
105

Malik Yousef and Jens Allmer (eds.), miRNomics: MicroRNA Biology and Computational Analysis, Methods in Molecular Biology, 
vol. 1107, DOI 10.1007/978-1-62703-748-8_7, © Springer Science+Business Media New York 2014

Chapter 7

Introduction to Machine Learning

Yalın Baştanlar and Mustafa Özuysal

Abstract

The machine learning field, which can be briefly defined as enabling computers make successful predictions 
using past experiences, has exhibited an impressive development recently with the help of the rapid increase 
in the storage capacity and processing power of computers. Together with many other disciplines, machine 
learning methods have been widely employed in bioinformatics. The difficulties and cost of biological 
analyses have led to the development of sophisticated machine learning approaches for this application 
area. In this chapter, we first review the fundamental concepts of machine learning such as feature assess-
ment, unsupervised versus supervised learning and types of classification. Then, we point out the main 
issues of designing machine learning experiments and their performance evaluation. Finally, we introduce 
some supervised learning methods.

Key words Machine learning, Supervised learning, Unsupervised learning, Clustering, Classification, 
Regression, Model complexity, Model evaluation, Performance metrics, Dimensionality reduction

1 Introduction

In many scientific disciplines, the primary objective is to model 
the relationship between a set of observable quantities (inputs) 
and another set of variables that are related to these (outputs). 
Once such a mathematical model is determined, it is possible to 
predict the value of the desired variables by measuring the 
 observables. Unfortunately, many real-world phenomena are too 
complex to model directly as a closed form input–output relation-
ship. Machine learning provides techniques that can automatically 
build a computational model of these complex relationships by 
processing the available data and maximizing a problem depen-
dent performance criterion. The automatic process of model 
building is called  “training” and the data used for training pur-
poses is called  “training data.” The trained model can provide new 
insights into how input variables are mapped to the output and it 
can be used to make predictions for novel input values that were 
not part of the training data.

1.1 What Is Machine 
Learning?
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To be able to learn an accurate model, machine learning 
 algorithms often require large amounts of training data. Therefore, 
an important first step in using machine learning techniques is to 
collect a large set of representative training examples and store it in 
a form that is suitable for computational purposes. Recent advances 
in digital data gathering, storage, and processing capacity have 
made the application of machine learning possible in many domains 
such as medical diagnosis, bioinformatics, chemical informatics, 
social network analysis, stock market analysis, and robotics.

There is usually more than one computational model that can 
be trained for a given machine learning problem. Unfortunately, 
there is no fixed rule to select a particular model or an algorithm. 
The performance of a specific model depends on many factors such 
as the amount and quality of training data, the complexity and 
form of the relationship between the input and output variables, 
and computational constraints such as available training time and 
memory. Depending on the problem, it is often necessary to try 
different models and algorithms to find the most suitable ones. 
Fortunately, there are standard software packages that combine 
different algorithms into the same framework such as [1–4]. Once 
the available data is prepared in a suitable format, these packages 
make it simpler to try the different alternatives.

As an example, consider the problem of labeling a candidate 
nucleotide sequence as miRNA or not. One simple approach would 
be to determine a set of short nucleotide sequences that are parts 
of the known miRNA and non-miRNA sequences and to construct 
a set of rules based on the existence of these nucleotide “words.” 
For example, one such rule can state that a sequence containing 
“AGCACU” is more likely to be a miRNA than not. Then one 
could simply label candidate sequences using these rules. In prac-
tice, constructing such a rule based system is very difficult as there 
are many possible nucleotide words and the mapping is very com-
plex. Instead of manually specifying a complex set of rules, machine 
learning methods can automatically build a statistical model using 
these nucleotide words. These models can then be trained using 
large samples of biological data since the training process is auto-
mated. For machine learning, such rules (here a nucleotide hex-
amer) are determined from features which need to be defined for 
the input data.

The observable quantities that are input to a machine learning 
algorithm are called “features.” The algorithm learns a mapping 
from these features to the desired output variables by tuning the 
model parameters using the available training data. Therefore, it is 
important that the features are relevant to the prediction of the 
outputs.

For some machine learning problems, there are thousands of 
features that can be used to predict the output variables, e.g., gene 

1.2 What Are 
Features?
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expression in microarray experiments can be considered as features 
(see Chapters 6, 17, and 18). However, using all available features 
may not be the best approach. Features that are loosely related to 
the output might adversely affect the learning process by decreas-
ing the effect of the important ones. Features that are strongly 
coupled with other features do not provide extra information and 
unnecessarily bias the result. These can further lower training per-
formance by straining computational resources such as time and 
memory.

The first step in selecting good features is using expert judg-
ment. An expert that knows the problem domain well can select a 
compact set of relevant features for input to the machine learning 
algorithm. This is especially important in the data gathering stage 
since collecting training data can be time consuming and costly. 
However, extra caution is required not to eliminate potentially 
important features. It is important to note that feature selection 
and extraction requires experience and is often an iterative process. 
As additional insight into the problem is gained, it might be neces-
sary to add or remove features to improve the performance [5]. 
It is also possible to automate this feature selection and extraction 
process. Such automated techniques are detailed in Subheading 2.5.

For the miRNA identification problem, features can be the 
existence or the frequency of a selected set of nucleotide sequence 
“words” of small length within the candidate sequence. Again it is 
important to include all the available information that might help 
with the prediction. So in actuality, more features such as those 
that describe the number of base pairs, bulges, loops and asymmet-
ric loops in different parts of the candidate sequence may also be 
included in the analysis [6].

