numerical approximations over the SUPG method and reduces
overshoots around the layer. However, the improvement is limited and it is applicable only in one
space dimension. On the other hand, the pseudo residual-free bubbles (PRFB) method, which will
be the focus point of this work, can be seen as another method in the bubble framework. The PRFB
approach was first introduced for the steady-state convection–diffusion problems in [36], and it has
been successfully applied to steady-state convection–diffusion–reaction problems in one and two
space dimensions [41, 42]. The PRFB method is not only well-suited for the problems at higher
space dimensions, but also it is able to produce more improved approximations than the SUPG and
link-cutting bubbles (LCB) methods.

The second approach to get a full discretization can be obtained by changing the order of dis-
cretization, that is, we discretize the equation first in time with fractional-step �-scheme, and then
discretize the resulting system of steady-state convection–diffusion–reaction equations in space
with a stabilized method. That method is also known as horizontal method of lines or Rothe’s
method [43]. Numerical studies and discussions on similarities between several stabilized finite ele-
ment methods combined with Rothe’s method can be found in [44, 45]. Harari [46] has examined
Rothe’s method for parabolic problems. Harari and Hauke [47] extended the method for convection–
diffusion–reaction, providing an upper bound on the time step for the onset of spatial instability. In
a recent work, the use of Rothe’s method with the unusual stabilized finite element method is dis-
cussed in [48]. Coupling of various stabilization techniques, including a more recent LCB method,
was also examined in [40]. We note that one has to deal with an extra reaction term in the resulting
steady-state problem even if the reaction term in the original problem does not exist. Further, the
resulting steady-state problem could be reaction dominated. Therefore, it is important to use the sta-
bilized methods that are able to deal with both convection and reaction-dominated regimes [40, 46].
We remark that the methods considered here are all well-suited for reaction-dominated problems.

The goal of the present paper is to discover the potential of the PRFB method as a numeri-
cal algorithm for the approximate solution of the unsteady convection–diffusion–reaction problems
and compare it with the various numerical approaches regarding two possible ways of designing a
fully discretized method. The organization of the paper is as follows: In Section 2, time-dependent
convection–diffusion–reaction problem and its variational form is presented . In Sections 3–4, we
will give a brief explanation of the numerical methods that we consider for the approximate solution
of the unsteady convection–diffusion–reaction problems. Finally, we perform the numerical tests
and draw conclusions in Section 5.
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2. PROBLEM STATEMENT

The partial differential equation that we want to solve numerically is

ut C Lu D ut � � �uC ˇ � ruC � u D f in � � .0; T � (1)

where u is the unknown, ˇ is the convection velocity, � > 0 is the diffusion coefficient, � > 0 is
the reaction coefficient, and f is the source term. The problem domain is bounded and denoted by
� � Rd , d D 1; 2, and the time interval by .0; T �. For simplicity, Equation (1) will be supplied
with the homogeneous Dirichlet boundary condition

u D 0 on @�; t 2 .0; T � (2)

and an initial condition of the form

u D u0 in �; t D 0 (3)

We assume that � is non-negative piecewise constant, ˇ 2 L1. .0; T �IW 1;1.�/ /d , f 2
L2. .0; T �IL2.�/ /, and u0 2 L2.�/. Under these assumptions, the existence and uniqueness of
the solution are guaranteed ([49]).

We start by recalling the abstract variational formulation of the problem (1):8<:
Find u 2 L2. .0; T �IV / \ C0. .0; T �IL2.�/ / such that
d
dt
.u.t/; v/C a.u.t/; v/ D .f .t/; v/; 8v 2 H 1

0 .�/

u.0/ D u0
(4)

where V D H 1
0 .�/. Here, .�; �/ denotes the L2.�/ inner product, and the bilinear operator is

defined by

a.u; v/ D �

Z
�

ru � rv C

Z
�

ˇ � ru v C

Z
�

� u v (5)

In the numerical approximation of the problem (4), we use separate numerical algorithms for space
and time derivative terms, as that enable us to combine different numerical algorithms. On the
other hand, depending on the order of discretization with respect to time and space, there are two
possibilities, which are represented by the following labels:

FDt FEs: Discretize the problem (1) first in time by using a finite difference scheme and then
apply a stabilization technique to the resulting stationary convection–diffusion–reaction
equations.

