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ABSTRACT 

 

DESIGN OF NOVEL TRANSFORMABLE PLANAR STRUCTURAL 

LINKAGES WITH ANGULATED SCISSOR UNITS 

 

 In this dissertation, the primary objective is to propose a novel geometrical 

construction technique in order to construct a planar and single degree of freedom 

structural linkage that can transform between concave and convex configurations. In the 

literature, most of the deployable structures transform between two known 

configurations: stowed and deployed. Especially, the deployable structures with radial 

movement capability have a fixed center point. Starting this point of view, current study 

deals with a new type of angulated scissor structural linkage that can change its form 

between bended upward and bended downward configurations by moving the center point 

of the structure along a direction. In other words, it can change its curvature during the 

transformation process. The most important point of the study is the usage of kite and dart 

loops to construct angulated scissor linkages. The geometry of kite or its concave version 

dart loop provides to obtain angulated scissor bars. The angulated scissor unit, that is 

composed of the mentioned angulated bars, is different from the existing ones in the 

literature because they do not provide deployability conditions like known angulated 

scissor units. Thus, the planar structure that is composed of new type of angulated scissor 

units has different transformation capability. It transforms between bended upward and 

downward configurations. In this study, modelling and simulation with computer soft 

wares have been used as a research method. The proposed structural linkage has been 

modelled using Solidworks®. As a part of the position analysis, the variations of the 

structure according to different parameters have been exposed in Microsoft Excel®. 
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ÖZET 

 

AÇILI MAKAS BİRİMLERİ İLE YENİ DÜZLEMSEL DÖNÜŞEBİLİR 

STRÜKTÜREL MEKANİZMALARIN TASARIMI 

 

 Bu tezin temel amacı; dışbükey ve içbükey biçimler arasında dönüşebilen, 

düzlemsel ve tek serbestlik dereceli, hareketli bir yapı elde etmeye yönelik yeni bir 

geometrik konstrüksiyon yöntemi sunmaktır. Literatürdeki çoğu hareketli strüktür 

toplanıp açılmak gibi bilinen iki durum arasında şekil değiştirebilmektedir. Özellikle 

radyal hereket kabiliyetine sahip sistemlerin hareket esnasında merkez noktaları sabit 

kalmaktadır. Buradan yola çıkarak literatürdeki bu eksiklikliği gidermek adına, bu 

çalışma yeni açılı makas sistemlerinden oluşan, merkez noktası belirli bir doğrultu 

üzerinde hareket eden ve eğriliği değişebilen hareketli strüktürel mekanizmalar 

üzerinedir. Çalışmanın en önemli noktalarından biri dışbükey ve içbükey deltoid 

devrelerinin açılı makas birimlerinden oluşan strüktürler elde etmek amaçlı 

kullanılmasıdır. Deltoid devreleri birleştirilerek açılı makas çubukları elde 

edilebilmektedir.  Bu şekilde elde edilmiş açılı makas birimi literatürde var olanlardan 

farklı özelliklere sahiptir. Bu nedenle, bu açılı makas birimleriyle oluşturulmuş düzlemsel 

strüktür daha fazla hareket kabiliyetine sahiptir. Çalışmada, araştırma yöntemi olarak 

bilgisayar ortamında modelleme ve benzeşim teknikleri kullanılmıştır. Önerilen strüktür 

Solidworks® ortamında modellenmiştir. Pozisyon analizinin bir parçası olarak strüktürün 

değişen parametrelerle elde edilen varyasyonları Microsoft Excel® ortamında 

incelenmiştir. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. Definition of the Study 

 

In every period, humans have strived to construct flexible buildings that could be 

adapted to changing human requirements and natural conditions. Kinetic architecture’s 

primary objective is the design of adaptable building envelopes and spaces as the major 

components of the building using mechanical structures (Zuk & Clarke, 1970).  

The term “Kinetic Architecture” was introduced by William Zuk and Roger H. 

Clark in the early seventies when dynamic spatial design problems were explored in 

mechanical systems. William Zuk and Roger Clark defined kinetic architecture as “the 

architectural form could be inherently being displaceable, deformable, expandable or 

capable of kinetic movement” (Zuk and Clark, 1970). 

In recent years, human needs have changed with developing technology. 

Developments in some architectural areas such as construction technology, material 

science, and architectural computing technologies made it possible to construct 

deployable and transformable structures that can meet changing human needs.  

Gantes (1991) defines the deployable structures as “Deployable structures is a 

generic name for a broad category of prefabricated structures that can be transformed 

from a closed compact configuration to a predetermined, expanded form in which they 

are stable and carry loads.” Scissor mechanisms are the most preferred units for 

deployable systems, and there are various studies about deployable structures constructed 

with them. The notion of scissor structure was first introduced in 1961 by Spanish 

architect Piñero and followed by many researchers until today. After Piñero, these 

structures were further developed by Escrig and Valcarcel as in the form of new spherical 

grid structures that are composed of two-way and three-way scissors with several 

connection details (Escrig & Valcarcel, 1986a; 1986b; 1987; 1993). In addition to these 

developments, Chuck Hoberman, who is an architect and a mechanical engineer, made 

significant contributions to the literature by his designs and patents from architectural 

projects to the toy industry. He proposed a novel concept composed of angulated elements 
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that led to the design of radially deploying closed loop structures (Hoberman, 1991). In 

the following years, transformable structures were applied to space applications, 

including antennas and solar panels by Sergio Pellegrino and Zhong You. They took 

Hoberman’s discovery a step further, and they discovered generalized angulated elements 

to be used as a building block (You & Pellegrino, 1997). They also discovered multi-

angulated rod that reduced the number of components of the structure and the complexity 

of its joints. 

In the literature, scissor units are classified into three main groups according to 

the location of scissor hinge. These are translational, polar and angulated scissor units. At 

the beginning of the study, scissor units are investigated on the existing classification and 

their kinetic movement capacity. After that, scissor structures are examined according to 

their loop types. In the scissor structures literature, there are three known loop types as 

follows: parallelogram, rhombus, and kite. Scissor structures are examined first 

considering the scissor unit type and then the loop type. 

This dissertation deals with the angulated scissor unit that is a different type from 

existing ones in the literature. When the loop types of scissor units in the literature are 

examined, there are limited studies about using kite loops to construct angulated scissor 

structure (Liao & Li, 2005; Kiper & Söylemez, 2010; Hoberman, 2013). So we found out 

that kite loop and its concave form dart loop are capable of constructing angulated bars. 

The aim of the study is to design novel angulated scissor linkage composed of kite loop 

and its concave form as dart loop. Furthermore, how these structures move is examined 

when the units are assembled together. Assembly variations, geometrical and kinematic 

analysis of the proposed structures are investigated. 

  

1.2. Scope and Objectives of the Study 

 

In the present study, firstly detailed literature investigation is conducted about 

deployable scissor structures. Then, geometric and kinematic properties of the existing 

scissor units are examined. As a contribution to the literature, loop types of scissor units 

are also investigated. 

In the present study, a geometrical construction method is proposed to obtain 

angulated scissor units. In the literature there is no application of kite loops to construct 

angulated scissor units based on Chuck Hoberman’s suggestion (Hoberman, 2013). On 
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the other hand, Hoberman’s techniques are only applied to rhombus loop. So, in this study 

kite loops and also its concave version (dart loop) was used to construct a novel type of 

angulated scissor units.  

In the light of this information, Hoberman’s methods were applied and developed 

to construct novel types of scissor linkages consist of angulated units in the form of 

deployable structures having the ability to change their curvature. 

 

1.3. Methodology 

 

First of all, detailed literature review of previous works plays an important role in 

this study to understand the fundamental design criteria of scissor units.  

Simulation and modeling in the computer are the methods to create 2D loop 

structures which are further converted into 3D and investigated with Solidworks® in 

order to determine movement ability of the systems. Moreover, Microsoft Excel® is used 

to model the system in accordance with its dimensions. In this way, Excel enables to 

investigate transformation capacity of the systems in terms of different dimensions or 

angles easily.   