After features, that well model the problem, have been defined, 
machine learning algorithms need to be chosen and in the field of 
miRNA detection supervised methods have been applied widely 
(see Chapters 10, 12, and 15–18).

Machine learning techniques can be broadly classified into two 
main categories depending on whether the output values are 
required to be present in the training data.

Unsupervised learning techniques require only the input feature 
values in the training data and the learning algorithm discovers hid-
den structure in the training data based on them. Clustering tech-
niques that try to partition the data into coherent groups fall into 
this category. In bioinformatics, these techniques are used for prob-
lems such as microarray and gene expression analysis. In general, 
market segment analysis, grouping people according to their social 
behavior, and categorization of articles according to their topic are 
popular tasks involving clustering. Typical clustering algorithms are 
K-means [7], hierarchical clustering [8], and spectral clustering [9]. 

1.3 What Is 
Unsupervised Versus 
Supervised Learning?

1.3.1 Unsupervised 
Learning
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It is not possible to directly measure the performance of clustering 
because the correct output labels are not known a priori. Instead, 
the performance depends on whether interesting trends in the data 
have been captured by the clusters or not. Since the output labels 
are not needed, it is often easier to collect a large training dataset for 
unsupervised algorithms.

Figure 1a shows an example result of clustering using the 
K-means algorithm. Let us briefly explain the steps of the algo-
rithm. Firstly, user needs to define the number of clusters and ini-
tializes the centroid of each cluster (usually performed in a random 
manner). Then, each sample is assigned to the closest cluster cen-
troid (cluster assignment step) and cluster centroids are recom-
puted using assigned samples (move centroids step). These two 
steps are iteratively performed until no further changes occur. 
Hopefully, in the end the clusters are well separated. However, 
K-means can get stuck in local optimum due to an unlucky initial-
ization. Also, it is not very effective when the number of clusters 
(K) is not clear.

Hierarchical clustering is more suitable for the cases where the 
clusters are not well separated, i.e., the number of clusters is not obvious. 

Fig. 1 Unsupervised clustering of data points (marked with circles). (a) The 
K-means algorithm groups the data into a given number of clusters (K) such that 
each data point is closer to the mean of its own cluster (depicted by plus signs) 
than any other cluster’s centroid. (b) The hierarchical clustering method performs 
multiple rounds of clustering; merging the closest clusters or dividing the clus-
ters of points at each round. The resulting clusters can be analyzed at multiple 
scales to find meaningful structures in the data distribution
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It performs multiple rounds of clustering; merging the closest clusters 
or divides the clusters at each round. Figure 1b shows a so-called den-
drogram which can represent the result of hierarchical clustering. Any 
desired number of clusters can be obtained by “cutting” the dendro-
gram at the desired level.

Supervised learning methods require the value of the output vari-
able for each training sample to be known. As a result, each train-
ing sample comes in the form of a pair of input and output values. 
The algorithm then trains a model that predicts the value of the 
output variables from the input variables using the defined features 
in the process. If the output variables are continuous valued then 
the predictive model is called a “regression function.” For exam-
ple, predicting the air temperature at a certain time of the year is a 
regression problem. If the output variables take a discrete set of 
values then the predictive model is called a “classifier.” A typical 
classification problem is automated medical diagnosis for which a 
patient’s data need to be classified as having a certain disease; or 
whether a given input is a miRNA. Figure 2 illustrates these two 
kinds of problems.

For supervised learning problems, it is possible to quantify the 
performance of the learned model by measuring the difference 
between the known output values and the predicted ones. However, 
the error for this performance evaluation must not be measured on 
the training data but on a separate test set. This ensures that the 
algorithm performance on novel data can be estimated correctly 
and gives an idea about the generalization of the learned model. 
The training and test procedures are discussed in more detail in 
Subheading 2.2.

1.3.2 Supervised 
Learning

Fig. 2 Supervised machine learning problems. (a) In a classification problem, the 
training data belongs to one of several possible classes (the solid circles or 
crosses). A decision boundary (the curve) that best separates these data points 
is learned during training. At testing time, a novel data point (dashed circle) is 
classified as belonging to one of the classes depending on which side of the 
decision boundary it is on. (b) The goal in regression problems is to find a map-
ping from the inputs to the continuous output variable. A regression function (the 
solid curve) is fit to the training data (the solid circles). Afterwards it can be used 
to transform novel inputs (the cross) into output predictions (the dashed circle)
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Since it is much easier to gather unlabeled data, there are also 
semi-supervised learning methods that combine a small supervised 
training dataset with a larger unsupervised one. While training a 
predictive model, these algorithms can exploit both the supervised 
output values and the data distribution in the unlabeled data. 
However, these algorithms make additional assumptions to take 
advantage of the unlabeled data, which may or may not be suitable 
for the problem at hand [10].

As pointed out above, supervised learning with discrete results 
is called classification and the number of expected classes affects 
the choice of machine learning algorithm.

There are many machine learning problems with the objective of 
classifying the inputs into one of two categories. Often one cate-
gory represents data points with a special property and the other 
category plays the role of a “background” class that includes every-
thing else. Usually, the class representing the category of interest is 
termed the “positive” class and the background class is called the 
“negative” one. The miRNA identification problem is such an 
example with a category that represents miRNA sequences and 
another representing those that are not.