FEs FDt : First, perform the spatial discretization to problem (1) by using a stabilized finite ele-
ment method and then use a finite difference scheme to approximate the solution to the
corresponding system of ODE’s.

In both cases, we use fractional-step �-scheme for the time discretization. In space discretization, we
will employ the PRFB method and compare it with the well-known SUPG [50] and LCB methods
[40]. We further investigate the performance of the PRFB method and other numerical algorithms
employed depending on the order of discretization with respect to time and space. In the following
sections, we describe the methods that result from these two approaches in details.

3. DESCRIPTION OF THE FDT FES APPROACH

In this part, we will apply horizontal method of lines (or Rothe’s method) to discretize the unsteady
convection–diffusion–reaction problem in which time discretization is followed by a discretization
in space.
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Let Th D ¹Kº be a regular decomposition of � and 0 D t0 < t1 < : : : < tM D T be a uniform
partition of time interval with �tm D tmC1 � tm. Then, the temporal discretization of (1) leads to
the following problem

unC1 � un

�tn
D �

�
f nC1 � LunC1

�
C .1 � �/.f n � Lun/ n D 0; 1; :::;M � 1

which can be rewritten in the following family of stationary convection–diffusion–reaction prob-
lems,

QLunC1 D F n n D 0; 1; :::;M � 1 (6)

where

QLu.x; �/ D � ��„ƒ‚…
Q�

�u.x; �/C ˇ�„ƒ‚…
Q̌

� ru.x; �/C
�
1

�tn
C ��

�
„ ƒ‚ …

Q�

u.x; �/

F n D
un

�tn
� .1 � �/Lun C �f nC1 C .1 � �/f n

(7)

Then, for any v 2 H 1
0 .�/, the corresponding bilinear form can be defined as

Qa
�
unC1; v

�
D

�
un

�tn
; v

�
� .1 � �/a.un; v/C �

�
f nC1; v

�
C .1 � �/ .f n; v/ (8)

where n D 0; 1; :::;M � 1 and Qa.u; v/ D .Q�ru;rv/C
�
Q̌ � ru; v

�
C . Q�u; v/. On the other hand,

to perform the spatial discretization for each n D 0; 1; :::;M � 1, we use an economical form of
the residual-free bubble method [29, 30, 34] designed for the steady-state problems, whose explicit
description is given below.

Observe that, by proceeding in this way, for small �tn, we are lead to a family of reaction-
dominated problems (6) even if the reaction term in the original problem is not dominant. Therefore,
a numerical method that produces accurate numerical approximations in reaction-dominated
regimes is required in that case.

3.1. Numerical method

The principal method employed in space discretization is based on constructing economical approx-
imations to the residual-free bubbles (RFB) functions, called PRFB, by redefining the bubble space
VB with those approximate bubbles and use them in the numerical calculations instead of the
exact RFB functions. The PRFB method was first designed in the context of the RFB method for
the steady-state convection–diffusion problems in [36] and extended to the convection–diffusion–
reaction problems in [41, 42]. The PRFB functions consist of piecewise linears on a suitably chosen
subgrid inside each element. The shape of approximations, which is essentially related with the loca-
tion of sub-grid points, is crucial to get a good stabilization effect through the numerical method.
Therefore, the choice of points in the sub-grid must be fulfilled in a special manner. The location
of additional points are determined by means of a minimization process with respect to L1 norm
in steady-state case. Later, we outline the key steps in the algorithm for spotting sub-grid points for
d D 1 in a typical element K. The choice of the sub-grid nodes in 2D case is quite a generalization
of the ideas in 1D and we refer to [42] for details.