  

1.4. Significance of the Study and Contributions 

 

The major contribution of the present study is to develop geometrical construction 

approach for angulated scissor units consist of kite or dart loops.  

 

1.5. Outline of the Thesis 

 

This thesis is composed of six chapters: 

Chapter 1 introduces definition of the study, scope and objectives, methodology, 

significance of the study and contributions, and outline of the thesis. 

Chapter 2 introduces the comprehensive review of the existing studies relevant to 

the thesis. It is based on deployable scissor structures. 

Chapter 3 states the classification of existing scissor units, general deployability 

condition of them and existing quadrilateral loops in the literature. Then, the geometrical 
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conditions of scissor linkages constructed with each of the three scissor units is presented. 

Regarding this, loop types of scissor linkages is analyzed. 

Chapter 4 demonstrates geometrical design method for planar scissor linkages 

based on a rhombus, parallelogram, and kite loops. 

Chapter 5 proposes a novel deployable scissor linkages composed of angulated 

scissor units which are obtained by kite and dart loops. 

Chapter 6 deals with the geometrical kinematical conditions and the position 

analysis of the proposed scissor linkage. 

Chapter 7 comprises all the main findings of previous chapters in summary and 

expresses main contributions. 
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CHAPTER 2 

 

REVIEW OF LITERATURE 

 

In this chapter, a review of existing deployable scissor linkages are presented in 

order to understand the developments, contributions, and deficiencies of them. Main 

characteristics of the existing studies are investigated regarding their geometric 

properties. 

In the literature review the historical development of the deployable scissor 

structures is investigated. In this context, the most common and important examples of 

the deployable scissor structures are examined.  

 

2.1. Deployable Bar Structures 

 

Deployable scissor structures usually transform from a compact stowed 

configuration to an expanded functional configuration. They are used mostly in portable 

or temporary applications. As adaptable structures, they can be integrated either into a 

site as a deployable bridge in order to respond changing transportation requirements or to 

a building as a deployable roof for changing weather conditions.   

Emilio Pérez Piñero is the pioneer who proposed a deployable structure composed 

of scissor-like elements (SLEs) to construct a movable theater (Figure. 2.1). The structure 

is composed of rigid bars and cables, and there is a need for additional cables to lock the 

model and to sustain stabilization after folding the structure. Different types of deployable 

bar structures are further developed (Piñero 1961a; 1961b). 
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Figure 2.1. Movable theatre  
(Source: © Fundación Emilio Pérez Piñero, 2017) 

 

Piñero develops a large variety of deployable structures such as pavilions, 

retractable domes and temporary enclosures based on using SLEs (1962; 1965). The 

foldable reticular dome in Figure 2.2 contains seven modules in it.  In that design, each 

module is capable of deploying from a compact bundle to an expanded shape.  

Nevertheless, in order to generate the dome shape, modules have to be deployed and 

stiffened on the ground and then lifted up and locked together (Belda, 2013). After the 

modules are connected to each other, the system is no longer deployable. 

 

 

Figure 2.2. Foldable reticular dome  
(Source: © Fundación Emilio Pérez Piñero, 2017) 

 

Félix Escrig investigates deployable bar structures in detail. He is the first 

researcher who presented SLEs’ geometric and deployability conditions, the relation 

between the elements, and the span of the structure (Escrig, 1984; Escrig 1985). He 

introduces how to obtain three-dimensional structures by intersecting SLEs in multiple 

directions on a grid and the way of generating curvature in such a grid by varying the 

location of the intermediate hinge of the SLEs. In his further studies, new spherical grid 
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structures composed of two-way and three-way scissors are developed (Escrig & 

Valcarcel, 1986a, 1986b, 1987). In addition to these developments, different kinds of 

deployable scissor structures include spherical and geodesic structures, quadrilateral 

expandable umbrella, and deployable polyhedral and compactly folded cylinder have 

been developed (Escrig and Valcárcel 1993; Escrig 2006).  

 

 

Figure 2.3. Expandable space-frame structure  
( Source: Escrig, 1984) 

 

One of the most famous examples of scissors units applied to a real life example 

is deployable roof structure for a swimming pool in San Pablo Sports Centre in Seville, 

Spain by Escrig (1996). The roof structure is based on two identical rhomboid grid 

structures with spherical curvature consisting of grids of equal quadrilateral SLEs in 

which the structure is covered with a thin fabric roof. It is unfolded from a folded 

configuration to an expanded form as in Figure 2.4. 
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Figure 2.4. Swimming pool in Seville  
(Source: Wikimedia, 2016) 

 

Escrig’s foldability conditions of SLEs are further developed by Langbecker 

(1999) in order to find out the deployability of translational, cylindrical and spherical 

configurations of scissor structures and to investigate their kinematics. Moreover, by 

using suitable SLEs he developes many models of singly-curved foldable barrel vaults 

and doubly-curved synclastic structures as in Figure 2.5 (Langbecker & Albermani, 

2001).  

 

 

Figure 2.5. Singly-curved foldable barrel vault  
( Source: Langbecker & Albermani, 2001) 

 

The discovery of angulated elements by Chuck Hoberman (1990), composed of 

two identical angulated bars connected to each other by a revolute joint, brings a new 

perspective into the design of scissor mechanisms (Figure 2.6). This development led 

Hoberman to use single DoF scissor structures in a wide range of applications due to the 

fact that it creates a central opening at the center. 
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Figure 2.6. Angulated scissor unit 

 

By using the angulated elements, Hoberman (1991) creates original works such 

as Hoberman Arch, Expanding Geodesic Dome, Expanding Sphere, Expanding 

Icosahedron and Iris Dome.  Expanding Geodesic Dome structure of Hoberman is 

illustrated in Figure 2.7. 

 

 

Figure 2.7. Hoberman’s kinetic sculpture: Expanding Geodesic Dome  
(Source: © Hoberman, 2016) 

 

Another work, the Iris Dome is a lamella dome, which is based on the geometry 

of interlocking spirals capable of retracting radially towards the perimeter (Figure 2.8) 

(Hoberman, 1993).  
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Figure 2.8. Iris Dome  
(Source: © Hoberman, 2016)  

 

Hoberman’s Arch is briefly described as follows: firstly, rigid panels are used to 

clad the structure comprising of six concentric rings of angulated elements, and these 

panels slide over one another by attaching to the individual angulated elements. (Figure 

2.9). 

 

 

Figure 2.9. Hoberman Arch in 2002 Winter Olympics  
(Source: © Hoberman, 2016) 

 

Hoberman is the pioneer in the design of angulated elements and his ideas inspire 

people to go one step further. For example, You and Pellegrino (1997) make detailed 

investigations about angulated scissor structures. They take Hoberman's discovery a step 

further, and they discover generalized angulated elements (Figure 2.10) to be used as a 

building block (You & Pellegrino, 1997). 
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Figure 2.10. Generalized angulated elements  
( Source: You & Pellegrino, 1997) 

 

They also discover multi-angulated rod that reduced the number of components 

of the structure and the complexity of its joints (Figure 2.11). Kassabian, You and 

Pellegrino construct a deployable structure in such a way that they develop multi-

angulated elements which are used to construct mounted on pinned columns (Kassabian 

et. al., 1999) (Figure 2.12).  

 

 

Figure 2.11. Multi-angulated scissor structure  
( Source: Jensen & Pellegrino, 2002) 

 

 

Figure 2.12. Deployable structure composed of multi-angulated elements  
(Source: Kassabian, You, & Pellegrino, 1999) 
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Another researcher uses scissor arches composed of angulated elements in order 

to cover a tennis arena (Van Mele, 2008). In his design, the scissor arches are integrated 

with a membrane that is capable of folding and unfolding together with the scissors from 

one form to another instead of using a single arch which is pinned at one end. The scissor 

arches are cut into two and constructed two halves are pinned to spectator area which are 

connected at a central hinge in the closed configuration. On the other hand, he does not 

have a chance to construct the roof because that kind of a bar structure is not convenient 

for a long span. As a result, he prefers to use a movable supporting structure and cables 

to provide structural resistance against the service loads as shown in the Figure 2.13. 