Classifiers that use machine learning techniques are often 
designed for such binary classification problems. This greatly sim-
plifies their design and analysis. During training, these classifiers 
learn a decision boundary (see Fig. 2a) in the feature space that 
separates data points of the two classes as well as possible. Once the 
training is complete, they can predict the class of a new data point 
by comparing its location in the feature space with the learned 
decision boundary.

When there are more than two possible classes, the classifica-
tion problem is said to be multi-class. Some machine learning tech-
niques such as Decision Trees (DTs) can naturally handle the 
existence of multiple classes. Others such as Support Vector 
Machines (SVMs) can only handle binary problems in their origi-
nal design. There are several ways to extend a binary classifier to 
handle multiple classes. A general approach is to turn a multi-class 
problem into multiple binary classification problems each in the 
form of “one class against all the others.” When classifying test 
data, all binary classifiers are evaluated and the one with the high-
est confidence score wins (Fig. 3).

For some classification problems, it is not possible to collect reli-
able data belonging to one of the classes. Assume that you are 
working on diagnosing a rare type of cancer using some features 
obtained from the body cell. To do that, you develop a machine 
learning algorithm which would give “positive” as a result when 
the patient has cancer. To perform an effective training for your 
algorithm you would try to collect as many samples as possible. 

1.4 What Are 
Multi-class, Binary 
Classifications, and 
One-Class Density 
Estimation?

1.4.1 One Class Density 
Estimation
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However, in such a case, you probably would end up with many 
more “negative” samples than the “positive” ones. In other words, 
your dataset does not have a balanced amount of samples from 
 different classes.

Estimation of one-class densities is also referred to as “anomaly 
detection” since the rare class indicates an anomaly within the huge 
amount of “normal” samples. Labeling a sample as “normal” is not 
as easy as labeling an “anomalous” one, because concealed anoma-
lies may exist. A machine learning algorithm in such a case is trained 
to discover the common properties of the normal class to distin-
guish the anomalous samples from the rest.

For example, microRNAs can be identified experimentally but 
it is not currently feasible to clearly state that a given hairpin from 
a genome is not a miRNA (see Chapter 10) so the miRNA classifi-
cation problem is also essentially a one class density estimation 
problem.

2 Design of Machine Learning Experiments

When given a dataset and a machine learning technique, we need to 
perform experiments to examine if the algorithm is working properly 
on the data and to gain insight on how to improve its performance. 

2.1 Model 
Complexity and 
Generalization

Fig. 3 Multi-class classification. (a) Some classification algorithms can handle 
multiple classes naturally to fit a complex decision boundary that separates all 
the classes from each other. (b–d) Some algorithms are designed to work with 
only two classes. In this case a multi-class problem can be decomposed into 
several binary classification problems with separate decision boundaries
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We evaluate several hypotheses (models) to choose the best among 
them and this process is called model selection.

We consider the fact that the aim of a machine learning algo-
rithm is to generate the correct output for sample data points out-
side the training set. The ability of the model to predict correct 
output for new samples after trained on the training set is defined 
as generalization. For best generalization, we should match the 
complexity of the model with the complexity of the function 
underlying the data [11].

To give a concrete example, let us consider a regression prob-
lem to predict the price of a house when its size is given. For the 
sake of simplicity, the size is the only feature in this example. In 
Fig. 4, crosses represent the data that we use to train our model 
and three models (hypotheses) with different complexities are 
shown with solid lines/curves.

If the hypothesis is not complex enough to model the samples, 
we have underfitting. Figure 4a shows the result of fitting a line to 
the data sampled from a high order polynomial. As we increase the 
complexity (the number of θ parameters) of our model, the train-
ing error decreases and we reach a better fit as shown in Fig. 4b. 
The error, here, can be defined as the sum of the squared distances 
between the data samples and the polynomial model (Fig. 5).

Fig. 4 Three hypotheses with different complexities for the house price  prediction 
problem. (a) Underfit, hypothesis is a line. (b) Proper fit, hypothesis is a second 
degree polynomial. (c) Overfit, hypothesis is a fifth degree polynomial
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On the other hand, if the hypothesis is too complex and the 
data are not enough to constrain it, we may again end up with an 
improper model. For example, fitting a fifth order polynomial to 
some data sampled from a lower order polynomial (Fig. 4c). This 
is called overfitting. The hypothesis may fit the training set very 
well and we have quite low training error, however it fails to gen-
eralize to new samples (predicting prices of other houses).

For a given model complexity, the overfitting problem becomes 
less severe as the size of the dataset increases [12]. Ideally, when we 
have enough samples, a higher order polynomial becomes close to 
a lower order polynomial after training, so it resembles a proper fit. 
However, in most cases we cannot guarantee the sufficiency of 
data. Moreover, most of the time, the complexities of the model 
and data distribution cannot be visually compared like in this toy 
example. Therefore, we use other methods to evaluate the model 
as we will see in the following.

As explained previously, the generalization ability of a model can 
only be evaluated using samples outside the training set. To respect 
this requirement, we usually divide the training data into two parts. 
We use one part for training (e.g.: fitting a polynomial), and the 
remaining part is used to compute the error for that model to test 
its generalization.

The first part is called the training set and usually represents 
the bigger portion of the data (say 70 %). The second part is called 
the validation set. The model that gives the least error on the vali-
dation set is assumed to be the best.