A typical subinterval K D .xk�1; xk/; k 2 ¹1; : : : ; N º, on which we approximate the bubble
functions, is redefined by adding two points p1 and p2 with the property that

xk�1 < p1 < p2 < xk : (9)

We denote the length of the K in the subdivision by hK . Let us assume that f be a piecewise linear
function with respect to the discretization. Consider bubble functions Bi ; .i D 1; 2/ defined by
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LBi D �L i in K; Bi D 0 on @K; i D 1; 2 (10)

where  1;  2 are the restrictions of the piecewise linear basis functions for VL to K, where VL is
the space of continuous piecewise linear polynomials on Th. Further, we define Bf ;

LBf D f in K; Bf D 0 on @K: (11)

Solving Equations (10)–(11) may be difficult as much as to solve the original problem in the steady-
state case (1). However, using the element geometry and the problem properties, it is possible to
construct a cheap, yet efficient approximate bubbles, say B�i , over the sub-grid (9), having the
same qualitative behavior with its continuous counterpart Bi (i D 1; 2). The construction of such
approximate bubble functions B�i is accomplished in the following.

Let B�i .x/ D ˛ibi .x/ be the classical Galerkin approximation of Bi through (10)

a
�
B�i ; bi

�
K
D .�L i ; bi /K ; i D 1; 2 (12)

where bi is a piecewise linear function with the following properties

b1.xk�1/ D b1.xk/ D 0 ; b1.p1/ D 1

b2.xk�1/ D b2.xk/ D 0 ; b2.p2/ D 1

We must choose pi in a special manner such that the stabilizing effect of bubble function Bi is
maintained in its discrete counterpart B�i .i D 1; 2/. The main criteria used to determine the loca-
tions of the sub-grid nodes is to minimize L1 norm of the residual coming out from the bubble
Equation (10). In other words, we choose pi such that

Ji D

Z
K

jLB�i C L i j dx ; i D 1; 2 (13)

is minimum, which yields [41]

p1 D
3ˇ C

p
9ˇ2 C 24��

2�
p2 D

�3ˇ C
p
9ˇ2 C 24��

2�
(14)

However, because the p1 and p2 are derived in the presence of layers, the locations of sub-grid
points must be chosen so that not only the numerical algorithm performs well in other problem
regimes, but also it achieves smooth transition between problem regimes. To this end, set

� D p1 � xk�1; 	 D xk � p2; ı D p2 � p1 (15)

Now the explicit description of sub-grid points for each type of problem regime is as follows:

Case: Diffusion-dominated regime: The problem is assumed to be diffusion dominated when 6� >
ˇhK C �h

2
K=9. In this regime, the stabilization is not needed, and a uniform sub-grid seems

to be appropriate. Therefore, we choose � D 	 D ı D hK=3.
Case: Convection-dominated regime: The problem is assumed to be convection dominated if 6� 6

ˇhK C �h
2
K=9 with 3ˇ > �hK . Thus, we take 	 D 	e , ı D 	, and � is chosen accordingly

(� D hK � 2	) where

	e D
�3ˇ C

p
9ˇ2 C 24��

2�

Case: Reaction-dominated regime: The problem is assumed to be reaction-dominated if 6� 6
ˇhK C �h

2
K=9 and 3ˇ < �hK . Hence, we take 	 D 	e , � D min¹hK � 2	; �eº and ı is

chosen accordingly (i.e., ı D hK � 	 � �), where

�e D
3ˇ C

p
9ˇ2 C 24��

2�
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We now go back to the semi discrete form (8) and apply the PRFB strategy proposed in [41],
which yields the following problem8<:Given u0

h
2 Vh D VL

L
VB find unC1

h
2 Vh such that 8vh 2 Vh

Qa
�
unC1
h

; vh
�
D
�
un
h
; vh

�
� .1 � �/�tna

�
un
h
; vh

�
C ��tn

�
f nC1; vh

�
C .1 � �/�tn .f

n; vh/

n D 0; 1; :::M � 1:
(16)

where VB is the discrete bubble space with VB D
L
K BK and BK D span¹B�1 ; B

�
2 ; Bf º. Here,

it is apparent that the bubble space VB should be constructed according to the operator QL, rather
than L. To test the performance of proposed algorithm, we further compare it with two well-known
stabilized methods whose basic features and formulations are summarized in the following remarks.

