
105

Malik Yousef and Jens Allmer (eds.), miRNomics: MicroRNA Biology and Computational Analysis, Methods in Molecular Biology,
vol. 1107, DOI 10.1007/978-1-62703-748-8_7, © Springer Science+Business Media New York 2014

Chapter 7

Introduction to Machine Learning

Yalın Baştanlar and Mustafa Özuysal

Abstract

The machine learning field, which can be briefly defined as enabling computers make successful predictions
using past experiences, has exhibited an impressive development recently with the help of the rapid increase
in the storage capacity and processing power of computers. Together with many other disciplines, machine
learning methods have been widely employed in bioinformatics. The difficulties and cost of biological
analyses have led to the development of sophisticated machine learning approaches for this application
area. In this chapter, we first review the fundamental concepts of machine learning such as feature assess-
ment, unsupervised versus supervised learning and types of classification. Then, we point out the main
issues of designing machine learning experiments and their performance evaluation. Finally, we introduce
some supervised learning methods.

Key words Machine learning, Supervised learning, Unsupervised learning, Clustering, Classification,
Regression, Model complexity, Model evaluation, Performance metrics, Dimensionality reduction

1 Introduction

In many scientific disciplines, the primary objective is to model
the relationship between a set of observable quantities (inputs)
and another set of variables that are related to these (outputs).
Once such a mathematical model is determined, it is possible to
predict the value of the desired variables by measuring the
 observables. Unfortunately, many real-world phenomena are too
complex to model directly as a closed form input–output relation-
ship. Machine learning provides techniques that can automatically
build a computational model of these complex relationships by
processing the available data and maximizing a problem depen-
dent performance criterion. The automatic process of model
building is called “training” and the data used for training pur-
poses is called “training data.” The trained model can provide new
insights into how input variables are mapped to the output and it
can be used to make predictions for novel input values that were
not part of the training data.

1.1 What Is Machine
Learning?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

106

To be able to learn an accurate model, machine learning
 algorithms often require large amounts of training data. Therefore,
an important first step in using machine learning techniques is to
collect a large set of representative training examples and store it in
a form that is suitable for computational purposes. Recent advances
in digital data gathering, storage, and processing capacity have
made the application of machine learning possible in many domains
such as medical diagnosis, bioinformatics, chemical informatics,
social network analysis, stock market analysis, and robotics.

There is usually more than one computational model that can
be trained for a given machine learning problem. Unfortunately,
there is no fixed rule to select a particular model or an algorithm.
The performance of a specific model depends on many factors such
as the amount and quality of training data, the complexity and
form of the relationship between the input and output variables,
and computational constraints such as available training time and
memory. Depending on the problem, it is often necessary to try
different models and algorithms to find the most suitable ones.
Fortunately, there are standard software packages that combine
different algorithms into the same framework such as [1–4]. Once
the available data is prepared in a suitable format, these packages
make it simpler to try the different alternatives.

As an example, consider the problem of labeling a candidate
nucleotide sequence as miRNA or not. One simple approach would
be to determine a set of short nucleotide sequences that are parts
of the known miRNA and non-miRNA sequences and to construct
a set of rules based on the existence of these nucleotide “words.”
For example, one such rule can state that a sequence containing
“AGCACU” is more likely to be a miRNA than not. Then one
could simply label candidate sequences using these rules. In prac-
tice, constructing such a rule based system is very difficult as there
are many possible nucleotide words and the mapping is very com-
plex. Instead of manually specifying a complex set of rules, machine
learning methods can automatically build a statistical model using
these nucleotide words. These models can then be trained using
large samples of biological data since the training process is auto-
mated. For machine learning, such rules (here a nucleotide hex-
amer) are determined from features which need to be defined for
the input data.

The observable quantities that are input to a machine learning
algorithm are called “features.” The algorithm learns a mapping
from these features to the desired output variables by tuning the
model parameters using the available training data. Therefore, it is
important that the features are relevant to the prediction of the
outputs.

For some machine learning problems, there are thousands of
features that can be used to predict the output variables, e.g., gene

1.2 What Are
Features?

Yalın Baştanlar and Mustafa Özuysal

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

107

expression in microarray experiments can be considered as features
(see Chapters 6, 17, and 18). However, using all available features
may not be the best approach. Features that are loosely related to
the output might adversely affect the learning process by decreas-
ing the effect of the important ones. Features that are strongly
coupled with other features do not provide extra information and
unnecessarily bias the result. These can further lower training per-
formance by straining computational resources such as time and
memory.

The first step in selecting good features is using expert judg-
ment. An expert that knows the problem domain well can select a
compact set of relevant features for input to the machine learning
algorithm. This is especially important in the data gathering stage
since collecting training data can be time consuming and costly.
However, extra caution is required not to eliminate potentially
important features. It is important to note that feature selection
and extraction requires experience and is often an iterative process.
As additional insight into the problem is gained, it might be neces-
sary to add or remove features to improve the performance [5].
It is also possible to automate this feature selection and extraction
process. Such automated techniques are detailed in Subheading 2.5.

For the miRNA identification problem, features can be the
existence or the frequency of a selected set of nucleotide sequence
“words” of small length within the candidate sequence. Again it is
important to include all the available information that might help
with the prediction. So in actuality, more features such as those
that describe the number of base pairs, bulges, loops and asymmet-
ric loops in different parts of the candidate sequence may also be
included in the analysis [6].

After features, that well model the problem, have been defined,
machine learning algorithms need to be chosen and in the field of
miRNA detection supervised methods have been applied widely
(see Chapters 10, 12, and 15–18).

Machine learning techniques can be broadly classified into two
main categories depending on whether the output values are
required to be present in the training data.

