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Abstract 

Estimation of camera motion from a given image sequence is a common task for multi-view 3D computer 

vision applications. Salient features (lines, corners etc.) in the images are used to estimate the motion of the 

camera, also called egomotion. This estimation suffers from an error built-up as the length of the image sequence 

increases and this causes a drift in the estimated position. In this letter, this phenomenon is demonstrated and an 

approach to improve the estimation accuracy is proposed. The main idea of the proposed method is using an 

omnidirectional camera (360° horizontal field of view) in addition to a conventional (perspective) camera. 

Taking advantage of the correspondences between the omnidirectional and perspective images, the accuracy of 

camera position estimates can be improved.  

In our work, we adopt the sequential structure-from-motion approach which starts with estimating the motion 

between first two views and more views are added one by one. We automatically match points between 

omnidirectional and perspective views. Point correspondences are used for the estimation of epipolar geometry, 

followed by the reconstruction of 3D points with iterative linear triangulation. In addition, we calibrate our 

cameras using sphere camera model which covers both omnidirectional and perspective cameras. This enables us 

to treat the cameras in the same way at any step of structure-from-motion.  

We performed simulated and real image experiments to compare the estimation accuracy when only 

perspective views are used and when an omnidirectional view is added. Results show that the proposed idea of 

adding omnidirectional views reduces the drift in egomotion estimation.  
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1 Introduction 

Estimating the 3D motion of a camera (egomotion) and the 3D scene structure simultaneously from a 

sequence of images is known as simultaneous localization and mapping (SLAM) in robotics community and 

as structure from motion (SfM) in computer vision community. This problem has been studied extensively 

over the years and different approaches were proposed. However, satisfactory results are not easily obtained 

due to the high dimension of the space of unknowns and challenges regarding the nature of the work such as 

unreliable reconstruction due to short baseline between the views and erroneous feature matching when the 

scene is composed of repetitive patterns.  

Most of the methods that estimate the camera motion employ the approach of adding views to the 

structure one by one [1]. In this approach, when a sequence of views is available, geometry extraction is 

initially performed for the first two views. The three dimensional structure built with these two views is used 

to estimate the pose of a new view with the help of point detection and matching between the new view and 
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already reconstructed points. At each step, point correspondences with another view of the camera are 

extracted and motion of the camera is extended. Due to this sequential nature, this kind of SfM algorithms is 

called sequential algorithms. Unfortunately, the error at each view addition builds up and the estimation of 

camera poses suffers from a drift. This phenomenon is depicted in Fig.1. 

Our proposal in this letter is using an omnidirectional camera in addition to a conventional camera to 

reduce the drift occurring in the sequential SfM algorithms. We show that adding omnidirectional views to a 

SfM consisting of only perspective views improves the accuracy of camera position estimation. With its 360° 

view, an omnidirectional image can provide us point correspondences with all perspective images taken from 

a nearby location. Fig. 2 shows the case where a perspective camera is moved and two images from that 

camera do not share much field-of-view. However, an omnidirectional camera has common viewing angles 

with both perspective images. Our hypothesis is that these point correspondences help to obtain more 

accurate egomotion estimation. We tested the effect of adding an omnidirectional view to a perspective-only 

SfM by measuring the drift occurred. In our experiments, we consider both loop and non-loop sequences. 

The organization of the paper is as follows. In Section 2, we present the related work and the differences 

in our approach. In Section 3, we explain the steps of sequential SfM when an omnidirectional camera is 

added and give visual examples. The results of our experiments, given in Section 4, indicate that the 

proposed approach helps to reduce egomotion estimation drift. 

 

 

Figure 1: Drift can be defined as the difference between the actual and estimated 

camera positions after a sequence of images or video frames. Actual path of the 

camera is shown by the dashed line, whereas estimated camera positions (triangles on 

the solid line) are drifted from the actual path. The error grows as more views are 

added since the motion estimation depends on the position of the previous view.  

 

 

 

Figure 2: An omnidirectional image can provide us point correspondences with 

different perspective images that do not share much field-of-view. 



Y. Bastanlar / Electronic Letters on Computer Vision and Image Analysis 13(3):1-12, 2014      3 

2 Related Work 

Performing egomotion estimation for a moving platform over a long distance can also be called as visual 

odometry since it uses visual information instead of other sources such as GPS, inertia sensors, wheel 

encoders, etc. [2]. If scene points are constructed together with the motion of the camera, then the task is 

called structure-from-motion. An automated system that handles large-scale reconstructions was presented in 

[3]. 