 

 

Figure 2.13. Deployable roof structure  
( Source: Van Mele, 2008) 

 

Different type of scissor units can also obtain the curved structures rather than 

using basic scissor units. Rippmann and Sobek develop a new scissor unit consisting of 

various intermediate hinge points as in Figure 2.14. They also design a novel structure 

constituting of different geometric shapes by switching the locations of the hinge points 

in the design of basic scissor structure as indicated in Figure 2.14 (Rippmann, 2007). At 

first look, the system seems like flexible, but it is not the case because the system has 

single DoF.  
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Figure 2.14. Scissor unit with various hinge points and the structure constructed with 
(Source: Rippmann, 2007) 

 

Hoberman who is the pioneer of angulated scissor systems also developes two 

deployable anticlastic structures using angulated elements. Expanding Helicoid is one of 

the novel designs of him introduced in 1998 as shown in Figure 2.15. The structure looks 

like a double helix DNA structure. Another example of anticlastic structures is Expanding 

Hypar built in 1998 (Figure 2.16).  These designs contribute to the development of 

deployable bar structures, but in terms of architectural perspective, it is hard to implement 

them in daily life due to their complex mechanisms. 

 

 

Figure 2.15. Expanding helicoid  
(Source: © Hoberman, 2016) 
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Figure 2.16. Expanding hypar  
(Source: © Hoberman, 2016) 

 

Polina Petrova developes doubly curved structures as an alternative to constant 

curvatures. The main aim of her work is to develop more arbitrary surfaces and suitable 

forms for contemporary architecture. As a result, arbitrary doubly-curved translational 

surfaces are developed by her (Petrova, 2008) as in Figure 2.17.  

 

 

Figure 2.17. Arbitrary doubly-curved translational structures  
( Source: Petrova, 2008) 

 

In more recent works, Roovers, Mira and Temmerman (2013) reveal the potential 

of angulated elements to be applicable in new geometrical shapes. In order to accomplish 

that, they use Hoberman’s Expanding Helicoid rather than using simpler curved surfaces. 
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In the end, they come up with a design based on a single DoF deployable catenoid 

structure as shown in Figure 2.18. 

 

 

Figure 2.18. Deployable catenoid  
(Source: Roovers, Mira, & De Temmerman 2013) 

 

As being one of the novel transformable deployable structures, as compared to 

typical scissor-hinge structures, Cable Scissors Arch (CSA) is developed by Tsutomu 

Kokawa. The most important feature of that system is its ability to change its geometry 

without changing the span length.  The structure consists of two scissor assemblies and 

zigzag flexible cables with pulleys. In Figure 2.19, the deployment sequence can be seen 

(Kokawa and Hokkaido, 1997).  

 

 

Figure 2.19. Transformation sequence of Cable-scissor arch  
( Source: Kokawa and Hokkaido, 1997) 

 

In addition to the mentioned studies until so far, Akgün (2010) proposes new 

transformable structures based on a novel SLEs. In his design, three types of modified 

scissor-like element (M-SLE) are developed by adding revolute joints on various 

locations of a bar as shown in Figure 2.20.   
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Figure 2.20. Three types of Modified scissor-like elements  
( Source: Akgün, 2010) 

 

Development of M-SLE led Akgün to introduce new adaptable scissor structures 

being able to transform from rectilinear geometries to different curved shapes without 

changing the span. As an example, 4-DoF planar scissor arch structure composed of M-

SLEs and SLEs is designed as in Figure 2.21.  

 

 

Figure 2.21. 4-DoF planar scissor arch structure composed of M-SLEs and SLEs 
( Source: Akgün, 2010) 

 

Then, Akgün uses six scissor arches to design an adaptable roof structure, which 

is highly flexible (Figure 2.22). Also, he designs a complex 4-DoF spatial scissor structure 

composed of different types of scissor units as 25 spatial SLEs (S-SLEs), 4 modified 

spatial scissor-like elements (MS-SLEs), 20 hybrid spatial scissor-like elements (HS-

SLEs) and 8 special SLEs as shown in Figure 2.23. These scissor units give extra 

flexibility to the structure and becoming superior over the current examples of spatial 

scissor structures. 
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Figure 2.22. Adaptive roof structure composed of scissor arches  
( Source: Akgün, 2010) 

 

 

Figure 2.23. Perspective and top view of the proposed scissor-hinge shell structure 
(Source: Akgün, 2010) 
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CHAPTER 3 

 

ANALYSIS OF LOOPS OF SCISSOR LINKAGES 

 

In this chapter the main scissor units are examined based on their geometrical 

properties. Basic scissor units are categorized into three main groups as translational, 

polar and angulated scissor unit. The general deployability condition of scissor linkages 

is investigated. In addition to this, to understand the loop types of scissor linkages, 

quadrilateral loops are examined. Then, scissor linkages are investigated based on their 

geometrical conditions and their loop types on deployed configuration. 

 

3.1. Planar Scissor Units 

 

This section is concerned with an explanation of the characteristics of basic scissor 

units. The classification of scissor units in (Maden, Korkmaz and Akgün, 2011) is 

followed. A scissor unit consists of two rods connecting to each other with a single DoF 

revolute joint (R). This revolute joint, called as a scissor hinge, allows rotation about a 

single axis perpendicular to their common plane. The position of the scissor hinge on the 

bars determine the type of the scissor unit such as translational, polar or angulated scissor 

unit (Figure 3.1). 

 

 

Figure 3.1. Basic scissor units a) Translational unit, b) Polar unit, c) Angulated unit (β1, 
β2, and β3 are deployment angles) (Reproduced from: Maden, Korkmaz, and 
Akgün, 2011) 
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Unit lines are imaginary lines which extend along the upper-end point of a bar and 

the bottom end point of the other bar. Scissor units vary according to the position of the 

scissor hinge and dimensions of the bars. Thus, unit lines can stay parallel to each other 

or intersect at one point. Each of the scissor units is characterized by its geometric 

properties.  

 

3.2. General Deployability Condition 

 

This section is concerned with explaining the geometric characteristics in order to 

explain the deployability conditions of scissor linkages to transform from compact 

(stowed) to open (deployed) configurations. The configuration of compact shape for 

scissor linkages brings the scissor linkage the capability of being stored. Ideally, the 

scissor units in compact shape should be concurrent in a line-segment form. In Figure 3.2 

B0, C0, A1, B1, C1, A2, B2, C2, A3, B3, and C3 will be collinear in the stowed configuration. 

The distance between C1B1 can be found by applying the cosine law to C1A0B1 and 

C1A1B1 triangles: 

 

|C1B1| = ai
2 + bi

2  −  2aibicos(γi) = ai+1
2 + bi+1

2  −  2ai+1bi+1cos(γi+1) (3.1) 

 

In the stowed configuration = =  so Eq. (3.2) reduces to: 

 

           ai + bi = ai+1 + bi+1 (3.2) 

 

This equation is derived by Escrig (1985) for foldability of planar scissor 

structural linkages. It reveals that the sum of the lengths of bars on both sides of the unit 

line should be equal to each other. This equation can only be applied to translational and 

polar scissor units that are formed by straight bars. 
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Figure 3.2.. Diagrammatic of scissor linkage 
(Reproduced from: Maden, Korkmaz, and Akgün, 2011) 

 

3.3. Geometric Properties of Quadrilateral Loops 

 

A quadrilateral is defined as a particular geometric shape with four sided polygons 

which is composed of four points (a.k.a. vertices) orderly joined by straight line segments 

(a.k.a. sides). There are three classifications of quadrilaterals (Leonard, Lewis, Liu & 

Tokarsky, 2014): convex, simple and nonsimple (Figure 3.3). Whether convex or 

concave, if the sides of a quadrilateral do not cross each other, it is called a simple 

quadrilateral. A quadrilateral with intersecting sides is nonsimple quadrilateral (Figure 

3.3). 