Unsupervised learning techniques require only the input feature
values in the training data and the learning algorithm discovers hid-
den structure in the training data based on them. Clustering tech-
niques that try to partition the data into coherent groups fall into
this category. In bioinformatics, these techniques are used for prob-
lems such as microarray and gene expression analysis. In general,
market segment analysis, grouping people according to their social
behavior, and categorization of articles according to their topic are
popular tasks involving clustering. Typical clustering algorithms are
K-means [7], hierarchical clustering [8], and spectral clustering [9].

1.3 What Is
Unsupervised Versus
Supervised Learning?

1.3.1 Unsupervised
Learning

Introduction to Machine Learning

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

108

It is not possible to directly measure the performance of clustering
because the correct output labels are not known a priori. Instead,
the performance depends on whether interesting trends in the data
have been captured by the clusters or not. Since the output labels
are not needed, it is often easier to collect a large training dataset for
unsupervised algorithms.

Figure 1a shows an example result of clustering using the
K-means algorithm. Let us briefly explain the steps of the algo-
rithm. Firstly, user needs to define the number of clusters and ini-
tializes the centroid of each cluster (usually performed in a random
manner). Then, each sample is assigned to the closest cluster cen-
troid (cluster assignment step) and cluster centroids are recom-
puted using assigned samples (move centroids step). These two
steps are iteratively performed until no further changes occur.
Hopefully, in the end the clusters are well separated. However,
K-means can get stuck in local optimum due to an unlucky initial-
ization. Also, it is not very effective when the number of clusters
(K) is not clear.

Hierarchical clustering is more suitable for the cases where the
clusters are not well separated, i.e., the number of clusters is not obvious.

Fig. 1 Unsupervised clustering of data points (marked with circles). (a) The
K-means algorithm groups the data into a given number of clusters (K) such that
each data point is closer to the mean of its own cluster (depicted by plus signs)
than any other cluster’s centroid. (b) The hierarchical clustering method performs
multiple rounds of clustering; merging the closest clusters or dividing the clus-
ters of points at each round. The resulting clusters can be analyzed at multiple
scales to find meaningful structures in the data distribution

Yalın Baştanlar and Mustafa Özuysal

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

109

It performs multiple rounds of clustering; merging the closest clusters
or divides the clusters at each round. Figure 1b shows a so-called den-
drogram which can represent the result of hierarchical clustering. Any
desired number of clusters can be obtained by “cutting” the dendro-
gram at the desired level.

Supervised learning methods require the value of the output vari-
able for each training sample to be known. As a result, each train-
ing sample comes in the form of a pair of input and output values.
The algorithm then trains a model that predicts the value of the
output variables from the input variables using the defined features
in the process. If the output variables are continuous valued then
the predictive model is called a “regression function.” For exam-
ple, predicting the air temperature at a certain time of the year is a
regression problem. If the output variables take a discrete set of
values then the predictive model is called a “classifier.” A typical
classification problem is automated medical diagnosis for which a
patient’s data need to be classified as having a certain disease; or
whether a given input is a miRNA. Figure 2 illustrates these two
kinds of problems.

For supervised learning problems, it is possible to quantify the
performance of the learned model by measuring the difference
between the known output values and the predicted ones. However,
the error for this performance evaluation must not be measured on
the training data but on a separate test set. This ensures that the
algorithm performance on novel data can be estimated correctly
and gives an idea about the generalization of the learned model.
The training and test procedures are discussed in more detail in
Subheading 2.2.

1.3.2 Supervised
Learning

Fig. 2 Supervised machine learning problems. (a) In a classification problem, the
training data belongs to one of several possible classes (the solid circles or
crosses). A decision boundary (the curve) that best separates these data points
is learned during training. At testing time, a novel data point (dashed circle) is
classified as belonging to one of the classes depending on which side of the
decision boundary it is on. (b) The goal in regression problems is to find a map-
ping from the inputs to the continuous output variable. A regression function (the
solid curve) is fit to the training data (the solid circles). Afterwards it can be used
to transform novel inputs (the cross) into output predictions (the dashed circle)

Introduction to Machine Learning

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

110

Since it is much easier to gather unlabeled data, there are also
semi-supervised learning methods that combine a small supervised
training dataset with a larger unsupervised one. While training a
predictive model, these algorithms can exploit both the supervised
output values and the data distribution in the unlabeled data.
However, these algorithms make additional assumptions to take
advantage of the unlabeled data, which may or may not be suitable
for the problem at hand [10].

As pointed out above, supervised learning with discrete results
is called classification and the number of expected classes affects
the choice of machine learning algorithm.

There are many machine learning problems with the objective of
classifying the inputs into one of two categories. Often one cate-
gory represents data points with a special property and the other
category plays the role of a “background” class that includes every-
thing else. Usually, the class representing the category of interest is
termed the “positive” class and the background class is called the
“negative” one. The miRNA identification problem is such an
example with a category that represents miRNA sequences and
another representing those that are not.

Classifiers that use machine learning techniques are often
designed for such binary classification problems. This greatly sim-
plifies their design and analysis. During training, these classifiers
learn a decision boundary (see Fig. 2a) in the feature space that
separates data points of the two classes as well as possible. Once the
training is complete, they can predict the class of a new data point
by comparing its location in the feature space with the learned
decision boundary.

When there are more than two possible classes, the classifica-
tion problem is said to be multi-class. Some machine learning tech-
niques such as Decision Trees (DTs) can naturally handle the
existence of multiple classes. Others such as Support Vector
Machines (SVMs) can only handle binary problems in their origi-
nal design. There are several ways to extend a binary classifier to
handle multiple classes. A general approach is to turn a multi-class
problem into multiple binary classification problems each in the
form of “one class against all the others.” When classifying test
data, all binary classifiers are evaluated and the one with the high-
est confidence score wins (Fig. 3).