As mentioned in the previous section, due to the sequential nature of these methods error propagates as 

more images are added and egomotion estimation suffers from a drift. To solve the problem, authors in [4] 

proposed a non-sequential SfM. Their method depends on rotational consistency and uses convex 

optimization. They also performed experiments regarding the drift and showed that their method is more 

robust when compared with the approach in [3]. 

Regarding sequential algorithms, a method for drift removal was presented in [5]. That method is based 

on the assumption that the image sequence forms a closed loop. In other words, image sequence ends up at 

the starting point and this information is used to reduce the accumulated error. There are other previously 

proposed loop closing methods as well [6, 7]. However, real life applications do not necessarily contain loop 

sequences. Therefore, some techniques should be proposed to obtain accurate egomotion estimations with 

sequential algorithms even when the image sequences do not contain loops. With this motivation, we 

propose an approach that exploits the wide field-of-view capability of an omnidirectional camera and does 

not assume that the image sequence forms a loop. Details will be given in Section 3. 

It is known that using wide field-of-view cameras provides point correspondences from a variety of 

angles which enables more stable structure estimation and degenerate cases like viewing only a planar 

surface are less likely to occur [8]. Thus, one can think of employing only an omnidirectional camera for 

SfM. However, due to their low resolution and high distortion, matching of image feature points is less 

reliable than with perspective cameras. In an omnidirectional visual odometry study [9], the authors point out 

that the rotation estimated from feature points alone gives rise to large errors. For better rotation estimation, 

they convert the omnidirectional image to a panoramic image and estimate the horizontal shift in the 

panoramic image. It was also mentioned that when the feature points are distributed in an unbalanced 

fashion, estimation is degraded. In our study, we use the omnidirectional camera as an aid to the perspective 

camera approach. 

The studies on SfM with mixed camera types started about a decade ago. The epipolar geometry between 

a para-catadioptric (catadioptric camera with a parabolic mirror) and a perspective camera was first 

explained in [10]. Later, the framework was extended to catadioptric cameras with hyperbolic mirrors and 

cameras with lens distortion [11]. Regarding a complete SfM task, a work for hybrid systems was presented 

in [12]. They employed a highly generic non-parametric imaging model where the cameras are modelled 

with sets of projection rays. They mentioned that directly applying SIFT [13] did not provide good results for 

their fisheye-perspective image pairs and used manually selected feature point correspondences to estimate 

the epipolar geometry. In our recent work [14], we proposed a technique to perform point matching 

automatically so that no manual interaction is needed for the complete SfM task. Moreover, a single model, 

namely sphere camera model, was used for mixed types of cameras, which enabled us to perform most of the 

computations regarding the omnidirectional images linearly. 

The SfM computation in this letter uses the algorithms proposed in [14]. Our contribution here is that we 

investigate, with experiments, the effect of adding an omnidirectional view to a perspective-only SfM. In 

other words, we compare hybrid SfM with perspective-only SfM in terms of egomotion estimation accuracy. 

3 Sequential Structure-from-Motion with Mixed Camera Types 

The pipeline of sequential SfM algorithm can be summarized with the steps shown in Fig. 3. Let us go 

over these steps regarding that our approach involves using omnidirectional cameras with perspective ones. 

To calibrate our cameras of two different types, we use the sphere camera model [15] which is able to 

cover single viewpoint omnidirectional cameras as well as perspective cameras. The main characteristics of 

the model are given in Fig. 4. The most important aspect is that the non-linear image formation in 

omnidirectional cameras is converted to two linear projections; one is the projection of 3D point onto a 
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sphere, the other is a perspective projection from the sphere to the image plane. The usage of this model was 

also extended to fisheye cameras [16]. Using the sphere model, there is no need to change the camera model 

between the steps of the SfM algorithm. Another advantage is that, projections and epipolar geometry 

estimation can be computed linearly to a great extent. Thus, the need to use polynomial equations for 

calculating the direction of rays is avoided. 

