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Abstract
We formulate Eddington’s affine gravity in a spacetime that is immersed in a
larger eight-dimensional space endowed with a hypercomplex structure. The
dynamical equation of the first immersed Ricci-type tensor leads to gravita-
tional field equations which include matter. We also study the dynamical
effects of the second Ricci-type tensor when added to the Lagrangian density.
A simple Lagrangian density constructed from a combination of the standard
Ricci tensor and a new tensor field that appears due to the immersion, leads to
gravitational equations in which the vacuum energy gravitates with a different
cosmological strength as in Demir (2014 Phys. Rev. D 90 064017), rather than
with Newton’s constant. As a result, the tiny observed curvature is reproduced
due to large hierarchies rather than fine tuning.

Keywords: Eddington’s gravity, purely affine gravity, immersed spacetime,
cosmological constant, vacuum energy, hypercomplex structure

1. Introduction

General relativity is the relativistic theory of gravity where its field equations are derived from
the variation of Einstein–Hilbert action with respect to the fundamental field, the metric
tensor [1–4]. This theory is based on a purely metric formulation where the affine connection
envisaged in the space is the Levi-Civita connection of that metric.

However, the purely metric formulation is not the only way to construct a theory of
gravity. In fact, it has been noticed that rather than metric, general relativity is based on the
affine connection [5]. The simplest formulation of gravity based on affine connection is
Eddington’s gravity [6, 7]. In this theory, the field equations equivalent to Einstein’s
equations with only a cosmological constant are derived from a least action principle where
the fundamental quantity is the affine connection [8].

In Eddington’s purely affine gravity where the connection is taken symmetric with no
notion of metric, the gravitational field equations are derived from the principle of least action
where the covariant Lagrangian density is constructed by the square root of the symmetric
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part of the covariant Ricci tensor as follows:

∫=S xd Det[ ] , (1)Edd
4

where Det[ ] is the determinant of the symmetric part of the Ricci tensor αβ. We note that
in this work, the non-symmetric part of the Ricci tensor is assumed to be zero.

The variation of the Ricci tensor with respect to the connection Γ is

 δ δΓ δΓ= −αβ μ βα
μ

β μα
μ( ) ( ), (2)

and then the principle of least action δ =S 0Edd leads to the equation

   =μ
αβ−( )Det[ ] 0. (3)1⎡

⎣⎢
⎤
⎦⎥

This equation is solved by introducing an invertible and covariantly constant tensor field αβg
such that

  λ=
αβ αβ−( ) g gDet[ ] , (4)1

where λ is a constant and = αβg gDet[ ].
The last equation can be rewritten as Einstein’s field equations with a cosmological

constant λ

 λ=αβ αβg . (5)

The compatibility condition  =μ αβg 0 which has its origin now from the equation of motion
(3) completely defines the Levi-Civita connection

Γ = ∂ + ∂ − ∂αβ
μ μλ

α βλ β λα λ αβ( )g g g g
1

2
. (6)g

As we see, based on an affine connection, Eddington’s approach clearly reproduces the
field equations of general relativity in vacuum (5) with its metric structure. In spite of being of
great interest both physically and mathematically, Eddington’s affine theory of gravity is
considered incomplete as it does not include matter.

An ‘Eddington-inspired Born–Infeld gravity’ was proposed as an extension of Edding-
ton’s theory including matter [9]. In this metric-affine formulation, the field equations are
derived from a Lagrangian density, where the variation is with respect to both quantities
metric and affine connections, which are considered independent.

Recently, it was shown that matter can be incorporated when Eddington’s purely affine
gravity is extended with Riemann curvature [10]. In addition to incorporating matter, this
‘Riemann-improved Eddington theory’ has enabled degravitation of the vacuum energy
without any fine tuning. The reason is that the cosmological constant was found to gravitate
with a different cosmological strength MCo rather than by Newton’s constant.

In this work we tackle the problem of incorporating matter in a purely affine formulation.
Our approach is based on spacetime, which is considered to be plunged into a larger eight-
dimensional space which has a hypercomplex structure [11–13]. As a result, in addition to an
affine connection, the space became endowed with a new tensor of rank (2, 1). We will show
that the matter can be produced in the field equations as long as the Eddington-like action is
constructed from the Ricci-type tensors of this model.