Remark 1
The first method that we use in comparisons is the SUPG method, which can be considered as one
of the earliest examples to stabilized methods and has been successfully applied to many prob-
lems. That approach performs the spatial discretization by adding a consistent term to the standard
Galerkin formulation, which, in turn, adds an artificial diffusion in the streamline direction and
it reads8̂̂̂̂

<̂
ˆ̂̂:

Given u0L 2 VL find unC1L 2 VL such that 8vL 2 VL

Qa
�
unC1L ; vL

�
C
P
K2Th Q
K

�
QLunC1L � F n ; Q̌ � rvL;

�
K

D
�
unL; vL

�
� .1 � �/�tna

�
unL; vL

�
C ��tn.f

nC1; vL/C .1 � �/�tn.f
n; vL/

n D 0; 1; :::M � 1

(17)

where Q
K is the intrinsic time parameter. The issue of selecting a proper parameter is essential for
the optimal performance of the method and many works in literature have been devoted to this topic
[40, 44, 51, 52]. We use the following stabilization parameter throughout numerical experiments,

Q
K D

0@12Q�
h2K
C
2
ˇ̌̌
Q̌
ˇ̌̌

hK
C 2e�

1A�1 (18)

as three different choices produced similar results in the numerical experiments (hK being an appro-
priate measure for the size of the mesh cell K). We note a further difficulty with the SUPG method
at small time steps was reported in [23, 46] that it produced spurious oscillations around layers in
several numerical experiments.

Remark 2
The second method that we use in comparisons is proposed by Brezzi et al. in [39]: the LCB method.
The underlying idea behind the LCB method is to augment the original mesh by adding suitably
chosen two additional points inside each element and to solve the problem on the new, enriched
mesh in the context of the plain Galerkin method. The location of the additional nodes added to each
element is similar to the ones in the PRFB method and crucial in getting the stabilization. To be
precise, define two extra nodes in each element K, say ´1 and ´2, such that xk�1 < ´1 < ´2 < xk
with

xk � ´2 D min

´
hK

3
;
�3ˇ C

p
9ˇ2 C 24��

2�

μ
(19)

´1 � xk�1 D min

´
hK � 2.x2 � ´2/;

3ˇ C
p
9ˇ2 C 24��

2�

μ
(20)

and obtain the enriched grid, say Kh, having both the original grid nodes and the added subgrid
nodes all together. The LCB operates on Kh as a plain Galerkin method and it reads
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8̂<̂
:

Given u0E 2 VE find unC1E 2 VE such that 8vE 2 VE
Qa
�
unC1E ; vE

�
D
�
unE ; vE

�
� .1 � �/�tna

�
unE ; vE

�
C ��tn.f

nC1; vE /C .1 � �/�tn.f
n; vE /

n D 0; 1; :::M � 1
(21)

where VE is the space of continuous piecewise linear polynomials on augmented mesh Kh. We refer
to [39] for details. We note that the LCB discretization of (8) is obtained by constructing the subgrid
with respect to the operator QL, that is, use (19)–(20) with modified parameters Q�; Q̌; Q� . Although
the LCB method produces more improved numerical approximations compared with the SUPG, it is
not able to eliminate overshoots around the layer at all. Further, it is observed that numerical results
obtained through the LCB method is dispersive in some benchmark problems.

4. DESCRIPTION OF THE FES FDT APPROACH

Although we use the same numerical methods presented in the previous section for both time and
space terms, we change their order of discretization and test the effect of that change into the quality
of the approximation for the methods of interest. This time, we will apply vertical method of lines
to discretize the unsteady convection–diffusion–reaction problem in which space discretization is
followed by a discretization in time. We note that such an approach allows the application of modern
stationary finite element codes to time-dependent problems with few modifications only.