 

 

Figure 3.3. Classification of quadrilaterals 
(Reproduced from: Leonard, Lewis, Liu & Tokarsky, 2014) 

 

The most regular quadrilateral is named as the square. A square is a quadrilateral 

with all sides, and interior angles are equal. Interior angles sum up to 360° in a 
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quadrilateral, so all interior angles of a square are 90°. An equiangular quadrilateral is 

called a rectangle. All angles are equal to 90°. A rhombus is defined as an equilateral 

quadrilateral with all sides equal to each other (Usiskin, Z., Griffin, J., Witonsky, D., & 

Willmore, E. 2008).  

In all mentioned quadrilaterals, square, rectangle, or rhombus’ sides are parallel. 

When the opposite sides of a quadrilateral are parallel, it is known as a parallelogram.  

 

 

Figure 3.4. Hierarchies of simple quadrilaterals 
(Source: Usiskin, Griffin, Witonsky, & Willmore, 2008) 

 

A quadrilateral which has two pairs of adjacent sides of equal length is called as 

a kite (Figure 3.5.). In the special case where all four sides are the same length, the kite 

satisfies the definition of a rhombus. One of the two diagonals (q) divides the kite into 

two isosceles triangles, and the other one (p) divides into two congruent triangles 

(symmetry axis) as illustrated in Figure 3.5. The symmetry axis is also the bisector of 

opposite angles. Two opposite angles that are located on opposite sides of the axis of 

symmetry are equal to each other (angles at C and D in Figure 3.5) (Usiskin, et. al. 2008). 
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Figure 3.5. A kite, showing its pairs of equal length sides, the axis of symmetry and 
bisector of opposite angles (Reproduced from: Usiskin, et. al. 2008) 

 

The geometrical form of the kite may be either convex and concave (Figure 3.6). 

The word “kite” generally represents the convex form (Figure 3.6.a). When the kite is 

concave, it is referred to as a “dart” (Figure 3.6.b). Kite and dart are examples of 

quadrilaterals with perpendicularly crossing diagonals. A square and a rhombus also have 

perpendicularly crossing diagonals (Usiskin, et. al. 2008). 

 

 

Figure 3.6. a) Convex kite b) concave kite, is referred to as a dart 
(Reproduced from: Usiskin, et. al. 2008) 
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3.4. Analysis of Scissor Linkages 

 

In this section, scissor linkages consist of basic scissor units are investigated. The 

geometrical conditions of scissor linkages are examined. Also, the loop types of scissor 

linkages are analyzed. 

 

3.4.1. Translational Scissor Units 
  

Translational scissor units, also called rectilinear units, consist of two straight rods 

connected by a scissor hinge. In order to provide a translational movement, unit lines 

must be parallel to each other during deployment and stowed process, which is the most 

specific characteristics of the translational units. As the deployment angle β (Maden, 

Korkmaz, and Akgün, 2011) changes the translational unit deploys accordingly, which 

means the distance t changes. 

 

 

Figure 3.7. Translational scissor unit (β is deployment angle) 
 

According to the De Temmerman (2007) there are two types of translational 

scissor units that are plane and curved translational units. The curved translational scissor 

unit is the version of plane translational unit with different semi lengths. So, in this thesis 

we only consider one translational unit.   

There are different types of translational units varying with the location of scissor 

hinge and size of rods. 
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3.4.1.1. Translational Scissor Linkages with Identical Rhombus Loops 

 

The first type translational scissor linkage consists of translational scissor units 

with 2l bar lengths with equal partial lengths. The resulting translational linkage makes a 

rectilinear movement. This type of translational linkage is the basic scissor linkage known 

as lazy-tong mechanism (De Temmerman, 2007). Unit lines always keep parallel to each 

other during the deployment. The condition of this type scissor linkage mechanism could 

be formulized as (Maden, Korkmaz, and Akgün, 2011): 

 

|B0A1| = |A1C1| = |C0A1| = |A1B1 |= … = |A5C5| = |C4A5| = |A5B5| = l (3.3) 

 

When we observe the linkage in the deployed configuration, it is seen that loops 

of the linkage are identical rhombi (Figure 3.8). 

 

 

Figure 3.8. Translational linkage with identical bars 
(Reproduced from: Maden, Korkmaz, and Akgün, 2011) 

 

It is observed that loops of the linkage occur by translating a rhombus along one 

direction (Figure 3.9). The translational scissor unit with equal lengths are obtained 

because the side lengths of a rhombus are equal to l. The summation of collinear sides of 

two rhombi (for example C1A2 and A2B2; B1A2 and A2C2) is equal to one bar length of 

the scissor unit (2l) as illustrated in Figure 3.9. 
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Figure 3.9. Identical rhombus loops of a translational scissor linkage 
 

3.4.1.2. Translational Scissor Linkages with Identical Parallelogram 
Loops 

 

The second type of translational linkage consist of scissor units with different 

partial lengths (l1+l2). During the deployment process of the translational scissor linkage 

the unit lines that pass through the axes of hinges remain parallel to each other. The 

condition of this type of scissor linkage can be formulized as (Maden, Korkmaz, and 

Akgün, 2011): 

 

|C0A1| = |A1B1| = |C1A2| = |A2B2 | = … = |C4A5| = |A5B5| = l  (3.4) 

 

|B0A1| = |A1C1| = |B1A2| = |A2C2 | = … = |B4A5| = |A5C5| = l2 (3.5) 

 

When we examine the linkage it is observed that the loops of the linkage are 

identical parallelogram loops in the deployed configuration (Figure 3.10). 

 

 

B0

A1 A2 A3 A4 A5

x

y

B1

C0 C1

B2

C2

B3

C3

B4

C4 C5

B5



26 
 

 

Figure 3.10. Translational linkage with different bars and with scissor hinges at their 
 midpoint (Reproduced from: Maden, Korkmaz and Akgün, 2011) 

 

Clearly, loops of the linkage are obtained by translating a parallelogram along a 

line. The summation of short sides (l1) (for example C1A2 and A2B2) of two 

parallelograms is equal short bar length (2l1) of the scissor unit while the summation of 

the long sides (l2) (for example B1A2 and A2C2) of two parallelograms is equal the long 

bar length (2l2) of the scissor unit as can be seen from Figure 3.11. 

 

 

Figure 3.11. Identical parallelogram loops of translational scissor linkage 
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3.4.1.3. Translational Scissor Linkages with Identical Kite Loops 

 

The third type of translational linkage is formed by assembling translational 

scissor unit with different bar lengths, with its reflected one. During the deployment 

process unit lines of the linkage remain parallel to each other. The condition of this type 

scissor linkage can be formulized as (Maden, Korkmaz, and Akgün, 2011): 

 

|C0A1| = |A1B1| = |B1A2| = |A2C2| = … = |C4A5| = |A5B5| = l  (3.6) 

 

|B0A1| = |A1C1| = |C1A2| = |A2B2| = … = |B4A5| = |A5C5| = l  (3.7) 

 

The linkage is formed by assembling one translational scissor unit with an 

identical reflected one. It is observed that the loops of the linkage are identical kite loops 

in the deployed configuration (Figure 3.12). 