We will also show that a possible action constructed from a combination of the standard
Ricci tensor of the symmetric affine connection and the new tensor stated above, leads to
degravitation of the cosmological constant as in [10].
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This paper is organized as follows: in section 2, we review the mathematical construction
used in this model. In section 3, we construct the actions from the Ricci-type tensors and
derive the field equations with matter. The idea of degravitation of the cosmological constant
from this setup is given in section 4. In section 5 we give our conclusion.

2. Immersed spacetime structure

The four-dimensional spacetime V4 is assimilated to an affine space with an affine connection,
plunged into an eight-dimensional manifold V8 which is the product of two identical four-
dimensional real manifolds W4 [11]

= ×V W W . (7)8 4 4

We use the following convention [14, 15]: for Latin indices: = …i j, ,.. 1, 8 and for Greek
indices: α β = …, ,.. 1, 4. We also introduce on the indices the operation ∗ such that

= ±i i* 4 (then =i i( *)* ).

This means that Latin indices take both Greek indices, α and α* via the operation ∗, i.e,
α α= = …i , * 1, 8.
It has been shown that this construction confers to the space V8 a hypercomplex (or

pseudo-complex) structure [11–13].

We define the hypercomplex coordinates = +α α αX x Ix * as elements of the hyper-

complex ring H, where =I 12 and α αx x, * are real coordinates from ×W W4 4.
The diagonal submanifold V4 is equivalent to [11, 13]

=αx 0. (8)*

The real coordinates α αx x, * are called the associated diagonal coordinates.
As in the theory of complex manifolds, we define the almost hypercomplex structure on

the tangent space of V8 by the operator J such that [14]

∂
∂

= ∂

∂

∂

∂
= ∂

∂α α α αJ
x x

J
x x

, . (9)
* *

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

This operator verifies =J id2 , with id the identity operator on the tangent space of V8.
In the real basis of V8, this operator is defined by a tensor J

i
j with its components given by

the matrix [12, 14]


=J
0

0
, (10)j

i 4

4

⎛
⎝⎜

⎞
⎠⎟

where 4 is the 4 × 4 unit matrix. This means that J has the components

δ= = = =β
α

β
α

β
α

β
α

β
αJ J J J0, . (11)

*
*

*
*

The operator J corresponds to the multiplication by I (with =I 12 ). In fact, one may define a
hypercomplex basis by the hypercomplex vectors

∂
∂

= ∂
∂

+ ∂

∂

∂

∂
= ∂

∂
− ∂

∂
α α α α α αX x

I
x X x

I
x

1

2
,

1

2
, (12)

* * *

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
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such that

∂
∂

= ∂
∂

∂

∂
= − ∂

∂
α α α α

J
X

I
X

J
X

I
X

, . (13)
* *

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

The operator J can be represented in the hypercomplex basis by the matrix


=

−
J

I

I

0
0

, (14)j
i 4

4

⎛
⎝⎜

⎞
⎠⎟

and the real representation of the linear group HGL(4, ) can be characterized as the subgroup
of RGL(8, ) defined by the matrices which commute with (10).

In any frame of V8, the connection form ω j
i is represented by the matrix [14]

ω
ω ω

ω ω
=

β
α

β
α

β
α

β
α

. (15)
*

*
*
*

j
i

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

The affine connection in the natural diagonal frame of V8 is such that [11, 12]

ω ω ω ω= =β
α

β
α

β
α

β
α, . (16)

*
*

*
*

In terms of components Γjk
i , the form ω j

i is written locally as

ω Γ= dx . (17)j
i

jk
i k

Now the affine connections in the natural diagonal frame bundle of V8 are defined by the
intrinsic conditions

Γ Γ Γ Γ= =, . (18)
*
*

* *jk
i

j k
i

jk
i

j k
i

We can also derive the conditions (18) from the relation  =J 0, where ∇ is the covariant
derivative with respect to the connection Γjk

i , and J is the operator of the almost hypercomplex
structure given above by its components (11).