For some classification problems, it is not possible to collect reli-
able data belonging to one of the classes. Assume that you are
working on diagnosing a rare type of cancer using some features
obtained from the body cell. To do that, you develop a machine
learning algorithm which would give “positive” as a result when
the patient has cancer. To perform an effective training for your
algorithm you would try to collect as many samples as possible.

1.4 What Are
Multi-class, Binary
Classifications, and
One-Class Density
Estimation?

1.4.1 One Class Density
Estimation

Yalın Baştanlar and Mustafa Özuysal

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

111

However, in such a case, you probably would end up with many
more “negative” samples than the “positive” ones. In other words,
your dataset does not have a balanced amount of samples from
 different classes.

Estimation of one-class densities is also referred to as “anomaly
detection” since the rare class indicates an anomaly within the huge
amount of “normal” samples. Labeling a sample as “normal” is not
as easy as labeling an “anomalous” one, because concealed anoma-
lies may exist. A machine learning algorithm in such a case is trained
to discover the common properties of the normal class to distin-
guish the anomalous samples from the rest.

For example, microRNAs can be identified experimentally but
it is not currently feasible to clearly state that a given hairpin from
a genome is not a miRNA (see Chapter 10) so the miRNA classifi-
cation problem is also essentially a one class density estimation
problem.

2 Design of Machine Learning Experiments

When given a dataset and a machine learning technique, we need to
perform experiments to examine if the algorithm is working properly
on the data and to gain insight on how to improve its performance.

2.1 Model
Complexity and
Generalization

Fig. 3 Multi-class classification. (a) Some classification algorithms can handle
multiple classes naturally to fit a complex decision boundary that separates all
the classes from each other. (b–d) Some algorithms are designed to work with
only two classes. In this case a multi-class problem can be decomposed into
several binary classification problems with separate decision boundaries

Introduction to Machine Learning

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

112

We evaluate several hypotheses (models) to choose the best among
them and this process is called model selection.

We consider the fact that the aim of a machine learning algo-
rithm is to generate the correct output for sample data points out-
side the training set. The ability of the model to predict correct
output for new samples after trained on the training set is defined
as generalization. For best generalization, we should match the
complexity of the model with the complexity of the function
underlying the data [11].

To give a concrete example, let us consider a regression prob-
lem to predict the price of a house when its size is given. For the
sake of simplicity, the size is the only feature in this example. In
Fig. 4, crosses represent the data that we use to train our model
and three models (hypotheses) with different complexities are
shown with solid lines/curves.

If the hypothesis is not complex enough to model the samples,
we have underfitting. Figure 4a shows the result of fitting a line to
the data sampled from a high order polynomial. As we increase the
complexity (the number of θ parameters) of our model, the train-
ing error decreases and we reach a better fit as shown in Fig. 4b.
The error, here, can be defined as the sum of the squared distances
between the data samples and the polynomial model (Fig. 5).

Fig. 4 Three hypotheses with different complexities for the house price prediction
problem. (a) Underfit, hypothesis is a line. (b) Proper fit, hypothesis is a second
degree polynomial. (c) Overfit, hypothesis is a fifth degree polynomial

Yalın Baştanlar and Mustafa Özuysal

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

113

On the other hand, if the hypothesis is too complex and the
data are not enough to constrain it, we may again end up with an
improper model. For example, fitting a fifth order polynomial to
some data sampled from a lower order polynomial (Fig. 4c). This
is called overfitting. The hypothesis may fit the training set very
well and we have quite low training error, however it fails to gen-
eralize to new samples (predicting prices of other houses).

For a given model complexity, the overfitting problem becomes
less severe as the size of the dataset increases [12]. Ideally, when we
have enough samples, a higher order polynomial becomes close to
a lower order polynomial after training, so it resembles a proper fit.
However, in most cases we cannot guarantee the sufficiency of
data. Moreover, most of the time, the complexities of the model
and data distribution cannot be visually compared like in this toy
example. Therefore, we use other methods to evaluate the model
as we will see in the following.

As explained previously, the generalization ability of a model can
only be evaluated using samples outside the training set. To respect
this requirement, we usually divide the training data into two parts.
We use one part for training (e.g.: fitting a polynomial), and the
remaining part is used to compute the error for that model to test
its generalization.

The first part is called the training set and usually represents
the bigger portion of the data (say 70 %). The second part is called
the validation set. The model that gives the least error on the vali-
dation set is assumed to be the best.

In our regression example, to find a proper degree of the
polynomial (this is the complexity of our model), we evaluate a
number of candidate polynomials of different degrees (d), and
find the coefficients (θ) using the training set for each of these
polynomials (hypotheses/models). Let us denote the parameters

2.2 Using the
Dataset for Evaluation

Fig. 5 The representation of the regression error. Dashed lines show the distances
between the data samples and the polynomial. The error is the sum of the
squares of these distances. Note that these are not the shortest distances to
the model but the distances in y coordinate. This is correct since our estimate is
the y coordinate (price) for a given x coordinate (size)

Introduction to Machine Learning

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

114

for the ith order polynomial with θ(i). Figure 6 shows some of the
candidate polynomials with different degrees. The next step is to
compute the errors of these models on the validation set, and
take the one that has the least validation error as the best poly-
nomial. Let us say the model with d = 3 and θ(3) generated the
lowest error. In this case, we choose the third order polynomial
as our model.

Although we have chosen the best performing model, we still
do not know the real performance of the model since we have used
the training set to estimate the parameters and the validation set to
decide on the model complexity d (which is essentially a parameter
as well). The test should contain new data. Therefore, while report-
ing the expected performance of our trained model, we use a third
set, the test set, containing examples not used in training or
validation.