 

 

Figure 3.12. Translational linkage with different bars and with scissor hinges at their 
midpoints (Reproduced from: Maden, Korkmaz, and Akgün, 2011) 

 

Loops of the linkage are obtained by glide-reflection operation (combination of 

translation and reflection) of a kite loop along a line (Figure 3.13). The summation of 

long sides of two adjacent kites (l2) (for example C1A2 and A2B2) is equal to the long bar 

length (2l2) of the scissor unit while the summation of the short sides (l1)  (for example 

B1A2 and A2C2) of two adjacent kites is equal to the short bar length (2l1)  of the scissor 

unit as can be seen in Figure 3.13.  
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Figure 3.13. Identical kite loops of translational scissor linkage 
 

3.4.1.4. Translational Scissor Linkages with Arbitrary Rhombus Loops 

 

The fourth type of translational linkage is formed by assembling different 

translational scissor units. During the deployment process unit lines of the linkage remain 

parallel to each other. The condition for this type of linkage can be written as (Maden, 

Korkmaz, and Akgün, 2011): 

 

           |B0A1| = |C0A1| = l , |A1B1| = |A1C1| = |B1A2| = |C1A2| = l , … ,  

|A4B4| = |A4C4| = |B4A5| = |C4A5| = l , |A B5| = |A C5| = l  (3.8) 

 

When the linkage that is formed by different translational scissor units is 

examined, it is observed that the loops of the linkage are different kite loops in the 

deployed configuration. 

 

C0

C1

C2

C3

C4

C5

B0

B1

B2

B3

B4

B5

x

y

A5A1 A2 A3 A4



29 
 

 

Figure 3.14. Translational linkage with arbitrary bar lengths and with scissor hinges 
eccentrically placed (Reproduced from: Maden, Korkmaz and Akgün, 2011) 

 

It can be observed that the linkage can be obtained by assembling rhombi with 

different side lengths but identical interior angles along a line. The summation of the 

collinear sides (for example C1A2 and A2B2) of two rhombi gives a bar length of a scissor 

unit (Figure 3.15). Different rhombi can form a translational scissor linkage as long as 

unit lines remain parallel to each other. 

 

 

Figure 3.15. Different rhombus loops of translational scissor linkage 
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3.4.2. Polar Scissor Units 

 

If the unit lines of a scissor unit are no longer parallel to each other and all intersect 

at the same point, a polar scissor unit is obtained. It is possible to obtain circular motion 

with polar scissor units. 

 

 

Figure 3.16. Polar scissor unit 
 

A polar scissor unit is obtained by joining two straight bars in mirror symmetry 

with an eccentric scissor hinge. Eccentric hinge means that the hinge is not at the 

midpoints of the bars. A linkage with a polar scissor unit makes a circular movement with 

variable curvature. However, the curvature changes slightly during the motion while the 

subtended angle changes drastically. Unit lines intersect at a center while the segment 

angle α varies while the linkage deploys (Figure 3.16). The middle hinges of the scissor 

units are on a concentric circle at a specific instant during the deployment process. The 

loops of the deployed polar scissor linkage are kite loops. According to the sizes of polar 

units, loops can form different kites. 

Different polar units are obtained by varying the location of scissor hinges and 

sizes of the rods.  

 

3.4.2.1. Polar Scissor Linkages with Identical Kite Loops 

 

The first type of polar linkage consists of scissor units with two identical straight 

bars with the eccentric hinge on them. The result of connecting identical polar units is a 
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scissor linkage that can make a circular movement by uniformly changing its curvature. 

As the characteristics of a polar scissor linkage suggest, all unit lines intersect at a specific 

point. The deployability condition of this scissor linkage can be formulized as (Maden, 

Korkmaz, and Akgün, 2011):  

 

|A1B0|

|A1C1|
=

|A1B1|
|A1C0|

=
|A2B1|
|A2C2|

=
|A2B2|
|A2C1|

=…=
|A5B4|
|A5C5|

=
|A5B5|
|A5C4|

 (3.9) 

 

The bars are identical; therefore (Maden, Korkmaz, and Akgün, 2011):  

 

|C0A1| = |A1C1| = |C1A2| = |A2C2 | = … = |C4A5| = |A5C5| = l1 (3.10) 

 

|B0A1| = |A1B1| = |B1A2| = |A2B2 | = … = |B4A5| = |A5B5| = l2 (3.11) 

 

When the linkage is examined, it is observed that each loop of the linkage are 

identical kite loops in the deployed configuration (Figure 3.17). 

 

 

Figure 3.17. Linkage formed by polar units with identical bars and with scissor hinges 
eccentrically placed (Reproduced from: Maden, Korkmaz, and Akgün, 
2011) 

 

It is observed that, when a kite loop is duplicated by rotating about a center point, 

these kites create the loops of the scissor linkage formed by identical polar scissor units 
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A2B2) give the total side length of a bar (l1+l2) of the scissor unit (Figure 3.18). Thus, 

scissor linkage formed by identical polar scissor units is obtained.  

 

 

Figure 3.18. Identical kite loops of polar scissor linkage 
 

3.4.2.2. Polar Scissor Linkages with Arbitrary Kite Loops 

  

The second type of polar linkage consists of different polar scissor units that have 

different straight bars with eccentric hinges on them. Although the lengths of bars can 

vary, the sum of the lengths of both sides of the unit line should be equal to each other 

(Eq. 3.13). The result of connecting different polar units is a scissor linkage that can make 

a circular movement with uniformly changing curvature. The condition of this type 

scissor structural mechanism can be formulized as (Maden, Korkmaz, and Akgün, 2011): 

 

|A1B0|
|A1C1|

 ≠ 
|A1B1|
|A1C0|

 ≠ 
|A2B1|
|A2C2|

 ≠ 
|A2B2|
|A2C1|

 ≠ … ≠ 
|A5B4|
|A5C5|

 ≠ 
|A5B5|
|A5C4|

 
(3.12) 

 

|C0A1| = l0, |B0A1| = l1, |A1C1| = |C1A2 | = l2,  

|A1B1| = |B1A2 | = l3, … , |A5C5| = l10, |A5B5 | = l11 (3.13) 

 

When the linkage is examined in the deployed configuration, it can be seen that 

the loops of the linkage are different kites (Figure 3.19). 

 

A1

A2

A3

A4

A5

B0

B1

B2 B3

B4

B5

C0

C1

C2 C3

C4

C5

O



33 
 

 

Figure 3.19. Linkage formed with arbitrary polar units and mid-scissor hinges 
eccentrically placed (Reproduced from: Maden, Korkmaz, and Akgün, 
2011) 

 

It can be deduced that, when different kite loops are duplicated by rotating about 

a center point, these kites create the loops of the scissor linkage formed by different polar 

scissor units (Figure 3.20). The summation of collinear sides of two kite loops (for 

example C1A2 and A2B2) give the total side length of a bar of the scissor unit (Figure 

3.15). Thus, scissor linkage formed by different polar scissor units is obtained. 

 

 

Figure 3.20. Different kite loops of polar scissor linkage 
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3.4.3. Angulated Scissor Units 

 

Angulated unit comprises of two angulated bars which have a kink with an angle 

instead of straight bars. While translational and polar units have linear and circular 

deployment respectively, angulated scissor units are capable of making radial deployment 

about a center. Angulated scissor unit was first discovered by Chuck Hoberman in 1990 

(Hoberman, 1990). Hoberman’s angulated unit comprise two angulated bars that have 

equal kink angles (ψ =φ) (Figure 3.21a).  

In addition to Hoberman’s angulated scissor unit, You and Pellegrino (1997) 

discovered generalized angulated elements (GAEs) that are Equilateral Angulated 

Element (AE) (Type I) and Similar AE (Type II). These elements, as well as Hoberman’s 

symmetrical angulated element, subtend a constant angle during folding. 

 

 

Figure 3.21. Angulated Scissor Units a) Hoberman’s Symmetrical AE (φ=ψ), b) Type I 
Equilateral AE (φ≠ψ) and c) Type II Similar AE (φ=ψ and l1/l4=l2/l3) 

 

The relationship between kink angles and segment angle can be demonstrated in 

Eq. 3.14 (You and Pellegrino, 1997): 

 

 α = 180° −
φ + ψ

2
 (3.14) 

 

While translational and polar units have linear and circular deployment 

respectively, angulated scissor units are capable of making radial deployment about a 

center with a uniformly varying curvature. The hinges of the linkage lie on concentric 
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circles at a specific instant during the deployment. The segment angle (α) between two 

unit lines of an angulated scissor unit remains constant during the deployment whereas it 

varies in polar units (Jensen, 2004). 