In our regression example, to find a proper degree of the 
polynomial (this is the complexity of our model), we evaluate a 
number of candidate polynomials of different degrees (d), and 
find the coefficients (θ) using the training set for each of these 
polynomials (hypotheses/models). Let us denote the parameters 

2.2 Using the 
Dataset for Evaluation

Fig. 5 The representation of the regression error. Dashed lines show the  distances 
between the data samples and the polynomial. The error is the sum of the 
squares of these distances. Note that these are not the shortest distances to 
the model but the distances in y coordinate. This is correct since our estimate is 
the y coordinate (price) for a given x coordinate (size)
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for the ith order polynomial with θ(i). Figure 6 shows some of the 
candidate polynomials with different degrees. The next step is to 
compute the errors of these models on the validation set, and 
take the one that has the least validation error as the best poly-
nomial. Let us say the model with d = 3 and θ(3) generated the 
lowest error. In this case, we choose the third order polynomial 
as our model.

Although we have chosen the best performing model, we still 
do not know the real performance of the model since we have used 
the training set to estimate the parameters and the validation set to 
decide on the model complexity d (which is essentially a parameter 
as well). The test should contain new data. Therefore, while report-
ing the expected performance of our trained model, we use a third 
set, the test set, containing examples not used in training or 
validation.

In practice, most of the data is used for training and about one 
fifth for validation and again one fifth for testing (Fig. 7). Referring 
to our regression example, if we chose a third order polynomial as 
our model then, computing the error of θ(3) on the test set gives us 
a fair error measure of the selected model.

In short, a model with high bias is an “underfit” one and a model 
with high variance is an “overfit” one. To better visualize the 

2.2.1 Bias Versus 
Variance

Fig. 6 Candidate models with different degrees for the polynomial regression problem. In this example, we 
evaluate polynomials with degree from 1 to 5

Fig. 7 Approximate distribution of the entire dataset for training, validation, and test sets
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relationship between training and validation (generalization) 
errors, let us examine Fig. 8. Starting from a less complex model, 
as the complexity of the model increases, the training error 
decreases since the model fits better to the data. When we con-
sider the error on the validation set, it initially decreases as it pos-
sibly fits better to the validation set as well. But then, as we move 
further to more complex models it increases again. High variance 
(fluctuations on the polynomial) in the complex models causes a 
poor fit (overfitting) for the novel data in the validation set. The 
bottom of the bowl on the validation error curve is the point 
where the generalization error is the minimum.

The polynomial regression example in the previous section had just 
one input variable (x). For practical applications of machine learn-
ing, on the other hand, we have to deal with spaces of high dimen-
sionality consisting of many input features [12].

This multivariate structure of the data generally causes prob-
lems for computation or visualization, and therefore this situation 
is referred to as the curse of dimensionality [13].

Dimensionality reduction is one of the major tasks in the anal-
ysis of multidimensional data, which is the step that we decrease 
the number of dimensions/features. The main motivations for 
performing dimensionality reduction are the following:

 ● Computation is faster with fewer features. Genomic data can 
be given as an example. If all the genes in a genome are con-
sidered as features, then we would have several thousand 
features.

2.3 Dimensionality 
Reduction

Fig. 8 Training and validation error curves for increasing model complexity. Simple models (small d in our 
example) have the risk of high bias, where the error is high both in training and validation sets. Complex mod-
els have the risk of high variance (fluctuations on the polynomial), where the training error is low since the 
model fits better to the training data, but the validation error is high
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 ● If we find out that one or more features are not discriminative, 
eliminating them saves time, effort, and increases prediction 
accuracy.

 ● Two or three dimensional projections help us (1) to visually 
represent our data to gain insight, (2) to screen data for obvi-
ous outliers and (3) to observe cluster tendencies when using 
unsupervised learning.

Since we wish to minimize the information loss to be caused by 
dimensionality reduction, we try to eliminate the least distinctive/
informative features. For instance, a feature that is highly corre-
lated with another one can be considered as redundant.

There are two main methods for reducing dimensionality: fea-
ture selection and feature extraction. In feature selection, we find k 
of the d dimensions (features) that give us the most information 
and we eliminate the other dimensions. Feature selection methods 
can be roughly divided into two categories: filters and wrappers. 
Filters extract feature relevancies via various scoring techniques 
without using a learning model and select a subset of features using 
these scores. Filters are computationally simple and fast. Some of 
the popular filter approaches are mutual information [14], chi- 
square [15], and information gain [16].

Wrappers, on the other hand, conduct a search for good fea-
tures using the learning algorithm itself as part of the function 
[17]. Wrapper techniques provide interaction between feature sub-
set and learning model, but are computationally expensive when 
compared to filters. The two approaches here are forward selection 
and backward elimination. Forward selection refers to a search that 
begins with an empty set of features. At each step, for all features, 
we add a feature in the feature subset and we train our model on 
the training set and calculate error on the validation set. Then, we 
choose the feature which causes the greatest decrease in error and 
permanently put it in the feature subset. This continues until no 
further improvement occurs. In backward elimination, we start 
with the full set of features and we remove one feature at a time. 
We eliminate the one, removing of which causes the least error 
increase [11].

In feature extraction, we transform the original d dimensions 
to a new set of dimensions and select k of these new dimensions. 
A popular technique to do the latter is principal component analy-
sis (PCA), where we analyze the data and come up with the most 
informative components (dimensions).