 

 

 

Figure 3: Steps of the applied sequential SfM pipeline. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Projection of a 3D point onto the image plane in sphere camera model. The first step is 

the projection of 3D point Q onto a sphere, resulting in point r, and the second step is a 

perspective projection from the sphere to the image plane, resulting in point q. ξ = 0 for 

perspective cameras, ξ = 1 for para-catadioptric cameras (the ones using a paraboloidal mirror), 

0 < ξ < 1 for hyper-catadioptric cameras (the ones using a hyperboloidal mirror). Image plane is 

drawn inside the sphere for convenience, however it may be at any elevation depending on the 

scale of the image, parameterized by f. 
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The sequential SfM pipeline starts with feature point matching between the first two views. These are 

preferably two images captured with the perspective camera so that SIFT [13] can directly be applied for 

point matching. When an omnidirectional image is added to the sequence at a later stage, it is required to find 

point matches between that image and the perspective camera images. To do this automatically, we use an 

algorithm to eliminate false SIFT matches [17]. We used this algorithm in [14] and showed that the majority 

of the false matches in SIFT output are due to matching a high-resolution feature in the perspective image to 

a feature in the omnidirectional image which does not have such high-resolution. By pre-processing 

perspective images, which mainly consists of a low-pass filtering step, the probability of matching the 

features between the incorrect scales (octaves) significantly decreases. Fig. 5 shows the result of the 

employed matching method for a hybrid image pair used for the experiments in this letter. We observe most 

of the false matches are eliminated. Please also note that the matches that do not conform to the estimated 

epipolar geometry will be eliminated later by RANSAC [18]. 

 

 
(a) 

 
(b) 

Figure 5: Point matching results for an example hybrid image pair. (a) Standard SIFT matching 

results where correct/total match ratio is 39/61. (b) Results after the employed automatic false 

match elimination method. Correct/total match ratio is 53/57. Red dashed lines show false 

matches, green solid lines show the correct ones. 

 

Point correspondences are then used for the estimation of epipolar geometry. Following the technique 

which was first explained in [16], we represent the points in catadioptric omnidirectional images with so-

called lifted coordinates. Lifting for para-catadioptric cameras can be performed by  ̂  ( 
          ) . 

Matching point in the perspective image,   , is not lifted and represented with a 3-vector in homogeneous 

coordinates. A 3x4 hybrid fundamental matrix (   ) expresses the epipolar constraint between these points: 

  
       ̂    
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A point in the perspective image corresponds to a curve, namely epipolar conic, in the catadioptric image. 

Hybrid epipolar geometry can be visualized in Fig. 6. For the image pair given in Fig. 5, the set of 

corresponding epipolar lines/conics for the matched points are shown in Fig. 7. RANSAC [18] is used to 

select matches that conform to the estimated epipolar geometry. Therefore, false matches coming from the 

point matching step are eliminated if they violate the estimated epipolar geometry. 

With the final set of point correspondences, and using the calibration information, the essential matrix,  , 

is computed.   in hybrid case is 3x3 similar to the perspective camera case since the 3D rays outgoing from 

the camera center are used. The motion parameters, namely the rotation matrix,  , and the translation vector, 

 , can be obtained from   using one of the known techniques [19]. These steps are followed by the 

reconstruction of 3D points with iterative linear triangulation [20]. 

 

 

 

Figure 6: Hybrid epipolar geometry between a perspective and a catadioptric 

image.    and    are the projections of a 3D point Q on perspective and 

catadioptric images respectively.    and    are the epipoles in the perspective and 

catadioptric images respectively. 

 

 

Figure 7: Example catadioptric-perspective image pair and corresponding epipolar conics/lines of 

point matches. 53 of the 57 input matches are kept after RANSAC. 
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As shown in Fig. 3, to continue with egomotion estimation, more views are added one by one. The 3D 

structure built with the first two views is used to estimate the pose of a new view with the help of the 

matches between the new view and already reconstructed points. Perspective views are added with standard 

point matching, motion estimation and triangulation stages. When an omnidirectional view is added, the 

hybrid image pairs are handled with algorithms described above which are the modified versions of 

perspective camera methods.  

No public implementations or software packages were used for the steps explained so far. Algorithms 

were coded in MATLAB for this work and two of our previous papers [10,14], to which we refer the readers 

for details. MATLAB code can be provided upon request. Hybrid image sequences used in this letter can be 

downloaded from our website: http://cvrg.iyte.edu.tr/. 

As the last step of the SfM pipeline, the final reconstructions are improved by minimizing reprojection 

errors. This process is called bundle adjustment. We performed this using the Levenberg-Marquardt 

algorithm offered within MATLAB. There is a powerful publicly available C++ package for bundle 

adjustment, called ‘sparse bundle adjustment’ [21]. It also uses Levenberg-Marquardt algorithm but more 

efficient since it exploits the sparseness in the data. However, we could not use this package since it does not 

offer the flexibility to define different intrinsic parameters for different camera types.  