When making the restriction in V4, these conditions induce for all diagonal frames of V4

the equations

Γ Γ Γ Γ Γ Γ Γ Γ= = = = = =βγ
α

β γ
α

βγ
α

β γ
α

βγ
α

β γ
α

βγ
α

β γ
α, . (19)

*
*

*
*

* *
*

* * * *
*

We can show that the coefficients Γjk
i with an even number of asterisks transform as

connections, while those with an odd number of asterisks transform as tensors in all natural
diagonal frames of V4 [14, 15]. Then according to equation (19), one can define in V4 an
affine connection γβ

α and a tensor Λβγ
α by the following relations

Γ Γ Γ Γ= = = =βγ
α

β γ
α

βγ
α

β γ
α

γβ
α a, (20 )

*
*

*
*

* *

Γ Γ Γ Γ Λ= = = =βγ
α

β γ
α

βγ
α

β γ
α

βγ
α b, (20 )*

* * * *
*

where the affine connection βγ
α is generally asymmetric.

By the immersion of the submanifold V4 in the manifold V8, the curvature form induced
in V4 is
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Ω = ∧λμ
λ μ R x x

1

2
d d , (21)j

i
j
i

where ^ means the restriction in V4 (remember that =μx 0* in V4) and λμR j
i is the Riemann

tensor. Then the induced Riemann tensor in V4 becomes

Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ= ∂ − ∂ + + − −λμ λ μ μ λ ρλ μ
ρ

μ
ρ

ρ λ ρμ λ
ρ

ρ μ λ
ρR . (22)*

* *
*

j
i

j
i

j
i i

j j
i i

j
i

j

From the induced Riemann tensor (22), one may construct only two independent Ricci-type
tensors by contraction as follows

 = =αβ βλα
λ

αβ α λβ
λ R R, . (23)*

These tensors are calculated explicitly as [11, 13]

       Λ Λ Λ Λ= ∂ − ∂ + − + −αβ λ αβ
λ

α λβ
λ

λρ
λ

αβ
ρ

αρ
λ

λβ
ρ

ρλ
λ

βα
ρ

ρα
λ

βλ
ρ a, (24 )

    Λ Λ Λ Λ Λ Λ= ∂ − ∂ + − + −αβ λ αβ
λ

β αλ
λ

λρ
λ

αβ
ρ

βρ
λ

αλ
ρ

ρλ
λ

βα
ρ

ρβ
λ

λα
ρ b. (24 )

The above mathematical formulation has been constructed as an attempt to generalize
Einstein–Schrödinger theory [11, 12]. In that work, the spacetime was supposed to be
endowed with a metric structure. An application of the formalism to cosmology has been
done by the author and his collaborator in [13, 16].

Despite its complication, the formalism reviewed here is solid and needs further appli-
cations. One may address a general modified theory of gravity around the new structure given
here. For instance, in the framework of the bimetric theory of gravity, although we did not
discuss the notion of metric here, one may define a new connection as the sum of the
Christoffel symbol and the new tensor field Λαβ

γ appeared in this formalism. In this view, the
geodesic equations would be modified due to this tensor field, which may be regarded as
describing the gravitational field.

In the following section, we will study the implications of this formalism to Eddington’s
purely affine gravity where the possible Lagrangian densities are constructed by the Ricci-
type tensors (24a) and (24b).

3. Eddington’s theory in immersed spacetime

We start our setup by defining a simple Lagrangian density that we propose to be constructed
by the symmetric part of the Ricci-type tensor αβ given in (24a) for a symmetric connection
. Eddington-like gravitational action may be taken as follows

∫=S xd Det[ ] , (25)4

where Det[ ] denotes the determinant of αβ. In what follows, as in Eddington’s theory, αβ
means its symmetric part.

As the variation will be made only with respect to the symmetric connection , it can be
easily shown from the definition (24a) that

   δ δ δ= −αβ μ βα
μ

β μα
μ( ) ( ). (26)
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In this case, the variational principle applied to the action (25) leads to the equation of motion

   =μ
αβ−( )Det[ ] 0. (27)1⎡

⎣⎢
⎤
⎦⎥

As in Eddington’s approach, this can be integrated by introducing an invertible and
covariantly constant tensor field αβg such that

  λ=
αβ αβ−( ) g gDet[ ] , (28)1

where λ is a constant and = αβg gDet[ ]. The inverse αλg of the tensor αλg is such that

δ=αλ
λβ β

αg g .
The solution (28) can be rewritten as

 λ=αβ αβg . (29)

As we made earlier, the compatibility condition  =γ αβg 0 resulted from the equation of
motion (27) completely defines the Levi-Civita connection