Normally the reduction is performed for much higher dimen-
sionalities but to visualize the process let us consider an example 
where three dimensional data is reduced to two dimensions. As 
mentioned above, the main idea is to capture the most informative 
dimensions. Figure 9a shows a set of data points in three dimen-
sions (features). The data points roughly constitute a plane and 
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this fact is shown in Fig. 9b where the same data points are viewed 
from another angle. This means that the distinction between the 
data points can be represented in 2D and a third dimension does 
not add much information to this distinction because all the data 
points have approximately the same value on that dimension. The 
reader should note that selecting two features of the original data 
does not accomplish the desired reduction because the plane that 
the data is on, i.e., the redundant dimension is not one of the origi-
nal x, y and z dimensions (axes) but a combination of these. PCA 
helps us to transform our data to a new set of three dimensions and 
in that space we can omit the redundant dimension to obtain a new 
2D dataset (Fig. 9c).
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Fig. 9 3D to 2D dimensionality reduction example. (a) A set of data points in three dimensions (features). 
(b) The same data points viewed from another angle to emphasize that the points roughly constitute a plane. 
(c) 2D data points after the redundant dimension is removed with principal component analysis (PCA)
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Randomization is required to ensure that the result of the learning 
process is independent of the selection of training data [11]. This 
is a typical problem in real-world experiments. For instance, a part 
of some measurement data may have been taken when the device 
was in a certain state (slightly different tuning etc.).

As mentioned earlier, we need to divide our training data to 
obtain the training and validation sets (after sparing some part as 
the test set). We would like to ensure the random sampling of these 
sets from the data we have. If the dataset is large enough, we can 
randomly divide it into K parts, and then randomly divide each 
part into two as the training and validation sets. This means we 
repeat the experiment K times. Unfortunately, datasets are rarely 
large enough to do this. So randomization is accomplished by 
repeated use of the same data split differently; this is called 
cross-validation.

Illustrated in Fig. 10 for K = 4, the dataset is divided randomly into 
K equal-sized parts. Then, K − 1 parts are used to train a set of 
models and the remaining part is used as a validation set to evaluate 
those models. This procedure is repeated for all K possible choices 
[12]. As K increases, the percentage of the training set increases 
and we get more robust estimators, but the validation set becomes 
smaller. Therefore, a K value that ensures randomization is a good 
choice and larger values should be avoided.

Let us first introduce the so-called confusion matrix (Table 1). 
As shown at the bottom-right portion of the table, there are four 
possible cases. For a positive example, if the prediction is also posi-
tive, it is a true positive; if our prediction is negative for an actually 

2.4 Randomization 
and Cross-validation

2.4.1 K-Fold 
Cross-validation

2.5 Robust 
Performance Metrics

2.5.1 Precision–Recall

Fig. 10 Illustration of the partition of the dataset for K-fold Cross-Validation with K = 4

Table 1 
The so-called confusion matrix shows the four possible situations that can occur according to the truth 
values of the actual and the predicted class

Predicted class label Actual positive Actual negative

Actual class label +1 −1

Predicted positive +1 True positive False positive

Predicted negative −1 False negative True negative
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 positive example, it is a false negative. For a negative example, if 
the prediction is also negative, we have a true negative, and we 
have a false positive if we predict a negative example as positive.

For the cancer diagnosis example, where “positive” denotes 
having cancer, a false positive is wrongly making a cancer diagnosis 
for a healthy patient and a false negative is missing a patient actu-
ally having cancer. Precision tells us what fraction actually has can-
cer of all patients where we predicted “positive.” Recall tells us 
what fraction we correctly detected as having cancer of all patients 
that actually have cancer.

With the definitions above, we can write

 
Precision

True Positives
Predicted Positives

Recall
True Pos

= =
#

#
# iitives
Actual Positives#

.
 

The values in the confusion matrix, as well as precision and 
recall, change as we modify our detection algorithm’s threshold, 
which defines at which probability a sample is labeled as “positive.” 
Different threshold probability values can be chosen for different 
tasks or for preferred behavior regarding the same task.

Precision–Recall (PR) curves are generally used in the commu-
nity for performance evaluation. A typical PR curve is shown in 
Fig. 11, where the circles denote results of trials with different thresh-
olds. Changing the threshold of the algorithm moves us on the curve.

With a low threshold, we tend to predict “positive” for the 
data samples and our recall gets closer to 1 since we miss few actual 
positives (patients with cancer), however our precision is quite low 
since there are many false positives. On the other hand, if we 
choose a high threshold and we only predict “positive” for the 
most probable samples, our precision is high since the number of 
true and predicted positives become close to each other. But this 
time, recall is low. Ideally we want to keep both precision and recall 
high, this corresponds to the area under the curve.

Fig. 11 Precision–Recall curve representation. Circles denote results of trials 
with different thresholds
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A measure that was proposed to compare different precision–
recall pairs (different thresholds) is the F score:

F
Precision Recall

Precision Recallb b
b

= +( ) ´
´( ) +

1 2
2

 

Most commonly, F1 score is used (where β = 1). That is the F 
score corresponding to the  harmonic mean of precision and recall:

 
F

Precision Recall
Precision Recall1

2
=

´ ´
+

.
 

