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When a Dirac electron is confined to a triangular graphene
quantum dot with zigzag edges, its low-energy spectrum col-
lapses to a shell of degenerate states at the Fermi level lead-
ing to a magnetized edge. The shell degeneracy and the total
magnetization are proportional to the edge size and can be
made macroscopic. In this review, we start with a general dis-
cussion of magnetic properties of graphene structures and its
relation to broken sublattice symmetry. Then, we discuss sin-
gle electronic properties of single and bilayer triangular gra-
phene quantum dots, focusing on the nature of edge states.
Finally, we investigate the role of electronic correlations in

1 Magnetism and graphene As the electrons in
carbon based materials tend to form covalent bonds, one
does not expect to find significant magnetism in a carbon
system. Indeed, pure graphene is not magnetic. However,
as discussed here, there is a possibility to induce magnet-
ism in graphene and graphene nanostructures [1-30]
through electron—electron interactions and sublattice engi-
neering which can potentially lead to a new class of de-
vices for magnetic storage and spintronics.

Sublattice engineered magnetism in graphene rests on
Lieb’s theorem for the Hubbard model on bipartite lattice
relating total spin to the broken sublattice symmetry [31].
Consider the general Hubbard Hamiltonian with a constant
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determining the nature of ground state and excitation spectra
of triangular graphene quantum dots as a function of dot size
and filling fraction of the shell of zero-energy states. The
interactions are treated by a combination of tight-binding,
Hartree-Fock and configuration interaction methods. We
show that the spin polarization of the triangular graphene
quantum dots can be controlled through gating, i.e., by adding
or removing electrons. In bilayer graphene dots, the relative
filling of edge states in each layer and the magnetization can
be tuned down to single localized spin using an external ver-
tical electrical field.
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repulsive on-site interaction U

H= 2‘t,.j.c,.t,cj(,+Uz:nl¢n[l , (1)
i,j.0 ioc

where the elements 7, are assumed to be real and the lattice
is bipartite, i.e., there are A and B types of sites (sublattice)
such that 7, =0 if i and j belong to the same sublattice.
Then the theorem states that for a half-filled bipartite lat-
tice with repulsive U, the ground state is unique and has a
total spin S =|N, — N;|/2 where N, and N are number of
sites in each sublattice.

Graphene is an ideal system that can be approximately
described by a half-filled bipartite lattice: Each carbon
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atom provides one single p, electron well decoupled from
the rest of its electrons that ensure the sp” bonding of the
honeycomb lattice. Thus, in a pristine graphene structure, it
should be sufficient to break the symmetry between the
two sublattices consisting of two triangular lattices A and
B in order to induce magnetization.

In principle, there are various ways of breaking the
sublattice symmetry of graphene lattice by varying the
shape and edge of graphene nanostructures or creating de-
fects. For instance, one can create defects by removing
Carbon atoms from the lattice [32] or add adatoms on top
of Carbon atoms [33], which would induce a localized spin
around the vacancy/impurity. The Lieb’s theorem also pre-
dicts that if there are two vacancies or impurities in the lat-
tice, they should couple to each other ferromagnetically or
antiferromagnetically (depending on whether they lie on
the same or opposite sublattices) over large distances [34].
This is illustrated in Fig. 1, where the magnetic coupling
(more specifically the static spin—spin magnetic suscepti-
bility) between two adatoms on opposite sublattices was
calculated as a function of the distance between them (in
units of second nearest neighbor distance b) by solving the
Anderson model using a quantum Monte Carlo method.
The calculations were performed for different inverse tem-
perature values f. A comparison with the Ruderman—
Kittel-Kasuya—Yoshida (RKKY) model is also provided.
These results show that the coupling between the impuri-
ties is indeed antiferromagnetic and strongly enhanced, be-
coming several orders of magnitude larger at longer dis-
tances as the temperature is lowered. A similar result was
also obtained for adatom impurities sitting on the same
sublattice, but coupled ferromagnetically [34].