The first type of angulated unit is the Hoberman’s symmetrical AE (Figure 3.21a). 

It is obtained by connecting two identical isosceles angulated bars, and they have equal 

kink angles: 

 

|A1B0| = |A1 C1| = |A1B1| = |A1C0| (3.15) 

 

φ = Ψ (3.16) 

 

 

The segment angle α always remains constant. The relationship between segment 

angle and the kink angles is given by: 

 

             α = 180º −  Ψ = 180º −  φ (3.17) 

 

Hoberman (1990, 1991) has shown that the above derivation can be extended to 

nonsymmetrical angulated elements, which are still made of identical angulated rods. It 

satisfies the following conditions (You and Pellegrino, 1997): 

 

|A1B0| = |A1 C0| and |A1B1| = |A1C1| (3.18) 

 

φ = Ψ (3.19) 

 

The second type of angulated units is Equilateral AE (Figure 3.21b) formed by 

angulated rods with equal semi-length but not necessarily equal kink angles. It satisfies 

the following conditions (You and Pellegrino, 1997): 

 

|A1B0| = |A1C0| (3.20) 

 

|A1B1| = |A1C1| (3.21) 
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φ ≠ Ψ (3.22) 

 

Although kink angles are different, the segment angle always remains constant. 

The relationship between segment angle and kink angles is indicated as (You and 

Pellegrino, 1997): 

 

α = 180 −
 Ψ + φ

2
(3.23) 

 

The third type of angulated units is the Similar AE (Figure 3.21c) formed by 

angulated rods with proportional semi-lengths and having equal kink angles. 

Deployability condition for this type of unit is (You and Pellegrino, 1997):  

 

|A1B0|
|A1C0|

 = 
|A1C1|
|A1B1|

(3.24) 

 

φ = Ψ (3.25)  

 

The segment angle always remains constant. The relationship between segment 

angle and kink angles is indicated in Equation 3.26: 

 

α = 180 − Ψ = 180 −  φ (3.26) 

 

3.4.3.1. Angulated Scissor Linkages with Identical and Similar 
             Rhombus Loops 
 

The first type of angulated scissor linkage consists of identical angulated bars with 

equal semi-lengths and equal kink angles, that is Hoberman’s Symmetrical AEs. The 

result of connecting identical angulated units is a scissor linkage that can make a radial 

movement by uniformly varying curvature. As the characteristics of angulated scissor 

linkage, all unit lines intersect at a point. The geometrical condition of this scissor linkage 

can be formulized as (Maden, Korkmaz, Akgün, 2011):  

 

A1B0  = A1C0 = A1B1  = |A1C1| = |A2C1| = |A2B1| =…= |A5B5| =  |A5C5| = l (3.27) 
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When the linkage that is formed by identical isosceles angulated scissor units is 

examined, it is observed that the loops of the linkage are identical kite loops in the 

deployed configuration (Figure 3.22). 

 

 

Figure 3.22. Partial radially deployed closed ring scissor linkage with angulated units 
(Reproduced from: Maden, Korkmaz, Akgün, 2011) 

 

It is observed that, when a rhombus loop is duplicated by rotating about a center 

point (Figure 3.23), these rhombi create the loops of the scissor linkage formed by 

identical angulated scissor units. The two sides of two adjacent rhombus loops (for 

example C2A2 and A2B1) constitutes an angulated bar of the scissor unit (Figure 3.23). 

Thus, scissor linkage formed by identical angulated scissor units is obtained. 

 

 

Figure 3.23. Identical rhombus loops forming angulated scissor linkage 
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The second type of angulated scissor linkage consists of identical angulated bars 

with the unequal semi-lengths (l1 and l2) but equal kink angles, which is a more general 

form of Hoberman’s angulated unit. The result of connecting identical angulated units is 

a scissor linkage that can make a radial movement by uniformly varying curvature. Once 

again, all unit lines intersect at a point. The geometrical condition of this scissor linkage 

can be formulized as:  

 

A1B0  = A1C0  = |A2B2| = |A2C2| = |A3B2| = |A3C2| = …
= |A5B4| = |A5C4| = l1 (3.28)

 

 

|A1B1| = |A1C1| = |A2B1| = |A2C1| = … = |A5B5| = |A5C5| = l2 (3.29) 

 

When the linkage that is formed by identical angulated scissor units is examined, 

it is observed that the loops of the linkage are similar kite loops with same interior angles 

in the deployed configuration (Figure 3.24). 

 

 

Figure 3.24. Radially deployed scissor linkage with angulated units 
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example C2A2 and A2B1) constructs an angulated bar of the scissor unit (l1+l2) (Figure 

3.25). Thus, scissor linkage formed by identical angulated scissor units is obtained. 

 

 

Figure 3.25. Similar rhombus loops forming angulated scissor linkage 
 

3.4.3.2. Angulated Linkages with Different Rhombus Loops 

 

The third type of angulated scissor linkage consists of identical equilateral AEs. 

The linkage makes a radial movement with a uniformly varying curvature with respect to 

the center point. The geometric properties of this scissor linkage can be formulized as:  

 

|A1B1| = |A1C1| = |A2B1| = |A2C1| = |A3B3| = |A3C3| = |A4B3| = |A4C3| = l1 (3.30) 

 

A1B0  = A1C0  = |A2B2| = |A2C2| = |A3B2| = |A3C2| = |A4B4| = |A4C4| = l2 (3.31) 

 

For the linkage that is constructed by equilateral AEs, segment angles of all units 

would be the same and remain constant during the motion of the linkage. When the 

linkage is examined, it is observed that the loops of the linkage composed of two different 

rhombi in the deployed configuration (Figure 3.26). 
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Figure 3.26. Assembly of one type of Equilateral AEs 
 

It is observed that, when two different rhombi are duplicated by rotating about a 

center point (Figure 3.27), these rhombi create the loops of the scissor linkage formed by 

Equilateral AEs. The two sides of two adjacent rhombus loops (for example C2A2 and 

A2B1) constitutes an angulated bar of the scissor unit. Thus, scissor linkage formed by 

identical equilateral AEs is obtained. 

 

 

Figure 3.27. Different rhombus loops forming angulated scissor linkage 
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|A1B0| = |A1C0| = l1, |A1B1| = |A1C1| = |A2B1| = |A2C1| = l2,
|A2B2| = |A2C2| = |A3B2| = |A3C2| = l3, (3.32)

 

 

If we use different Equilateral AEs with different partial lengths and different kink 

angles (Figure 3.28), segment angle of all units would be different. However, for each 

unit, the segment angle remains constant during the deployment process. Thus, the sum 

of the segment angles also remains constant that is expressed in equation 2.34 (You and 

Pellegrino, 1997): 

 

αsum = α1 + α2 + α3 + … + αn (3.33) 

 

When the linkage is examined, it is observed that the loops of the linkage 

composed of more than two different rhombi in the deployed configuration (Figure 3.28). 

 

 

Figure 3.28. Assembly of Equilateral AEs with unequal semi-length 
(Reproduced from: You & Pellegrino, 1997))  

 

It is observed that, when different rhombi are multiplied respectively by rotating 

according to one point (Figure 3.29), they create the loops of the scissor linkage formed 

by different Equilateral AEs. The summation of transverse sides of two rhombus loops 

(for example C2A2 and A2B1) give the total side length of one angulated bar of the one 

scissor unit. Thus, scissor linkage formed by different Equilateral AEs is obtained.  
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Figure 3.29. Assembly of various rhombus loops forming angulated scissor linkage 
 

While in Figure 3.27 the linkage consists of two types of rhombi with various 

corner angles, in Figure 3.29 the loops of the linkage are different rhombi. To sum up, we 

can obtain angulated scissor linkage formed by Equilateral AEs by assembling rhombus 

loops that are rotated on the arc of the circumference. There can be two or more different 

rhombus loops. 