4 Experiments 

Our primary contribution in this paper is providing an experimental proof of the idea that omnidirectional 

views decrease the drift in sequential SfM. For this aim, simulated and real image experiments are presented 

separately in the following. 

4.1  Experiments with simulated images  

First, we analyse the proposed idea in a simulated environment. Generated points were randomly 

distributed in a 3D space. Simulated perspective camera sees only a part of the scene points at a certain 

position. Then, we started to move the camera. As the camera moves, some of the previously viewed points 

are lost and new points appear in the image. Finally, we added an omnidirectional camera viewing all the 

points and it is positioned at the half of the distance travelled by the perspective camera. A top view of the 

simulated environment is given in Fig. 8. Gaussian noise (with σ=1 pixel) is added to the pixel coordinates. 

We measured the egomotion estimation drift for changing number of views (frames) to compare three 

cases; (i) initial estimation without bundle adjustment (BA), (ii) after perspective BA and (iii) after mixed 

camera BA. Please note that the same number of BA iterations was applied in both perspective and mixed 

cases and the experiments were repeated 50 times and the average drift was taken. 

 

Figure 8: Top-view of the simulated environment with 6 perspective views. Perspective 

camera, pointing towards the scene points, is moving to the right. Omnidirectional camera 

is indicated with O. For fixed length experiment (Fig. 9a), different number of views (4 to 

8) are taken with the same length of the camera path. For increasing length experiment 

(Fig. 9b), travelled distance by the perspective camera increases 60 cm with each view. 
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(a)                                   (b) 

Figure 9: Egomotion estimation drift (y axis, in cm.) for compared approaches and 

changing number of perspective views (x axis). (a) The distance travelled by the 

perspective camera is fixed to 3 m. (b) The distance increases 60 cm with each view. 

 

Fig. 9a shows the drift (y axis, in cm.) for changing number of perspective views (x axis) when the 

travelled distance by the perspective camera is fixed to 3 meters. We observe that changing the number of 

views within a fixed distance does not affect the initial drift. Although one may expect the drift to increase 

with more views, since the travelled distance is fixed, positions of the views come close to each other and the 

estimation of motion becomes more successful due to the increased number of matched points. Regarding 

the effect of the proposed approach of including an omnidirectional camera, it can be easily inferred from 

Fig. 9a that, bundle adjustment with the omnidirectional view (mixed BA) outperforms the perspective-only 

approach. The improvement gained by the omnidirectional view decreases with increasing number of 

perspective views. This is an expected result since the relative importance of the point correspondences 

coming from omnidirectional view decreases.  

Fig. 9b shows the measured drifts when the travelled distance by the perspective camera increases 60 cm 

with each view, i.e. the total distances travelled in 4-view and 8-view sequences are 1.8 m and 4.2 m. 

respectively. Notice that 6-view data is the same in both graphs since it corresponds to the same setup, 6 

views 60 cm apart. This time, the drift increases with the addition of new views. Mixed BA consistently 

gives better results than perspective-only BA, which indicates that adding an omnidirectional camera 

improves the accuracy of egomotion estimation. Fig. 10 can be given as a visual example to this experiment 

where the mixed approach (Fig. 10b) reduces the drift more than perspective-only approach does (Fig. 10a). 
 

    
(a)                            (b)    

Figure 10: Comparison of perspective-only BA (a) and mixed BA (b). The reconstructed camera 

positions are supposed to be on a straight line along x axis. Mixed BA reduces the drift more. 
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4.2  Experiments with real images  

We performed an experiment where the positions of the camera were known while capturing the images 

of the scene, which enabled us to compare the estimated camera positions with the real ones. We positioned 

the viewing center of the camera to certain 2D coordinates on the floor via a tripod while taking images. One 

omnidirectional and seven perspective images used in this experiment are shown in Fig. 11. Fig. 12a shows 

the initial estimation of the structure and camera motion. The camera movement from the first to the last 

view is indicated with arrows. The actual distance between the consecutive views are equal to 40 cm 

(accomplished by precisely positioning the viewing center of the camera). A drift can easily be observed in 

the estimated motion towards the end of the sequence. Fig. 12b shows the result after perspective-only BA 

and Fig. 12c shows the result when the omnidirectional camera is added (mixed BA). 
 

 

Figure 11: Omnidirectional and perspective images of the first real image experiment. 