 = ∂ + ∂ − ∂αβ
μ μλ

α βλ β λα λ αβ( )g g g g
1

2
, (30)

from which the associated Ricci tensor is written as

      = ∂ − ∂ + −αβ λ αβ
λ

α λβ
λ

λρ
λ

αβ
ρ

αρ
λ

λβ
ρ . (31)

This tensor (31) is given by its general definition resulted from the contraction of the Riemann
tensor which involves only the connection. Now, by using (24a) and (31), the equation (29)
leads to the gravitational field equations

 λ Λ Λ Λ Λ= + −αβ αβ ρ α
λ

β λ
ρ

ρλ
λ

βα
ρg . (32)( ) ( )

These are Einstein’s field equations including both matter and a cosmological constant λ
provided that

Λ Λ Λ Λ− = −ρ α
λ

β λ
ρ

ρλ
λ

βα
ρ

αβ αβ
μν

μνT g g T
1

2
, (33)( ) ( )

where αβT is the energy momentum tensor of matter which can be written as

δ δ Λ Λ Λ Λ= − −αβ β
ν

α
μ

αβ
μν

ρ μ
λ

ν λ
ρ

ρλ
λ

νμ
ρ( )T g g

1

2
. (34)( ) ( )⎜ ⎟⎛

⎝
⎞
⎠

As we see, matter can be reproduced from the dynamical equation (27) via the new
fundamental tensor Λαβ

λ in the space. Due to the conservation of the matter tensor, one can
impose a condition on this tensor by applying the divergence into equation (34). One way to
define an exact matter tensor from quadratic terms of Λαβ

λ will be illustrated later in this
section when we define a second action.

Now, let us examine the effects of the second Ricci-type tensor αβ given by (24b). Out
of various possibilities, the action that contains αβ can be taken as follows

 ∫= +S xd Det[ ] . (35)4

From the definition of the second tensor of Ricci-type αβ, one can not expect a covariant-free
form as in (27) due to the additional linear terms in  which appears in αβ. In fact, variation
of the action (35) with respect to the connection  gives
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∫δ δ δ

Λ δ Λ δ Λ δ δ Λ δ δ

= −

+ − + −

λ
αλ

γ
β αβ

γ
λ

μν
μν
α

γ
β

μγ
α

ν
β

γρ
ρ

ν
β

μ
α

γν
β

μ
α

βα
γ

− −

−

( ) ( )

( ) ( )

S xd Det[ ]

Det[ ] , (36)

4 1 1

1

⎜ ⎟
⎛
⎝⎜

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎞
⎠⎟

where we have put for simplicity   = +αβ αβ αβ.
The metric structure associated to the affine structure (35) is obtained by introducing the

symmetric tensor density

 λ=μν μνg g , (37)

and by imposing the equality

  =
αβ αβ−( )Det[ ] . (38)1

When substituted into (36), it leads to

  
 

∫δ δ δ

Λ δ Λ δ Λ δ δ Λ δ δ

= −

+ − + −

μ
αμ

γ
β αβ

γ
μ

μν
μν
α

γ
β

μγ
α

ν
β

γρ
ρ

ν
β

μ
α

γν
β

μ
α

βα
γ

(
)

( )
( )

S xd

. (39)

4

The principle of variation δ =S 0 applied to the last action leads to the equation

   δ δ Λ δ Λ δ Λ δ δ Λ δ− + − + − =μ
αμ

γ
β αβ

γ
μ μν

μν
α

γ
β

μγ
α

ν
β

γρ
ρ

ν
β

μ
α

γν
β

μ
α( ) ( ) 0. (40)

When using (37) and applying the relation

 = ∂ −αβ
γ αβ γ λγ

λg g g2 2 , (41)

to (40), we can get rid of g and obtain in terms of the tensor αβg the equation

 Λ Λ Λ Λ δ δ+ + − + − =γ
αβ αν

γν
β μβ

μγ
α αβ

ργ
ρ

ν
αν

γ
β αβ

γ
νg g g g g g

2

3

1

3

5

3
0, (42)⎜ ⎟⎛

⎝
⎞
⎠

where we have put for simplicity Λ Λ Λ= −ν νρ
ρ

ρν
ρ which vanishes in the case of a symmetric

tensor Λαβ
γ .