Now, if we discretize the problem (1) first in space by the PRFB method, we are lead to the
following semidiscrete finite element method8<:

Find uh W Œ0; T �! Vh D VL ˚ VB such that 8vh 2 Vh
d
dt
.uh.t/; vh/ D �a.uh.t/; vh/C .f; vh/„ ƒ‚ …

W.t/

(22)

The resulting system of ODEs can be integrated in time by using fractional-step �-scheme to get 
unC1
h
� un

h

�tn
; vh

!
D �W nC1 C .1 � �/W n n D 0; 1; :::;M � 1

Rearranging the terms, we get the following fully discretized problem:8̂<̂
:

For n D 0; 1; :::;M � 1 find unC1
h
2 Vh such that 8vh 2 Vh�

unC1
h

; vh
�
C ��tna

�
unC1
h

; vh
�
D
�
un
h
; vh

�
� .1 � �/�tna

�
un
h
; vh

�
C ��tn

�
f nC1; vh

�
C .1 � �/�tn.f

n; vh/

(23)

Note that construction of the bubble space VB and the choice of internal nodes � and 	 are accom-
plished with respect to the operator L. The outline of other two space discretization methods is
similar and given in the following remarks. Their numerical comparison are made in coming section.

Remark 3
If we employ the SUPG method in space discretization and follow the steps previously mentioned,
we are lead to the following problem:8̂̂̂<̂
ˆ̂:

Find uL W Œ0; T �! VL such that 8vL 2 VL
d
dt
.uL.t/; vL/ D �a.uL.t/; vL/ �

X
K2Th


K .ut C LuL.t/ � f ; ˇ � rvL;/K C .f .t/; vL/„ ƒ‚ …
G.t/
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where the integration in time of the aforementioned system of ODEs with fractional-step �-scheme
leads to the following fully discrete problem,8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

For n D 0; 1; :::;M � 1 find unC1L 2 Vh such that 8vL 2 VL�
unC1L ; vL

�
C ��tna

�
unC1L ; vL

�
C ��tn

P
K2Th 
K

�
LunC1L ; ˇ � rvL

�
K

C
P
K2Th 
K

�
unC1L ; ˇ � rvL

�
K
D .unL; vL/C

P
K2Th 
K

�
unL; ˇ � rvL

�
K

��tn
P
K2Th 
K

�
f nC1 ; ˇ � rvL

�
K
C ��tn

�
f nC1; vL

�
� .1 � �/�tna

�
unL; vL

�
�.1 � �/�tn

P
K2Th 
K

�
LunL � f n ; ˇ � rvL

�
K
C .1 � �/�tn.f

n; vL/

where the algorithmic parameter 
K is set to be


K D

�
12�

h2K
C
2jˇj

hK
C 2�

��1
(24)

Remark 4
With regards to the LCB strategy, performing the spatial discretization according to (1), we are lead
to the following problem (in time-continuous form),´

Find uE W Œ0; T �! VE such that 8vE 2 VE
d
dt
.uE .t/; vE /C a.uE .t/; vE / D .f; vE /

(25)

Integration in time of the aforementioned system of ODEs with fractional-step �-scheme leads to
the following fully discrete problem,8̂<̂

:
For n D 0; 1; :::;M � 1 find unC1E 2 VE such that 8vE 2 VE�
unC1E ; vE

�
C ��tna

�
unC1E ; vE

�
D
�
unE ; vE

�
� .1 � �/�tna

�
un
h
; vE

�
C ��tn

�
f nC1; vE

�
C .1 � �/�tn .f

n; vE /

(26)

Note that the subgrid is constructed with respect to the operator L and we take them as in (19)–(20).