To concretize its effectiveness, the F1 score for different algo-
rithms is tabulated in Table 2, where the algorithm having preci-
sion and recall values close to each other has a distinctively higher 
F1 score.

From another perspective but with the same aim, there are the two 
measures of sensitivity and specificity. Sensitivity is the same as 
recall. Specificity measures the proportion of negatives which are 
correctly identified, i.e., true negatives divided by the total number 
of negatives. One can also draw sensitivity vs. specificity curve 
using different thresholds.

Receiver Operating Characteristics (ROC) curve is another graphi-
cal plot to illustrate the performance comparison of different meth-
ods. It is created by plotting, at various thresholds, the fraction of 
true positives out of the positives (TPR = true positive rate) vs. the 
fraction of false positives out of the negatives (FPR = false positive 
rate). TPR is the same as recall and sensitivity; FPR is 1 − specificity.

3 Supervised Machine Learning Methods

A popular classification approach is to model the relationship 
between features and the class of the data points using  probabilities. 
Let us denote the features as xi(i = 1, …,  M) and the feature vector 
for a data point then becomes:

2.5.2 Specificity  
and Sensitivity

2.5.3 ROC Curve

3.1 Probabilistic 
Classification Methods

Table 2 
The F1 scores of three different algorithms used for a detection problem

Precision (P ) Recall (R ) F1 Score

Algorithm 1 0.5 0.4 0.444

Algorithm 2 0.7 0.1 0.175

Algorithm 3 0.02 1.0 0.0392

The algorithm with precision and recall values close to each other has a higher F1 score
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 x = ¼[ ]x x xM1 2, , , .  

We can write, for a data point, the probability of belonging to 
each of the N classes (c1, c2, …, cN) as

 P C c P C c P C cN=( ) =( ) ¼ =( )1 2| , | , , | .x x x  

Given a new data point, it is classified as the class with the 
maximum probability,

 
c P C c and j N

c
j

j

* arg max | , , .= =( ) = ¼x 1
 

The probability for each class can be computed using the 
Bayes’ rule

 

P C
P C P C

P
P C P C

P C c P C c
c C

i i
i

|
| |

|
.x

x
x

x
x

( ) = ( ) ( )
( )

=
( ) ( )

=( ) =( )
Î
å

 

As a toy example for the miRNA identification problem, 
assume that we have received a collection of nucleotide sequences. 
Of these 1,000 are miRNAs and 1,500 are not miRNAs that we 
call negative samples. The nucleotide motif “AGCACU” exists in 
900 of the miRNA sequences and only 50 of the negative samples. 
We will have a single feature x that is equal to 1 if the candidate 
sequence contains “AGCACU” and 0 otherwise. We can compute 
the relevant probabilities as follows:

 
P x C miRNA P x C miRNA= =( ) = -

= = =( ) = =0
1 000 900

1 000
0 1 1

900
1 000

|
,

,
. , |

,
00 9. ,

 

 
P x C negative P x C negative= =( ) = -

= = =( ) =0
1 500 50

1 500
0 967 1

50
|

,
,

. , |
11 500

0 033
,

. ,=
 

 
P C miRNA P C negative=( ) = = =( ) = =

1 000
2 500

0 40
1 500
2 500

0 60
,
,

. ,
,
,

. ,
 

 

P x P x C c P C c
c

miRNA
negative

=( ) = = =( ) =( ) = ´
Î
ì
í
ï

îï

ü
ý
ï

þï

å0 0 0 1 0 4
,

| . . ++ ´ =0 967 0 6 0 62. . . ,

 

 

P x P x C c P C c
c

miRNA
negative

=( ) = = =( ) =( ) = ´
Î
ì
í
ï

îï

ü
ý
ï

þï

å1 1 0 9 0 4
,

| . . ++ ´ =0 033 0 60 0 38. . . .

 

Given these probabilities, it is possible to compute the proba-
bility of each class P(C|x) for a novel candidate sequence as 
follows:
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P C miRNA x

P x C miRNA P C miRNA
P x

= =( ) =
= =( ) =( )
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P C negative x

P x C negative P C negative
P x
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= =( ) =( )
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=
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.
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P C negative x
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= =( ) =( )
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=|

| .
1

1
1

0 0333 0 6
0 38

0 05
´

=
.

.
. .

 

With the calculated probabilities, if a given nucleotide 
sequence contains the word “AGCACU,” it will be classified as 
miRNA because P(C = miRNA|x = 1) > P(C = negative|x = 1).

Since we are taking the maximum over the classes, the P(x) 
term in the denominator does not affect the predicted class and we 
can simplify the classification rule. It can be directly written as:

 
c P C c P C c and j N

c
j j

j

* arg max | , , .= =( ) =( ) = ¼x 1
 

During training P(x|C) and P(C) are estimated from the train-
ing data points for each class.

When the features are continuous, there are many ways to 
model the probability P(x|C). Parametric models assume a par-
ticular form for the probability that is controlled by several param-
eters as shown in Fig. 12a. A commonly used model is the Gaussian 
distribution N mm,S( )  controlled by its mean μ and covariance 
matrix Σ. The control parameters can be estimated from the train-
ing data. If a single Gaussian distribution is too simple to model 
the feature distribution, a mixture of Gaussians can be estimated 
by the Expectation Maximization (EM) technique [18]. The 
mixture is formed by a weighted sum of Gaussian distributions as 

i

K

k k k
=
å ( )

1

a mN ,S , where αk are the mixing coefficients that weigh 

the contribution from each Gaussian component. Unlike a single 
Gaussian, a mixture model can have multiple modes and therefore 
it is more general.