Unlike the compatibility equation  =γ
αβg 0, we notice the presence of the additional

terms proportional to Λαβ
γ in equation (42). Actually, the relation (42) is an equation for the

affine connection . In fact, for symmetric  which we shall call it Γ here, the equation (42)
takes the form

Γ Γ Λ Λ Λ

Λ δ δ

∂ + + = − −

− −

γ
αβ αλ

γλ
β λβ

γλ
α αβ

ργ
ρ αν

γν
β μβ

μγ
α

ν
αν

γ
β αβ

γ
ν

g g g g g g

g g

2

3
1

3

5

3
. (43)⎜ ⎟⎛

⎝
⎞
⎠

A solution to this equation can be taken as [17]

Γ Γ= +αβ
γ

αβ
γ

αβ
γK , (44)g

where Γαβ
γg is the Levi-Civita connection constructed from αβg and αβ

γK is a tensor of rank
(2, 1).

One can easily check that a Ricci tensor associated to the affine connection (44) can be
written as
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  Γ Γ= + − + −αβ αβ ρ αβ
ρ

β αρ
ρ

αβ
σ

σρ
ρ

αρ
σ

σβ
ρ( ) K K K K K K( ) , (45)g

where  Γαβ ( )g is the Ricci tensor of the Livi-Civita connection Γg and the covariant
derivative here is with respect to Γg . However, this is not surprising since the Lagrangian
density which we started with in (35) contains not only the Ricci tensor  αβ ( ) but also
linear terms of the connection .

If we take the tensor Λαβ
γ to be symmetric as a simple case, we can show from the

relations (24a) and (24b) that

     Λ Λ Λ Λ Λ Λ+ = + − + −αβ αβ αβ ρ αβ
ρ

β αρ
ρ

αβ
σ

σρ
ρ

αρ
σ

σβ
ρ( ) , (46)

where the covariant derivative is with respect to the connection .
Comparing the two relations (46) and (45), we directly conclude that

Λ=αβ
γ

αβ
γK , (47)

providing  Γ= g .
Now, the equation (38) is equivalent to

  λ+ =αβ αβ αβg , (48)

from which we obtain the field equations when using (46)

  λ Λ Λ Λ Λ Λ Λ= + − + −αβ αβ β αρ
ρ

ρ αβ
ρ

αρ
σ

σβ
ρ

αβ
σ

σρ
ρg . (49)

As we see, the effect of the second tensor of Ricci-type αβ is to shift the field equations (32)
by a covariant derivative terms of the tensor Λαβ

γ . In this case, the new total term in (49) that

contains Λαβ
γ forms the matter part −αβ αβ

μν
μνT g g T1

2
.

Although it is not trivial to construct a conserved energy momentum tensor of matter
from the terms that contain Λαβ

γ in equations (49) and (32), one can follow a technique based
on an appropriate modification of the connection Γ Γ Λ= +αβ

γ
αβ
γ

αβ
γg to derive the energy

momentum tensor in our case [18].
The tensor Λαβ

λ (noted Δαβ
λ in [18]) is written in terms of a tensor Θαβ as

  Λ Θ Θ Θ= + −αβ
λ

α β
λ

β α
λ λ

αβ. (50)

From this construction, the gravitational equation (49) will be reduced to Einsteins field
equations with matter

 λ= + −αβ αβ αβ αβg T g T
1

2
, (51)

when imposing

 Θ= −αβ
αβ

μν
μν

−T 2 ( ) , (52)1⎡⎣ ⎤⎦
where 

αβμν
− ( )1⎡⎣ ⎤⎦ is the inverse propagator of a spin-2 massless field given by its

expression [18]

        

       

 = + + +

− + − +

− □ + −

αβμν μ α νβ μ β αν ν α μβ ν β αμ

α β β α μν μ ν ν μ αβ

αμ βν αν μβ αβ μν

− ( ) ( )

( )
( ) ( )

g g g g

g g

g g g g g g

( )
1

8

1

8
1

8

1

8
1

8
2 . (53)

1⎡⎣ ⎤⎦
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We mention here that a spin-2 massless field (or a graviton) is studied in Eddington’s purely
affine theory, and in Eddington-inspired Born-Infeld theory via tensor perturbation of the
metric [19, 20, 21]. The inverse propagator (53) is obtained classically without any attempt to
quantization. In fact, the approach given above is just to illustrate how to construct a matter
term from the general term in equation (49), which includes the tensor Λαβ

γ and its covariant
derivative. The resulted matter term given in (52) is found to be proportional to the mentioned
inverse propagator. This matter term of course can not include a covariantly constant term due
to the form of this propagator, in fact any term proportional to λgαβ which can be included in
Θαβ, is automatically disappeared in (52). For more details of how to construct such a matter
term, and how the massless spin-2 propagator appears, we refer the reader to [18].