In practice, most of the data is used for training and about one
fifth for validation and again one fifth for testing (Fig. 7). Referring
to our regression example, if we chose a third order polynomial as
our model then, computing the error of θ(3) on the test set gives us
a fair error measure of the selected model.

In short, a model with high bias is an “underfit” one and a model
with high variance is an “overfit” one. To better visualize the

2.2.1 Bias Versus
Variance

Fig. 6 Candidate models with different degrees for the polynomial regression problem. In this example, we
evaluate polynomials with degree from 1 to 5

Fig. 7 Approximate distribution of the entire dataset for training, validation, and test sets

Yalın Baştanlar and Mustafa Özuysal

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

115

relationship between training and validation (generalization)
errors, let us examine Fig. 8. Starting from a less complex model,
as the complexity of the model increases, the training error
decreases since the model fits better to the data. When we con-
sider the error on the validation set, it initially decreases as it pos-
sibly fits better to the validation set as well. But then, as we move
further to more complex models it increases again. High variance
(fluctuations on the polynomial) in the complex models causes a
poor fit (overfitting) for the novel data in the validation set. The
bottom of the bowl on the validation error curve is the point
where the generalization error is the minimum.

The polynomial regression example in the previous section had just
one input variable (x). For practical applications of machine learn-
ing, on the other hand, we have to deal with spaces of high dimen-
sionality consisting of many input features [12].

This multivariate structure of the data generally causes prob-
lems for computation or visualization, and therefore this situation
is referred to as the curse of dimensionality [13].

Dimensionality reduction is one of the major tasks in the anal-
ysis of multidimensional data, which is the step that we decrease
the number of dimensions/features. The main motivations for
performing dimensionality reduction are the following:

 ● Computation is faster with fewer features. Genomic data can
be given as an example. If all the genes in a genome are con-
sidered as features, then we would have several thousand
features.

2.3 Dimensionality
Reduction

Fig. 8 Training and validation error curves for increasing model complexity. Simple models (small d in our
example) have the risk of high bias, where the error is high both in training and validation sets. Complex mod-
els have the risk of high variance (fluctuations on the polynomial), where the training error is low since the
model fits better to the training data, but the validation error is high

Introduction to Machine Learning

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

116

 ● If we find out that one or more features are not discriminative,
eliminating them saves time, effort, and increases prediction
accuracy.

 ● Two or three dimensional projections help us (1) to visually
represent our data to gain insight, (2) to screen data for obvi-
ous outliers and (3) to observe cluster tendencies when using
unsupervised learning.

Since we wish to minimize the information loss to be caused by
dimensionality reduction, we try to eliminate the least distinctive/
informative features. For instance, a feature that is highly corre-
lated with another one can be considered as redundant.

There are two main methods for reducing dimensionality: fea-
ture selection and feature extraction. In feature selection, we find k
of the d dimensions (features) that give us the most information
and we eliminate the other dimensions. Feature selection methods
can be roughly divided into two categories: filters and wrappers.
Filters extract feature relevancies via various scoring techniques
without using a learning model and select a subset of features using
these scores. Filters are computationally simple and fast. Some of
the popular filter approaches are mutual information [14], chi-
square [15], and information gain [16].

Wrappers, on the other hand, conduct a search for good fea-
tures using the learning algorithm itself as part of the function
[17]. Wrapper techniques provide interaction between feature sub-
set and learning model, but are computationally expensive when
compared to filters. The two approaches here are forward selection
and backward elimination. Forward selection refers to a search that
begins with an empty set of features. At each step, for all features,
we add a feature in the feature subset and we train our model on
the training set and calculate error on the validation set. Then, we
choose the feature which causes the greatest decrease in error and
permanently put it in the feature subset. This continues until no
further improvement occurs. In backward elimination, we start
with the full set of features and we remove one feature at a time.
We eliminate the one, removing of which causes the least error
increase [11].

In feature extraction, we transform the original d dimensions
to a new set of dimensions and select k of these new dimensions.
A popular technique to do the latter is principal component analy-
sis (PCA), where we analyze the data and come up with the most
informative components (dimensions).

Normally the reduction is performed for much higher dimen-
sionalities but to visualize the process let us consider an example
where three dimensional data is reduced to two dimensions. As
mentioned above, the main idea is to capture the most informative
dimensions. Figure 9a shows a set of data points in three dimen-
sions (features). The data points roughly constitute a plane and

Yalın Baştanlar and Mustafa Özuysal

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

117

this fact is shown in Fig. 9b where the same data points are viewed
from another angle. This means that the distinction between the
data points can be represented in 2D and a third dimension does
not add much information to this distinction because all the data
points have approximately the same value on that dimension. The
reader should note that selecting two features of the original data
does not accomplish the desired reduction because the plane that
the data is on, i.e., the redundant dimension is not one of the origi-
nal x, y and z dimensions (axes) but a combination of these. PCA
helps us to transform our data to a new set of three dimensions and
in that space we can omit the redundant dimension to obtain a new
2D dataset (Fig. 9c).

a b

c

–1000

–1000–1000

–500

0

500

1000
1000

0

–1000

–500
0

500
1000

1000
1000

800

600

400

200

0

–200

–400

–600

–800

–1000

500 0 –500 –1000 –500 0 500 1000

–1000

–800

–600

–400

–200

0

200

400

600

800

1000

–500 0 500 1000

Fig. 9 3D to 2D dimensionality reduction example. (a) A set of data points in three dimensions (features).
(b) The same data points viewed from another angle to emphasize that the points roughly constitute a plane.
(c) 2D data points after the redundant dimension is removed with principal component analysis (PCA)

Introduction to Machine Learning

388

389

390

391

392

393

394

395

396

397

398

399

118

Randomization is required to ensure that the result of the learning
process is independent of the selection of training data [11]. This
is a typical problem in real-world experiments. For instance, a part
of some measurement data may have been taken when the device
was in a certain state (slightly different tuning etc.).