5. NUMERICAL RESULTS

In this section, the methods described in Sections 3–4 are compared for the unsteady convection–
diffusion–reaction problems. This comparison is carried out by computing the numerical solutions,
especially in the interesting case of small diffusion on a set of test problems. We further include
a nonlinear example, the Burgers’ equation, which is a fundamental partial differential equation
occuring in various areas of applied mathematics. We also observe that three stabilized methods
produce the least error at different Courant-numbers (CFL D �t jˇ j

h
), and we remark that we use

the best CFL value for the corresponding stabilized method. This will allow us to discuss the ability
of the numerical methods for reducing the spurious oscillations at their best. A comparative study
for those CFL values can be found in [40, 53, 54].

5.0.1. Experiment 1. We start the numerical experiments with a test problem whose initial condition
is presented in Figure 1 and can be defined as,

u.x; 0/ D x

and the boundary condition as u.0; t/ D 0; u.1; t/ D 1. We take a uniform partition of � into
subintervals of length h D 1=20; 1=40. In Figures 2–7, we set the value of the diffusion coefficient
to be � D 10�6, the convective field ˇ D 1, the external force f D 0, the final time T D 0:5, and
plot the solutions for different values of reaction � D 10�4; 1; 10.
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Figure 1. Experiment 1: initial condition.

Figure 2. The numerical solutions for � D 10�4, � D 1=2 and h D 1=20.

Figure 3. The numerical solutions for � D 10�4, � D 1=2 and h D 1=40.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2016; 82:512–538
DOI: 10.1002/fld



BUBBLE-BASED STABILIZED FEMS FOR TIME-DEPENDENT CDR PROBLEMS 521

Figure 4. The numerical solutions for � D 1, � D 1=2 and h D 1=20.

Figure 5. The numerical solutions for � D 1, � D 1=2 and h D 1=40.

Figure 6. The numerical solutions for � D 10, � D 1=2 and h D 1=20.
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Figure 7. The numerical solutions for � D 10, � D 1=2 and h D 1=40.

Figure 8. Transport of a boundary layer: initial condition.

Here, we did not display the results for the SUPG method combined with FDt FEs approach
because it produced oscillations that spread throughout the computational domain. The numeri-
cal solutions obtained with the PRFB and LCB methods are in excellent agreement for the whole
problem parameters, while the approximations generated by the SUPG method possess spurious
oscillations in layer regions.

5.0.2. Experiment 2: transport of a boundary layer. Now we consider the convection of a discon-
tinuous initial data at unit speed [48, 55]. The discontinuity occurs over one element and is initially
located at position x D 0:01 of the domain Œ0; 1� (Figure 8). The discontinuity is given as

u.x; 0/ D

²
1; if x > 0:01
0; if x 6 0:01

and the boundary condition as u.0; t/ D 0; u.1; t/ D 1. We take a uniform partition of � into
subintervals of length h D 1=20; 1=40; 1=80. In Figures 9–14, we set the value of the diffusion
coefficient to be � D 10�6, the convective field ˇ D 1, the external force f D 0, the final time
T D 0:2, and plot the solutions for different values of reaction � D 10�4; 1.
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Figure 9. The numerical solutions for � D 10�4, � D 1=2, and h D 1=20.

Figure 10. The numerical solutions for � D 10�4, � D 1=2, and h D 1=40.

Figure 11. The numerical solutions for � D 10�4, � D 1=2, and h D 1=80.
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Figure 12. The numerical solutions for � D 1, � D 1=2, and h D 1=20.

Figure 13. The numerical solutions for � D 1, � D 1=2, and h D 1=40.

Figure 14. The numerical solutions for � D 1, � D 1=2, and h D 1=80.
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Figure 15. Gaussian hill: initial condition.

Figure 16. The numerical solutions for � D 10�4, � D 1=2, and h D 1=20.

The numerical solutions obtained with the SUPG method show that when using the FDt FEs
approach, the diffusion added in the streamline direction by the classical stabilization techniques, is
not enough to eliminate the spurious oscillations, and in the FEs FDt approach, the oscillations are
not completely removed from the approximation. The LCB method performs better with FDt FEs
than with the other approach. The PRFB solution captures the characteristic features of the exact
solution in both FDt FEs and FEs FDt approaches even on coarse meshes.