Lieb’s theorem for half-filled bipartite lattice has also
important implications for graphene nanostructure with
zigzag edges. Zigzag edges break the symmetry between

4 —p=16 |
— =32
B=64
B —p=128 |
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Figure 1 Static magnetic susceptibility between two magnetic
adatom impurities along the zigzag direction as a function of dis-
tance (in units of second nearest neighbor distance b) for the AB
configuration (impurities on opposite sublattices, shown in the in-
set) obtained by QMC calculations at different inverse tempera-
tures f. The dashed lines are RKKY results. Reprinted from Ref.
[34].
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the two sublattices, hence one expects finite magnetism
near those edges [35-38]. In particular, a class of graphene
nanostructures called triangular shaped graphene quantum
dots (TGQD) with zigzag edges [14-29] provides the
highest ratio of [N, — N|/(N, + N;), yielding a maximum
magnetization per atom. In TGQDs, the atoms sitting on all
three edges of the triangle belong to the same sublattice
and are expected to become spin polarized according to
Lieb’s theorem. This was explicitly shown by Ezawa [15]
using Ising model, Fernandez—Rossier and Palacios [16]
using meanfield Hubbard model, and by Wang et al. [17]
using density functional calculations. Engineering those
structures would open the door to a completely new class
of magnetic devices for storage, sensors, and data process-
ing. It is therefore important to understand the details of
the physics of magnetism in those structures beyond Lieb’s
theorem and mean-field results, including size effects, gat-
ing, long-range, exchange and scattering terms in the gra-
phene quantum dot Hamiltonian.

2 Single particle properties of TGQDs

2.1 One-band empirical tight-binding model The
one-band empirical tight-binding model where the sp’
hybridized orbitals are neglected as discussed in this issue
by Ozfidan et al., describes successfully the one-electron
spectrum of bulk graphene [39]. For TGQDs, assuming
passivation of edges with hydrogen, the tight-binding
Hamiltonian in the second quantization form with only
nearest neighbor hopping included can be written as

Hy =ty che, ., )

(i,l),0

where ¢/ and c,, are creation and annihilation operators
for an electron on the lattice site i with spin o; and (i, [)
indicates a summation over nearest neighbor sites. The
hopping integrals between nearest A and B neighbor atoms
corresponding to two sublattices are denoted by ¢.

A striking property of single particle spectrum of
TGQDs with zigzag edges is the existence of a zero-energy
shell at the Fermi level, with degeneracy related to the size
of the triangle. TGQDs can be characterized by the number
of atoms on one edge of the triangle (see the inset of
Fig.2(a) and (b)), N, and the total number of atoms
N = N, +4N,, +1is expressed by the number of atoms at
the edge. There are N, and N, atoms corresponding to
sublattice A and B. The difference between the number of
atoms of types A and B is proportional to the number of
atoms on one edge, [N, — Ng|=N_, —1.

Figure 2 shows the TB energy spectra of two TGQDs
with different sizes. Figure 2(a) corresponds to the struc-
ture consisting of N =78 atoms, or N, =7, and Fig. 2(b)
to the structure consisting of N =97 atoms or N, =8.
From numerical diagonalization of the TB Hamiltonian we
find Ny, =6 and N,, =7 degenerate states at the Fermi
level, respectively. The number of degenerate states N, in
these TGQDs is related to the number of edge atoms as

Ny = Ny —1= N, — Ny. In the next section we will show

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 2 TB energy spectra of TGQDs consisting of (a) N =78 atoms, where the number of atoms on one edge of the triangle is
given by N, =7 and the number of degenerate edge states at the Fermi level is N, =6, and (b) N =97 atoms where N, =8 and

Ny, =7. Reprinted from [1].

that this is a general rule for all TGQDs; by increasing the
size of triangles the degeneracy of the zero-energy shell in-
creases and can be made macroscopic.

2.2 Analytical proof of zero-energy states We
will now prove that the number of zero-energy states is re-
lated to the number of edge atoms through the relation
Ny =Ny —1=N, — Ny, and provide an analytical solu-
tion to the edge states [23].

For an arbitrary B-type site surrounded by three A-type
sites, shown in Fig. 3(a), the wavefunction written in a ba-
sis of p_ orbitals ¢_ has the following form:

3)

¥ =bo. +b,p! +bg! +be.