As mentioned earlier, we need to divide our training data to
obtain the training and validation sets (after sparing some part as
the test set). We would like to ensure the random sampling of these
sets from the data we have. If the dataset is large enough, we can
randomly divide it into K parts, and then randomly divide each
part into two as the training and validation sets. This means we
repeat the experiment K times. Unfortunately, datasets are rarely
large enough to do this. So randomization is accomplished by
repeated use of the same data split differently; this is called
cross-validation.

Illustrated in Fig. 10 for K = 4, the dataset is divided randomly into
K equal-sized parts. Then, K − 1 parts are used to train a set of
models and the remaining part is used as a validation set to evaluate
those models. This procedure is repeated for all K possible choices
[12]. As K increases, the percentage of the training set increases
and we get more robust estimators, but the validation set becomes
smaller. Therefore, a K value that ensures randomization is a good
choice and larger values should be avoided.

Let us first introduce the so-called confusion matrix (Table 1).
As shown at the bottom-right portion of the table, there are four
possible cases. For a positive example, if the prediction is also posi-
tive, it is a true positive; if our prediction is negative for an actually

2.4 Randomization
and Cross-validation

2.4.1 K-Fold
Cross-validation

2.5 Robust
Performance Metrics

2.5.1 Precision–Recall

Fig. 10 Illustration of the partition of the dataset for K-fold Cross-Validation with K = 4

Table 1
The so-called confusion matrix shows the four possible situations that can occur according to the truth
values of the actual and the predicted class

Predicted class label Actual positive Actual negative

Actual class label +1 −1

Predicted positive +1 True positive False positive

Predicted negative −1 False negative True negative

Yalın Baştanlar and Mustafa Özuysal

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

t1.1

t1.2

t1.3

t1.4

t1.5

t1.6

t1.7

119

 positive example, it is a false negative. For a negative example, if
the prediction is also negative, we have a true negative, and we
have a false positive if we predict a negative example as positive.

For the cancer diagnosis example, where “positive” denotes
having cancer, a false positive is wrongly making a cancer diagnosis
for a healthy patient and a false negative is missing a patient actu-
ally having cancer. Precision tells us what fraction actually has can-
cer of all patients where we predicted “positive.” Recall tells us
what fraction we correctly detected as having cancer of all patients
that actually have cancer.

With the definitions above, we can write

Precision

True Positives
Predicted Positives

Recall
True Pos

= =
#

#
iitives
Actual Positives#

.

The values in the confusion matrix, as well as precision and
recall, change as we modify our detection algorithm’s threshold,
which defines at which probability a sample is labeled as “positive.”
Different threshold probability values can be chosen for different
tasks or for preferred behavior regarding the same task.

Precision–Recall (PR) curves are generally used in the commu-
nity for performance evaluation. A typical PR curve is shown in
Fig. 11, where the circles denote results of trials with different thresh-
olds. Changing the threshold of the algorithm moves us on the curve.

With a low threshold, we tend to predict “positive” for the
data samples and our recall gets closer to 1 since we miss few actual
positives (patients with cancer), however our precision is quite low
since there are many false positives. On the other hand, if we
choose a high threshold and we only predict “positive” for the
most probable samples, our precision is high since the number of
true and predicted positives become close to each other. But this
time, recall is low. Ideally we want to keep both precision and recall
high, this corresponds to the area under the curve.

Fig. 11 Precision–Recall curve representation. Circles denote results of trials
with different thresholds

Introduction to Machine Learning

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

120

A measure that was proposed to compare different precision–
recall pairs (different thresholds) is the F score:

F
Precision Recall

Precision Recallb b
b

= +() ´
´() +

1 2
2

Most commonly, F1 score is used (where β = 1). That is the F
score corresponding to the harmonic mean of precision and recall:

F

Precision Recall
Precision Recall1

2
=

´ ´
+

.

To concretize its effectiveness, the F1 score for different algo-
rithms is tabulated in Table 2, where the algorithm having preci-
sion and recall values close to each other has a distinctively higher
F1 score.

From another perspective but with the same aim, there are the two
measures of sensitivity and specificity. Sensitivity is the same as
recall. Specificity measures the proportion of negatives which are
correctly identified, i.e., true negatives divided by the total number
of negatives. One can also draw sensitivity vs. specificity curve
using different thresholds.

Receiver Operating Characteristics (ROC) curve is another graphi-
cal plot to illustrate the performance comparison of different meth-
ods. It is created by plotting, at various thresholds, the fraction of
true positives out of the positives (TPR = true positive rate) vs. the
fraction of false positives out of the negatives (FPR = false positive
rate). TPR is the same as recall and sensitivity; FPR is 1 − specificity.

3 Supervised Machine Learning Methods

A popular classification approach is to model the relationship
between features and the class of the data points using probabilities.
Let us denote the features as xi(i = 1, …, M) and the feature vector
for a data point then becomes:

2.5.2 Specificity
and Sensitivity

2.5.3 ROC Curve

3.1 Probabilistic
Classification Methods

Table 2
The F1 scores of three different algorithms used for a detection problem

Precision (P) Recall (R) F1 Score

Algorithm 1 0.5 0.4 0.444

Algorithm 2 0.7 0.1 0.175

Algorithm 3 0.02 1.0 0.0392

The algorithm with precision and recall values close to each other has a higher F1 score

Yalın Baştanlar and Mustafa Özuysal

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

t2.1

t2.2

t2.3

t2.4

t2.5

t2.6

t2.7

121

 x = ¼[]x x xM1 2, , , .