5.0.3. Experiment 3: transport of Gaussian hill. In this problem, taken from Donea and Huerta
[55], a Gaussian distribution profile is convected over 1D domain with the initial condition
(Figure 15)

u.x; 0/ D
5

7
e�.x�x0/

2=l2 with x0 D 2=15 and l2 D
�
7
p
2=300

�2
and the boundary condition as u.0; t/ D u.1; t/ D 0. We take a uniform partition of � into subin-
tervals of length h D 1=20; 1=40; 1=80; 1=160. In Figures 16–23, we set the value of the diffusion
coefficient to be � D 10�6, the convective field ˇ D 1, the external force f D 0, the final time
T D 0:5, and plot the solutions for different values of reaction � D 10�4; 1; 10.
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Figure 17. The numerical solutions for � D 10�4, � D 1=2, and h D 1=40.

Figure 18. The numerical solutions for � D 10�4, � D 1=2, and h D 1=80.

Figure 19. The numerical solutions for � D 1, � D 1=2, and h D 1=20.
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Figure 20. The numerical solutions for � D 1, � D 1=2, and h D 1=40.

Figure 21. The numerical solutions for � D 1, � D 1=2, and h D 1=80.

Figure 22. The numerical solutions for � D 10, � D 1=2, and h D 1=80.
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Figure 23. The numerical solutions for � D 10, � D 1=2, and h D 1=160.

Figure 24. Cosine profile: initial condition.

The comparative study shows that the results obtained with the SUPG and LCB methods are more
dissipative and dispersive in both FDt FEs and FEs FDt approaches, especially on coarse meshes,
while the results show significant improvement with PRFB method.

5.0.4. Experiment 4: transport of a cosine profile. In this example, the propagation of the cosine
function in Figure 24 at the initial profile is investigated [48], which is defined as

u.x; 0/ D

´
0:5

�
1C cos

�
� x�0:2

0:12

��
; if jx � 0:2j 6 0:12

0; otherwise

with the boundary condition as u.0; t/ D u.1; t/ D 0. We take a uniform partition of � into
subintervals of length h D 1=20; 1=40; 1=80; 1=160. In Figures 25–32, we set the value of the
diffusion coefficient to be � D 10�6, the convective field ˇ D 1, the external force f D 0, the final
time T D 0:5, and plot the solutions for different values of reaction � D 10�4; 1; 10.

The plots show that by combining the SUPG method with the FEs FDt approach, the result-
ing approximate solution has less spurious oscillations than when it is combined with the FDt
FEs approach. The LCB method performs better with FDt FEs than with the other approach.
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Figure 25. The numerical solutions for � D 10�4, � D 1=2, and h D 1=20.

Figure 26. The numerical solutions for � D 10�4, � D 1=2, and h D 1=40.

Figure 27. The numerical solutions for � D 10�4, � D 1=2, and h D 1=80.
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Figure 28. The numerical solutions for � D 1, � D 1=2, and h D 1=20.

Figure 29. The numerical solutions for � D 1, � D 1=2, and h D 1=40.

Figure 30. The numerical solutions for � D 1, � D 1=2, and h D 1=80.
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Figure 31. The numerical solutions for � D 10, � D 1=2, and h D 1=80.

Figure 32. The numerical solutions for � D 10, � D 1=2, and h D 1=160.

However, results show significant improvement with the PRFB method in both FDt FEs and FEs
FDt approaches, especially on coarse meshes. We note that all the methods are equivalent when the
mesh size is increased.

5.0.5. Experiment 5: transport of a square wave. The next example is the convection of a 1D
square wave [40, 48]. The initial condition is a unit square pulse presented in Figure 33 and can be
defined as,

u.x; 0/ D

²
1; if jx � 0:3j 6 0:1
0; otherwise

and the boundary condition as u.0; t/ D u.1; t/ D 0. We take a uniform partition of� into subinter-
vals of length h D 1=20; 1=40; 1=80. In Figures 34–39, we set the value of the diffusion coefficient
to be � D 10�6, the convective field ˇ D 1, the external force f D 0, the final time T D 0:2, and
plot the solutions for different values of reaction � D 10�4; 1.