(a) (b)

Figure 3 (a) An arbitrary i-th B-type site (blue circle) surrounded
by three A-type sites, j-th, k-th, and /-th (red circles). (b) TGQD
with N, =3 atoms on one edge. Above each A-type atom are
corresponding coefticients. Open circles indicate auxiliary A-type
atoms in the three corners, which will help to introduce three
boundary conditions. For zero-energy states all coefficients can
be expressed as superpositions of coefficients from the one edge,
the left edge of atoms in our case. Reprinted from [1].
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where b,,b,,b,,b, are expansion coefficients. Using the
zero-energy state condition, H,%# =0, and projecting onto

@, we get

(P Hpy |Py=0-b+t-b +t-b +t-b, =0, (4)
where we use expressions (.| Hy |@!) = (¢!| Hry | @) =
(¢)| Hyg | @L) =1t and (@] Hyy @) = 0. Finally, Eq. (4) is
written as

b,+b,+b =0. 5)

We will now apply the above analysis to a TGQD, as
shown in Fig. 3(b), where the coefficients b, , are now in-
dexed according to their position vector R = na, + ma,.
The structure has three auxiliary atoms attached with the
coefficients b, , b, 4, b, 5, which will later define appropri-
ate boundary conditions. Starting from the top of the
TGQD, Eq. (5) gives

bO,l = _(bo,o +b1,0) > (6)

()

The two equations above will help to determine the coeffi-
cients of the lower row of red atoms. By inspection, it is
then possible to write a general compact form for coeffi-
cients b, :

n,m*

m m
bn,m = (_l)mz (k ) bn+k,0 .
k=0

Here, it is important to emphasize that the only unknowns
are the N, +2 coefficients, b, ,’s, from the left edge; the
rest are expressed as their superpositions, as seen from
Eq. (8). In addition, we must use the boundary conditions:
the wave function has to vanish on three auxiliary atoms in
each corner, see Fig. 3(b). This gives three boundary con-

b1,1 = _(bl,O +b2,0) .

®)
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ditions, for TGQD from Fig. 3(b) (b, = b,, =by, =0), or
for arbitrary-size triangle (b, =by_ .19 =Dy, . =0), re-
ducing the number of independent coefficients to N —1.
The number of linearly independent coefficients corre-
sponds to the maximum number of linearly independent
vectors and determines the dimension of the degenerate
zero-energy shell Ny, = N, — 1, confirming previous nu-
merical calculations with results shown in Fig. 2.

A similar analysis can be done for B-type atoms show-
ing that they must all equal zero. Finally, a general form
for the eigenvectors for zero-energy states in the triangle
can be written as

Neg+1 Nyg+1-n

V=3 3

n=0  m=0

{(_l)m z (’Z) bn+k,0} @f,m . )

In this expression only N, —1 coefficients corresponding
to atoms from the one edge are independent. We can con-
struct N, —1 linearly independent eigenvectors, which
span the subspace of zero-energy states. Thus, the number
of zero-energy states in the triangle is Ny, = N —1. This
can be also related to the imbalance between the number of
atoms belonging to each sublattice, Ny, = N, — Ny.

2.3 Zero-energy states in a magnetic field The
analysis of the zero-energy states can also be generalized
to non-zero external magnetic fields [28]. In this case, the
wave function coefficients given in the bracket in Eq. (9)
become

3

m 1 _ eZm’['k”]l »
by (@)= (=1)" Y, e b,

272
=0 1_e mm

(10)

he . . .
where ¢, = — is the magnetic flux quantum, ¢ = B_S, is
e

the magnetic flux threading benzene ring,

S, =3+v3a2/2 is the benzene ring area with a, =1.42 A,

and ¢,,, represents the phase corresponding to the path on
the right edge connecting sites {n+k,0} and {n,m} [28].
Note that Eq. (10) reduces to Eq. (8) when ¢ = 0. Interest-
ingly, Eq. (10) shows that the zero energy states in triangu-
lar graphene quantum dots survive in external magnetic
fields, the only effect is the Zeeman splitting. The effect is
similar to the appearance of the » = 0 Landau level in bulk
graphene. When the cyclotron energy becomes comparable
to the energy gap, the zero-energy shell and electron and
hole states evolving toward the » = 0 Landau level overlap
energetically [28].

For TGQDs, the crossings of valence and conduction
state at £ =0 were investigated analytically and numeri-
cally. Figure 4 shows the energy gap as a function of ¢/¢,
for different NV,, obtained by diagonalization of the tight-
binding Hamiltonian. Strikingly, the first crossing always
occurs at /@, =1/(N,, +1) for all the values of N,,. The
crossing of valence and conduction states at £ =0 opens

one
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Figure 4 Energy gap between lowest conduction and highest va-
lence states as a function of magnetic flux for different N,. First
zero energy crossing occurs at @/@, =1/(N,, +1). Reprinted
from [28].

the possibility to manipulate strongly correlated electronic
systems of the degenerate zero-energy shell [28].