We can write, for a data point, the probability of belonging to
each of the N classes (c1, c2, …, cN) as

 P C c P C c P C cN=() =() ¼ =()1 2| , | , , | .x x x

Given a new data point, it is classified as the class with the
maximum probability,

c P C c and j N

c
j

j

* arg max | , , .= =() = ¼x 1

The probability for each class can be computed using the
Bayes’ rule

P C
P C P C

P
P C P C

P C c P C c
c C

i i
i

|
| |

|
.x

x
x

x
x

() = () ()
()

=
() ()

=() =()
Î
å

As a toy example for the miRNA identification problem,
assume that we have received a collection of nucleotide sequences.
Of these 1,000 are miRNAs and 1,500 are not miRNAs that we
call negative samples. The nucleotide motif “AGCACU” exists in
900 of the miRNA sequences and only 50 of the negative samples.
We will have a single feature x that is equal to 1 if the candidate
sequence contains “AGCACU” and 0 otherwise. We can compute
the relevant probabilities as follows:

P x C miRNA P x C miRNA= =() = -

= = =() = =0
1 000 900

1 000
0 1 1

900
1 000

|
,

,
. , |

,
00 9. ,

P x C negative P x C negative= =() = -

= = =() =0
1 500 50

1 500
0 967 1

50
|

,
,

. , |
11 500

0 033
,

. ,=

P C miRNA P C negative=() = = =() = =

1 000
2 500

0 40
1 500
2 500

0 60
,
,

. ,
,
,

. ,

P x P x C c P C c
c

miRNA
negative

=() = = =() =() = ´
Î
ì
í
ï

îï

ü
ý
ï

þï

å0 0 0 1 0 4
,

| . . ++ ´ =0 967 0 6 0 62. . . ,

P x P x C c P C c
c

miRNA
negative

=() = = =() =() = ´
Î
ì
í
ï

îï

ü
ý
ï

þï

å1 1 0 9 0 4
,

| . . ++ ´ =0 033 0 60 0 38. . . .

Given these probabilities, it is possible to compute the proba-
bility of each class P(C|x) for a novel candidate sequence as
follows:

Introduction to Machine Learning

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

122

P C miRNA x

P x C miRNA P C miRNA
P x

= =() =
= =() =()

=()
=

´
=|

| . .
.

0
0

0
0 1 0 4

0 62
00 06. ,

P C negative x

P x C negative P C negative
P x

= =() =
= =() =()

=()
=|

| .
0

0
0

0 9667 0 6
0 62

0 94
´

=
.

.
. ,

P C miRNA x

P x C miRNA P C miRNA
P x

= =() =
= =() =()

=()
=

´
=|

| . .
.

1
1

1
0 9 0 4

0 38
00 95. .

P C negative x

P x C negative P C negative
P x

= =() =
= =() =()

=()
=|

| .
1

1
1

0 0333 0 6
0 38

0 05
´

=
.

.
. .

With the calculated probabilities, if a given nucleotide
sequence contains the word “AGCACU,” it will be classified as
miRNA because P(C = miRNA|x = 1) > P(C = negative|x = 1).

Since we are taking the maximum over the classes, the P(x)
term in the denominator does not affect the predicted class and we
can simplify the classification rule. It can be directly written as:

c P C c P C c and j N

c
j j

j

* arg max | , , .= =() =() = ¼x 1

During training P(x|C) and P(C) are estimated from the train-
ing data points for each class.

When the features are continuous, there are many ways to
model the probability P(x|C). Parametric models assume a par-
ticular form for the probability that is controlled by several param-
eters as shown in Fig. 12a. A commonly used model is the Gaussian
distribution N mm,S() controlled by its mean μ and covariance
matrix Σ. The control parameters can be estimated from the train-
ing data. If a single Gaussian distribution is too simple to model
the feature distribution, a mixture of Gaussians can be estimated
by the Expectation Maximization (EM) technique [18]. The
mixture is formed by a weighted sum of Gaussian distributions as

i

K

k k k
=
å ()

1

a mN ,S , where αk are the mixing coefficients that weigh

the contribution from each Gaussian component. Unlike a single
Gaussian, a mixture model can have multiple modes and therefore
it is more general.

Another alternative is to model the probability P(x|C) with
nonparametric methods that do not have control parameters.
A histogram over the feature space can estimate the data density in
various regions of the partitioned feature space. As illustrated in
Fig. 12b, by weighting the contribution from each sample over a
range of histogram bins, the computed histogram can be smoothed
to reduce errors in the sparsely populated regions of the feature
space.

Yalın Baştanlar and Mustafa Özuysal

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

123

One common way to simplify the modeling of the joint feature
probability P(x|C) is to assume independence between features.
In exact form, we can write

 P C P x x x C P x x x C P x CM M Mx | | , , , | , , , , , | .() = ¼() × ¼() ¼ ()1 2 2 3

If we assume independence between features x1, …, xM then the
joint probability reduces to

P C P x C P x C P x C P x CM

j

M

jx | | | , , | | .() @ () × () ¼ () = ()
=
Õ1 2

1

This simplification is called the naïve Bayes assumption and a
classifier using such a model is called a naïve Bayes classifier.
Although the independence assumption is quite strong and does
not hold in general, naïve Bayes classifiers perform remarkably well
for a wide range of problems. Moreover, the training can be very
efficiently performed since each feature probability can be com-
puted independently.