The numerical solutions obtained with the SUPG method show that when using the FEs FDt
approach, the resulting approximate solution is less oscillatory than when it is combined with the
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Figure 33. Transport of a square wave: initial condition.

Figure 34. The numerical solutions for � D 10�4, � D 1=2, and h D 1=20.

Figure 35. The numerical solutions for � D 10�4, � D 1=2, and h D 1=40.
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Figure 36. The numerical solutions for � D 10�4, � D 1=2, and h D 1=80.

Figure 37. The numerical solutions for � D 1, � D 1=2, and h D 1=20.

Figure 38. The numerical solutions for � D 1, � D 1=2, and h D 1=40.
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Figure 39. The numerical solutions for � D 1, � D 1=2, and h D 1=80.

Figure 40. The numerical solution with pseudo residual-free bubbles (PRFB) method when � D 5 � 10�5,
� D 1=2, and h D 1=80 at different times.

Figure 41. The numerical solutions for � D 5 � 10�5, T D 1, � D 1=2, and h D 1=80.
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FDt FEs approach. With regards to the LCB strategy, the spurious oscillations are present when
using FEs FDt , while with the FDt FEs approach, they have almost disappeared. However, the PRFB
method works well in both FDt FEs and FEs FDt approaches even on coarse meshes.

5.0.6. Experiment 6: Burgers’ equation. Finally, we consider the numerical approximation of the
following problem, 8<: ut � �uxx C uux D 0; x 2 .0; 1/; 0 6 t 6 Tu.0; t/ D u.1; t/ D 0; t 2 .0; T /

u.x; 0/ D sin.2�x/; 0 < x < 1
(27)

We take a uniform partition of � into subintervals of length h D 1=80. In Figure 40, we set the
value of the diffusion coefficient to be � D 5 � 10�5, and plot the solutions at different times
T D 0:1; 0:3; 0:5; 0:7; 1. Figure 41 displays the solutions obtained with the vertical method of lines

Figure 42. Configuration of Experiment 7.

Figure 43. The numerical solution with the pseudo residual-free bubbles method when � D 10�4, � D f D
0:001, and � D 1 at different time steps.
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where standard Galerkin, SUPG, LCB, and PRFB methods are used in the spatial discretizations.
The approximations generated by the SUPG method possess spurious oscillations in layer regions,
while the numerical solutions obtained with the PRFB and LCB methods capture the position of the
layers in general quite well.

5.0.7. Experiment 7. Finally, we perform a numerical test in 2D case, in which the problem domain
is the unit square, that is,� D Œ0; 1��Œ0; 1�. We consider a decomposition of� into a set of triangles.
The choice of subgrid nodes in a typical triangular element is technically similar to the 1D case, and
we refer to [42] for the details. The boundary conditions are displayed in Figure 42, and the initial
condition is defined as u.x; y; 0/ D 0. We take a set of uniform triangular mesh, which is made up
of 20 elements, respectively, in x and y directions, and we set � D 10�4, � D 720, � D f D 0:001,
the final time T D 1:4. Figure 43 displays the solutions obtained with the vertical method of lines
where PRFB method [42] is used in the spatial discretizations. The results show the potential of the
proposed method for 2D problems.

6. CONCLUSION

The PRFB method is proposed for the approximate solution of time-dependent convection–
diffusion–reaction Equation (1), and it is compared with two different stabilized methods on
several benchmark problems. Numerical experiments cover a variety of problem configurations,
and the results illustrate the good performance of the PRFB method even on coarse meshes as
compared with the others. The improved approximations over the SUPG and LCB methods were
especially obtained around layers, in which overshoots were significantly diminished through the
PRFB method. The application of the PRFB method to further examples underlines potential of the
proposed approach for the nonlinear and 2D problems.
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