Another alternative is to model the probability P(x|C) with 
nonparametric methods that do not have control parameters. 
A histogram over the feature space can estimate the data density in 
various regions of the partitioned feature space. As illustrated in 
Fig. 12b, by weighting the contribution from each sample over a 
range of histogram bins, the computed histogram can be smoothed 
to reduce errors in the sparsely populated regions of the feature 
space.
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One common way to simplify the modeling of the joint feature 
probability P(x|C) is to assume independence between features. 
In exact form, we can write

 P C P x x x C P x x x C P x CM M Mx | | , , , | , , , , , | .( ) = ¼( ) × ¼( ) ¼ ( )1 2 2 3  

If we assume independence between features x1, …, xM then the 
joint probability reduces to

 
P C P x C P x C P x C P x CM

j

M

jx | | | , , | | .( ) @ ( ) × ( ) ¼ ( ) = ( )
=
Õ1 2

1  

This simplification is called the naïve Bayes assumption and a 
classifier using such a model is called a naïve Bayes classifier. 
Although the independence assumption is quite strong and does 
not hold in general, naïve Bayes classifiers perform remarkably well 
for a wide range of problems. Moreover, the training can be very 
efficiently performed since each feature probability can be com-
puted independently.

The independence assumption can improve training accuracy by 
reducing the number of model parameters that needs to be estimated. 
Consider a learning problem with F features that are real numbers. If 
the full joint probability is modeled as a multidimensional Gaussian, 
then (F2 + 3F)/2 parameters are required to represent the mean and 

3.1.1 Naïve Bayes

Fig. 12 Modeling P(x|C) from the training data (the crosses and the circles). 
(a) Parametric models (such as the Gaussian curves depicted above) are func-
tions that are controlled by a set of control parameters. The values of these 
parameters are estimated from the training data points. (b) Nonparametric mod-
els are histograms that are computed by separating the input feature space into 
distinct bins. Each training data point contributes to several bins around itself 
according to a local weighting function
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the covariance matrix. With the naïve Bayes assumption, this reduces 
to 2F parameters since each feature probability can be modeled by a 
one-dimensional Gaussian distribution. Hence, the model parame-
ters can be more reliably estimated with limited training data.

Still, it is necessary to exercise caution when estimating the 
feature probabilities with a small number of data points. Since the 
feature probabilities are multiplied, a single zero probability for a 
feature can overcome strong evidence from several other features. 
As a precaution, virtual training samples that are uniformly distrib-
uted across the feature space and the classes can be used to make 
sure that no feature probability is ever exactly zero.

Naïve Bayes classifiers are also used in the miRNA identifica-
tion task [6]. For a chosen dictionary of M nucleotide words that 
are likely to be present in miRNAs, a binary feature wi represents 
whether word i exists in the nucleotide sequence, i.e., wi = 1 if the 
word i is part of the sequence, wi = 0 otherwise. For each such fea-
ture, the probabilities P(wi = 0|C = miRNA), P(wi = 1|C = miRNA), 
P(wi = 0|C = negative), and P(wi = 1|C = negative) are all estimated 
from a large sample of miRNA positive and negative examples. 
Given the words in a novel candidate sequence, a feature vector 
w = [w1, w2, …,  wM] can be extracted. The joint probabilities for 
both the “miRNA” and “negative” classes can be calculated as

 

P C miRNA
i

M
P wi C miRNA and

P C negative
i

M
P wi

w

w

| |

|

= =
=
Õ =

= =
=
Õ

( ) ( )

( )
1

1
|| .C negative=( )

 

The larger of these probabilities determines the label of the 
candidate nucleotide sequence. Of course, in an actual miRNA sys-
tem, more complex features determined by experts are included in 
the statistical model (see Chapters 9, 10, and 12 and [6]).

The probabilistic approach outlined above first models the 
class conditional probabilities P(x|C) then bases its classification 
estimates on the class with the maximum probability. In the case of 
a binary classification problem this amounts to first computing 
the ratio

 
g =

=( )
=( )

P C c
P C c

x
x

|
|

.1

2  

And then, choosing c1 if γ > 1, and c2 otherwise. The region of 
the feature space where γ = 1 forms the decision boundary.

Depending on the form of P(x|C), the decision boundary can 
be very complex or just a simple hyper-plane. A hyper-plane in a d 
dimensional space is a d − 1 dimensional flat region with the equa-
tion a1x1 + a2x2 + ⋯ + adxd = aTx = c. A hyper-plane in two dimensions 

3.2 Linear 
Discriminant 
Functions
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is a line and a hyper-plane in three dimensions is a plane. If P(x|C) 
is a Gaussian distribution with the same covariance matrix Σ for 
both classes then the decision boundary is exactly a hyper-plane 
[12]. This linear decision boundary can be written as

y = aTx + c, with a = Σ− 1(μ1 − μ2) and c = - +- -1
2

1
21

1
1 2

1
2mm mm mm mmT TS S .