2.4 Bilayer triangular graphene quantum dots
with zigzag edges In this subsection we investigate the
effect of inter-layer coupling and an external perpendicular
electric field on the zero-energy states of bilayer triangular
quantum dots with zigzag edges (BTGQD) in AB Bernal
stacking, shown in Fig. 5(a). The top-layer triangle (blue
color) is slightly smaller in size than the bottom triangle so
that there are no floating atoms. Regardless of the size,
such construction has always an odd number of zero en-
ergy states. In order to study single particle properties, we
diagonalize the tight-binding Hamiltonian given by

— i i)
HTB - 2 tijcio'cjo' +2 I/iCio'cicr ’
ic

ijo

(11)

where the hopping parameters #; include an inter-layer
coupling between the top-A and bottom-B atoms given by
¢t, =—0.4¢eV in addition to the usual in-plane nearest
neighbor tight-binding parameters fixed to ¢t =-2.8¢eV.
Under the external perpendicular electric-field, a poten-
tial difference between the upper quantum dot atoms
(V; ==AV/2) and lower quantum dot atoms (V; = AV/2)
is induced. In Fig. 5(b) and (c), the tight-binding spectrum
around the Fermi level for a BTGQD consisting of
1195 atoms and N, =43 zero-energy states is investi-
gated. For this structure, the edge sizes for the upper and
lower layers are N, =23 and N, =22, respectively.
When AV =0 (Fig. 5(b)), the value of ¢, has no effect on
the degenerate shell, as if the two layers were decoupled.
When we turn on the external electric field (Fig. 5(¢)), the
degeneracy between the upper and lower-layer zero-energy
states is lifted by AV =0.4eV. An intriguing aspect of

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 5 (a) A bilayer TGQD. (b) Tight-binding spectrum for a bilayer TGQD with 1195 atoms that has N,,, = 43 zero-energy states.
(c) Under external electric field, the degeneracy between the 21 top-layer zero-energy states and 22 bottom-layer zero-energy states is

lifted. Reprinted from Ref. [24].

Fig. 5(c) is the absence of dispersion in the zero-energy
states corresponding to the bottom layer. Indeed, the bot-
tom-layer zero-energy states belong solely to the sublattice
atoms that do not couple to the top-layer. On the other
hand, top-layer zero-energy states do couple to the bottom-
layer through ¢, . In the following section, we will discuss
how the magnetization of BTGQDs can be controlled by
tuning the relative position of zero-energy states.

3 Voltage control of magnetic properties of
TGQDs In this section, we describe the magnetic proper-
ties of TGQDs using a methodology that combines tight-
binding, Hartree—Fock, and configuration interaction tech-
niques (TB + HF + CI) explained in this issue by Ozfidan
et al. As discussed above, the broken sublattice symmetry
in TGQDs gives rise to a shell of degenerate levels at the
Fermi level. It is also expected to lead to magnetism ac-
cording to Lieb’s theorem on half-filled bipartite Hubbard
model. However, under external voltage, the system is
away from half-filling where long range interactions and
other electron—electron scattering events may become im-
portant. We will discuss how the electronic and magnetic
properties of TGQDs depend on the filling of the shell,
how they can be controlled by electric field in bi-layer
TGQDs and how they can be detected in Coulomb and
spin blockade transport experiments.

3.1 Filling factor dependence of the total spin
of TGQD In order to study the filling factor dependence of
magnetic properties in the degenerate shell beyond a mean-
field description, we first perform a Hartree—Fock calcula-
tion for the charged system of N —N,, electrons, with
empty degenerate shell. As shown in Fig. 6 (black lines), a
group of three states becomes separated from the zero-
energy shell by a small gap of ~ 0.2 eV. These states are lo-
calized at the corners of the TGQD as shown in the inset.
A comparison with density functional calculations within

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 6 Single particle spectrum of a TGQD with 97 carbon at-
oms with empty zero-energy shell, obtained by tight-binding (TB,
blue lines) and self-consistent Hartree—Fock (TB + HF, black
lines) methods. The 7 zero-energy states near the Fermi level are
compared to DFT results. The dielectric constant x is set to 6.
The inset compares the structure of corner and side states ob-
tained using Hartree—Fock and DFT calculations. Reprinted from
Ref. [21].

local density approximation is also provided in Fig. 6. The
separation of corner states also occurs in density functional
calculations, confirming the Hartree—Fock results. In the
following, we will investigate the many-body effects
within the degenerate shell by performing configuration in-
teraction calculations as a function of number of electrons
in the shell, using the HF states as a basis set.