     

         

(a)        (b)                   (c) 

Figure 12: Structure and motion estimated from images in Fig. 11. Figures show top-view and the z axes of 

the estimated perspective camera views are toward the reconstructed scene points. (a) The initial estimation 

with perspective-only SfM. The results after bundle adjustment for (b) perspective-only BA and (c) mixed 

BA. The omnidirectional camera is indicated with a circle around it, z axis of which is looking down. 
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Since the reconstructions are correct up to a scale factor, we normalized the measured drift using the 

known real world distances. Initial estimation drift is 27.5 cm whereas the drifts after perspective BA and 

mixed BA are 15.2 cm and 6.9 cm respectively. This result clearly indicates that adding an omnidirectional 

camera improves the accuracy of camera motion estimation. There are around 550 reconstructed points. 

Approximately, one fifth of the scene points have a match in the omnidirectional view i.e. one fifth of the 

points were reconstructed with the omnidirectional view and at least one of the perspective views. 

Perhaps the easiest way to measure the drift is using a sequence of images that form a closed loop since 

the drift is the distance between the estimated positions of the first and last views. We performed such an 

experiment again with a sequence of six images which can be seen in Fig. 13.  

 

 

Figure 13: Sample perspective and omnidirectional view from the 

experiment with a closed loop sequence. 

 

     

(a)     (b)    (c) 

Figure 14: SfM experiment with a closed loop sequence. Figures show top-view and the z axes of the 

estimated perspective camera views are toward the reconstructed scene points. (a) The initial 

estimation, the drift is depicted in red. (b) The result after perspective-only BA, the drift is depicted 

in red. (c) The result after mixed BA. The drift is almost disappeared. 
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The reader should note that, we pretended not to know that there is a closed loop and did not perform 

point matching between the first and the last frames because this normally requires a loop detection 

algorithm such as [6,7]. Here, we used the loop sequence to measure the drift easily. 

After the SfM pipeline was performed, the drift is measured as the distance between the first and the last 

(sixth) camera positions, since these two views are actually the same. Fig. 14a shows the initial estimation of 

the structure and camera positions, the order of the views together and the drift. Fig. 14b shows the 

perspective-only BA result and Fig. 14c shows the result with the omnidirectional view. Normalized initial 

drift was 20.55 cm, drift values after bundle adjustment were 18.05 cm and 0.95 cm for perspective-only 

SfM and hybrid SfM, respectively. The improvement gained by the omnidirectional view in this experiment 

is more significant than the previous real image experiment.  

Our experiments were restricted to ~8 views and ~500 3D points due to computational resources required 

for bundle adjustment. Bundle adjustment is an error minimization typically carried out with Levenberg-

Marquardt algorithm. Due to the large number of unknowns contributing to the minimized reprojection error, 

the computation takes considerable amount of time. In our case these unknowns are point coordinates and 

camera extrinsic parameters. As the number of unknowns increases the required time increases 

exponentially. 

The sparse bundle adjustment (SBA) implementation [21] which also uses Levenberg-Marquardt 

algorithm is much more efficient since it exploits the sparseness in the data. However, we could not use SBA 

for our hybrid case, since it does not offer the flexibility to define different intrinsic parameters for different 

camera types. In non-sparse bundle adjustment the number of parameters to be optimized is limited due to 

computational resources. 

5  Conclusion 

We have demonstrated the fact that the egomotion estimation of a moving camera suffers from a drift in 

the estimated path when a sequential algorithm is employed. We proposed an approach to increase the 

estimation accuracy, the main idea of which is using an omnidirectional camera in addition to the 

conventional camera. Taking advantage of the enlarged view, correspondences between the omnidirectional 

and perspective images improve the accuracy of camera position estimates. Unlike other methods in the 

literature, our approach does not assume loop closure. 

We performed simulated and real image experiments to compare the estimation accuracy when only 

perspective views are used and when an omnidirectional view is added. Results show that the proposed idea 

of adding an omnidirectional camera reduces the drift. 

In this paper, we did not work on egomotion estimation over long distances, rather we concentrated on 

SLAM and SfM which definitely requires an accurate camera pose estimation. In our experiments, the length 

of the image sequences was restricted since the bundle adjustment method we employed is computationally 

expensive. However, our method can also be valuable for visual odometry over long distances [2] if more 

efficient implementations of hybrid SfM become available. As the length of the sequence increases, number 

of omnidirectional views can be increased gradually. For respectively short sequences as we used in this 

work, increasing the accuracy of SfM can be useful for 3D reconstruction from multiple images like in [22].  
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