The independence assumption can improve training accuracy by
reducing the number of model parameters that needs to be estimated.
Consider a learning problem with F features that are real numbers. If
the full joint probability is modeled as a multidimensional Gaussian,
then (F2 + 3F)/2 parameters are required to represent the mean and

3.1.1 Naïve Bayes

Fig. 12 Modeling P(x|C) from the training data (the crosses and the circles).
(a) Parametric models (such as the Gaussian curves depicted above) are func-
tions that are controlled by a set of control parameters. The values of these
parameters are estimated from the training data points. (b) Nonparametric mod-
els are histograms that are computed by separating the input feature space into
distinct bins. Each training data point contributes to several bins around itself
according to a local weighting function

Introduction to Machine Learning

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

124

the covariance matrix. With the naïve Bayes assumption, this reduces
to 2F parameters since each feature probability can be modeled by a
one-dimensional Gaussian distribution. Hence, the model parame-
ters can be more reliably estimated with limited training data.

Still, it is necessary to exercise caution when estimating the
feature probabilities with a small number of data points. Since the
feature probabilities are multiplied, a single zero probability for a
feature can overcome strong evidence from several other features.
As a precaution, virtual training samples that are uniformly distrib-
uted across the feature space and the classes can be used to make
sure that no feature probability is ever exactly zero.

Naïve Bayes classifiers are also used in the miRNA identifica-
tion task [6]. For a chosen dictionary of M nucleotide words that
are likely to be present in miRNAs, a binary feature wi represents
whether word i exists in the nucleotide sequence, i.e., wi = 1 if the
word i is part of the sequence, wi = 0 otherwise. For each such fea-
ture, the probabilities P(wi = 0|C = miRNA), P(wi = 1|C = miRNA),
P(wi = 0|C = negative), and P(wi = 1|C = negative) are all estimated
from a large sample of miRNA positive and negative examples.
Given the words in a novel candidate sequence, a feature vector
w = [w1, w2, …, wM] can be extracted. The joint probabilities for
both the “miRNA” and “negative” classes can be calculated as

P C miRNA
i

M
P wi C miRNA and

P C negative
i

M
P wi

w

w

| |

|

= =
=
Õ =

= =
=
Õ

() ()

()
1

1
|| .C negative=()

The larger of these probabilities determines the label of the
candidate nucleotide sequence. Of course, in an actual miRNA sys-
tem, more complex features determined by experts are included in
the statistical model (see Chapters 9, 10, and 12 and [6]).

The probabilistic approach outlined above first models the
class conditional probabilities P(x|C) then bases its classification
estimates on the class with the maximum probability. In the case of
a binary classification problem this amounts to first computing
the ratio

g =

=()
=()

P C c
P C c

x
x

|
|

.1

2

And then, choosing c1 if γ > 1, and c2 otherwise. The region of
the feature space where γ = 1 forms the decision boundary.

Depending on the form of P(x|C), the decision boundary can
be very complex or just a simple hyper-plane. A hyper-plane in a d
dimensional space is a d − 1 dimensional flat region with the equa-
tion a1x1 + a2x2 + ⋯ + adxd = aTx = c. A hyper-plane in two dimensions

3.2 Linear
Discriminant
Functions

Yalın Baştanlar and Mustafa Özuysal

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

125

is a line and a hyper-plane in three dimensions is a plane. If P(x|C)
is a Gaussian distribution with the same covariance matrix Σ for
both classes then the decision boundary is exactly a hyper-plane
[12]. This linear decision boundary can be written as

y = aTx + c, with a = Σ− 1(μ1 − μ2) and c = - +- -1
2

1
21

1
1 2

1
2mm mm mm mmT TS S .

In case the form of P(x|C) is not Gaussian, we can still exploit the
formulation above to find a linear separation boundary that distin-
guishes between the classes in an optimal way. Fisher’s linear dis-
criminant method achieves this by projecting the input data points
onto a hyper-plane such that their data distributions are as far
apart from each other as possible. The projection that maximizes
the separation between distributions is given as y = aTx with
a = (Σ1 + Σ2)− 1(μ1 − μ2). Note that the data distributions do not need
to have the same covariance matrix. If they do, then the Fisher’s
linear discriminant is equivalent to the Gaussian formulation above.
Once the data is projected into one dimension y, a threshold is com-
puted so that the prediction error is minimized on the training data.
Both the Fisher’s linear discriminant and the Gaussian formulation
above can be easily generalized for multi-class classification problems.

For two linearly separable classes with unknown distributions,
there is no unique decision boundary. As long as the selected
hyper-plane separates the training samples of the two classes, it can
be chosen as the decision boundary. However, it is prudent to
select a decision boundary that does not pass too close to the train-
ing samples to account for the limited training data and errors in
data collection.

Support Vector Machines (SVMs) rely on maximizing the mar-
gin of error to select the best hyper-plane. The margin is deter-
mined by a set of hyper-planes parallel to the decision boundary on
the positive and negative sides of the discriminant function each at
the same distance to the boundary as depicted by Fig. 13. When
the margin is maximized, the training data points that are closest to
the decision boundary are on the margin hyper-planes. These
training data points are called the “support vectors.”

Since the margins and the decision boundary are only deter-
mined by the support vectors, the SVM classification rule can be
written as a function of these points. If we have a two class problem
and we label the classes with {−1, + 1}, the ith training data point
can be written as Xi = {xi,yi}, where xi is the feature vector and
yi ∈ {−1, + 1} is the supervised class label. The support vector deci-
sion boundary corresponds to the hyper-plane equation γ = wTx + c
and the weight vector is given by w x= å

i

i i iya with αi = 0 for the

training samples that are not support vectors.
In practice, it is usually not possible to completely separate all

training samples by a hyper-plane and some training samples can end
up on the wrong side of the decision boundary or within the margin.

3.2.1 Fisher’s Linear
Discriminant

3.3 Support Vector
Machines

Introduction to Machine Learning

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

126

The SVM formulation is softened to allow such data points. A com-
plexity parameter, usually denoted by C, controls how much these
points are penalized. A higher penalty means a more complex model
with potentially more support vectors. The value of this parameter
should be set using a validation dataset as discussed before.