Figure 7 shows the dependence of the low-energy
many-body spectra obtained using TB + HF + CI method-
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ology on the total spin S for a TGQD with N =97 carbon
atoms which exhibit Ny, =7 zero-energy states [21, 27].
Charge neutral (half-filled) case with N, =7 electrons on
the degenerate shell (Fig. 7(a)), and charged case, i.c.,
N, =8 electrons (Fig. 7(b)) are considered. In agreement
with previous calculations based on mean-field approaches
[15-17], when the system is charge-neutral, i.e., N, =7,
there is a finite magnetization with S = 3.5, indicated by a
circle. This many-body state corresponds to a single con-
figuration where there is exactly one spin-down electron
per degenerate state. Its total energy is well separated from
the lower S states which requires at least one flipped spin
among seven initially spin-polarized electrons. When an
extra electron is added through, for instance, an external
gate, the spectrum changes drastically as seen in Fig. 7(b).
In particular, the ground state is now depolarized with
§ =0, indicated by a circle. This new ground state is
almost degenerate with states corresponding to the differ-
ent total spin, which is a signature of strong electronic cor-
relations. The size dependence of the spin depolarization
was also studied in Ref. [27]. It was shown that for larger
TGQDs with N, >9 a partial depolarization still occurs
but at higher filling factors.

0.8

0.6

Figure 8 Many-body spectrum as a function of the number of
electrons occupying the zero-energy states with degeneracy
Ny, =7. The energies are renormalized by the energy gap corre-
sponding to the half-filled shell, N, =7 electrons. Reprinted
from Ref. [27].
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Figure 8 shows the many-body spectrum for the
N, =7 case, as a function of the electronic occupancy of
the degenerate shell. The energies are renormalized by the
energy gap corresponding to the half-filled shell, i.e.,
N, =7 electrons. The solid line shows the evolution of the
energy gap as a function of shell filling. For N, =7
(charge neutral case), as well as for N, =7-3=4 and
N, =7+3=10, the energy gaps are found to be consid-
erably higher than the other fillings. Moreover, the de-
crease of the energy gap around charge neutrality is ac-
companied by an increased density of states at the lower
energy spectrum, indicating strong electronic correlations.
These results show that the electronic and magnetic prop-
erties of the system can be modified drastically through
applied voltage.

Figure 9(a) shows the spin phase diagram as a function
of the number of electrons occupying the degenerate shell

for the N, =7 case. The total spin S is maximized for
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Figure 9 (a) Total spin as a function of the number of electrons
occupying the degenerate shell for the same TGQD as in Fig. 8
and (b) corresponding to the energy excitation gaps. The magni-
tude of the energy gap at certain fillings is significantly reduced
due to correlation effects. Reprinted from Ref. [27].
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Figure 10 Spin densities of the ground state for (a) N, = 4 elec-
trons and (b) N, =10 electrons that correspond to subtract-
ing/adding three electrons from/to the charge-neutral system. The
radius of circles is proportional to a value of spin density on a
given atom. A long-range Coulomb interaction repels (a) holes
and (b) electrons to three corners, forming a spin-polarized
Wigner-like molecule. Reprinted from Ref. [27].

o

most electron numbers, except for N, =8, 9 electrons. On
the other hand, Fig. 9(b) reveals a strong oscillation of the
energy gap as a function of shell filling as a result of a
combined effect of correlations and system’s geometry, in-
dicating a competition between fully spin polarized TGQD
that maximizes exchange energy and fully unpolarized sys-
tem that maximizes the correlation energy. For N, =8 and
N, =9, correlation energy wins over the exchange energy
resulting in a minimized ground state total spin, accompa-
nied by a large density of states, shown in Fig. 8.