 

3.4.3.3. Angulated Scissor Linkages with Identical and Similar 

Parallelogram Loops 

 

The fourth type of angulated scissor linkage consists of identical, similar AEs. 

The linkage makes a radial movement with constant curvature with respect to the centre 

point. Because there is one type of Similar AE forming the linkage unit lines intersect at 

different point as defining a circle. The deployability condition of this scissor linkage can 

be formulized as:  

 

|A1B0|
|A1C0|

=
|A1C1|
|A1B1|

=
|A2B1|
|A2C1|

=
|A2C2|
|A2B2|

=
|A3B2|
|A3C2|

=
|A3C3|
|A3B3|

= … =
|A5B4|
|A5C4|

=
|A5C5|
|A5B5|

(3.34) 

 

For the linkage that is constructed by identical Similar AEs, segment angles of all 

units would be the same and remain constant during the motion of the linkage. When the 

linkage is examined it is observed that the loops of the linkage composed of identical 

parallelograms in the deployed configuration (Figure 3.30). 
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Figure 3.30. Assembly of identical Similar generalized angulated elements 
 

It is observed that, when one parallelogram loop is multiplied by rotating 

according to one center point of the rotation (Figure 3.31), these rhombi create the loops 

of the scissor linkage formed by identical angulated Similar AEs. With the identical 

parallelogram loops, there is only one type of Similar AE exist. The summation of 

transverse sides of two rhombus loops (for example C2A2 and A2B1) give the total side 

length of one angulated bar of the scissor unit (Figure 3.31). Thus, scissor linkage formed 

by identical Similar AEs is obtained. 

 

 

Figure 3.31. Assembly of identical parallelogram loops aligned on arc of a circumference 
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the sum of the segment angles also remains constant that is expressed in equation 3.35 

(You and Pellegrino, 1997): 

 

αsum = α1 + α2 + α3 + … + αn (3.35) 

 

In Figure 3.32 there is one Similar AE with different partial lengths forming the 

linkage. Thus, it is observed that there are two similar parallelograms with identical 

interior angles in the deployed configuration of the linkage. 

 

 

Figure 3.32. Assembly of two different Similar Angulated Elements  
  

It is observed that, when two similar parallelogram loops are multiplied by 

rotating according to one center point of the rotation (Figure 3.33), these rhombi create 

the loops of the scissor linkage formed by identical angulated Similar AEs. The 

summation of transverse sides of two rhombus loops (for example C2A2 and A2B1) give 

the total side length of one angulated bar of the scissor unit (Figure 3.33). Thus, scissor 

linkage formed by Similar AEs is obtained. 
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Figure 3.33. Assembly of two different type of parallelogram loops aligned on arc of a 
circumference 

 

3.5. Conclusion 

 

This chapter first reviews the geometric features of existing scissor units. Then 

the loop types of scissor linkages are investigated. It is observed that there are three types 

of loops forming scissor linkages. Those are a parallelogram, rhombus, and kite.  

It is important to consider what kind of movement -translational or radial- the 

linkage has and what kind of scissor unit the structure consists of when connecting the 

loops to each other.  

In order to obtain translational scissor linkages, we can use each of the three types 

of loops.  Rhombuses and parallelograms are assembled end to end to obtain straight rods; 

while one kite loop must be assembled with its mirror symmetric one in order to get 

straight rods. Otherwise, angulated rods are obtained instead of straight ones. Because of 

the identical rods and parallel unit lines, there always be the similar loops in translational 

scissor linkages. It can be observed that the loops of translational scissor linkages would 

be parallelograms, rhombuses or kites. 

It has been observed that polar scissor linkages are only obtained by assembling 

kite loops. Deployable structures formed by polar scissor units are capable of making the 

circular deployment. Therefore, kite loops are duplicated about the center point of rotation 

in order to obtain a polar scissor linkage. Also, it is important to get straight rods from 

the assembly of kite loops. Kites can be identical or different. 
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It has been observed that angulated scissor units are only derived from rhombus 

or parallelogram loops. According to the foldability conditions of angulated scissor units, 

loops of the linkage can be identical rhombuses or different rhombuses, identical 

parallelograms or different parallelograms. 
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CHAPTER 4 

 

GEOMETRICAL CONSTRUCTION METHOD OF 

PLANAR ANGULATED SCISSOR LINKAGES  

 

This chapter concentrates on the geometrical construction method of angulated 

scissor linkages formed by rhombus loops. According to this construction method, it is 

proved that single DoF deployable scissor linkages can be constructed by using rhombus 

loops. It reveals that deployable scissor linkages, whose geometry is not only circular 

(Hoberman, 2013) but also irregular polygonal linkages (Kiper, & Söylemez, 2010), can 

be obtained with this construction method. 

 

4.1. Loop Assembly Method 

 

All 2D or 3D deployable scissor structures are multi-loops mechanisms. When 

deployable structures formed by angulated scissor units are investigated, it is observed 

that the segment angles between unit lines remain constant during the deployment 

process. In order to obtain constant segment angles, angulated units are assembled to each 

other in such a way that each loop is a parallelogram or rhombus.  

According to the loop analysis of scissor linkages mentioned before, a scissor 

structural linkage may comprise rhombus, parallelogram or kite loops. In this context, 

there are some studies about constructing irregular polygonal scissor linkages with 

rhombus loops (Liao & Li, 2005; Kiper & Söylemez, 2010). Also, in an MIT lecture note, 

Hoberman (2013) introduces a method for the geometric construction of expanding 

polygons composed of angulated scissor units.  He assembles identical or similar rhombi. 

 

4.1.1. Geometric Construction of Multi-Loop Linkages by Identical 

Rhombi 

 

Firstly, Hoberman connects identical rhombuses to each other at their corners 

(Fig. 4.1a). In Figure 4.1b scissor rods are drawn by offsetting the lines to both of the two 
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sides of the rod axes equally. Thus, a translational scissor structure is obtained with 

identical rods. The corners where rhombi connect to each other represent the scissor hinge 

of a scissor unit, while the top and the bottom corners of the rhombi represent revolute 

joints where scissor units connect to each other. During the motion of the linkage, scissor 

hinges and other revolute joints of the linkage move on parallel lines. Therefore, the unit 

lines which are drawn from the top points of the rhombuses to bottom ones, remain 

parallel during the motion (Fig. 4.1b).  

 

 

Figure 4.1. Geometric construction of translational linkage with loop assembly method 
(Reproduced from: Hoberman, 2013) 

 

When identical rhombi are assembled to each other as aligned on the arc of a 

circle, the deployment angle (β) between rhombi is determined as shown in Figure 4.2a. 

In this assembly type, the edges of rhombi identify the axes of angulated rods. This 

assembly mode of rhombi gives us angulated scissor linkage formed by identical 

angulated scissor units. When we draw unit lines, we can see that they intersect at the 

center of a circle (Figure4.2b). Scissor hinges and other revolute joints draw concentric 

circles of variable radius during the motion of the structure. 

 

 

Figure 4.2. Geometric construction of the angulated scissor structure forming a circular 
arc (Reproduced from: Hoberman, 2013) 
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In Figure 4.3a identical rhombi are assembled in a way to create a circular multi-

loop linkage. In this case, each of the angulated scissor units is identical. Unit lines 

intersect at the center of the circle (Figure 4.3b and Figure 4.3c).  

 

 

Figure 4.3. Geometric construction of the angulated scissor linkage forming a circle 
(Reproduced from: Hoberman, 2013) 

 

In Figure 4.4 identical rhombi are assembled in a way to create an elliptical multi-

loop structure. In this case, the deployment angle between rhombi is different because an 

ellipse has non-constant curvature. There are different types of angulated scissor units 

forming the linkage. There are many points where unit lines intersect because of the 

different kink angles of angulated units (Figure 4.4b and Figure 4.4c). 