Most real-world problems involve data distributions that are not
linearly separable. One possible approach around this problem is to
perform a nonlinear transformation of the input features into a
higher dimensional space as x → Φ(x). This transformation can
make the class data distributions linearly separable. Then the linear
SVM can be trained in the new space since the linear decision
boundary in this space corresponds to a nonlinear curve in the
original feature space as illustrated by Fig. 14.

The SVM formulation is particularly suitable to this kind of
transformation since the feature vectors always appear in the form
of dot products of two data points as K x x x x, Tˆ ˆ() = . This dot
product is called a “kernel” and it is a measure of similarity between
the two data points x and x̂ . So even if the transformation Φ(x) is
complex and very high dimensional, after the transformation the
dot product K x x x x, Tˆ ˆ() = () ()F F may have a simple form.
Indeed, the form of K x x, ˆ() can be set directly without ever com-
puting the nonlinear mapping Φ(x), provided that the kernel form
satisfies some mathematical constraints [19].

For example, the Gaussian kernel can be written as

K ex x
||x x||

, ˆ
ˆ

() =
-

- 2

22s . Other kernels that are commonly used are the
polynomial, the sigmoid and the radial basis function (RBF) ker-
nels. Since each kernel corresponds to a different nonlinear trans-
formation of the input space, it is not possible to know which one
will be the best choice for a particular machine learning problem.
Also kernels usually have parameters that define the shape and the
complexity of the nonlinear transformation such as σ for the
Gaussian kernel. Both the type and the parameters of the kernel
should be selected using a validation set as described before in
Subheading 2.3.

3.3.1 Kernels

Fig. 13 The decision boundary of an SVM (the solid line) is determined by the
support vectors (the lighter circles and crosses) that lie on the margin hyper-
planes (the dashed lines). The support vectors and the decision boundary are
selected to maximize the margin

Yalın Baştanlar and Mustafa Özuysal

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

127

4 Conclusion

Machine learning techniques provide exciting new ways to exploit
the available computational power and data in a variety of scientific
domains. They can analyze huge amounts of data in a relatively
short time that is not possible by manual labor. This provides
opportunities for scientists to develop new experimental proce-
dures and to channel their efforts on the most promising questions
of their problem domain.

However, automated solutions are not a replacement for good
scientific judgment. Like any other tool, a machine learning tech-
nique needs to be utilized in a careful manner to make the most
out of its use. It is better to start with the simpler methods to judge
problem difficulty and to gain more insight about algorithm behav-
ior. It is also important to try a few different algorithms and com-
pare their performances. As discussed in Subheading 2, experiments

Fig. 14 Nonlinear transformations can linearize the decision boundary between
classes. (a) In the original feature space, the classes are not linearly separable.
(b) Each feature value is squared to perform a nonlinear mapping of the data
points. In the transformed feature space, the decision boundary is a simple line

Introduction to Machine Learning

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

128

to test the generalization ability of a model should be designed
properly considering the important aspects such as choosing the
training samples and randomization.

References

 1. RapidMiner -- Data mining, ETL, OLAP, BI,
http://sourceforge.net/projects/rapidminer/

 2. scikit-learn: machine learning in Python,
http://scikit-learn.org/stable/

 3. The SHOGUN machine learning toolbox,
http://www.shogun-toolbox.org/

 4. Weka 3 - Data mining with open source
machine learning software in Java, http://
www.cs.waikato.ac.nz/ml/weka/

 5. Guyon I, Elisseeff A (2003) An introduction to
variable and feature selection. J Mach Learn
Res 3:1157–1182

 6. Yousef M, Nebozhyn M, Shatkay H et al
(2006) Combining multi-species genomic
data for microRNA identification using a
Naïve Bayes classifier. Bioinformatics 22:
1325–1334

 7. MacQueen J (1967) Some methods for classifi-
cation and analysis of multivariate observa-
tions. Proceedings of the fifth Berkeley
symposium on mathematical statistics and
probability. University of California Press, Los
Angeles, CA, pp 281–297

 8. Hastie T, Tibshirani R, Friedman JH (2003)
The elements of statistical learning. Springer,
New York, NY

 9. Ng AY, Jordan MI, Weiss Y et al (2002) On
spectral clustering: analysis and an algorithm.
Adv Neural Inform Process Syst 2:849–856

 10. Chapelle O, Schölkopf B, Zien A (eds) (2010)
Semi-supervised learning. The MIT Press,
Cambridge, MA

 11. Alpaydın E (2010) Introduction to machine
learning. The MIT Press, Cambridge, MA

 12. Bishop C (2006) Pattern recognition and
machine learning. Springer, New York, NY

 13. Bellman RE (1961) Adaptive control pro-
cesses: a guided tour. Princeton University
Press, Princeton, NJ

 14. Liu H, Sun J, Liu L et al (2009) Feature selec-
tion with dynamic mutual information. Pattern
Recogn 42:1330–1339

 15. Chen Y-T, Chen MC (2011) Using chi-square
statistics to measure similarities for text catego-
rization. Expert Syst Appl 38:3085–3090

 16. Lee C, Lee GG (2006) Information gain and
divergence-based feature selection for machine
learning-based text categorization. Inform
Process Manag 42:155–165

 17. Kohavi R, John GH (1997) Wrappers for fea-
ture subset selection. Artif Intell 97:273–324

 18. Dempster AP, Laird NM, Rubin DB (1977)
Maximum likelihood from incomplete data via
the EM algorithm. J Roy Stat Soc B 39:1–38

 19. Schlkopf B, Smola AJ (2001) Learning with
kernels: support vector machines, regulariza-
tion, optimization, and beyond. The MIT
Press, Cambridge, MA

Yalın Baştanlar and Mustafa Özuysal

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