In order to investigate further the large excitation gaps
for N, =4 and N, =10 electrons seen in Fig. 9(b), we plot
the corresponding spin densities in Fig. 10. Here, long-
range mean-field interactions dominate the physics. Thus,
consistent with the triangular symmetry of the system,
three spin polarized holes (N, =7 —3 electrons) and elec-
trons (N, =7+3 electrons) maximize their relative dis-
tance by occupying three consecutive corners. The forma-
tion of localized holes can be understood in terms of the
Hartree—Fock orbitals of empty degenerate shell discussed
in Fig. 6. Aided by exchange energy, first four electrons
occupy the side states shown in Fig. 6, leaving behind
three corner holes. On the other hand, when N, =7 elec-
trons are added to the shell, the HF quasiparticle energies
are renormalized to a perfectly flat shell as in the TB
model. Then, when three more electrons are added, they
form a spin polarized Wigner-like molecule [40, 41], re-
sulting from long-range interactions which dominate over
the flat band kinetic energy and triangular geometry.

3.2 Coulomb and spin blockades in TGQD Mag-
netic properties of quantum dots can be probed using the
Coulomb and spin blockade spectroscopy [42]. When the
conductance through a quantum dot weakly coupled to
leads is measured as a function of gate voltage, a series of
peaks are obtained as new electrons are loaded from the
gate. These peaks, called Coulomb blockade peaks, occur
due to a combined effect of size quantization and Coulomb
repulsion. The position and amplitude of these peaks give
information about the density dependent electronic and
magnetic properties of the quantum dot. The amplitude of

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

the Coulomb blockade peak is given by the conductivity G,
of the graphene quantum dot connected to leads via atom
“i” [43] as shown schematically in Fig. 11(a). The ampli-
tude of the Coulomb blockade peak can be calculated using
the transition probability (N, +1,J",S’|c] IN,,J,S)
from the many-body state (N,,J,S) to the state
(N, +1,J’,S") when an additional electron is added to the
site “i” of the graphene quantum dot from the lead. Fig-
ure 11(b) shows the conductivity for a TGQD with
Ny, =7 degenerate zero-energy states. Although, one
would expect a total of fourteen peaks reflecting the de-
generacy of the zero-energy shell, only eleven peaks are
observed in Fig. 11(b). In fact, due to a phenomenon called
spin blockade, some of the peaks vanish. For instance, the
transitions from (N, =7, S =7/2) states to (N, =8, S =0)
states are spin blocked since it is not possible to change the
spin of the system by AS =-7/2 by adding one electron
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Figure 11 (a) Schematic representation of TGQD connected to
the leads through a side site. (b) Conductivity as a function of ap-
plied gate voltage, ,. (c) Same as (b) but without the site de-
pendence of the incoming electron. Reprinted from Ref. [21].
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with S =1/2. Similarly, transitions from (N, =9, S5 =1/2)
states to (N, =10, S = 4/2) states are spin blocked.

In order to investigate the nature of the oscillations of
the conductivity amplitudes as a function of gate voltage,
in Fig. 11(c) we plot the conductivity assuming that the
weight of the site “/” does not depend on the zero-energy
orbital. As a result, the weights of the peaks considerably
change, indicating that, in addition to the strongly-
correlated nature of the states |V, S), the specific choice
of the site where the lead is attached also plays an impor-
tant role. These results show how to detect the spin depo-
larization in transport experiments. Ultimately, we show
here that one can design a strongly correlated electron sys-
tem in carbon-based material whose magnetic properties
can be controlled by applied gate voltage.

4 Bilayer triangular graphene quantum dots
with zigzag edges In Section 2.4 we showed that in a
bilayer triangular quantum dot, the zero-energy states are
not affected by the coupling between the two layers. Hence,
we have two sets of zero-energy states originating from
each layer. Moreover, we have seen that it is possible to
control the relative energies of two sets of zero-energy
states by applying an external electric field. In this section
we will discuss the magnetic properties of edges and show
that the ability of controlling the relative position of the
energy of the bilayer graphene quantum dot gives an inter-
esting opportunity to control the charge and spin of the
zero-energy states. Most calculations in this section were
performed using the mean-field extended Hubbard ap-
proximation. In all calculations the on-site Hubbard term U
is taken to be 2.75 eV, screened by a factor of ~6 from the
bare Coulomb potential [24].