In case the form of P(x|C) is not Gaussian, we can still exploit the 
formulation above to find a linear separation boundary that distin-
guishes between the classes in an optimal way. Fisher’s linear dis-
criminant method achieves this by projecting the input data points 
onto a hyper-plane such that their data distributions are as far  
apart from each other as possible. The projection that maximizes  
the  separation between distributions is given as y = aTx with 
a = (Σ1 + Σ2)− 1(μ1 − μ2). Note that the data distributions do not need 
to have the same covariance matrix. If they do, then the Fisher’s 
linear discriminant is equivalent to the Gaussian formulation above. 
Once the data is projected into one dimension y, a threshold is com-
puted so that the prediction error is minimized on the training data. 
Both the Fisher’s linear discriminant and the Gaussian formulation 
above can be easily generalized for multi-class classification problems.

For two linearly separable classes with unknown distributions, 
there is no unique decision boundary. As long as the selected 
hyper-plane separates the training samples of the two classes, it can 
be chosen as the decision boundary. However, it is prudent to 
select a decision boundary that does not pass too close to the train-
ing samples to account for the limited training data and errors in 
data collection.

Support Vector Machines (SVMs) rely on maximizing the mar-
gin of error to select the best hyper-plane. The margin is deter-
mined by a set of hyper-planes parallel to the decision boundary on 
the positive and negative sides of the discriminant function each at 
the same distance to the boundary as depicted by Fig. 13. When 
the margin is maximized, the training data points that are closest to 
the decision boundary are on the margin hyper-planes. These 
training data points are called the “support vectors.”

Since the margins and the decision boundary are only deter-
mined by the support vectors, the SVM classification rule can be 
written as a function of these points. If we have a two class problem 
and we label the classes with {−1, + 1}, the ith training data point 
can be written as Xi = {xi,yi}, where xi is the feature vector and 
yi ∈ {−1, + 1} is the supervised class label. The support vector deci-
sion boundary corresponds to the hyper-plane equation γ = wTx + c 
and the weight vector is given by w x= å

i

i i iya  with αi = 0 for the 

training samples that are not support vectors.
In practice, it is usually not possible to completely separate all 

training samples by a hyper-plane and some training samples can end 
up on the wrong side of the decision boundary or within the margin. 

3.2.1 Fisher’s Linear 
Discriminant

3.3 Support Vector 
Machines
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The SVM formulation is softened to allow such data points. A com-
plexity parameter, usually denoted by C, controls how much these 
points are penalized. A higher penalty means a more complex model 
with potentially more support vectors. The value of this parameter 
should be set using a validation dataset as discussed before.

Most real-world problems involve data distributions that are not 
linearly separable. One possible approach around this problem is to 
perform a nonlinear transformation of the input features into a 
higher dimensional space as x → Φ(x). This transformation can 
make the class data distributions linearly separable. Then the linear 
SVM can be trained in the new space since the linear decision 
boundary in this space corresponds to a nonlinear curve in the 
original feature space as illustrated by Fig. 14.

The SVM formulation is particularly suitable to this kind of 
transformation since the feature vectors always appear in the form 
of dot products of two data points as K x x x x, Tˆ ˆ( ) = . This dot 
product is called a “kernel” and it is a measure of similarity between 
the two data points x  and x̂ . So even if the transformation Φ(x) is 
complex and very high dimensional, after the transformation the 
dot product K x x x x, Tˆ ˆ( ) = ( ) ( )F F  may have a simple form. 
Indeed, the form of K x x, ˆ( )  can be set directly without ever com-
puting the nonlinear mapping Φ(x), provided that the kernel form 
satisfies some mathematical constraints [19].

For example, the Gaussian kernel can be written as 

K ex x
||x x||

, ˆ
ˆ

( ) =
-

- 2

22s . Other kernels that are commonly used are the 
polynomial, the sigmoid and the radial basis function (RBF) ker-
nels. Since each kernel corresponds to a different nonlinear trans-
formation of the input space, it is not possible to know which one 
will be the best choice for a particular machine learning problem. 
Also kernels usually have parameters that define the shape and the 
complexity of the nonlinear transformation such as σ  for the 
Gaussian kernel. Both the type and the parameters of the kernel 
should be selected using a validation set as described before in 
Subheading 2.3.

3.3.1 Kernels

Fig. 13 The decision boundary of an SVM (the solid line) is determined by the 
support vectors (the lighter circles and crosses) that lie on the margin hyper-
planes (the dashed lines). The support vectors and the decision boundary are 
selected to maximize the margin
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4 Conclusion

Machine learning techniques provide exciting new ways to exploit 
the available computational power and data in a variety of scientific 
domains. They can analyze huge amounts of data in a relatively 
short time that is not possible by manual labor. This provides 
opportunities for scientists to develop new experimental proce-
dures and to channel their efforts on the most promising questions 
of their problem domain.

However, automated solutions are not a replacement for good 
scientific judgment. Like any other tool, a machine learning tech-
nique needs to be utilized in a careful manner to make the most 
out of its use. It is better to start with the simpler methods to judge 
problem difficulty and to gain more insight about algorithm behav-
ior. It is also important to try a few different algorithms and com-
pare their performances. As discussed in Subheading 2, experiments 

Fig. 14 Nonlinear transformations can linearize the decision boundary between 
classes. (a) In the original feature space, the classes are not linearly separable. 
(b) Each feature value is squared to perform a nonlinear mapping of the data 
points. In the transformed feature space, the decision boundary is a simple line
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to test the generalization ability of a model should be designed 
properly considering the important aspects such as choosing the 
training samples and randomization.
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