4. Degravitating the cosmological constant

A generalization of Eddington’s theory can be formulated by using a covariant Lagrangian
density which can be a product of a scalar and the square root of the determinant of rank 2
tensor [8, 17]. From the above study, we see that in addition to the fundamental tensor, the
symmetric part of the Ricci tensor αβ (also the Torsion tensor in the non-symmetric case),
one can also construct covariant tensors from the new tensor Λαβ

γ . Another possible and
simple action that can be taken is

∫ Λ Λ= +αβ αρ
λ

βλ
ρS x c cd Det , (54)4

1 2
⎡⎣ ⎤⎦

where c1 and c2 are constants.
Repeating the same steps given above, we obtain the gravitational field equations

 Λ Λ λ+ =αβ αλ
ρ

βρ
γ

αβc c g , (55)1 2

or

 λ Λ Λ= −αβ αβ αλ
ρ

βρ
λ

c
g

c

c

1
. (56)

1

2

1

We can study the equation (56) in two different cases. First, once the term Λ Λαλ
ρ

βρ
λ does not

generate λ αβg like terms, the field equation (56) can always be rescaled to [10]

 λ Λ Λ= −αβ αβ αλ
ρ

βρ
λg . (57)

These are Einstein’s field equations with both vacuum energy and matter defined respectively
as

λ= −αβ αβT M g a(58 )vac
Pl
2

Λ Λ− = −αλ
ρ

βρ
λ

αβ αβ
μν

μνM T g g T b
1

2
, (58 )Pl

2 matt matt

where π= −( )M G8 NPl
2 1 is the Planck mass, and the conservation of the energy momentum

tensor of matter imposes a condition on the tensor Λαβ
γ as

 Λ Λ Λ Λ− =α
αλ
ρ

βρ
λ μν

β μλ
ρ

νρ
λ( ) ( )g2 0. (59)

This first case given by the rescaling (57) is classical, it is supposed that matter does not
undergo phase transitions that releases vacuum energy which shall contribute again to the
cosmological constant λ. We note here that there are other kinds of phase transitions that can
be seen in the framework of Eddington-inspired Born–Infeld theory, where in addition to a

Class. Quantum Grav. 32 (2015) 065009 H Azri

9



static Einstein phase, the Universe undergoes a regular bounce [9]. However, the phase
transitions that we mentioned here are completely different, and they are in a sense of particle
theory.

However, the first case is not realistic, phase transitions should have been occurring and
then matter might develop quantum corrections of the vacuum that should always be added to
the cosmological constant. This translates the second case in which the term Λ Λαλ

ρ
βρ
λ is not

independent of λ, then the rescaling made to obtain equation (57) fails.
Nevertheless, equation (56) can be written using (58a) and (58b) as

 = + −αβ αβ αβ αβ
μν

μν

−
−M

c
g

c

c
M T g g T

1

2
, (60)Pl

2

1

2

1
Pl

2 matt matt⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

where  λ= MPl
2 is the vacuum energy density.

The constants c1 and c2 are arbitrary and we are free to make some constraints due to
physical reasons if any. In general relativity, matter and radiation gravitate with the ordinary
Newton’s constant π = −G M8 N Pl

2, then any modified theory of gravity should fit this constraint
in order not to affect the standard astrophysics and cosmology [10, 22]. To ensure this, we
impose the condition =c c2 1 on equation (60) and then we get

 = + −αβ αβ αβ αβ
μν

μν

−
−M

c
g M T g g T

1

2
. (61)Pl

2

1
Pl

2 matt matt⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

Like matter and radiation, vacuum energy appears to gravitate with Newton’s constant GN (or
−MPl

2) in Einstein’s general relativity. One of the sources of this vacuum energy are the zero-
point energies of quantum fields. These energies appear to be of the order ΛUV