Figure 12 shows the spin density isosurfaces for zero
electric field (left-hand side) and finite electric field (right-
hand side), as obtained from configuration interaction cal-
culations. In the absence of the external electric field, both
layers have a finite magnetic moment, differing by one
spin due to the size difference of the two triangles. The in-
ter-layer magnetic coupling is ferromagnetic, in agreement
with Lieb’s theorem which applies for Bernal stacking.
When a sufficiently high electric field is applied, electrons
from the lower layer reduce their energy by transferring to
the top layer, occupying all the available spin-up and down
zero-energy states, leaving behind one single spin.

In Fig. 13, we present a detailed phase diagram that
leads to the transition described in Fig. 12. Figure 13(a)
shows the energies for different total spin projection S,
with respect to the energy of the ferromagnetic configura-
tion, S, =9/2. At AV =0, all nine electrons occupying the
degenerate shell have their spins aligned, in agreement
with Lieb’s theorem. As AV is increased, the electrons oc-
cupying the bottom layer zero-energy states are pushed
towards the top layer. At a critical value of the electric po-
tential, AV, = 0.55 eV the electrons gain enough energy to
overcome the energy for flipping their spin and the charge
transfer becomes possible. As a result, all the top layer
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Figure 12 Isosurface plot of the spin density p;, — p, of a bilayer
triangular graphene quantum dot with zigzag edges, (a) in the ab-
sence and (b) in the presence of a perpendicular electric field ob-
tained from configuration interaction calculations. Reprinted
from Ref. [24].
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(layer 2) zero-energy states are doubly occupied and the
magnetization of the system decreases abruptly, leaving
exactly one single spin in the bottom layer (layer 1). We
note that one can also isolate a single hole spin in the bot-
tom layer by applying a reverse electric field, thus pushing
the electrons from the top layer to the bottom layer, occu-
pying all states except one. It is thus possible to isolate a
single electron or hole spin in a neutral bilayer graphene
quantum dot isolated from metallic leads by applying an
external electric field.

In order to investigate the size dependence of the fer-
romagnetic (FM, where the ground state spin is given by
S™ = Ny, /2) to antiferromagnetic (AFM, where the
ground state spin is S™ =1/2) transition for bilayer
TGQDs described above, in Fig. 14(a) we show the FM—
AFM energy difference in the mean-field extended
Hubbard approximation as a function of electric potential
difference AV, for different quantum dot sizes up to
1507 atoms. In the absence of external electric field, the
FM-AFM gap increases with the size of the system N. The
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Figure 13 Mean-field Hubbard results for a bilayer graphene
quantum dot with 107 atoms and 9 zero-energy states. (a) Ener-
gies of lowest energy states with different total spin projection S,
as a function of potential difference AV, between the lower layer
(layer 1) and upper layer (layer 2), with respect to the ferromag-
netic configuration S7™ =4.5. (b) Ground state spin population
for a given layer and spin. Reprinted from Ref. [24].
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Figure 14 (a) FM-AFM energy difference as a function of po-
tential difference AV, for different quantum dot sizes up to
N =1507 atoms. (b) For AV =0, the FM—AFM energy gap per
number of side atoms N, approaches 14.3 meV. (c) Critical
value AV, where the FM—AFM transition occurs as a function of
number of atoms N. Reprinted from Ref. [24].

energy gap per unit length of the triangle with linear size
N, approaches a constant value of 14.3 meV as shown in
Fig. 14(b). However, the FM—AFM transition voltage V,
decreases with the system size as can be seen from
Fig. 14(c). For the largest system size studied, N =1507,
we obtain AV, =0.345 eV, which corresponds to an elec-
trical field of ~1 V/nm.

We note that, it is also possible to use an in-plane elec-
tric-field to tune the magnetization of a single layer TGQD

[26].

5 Conclusion In summary, single- and bi-layer trian-
gular graphene quantum dots with zigzag edges have
unique electronic and magnetic properties arising from a
broken sublattice symmetry. In particular, they exhibit a
degenerate shell of spin polarized zero-energy states with
degeneracy proportional to the linear size of the structure.
The spin polarization can be tuned by an external voltage
through electronic doping in single TGQDs. In bilayer
TGQDs, the degeneracy of the upper and lower layer zero-
energy shells can be lifted by the external electric field al-
lowing the control of relative filling of the shells and the
reduction of the magnetization of the quantum dot down to
a single localized spin.
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