4 , where ΛUV is
the ultra-violet cutoff which is the scale up to which the field theory is valid. This theoretical
value seems to cause a perplexed problem when it is viewed in the framework of general
relativity. In fact, spacetime is extremely sensitive to this vacuum. If we trust quantum field
theory up to Planck scale, Λ = MUV Pl, the mentioned vacuum energy causes empty space to
possess a curvature of the order  ∼ MPl

2 which appears to be about 120 orders of magnitude

larger than the observed value  ∼ νm

M

4

Pl
2 , where νm is the neutrino mass [23]. This is called the

cosmological constant problem, the most intriguing problem in general relativity and particle
physics [24, 25].

As we see from equation (61), vacuum energy gravitates with the new strength
−M

c
Pl

2

1
, and

up to now the constant c1 is arbitrary and it should be fixed by some physical conditions if
any. Unfortunately, our model does not offer any theoretical derivation to fix this constant.
Nevertheless, one may argue that the very small curvature may be recovered for a very large
constant c1. In addition to the Planck mass scale, one can introduce a new cosmological
strength MCo as another scale such that the constant c1 is defined as the ratio of these two
hierarchically mass scales as in the philosophy of Dirac’s larger number hypothesis [26], then
we propose the following form

=c
M

M
. (62)1

Co

Pl

2⎛
⎝⎜

⎞
⎠⎟

The obtained field equation (61) becomes

 = + −αβ αβ αβ αβ
− −M g M T g T

1

2
, (63)Co

2
Pl

2 matt matt⎜ ⎟⎛
⎝

⎞
⎠
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where = μν
μνT g Tmatt matt. As a result, the vacuum energy density  that receives its value from

contributions of the zero point energies of quantum fields as well as from phase transitions,
appears here to gravitate with the new gravitational constant −MCo

2 and then it curves the space
by the amount

 = −M4 , (64)Co
2

rather than −M4 Pl
2 as in general relativity. The new mass scale MCo, which is introduced here

to define the ratio (62), can be fixed by using the observational bounds discussed earlier
which provide that

λ≃
ν

M
M

m
. (65)Co

2 Pl
4⎛

⎝⎜
⎞
⎠⎟

Thus, the observed curvature  ∼ νm

M

4

Pl
2 , which can be obtained here from (64) and (65), is now

reproduced by the hierarchy between the two scales MCo and MPl rather than by fine tuning.
To define the new mass scale MCo, we followed almost the same technique used in a

recent model named ‘Riemann-improved Eddington theory’ [10]. But we should note here
that although it leads to the same conclusion about degravitating the cosmological constant as
in [10], the action we proposed here is completely different. The common point is how to
propose the new mass scale (65) in the philosophy of Dirac’s larger number hypothesis.

Although it enables degravitation of the vacuum energy to its observed value without fine
tuning, the model (61) does not solve the cosmological constant problem. This is because the
scale MCo is given by an empirical relation (65) and one has to derive it from dynamics.

5. Summary

The mean goal of this paper was to incorporate matter in a purely affine gravity by refor-
mulating Eddington’s theory in an immersed spacetime.

The spacetime in this model was supposed to be plunged into an octo-dimensional space
which has a pseudo-complex structure. Due to this immersion, the space is endowed with a
new tensor of rank (2, 1) in addition to the affine connection. We have proposed different
possible constructions of the gravitational action, and studied in detail the resulting field
equations. We found that the gravitational field equations with matter can be recovered from
the dynamical equations due to the presence of the new tensor of rank (2, 1) in the expressions
of the Ricci-type tensors.

As an attempt to degravitate the vacuum energy from this model, we have proposed a
Lagrangian density as a combination of the standard Ricci tensor of the affine connection as
well as a term proportional to the new rank (2, 1) tensor. As a result, we found that in contrast
to general relativity, where both vacuum and matter gravitate with Newton’s constant, the
vacuum energy gravitates here with a different cosmological strength MCo. In this setup,
without fine tuning, the observed curvature is reproduced by the hierarchy between the Planck
mass scale and MCo.

We conclude by noticing that the work done in this paper may not be restricted to a
symmetric affine connection as in the original Eddington’s theory, then one can generalize the
model by extending it to involve Torsion tensor and study its effects on the field equations.
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