 

 

Figure 4.4. Geometric construction of the angulated scissor structure forming ellipse 
(Reproduced from: Hoberman, 2013) 
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4.1.2. Geometric Construction of Irregular Expanding Polygons with 

          Similar Rhombi 

   

Generally, for polygonal scissor linkages are expected to deploy keeping the 

angles and side length proportions of the base polygon. In order to provide dilative 

transformation, the polygon has to have an inscribing circle, rather than be cyclic (Kiper 

& Söylemez, 2010). Irregular expanding polygons composed of angulated scissor units 

can be constructed with the same method explained above. 

In Figure 4.5 there are similar rhombi which have equal interior angles but 

different dimensions. Kink angles of angulated bars for every scissor unit vary because 

the deployment angles between rhombi are different from each other. In this case, unit 

lines of angulated scissor units intersect at various points.  

 

  

Figure 4.5. Geometric construction of irregular expanding polygon with similar rhombi 
(Reproduced from: Hoberman, 2013) 

 

It is possible to attach rhombi to each side of the desired polygonal geometry. 

Rhombi side lengths are half of the scaled polygon sides (Kiper & Söylemez, 2010). 

According to the deployment angle between rhombi, scissor units can be different such 

as angulated or translational scissor units. In Figure 4.6 there are two types of scissor units 

as translational and angulated scissor units.  
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Figure 4.6. Irregular expanding polygon composed of angulated and translational units  
(Reproduced from: (Hoberman, 2013)) 

 

4.2. Conclusion 

 

According to the construction method, only rhombus loops are used. Rhombi can 

be identical or similar in order to construct a deployable linkage. Circular, polygonal or 

irregular polygonal geometries can be obtained. It is observed that angulated scissor units 

and translational scissor units can be obtained by assembling rhombus loops.  
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CHAPTER 5 

 

ASSEMBLY OF KITE AND DART LOOPS 

  

This Chapter proposes a study of assembly variations of kite and dart loops. When 

aforementioned studies are taken into, it has been observed that angulated elements can 

be obtained when kite loops are assembled to each other. In addition to this, dart loops 

are assembled for the first time to obtain angulated scissor elements. For this purpose, 

different conditions for assembling kite and dart loops are investigated. Ultimately, a new 

type of scissor linkage is obtained that can transform between convex and concave 

configurations. 

There are four different conditions for the assembling kite and dart loops. Possible 

conditions can be listed as follows for two of the kite or dart loops of a system: 

1. Short side lengths are equal, long side lengths are equal, and interior angles are 

equal (identical kite or dart loops) 

2. Short side lengths are different and long side lengths are different, but interior 

angles are equal (similar kite or dart loops) 

3. Short side lengths are equal and long side lengths are equal, but interior angles are 

different (different kite or dart loops) 

4. Short side lengths are different and long side lengths are different. Also interior 

angles are different (different kite or dart loops) 

 

5.1. Assembly of Kite Loops 

 

For the first assembly condition, identical kite loops are assembled in a flat 

configuration where the symmetry axes are parallel to each other and perpendicular to the 

x-axis as illustrated in Figure 5.1: 
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Figure 5.1. Flat configuration of the assembled identical kite loops 
 

Scissor units are detected from the assembly type of the kite loops. It can be 

observed that there are angulated scissor units generated from the sides of the kite loops 

(for example |AD| and |DF|, |ED| and |BD|) that define the axes of the angulated bars. An 

angulated scissor unit resides between two symmetry axes (Figure 5.2). By defining the 

scissor units, symmetry axes represent unit lines. The connection point of the kite loops 

(for example point D) determines the scissor hinge of an angulated scissor unit. It is 

observed that, Hoberman’s nonsymmetrical angulated elements are obtained from the 

assembly of identical kite loops. But the obtained scissor unit (Figure 5.2) is different 

from the Hoberman’s unit. While the Hoberman’s unit is obtained from the assembly of 

similar rhombuses, this new type of angulated unit it is obtained from the assembly of 

identical kite loops. 

 

 

Figure 5.2. Angulated scissor unit with equal semi lengths and kink angles created with 
identical kites 

 

The scissor linkage composed of mentioned angulated elements is illustrated in 

flat configuration in Figure 5.3. The point A is assumed as the fixed point of the linkage.  
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Figure 5.3. Angulated scissor linkage formed by identical kite loops 
 

The new type angulated scissor linkage also was modeled on Solidworks® as 

illustrated in Figure 5.4 and Figure 5.5. The transformation capability of a single DoF 

deployable linkage which is constructed by assembling the kite loops is shown. This 

linkage is investigated under three different situations. For the first situation, the linkage 

is in the flat configuration. It is seen that unit lines are parallel to each other so the 

curvature is equal to zero. The second situation is bended upward configuration (Figure 

5.4). This is accomplished by moving point B (Figure 5.3) along the y-axis as well as the 

angle θ of kite loop changes at the same time. After some point, when the loops of the 

linkage become triangles, if the linkage continues to bend up concave kites become 

convex kites. The linkage continues bending upward. The third situation is bended 

downward configuration (Figure 5.5). The angle θ decreases. Loops of the linkage remain 

as kites. Due to the fact that the segment angles varying during the deployment, center 

point, which is formed by unit lines intersection, is translated on y-axis. As a result, the 

radius of curvature changes. 
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Figure 5.4. The bending upward motion of the linkage modelled on Solidworks 
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Figure 5.5. The bending downward motion of the linkage modelled on Solidworks 
 

In the second type of assembly, there are two types of kites. Interior angles are 

equal to each other, but semi lengths are different (Fig. 5.6). As a first step, two kinds of 

kites are assembled in a flat configuration in a sequence where symmetry axes are parallel 

to each other and perpendicular to the x-axis.  

 

 

Figure 5.6. Flat configuration of the assembled similar kite loops with identical interior 
angles but different semi-lengths  

 

After the assembly, angulated scissor unit is detected from the assembly type of 

the kite loops that have different semi-lengths but equal kink angles. In the second type 

of assembly, the type of angulated scissor units obtained are different from the first one. 

Because of the identical interior angles of kites, kink angles of the angulated bars of the 

scissor unit are equal to each other. But the angulated elements of a scissor unit are 

different from each other (Figure 5.7). If the proportions of short sides and long sides are 

equal to each other, similar GAEs are obtained. But the obtained scissor unit (Figure 5.7) 

is different from the Type II unit. While the Type II unit is obtained from the assembly 
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of identical or similar parallelograms, this new type of angulated unit it is obtained from 

the assembly of similar kite loops. 

 

 

Figure 5.7. Angulated scissor unit with different semi-lengths and equal kink angles 
created with similar kites 

 

At first, unit lines of angulated scissor units are parallel to each other (Figure 5.8). 

 

 

Figure 5.8. Angulated scissor linkage formed by similar kite loops with identical interior 
angles but different semi-lengths  

 

For the second type of assembly of the kite loops, the obtained angulated scissor 

linkage has the same transformation capacity as the first one. The linkage transforms 

between bended upward and bended downward configurations. The center point of the 

linkage, where the unit lines intersect, moves along the y-axis during the motion of the 

linkage.  Thus the curvature of the linkage changes. 

According to the third type of assembly, there are two types of kites whose semi-

lengths are equal to each other, but interior angles are different (Figure 5.9).  
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Figure 5.9. Flat configuration of the assembled different kite loops with equal semi-
lengths but different interior angles 

 
Considering the assembly of kites in a flat configuration, there exists angulated 

scissor unit, that has equal semi-lengths but different kink angles (Figure 5.10). Thus, 

Equilateral GAEs are obtained. But the obtained scissor unit in Figure 5.10 is different 

from the Type I unit. While the Type I unit is obtained from the assembly of different 

rhombuses, this new type of angulated unit it is obtained from the assembly of different 

kite loops. 

 

 

Figure 5.10. Angulated scissor unit with equal semi lengths and different kink angles 
created with different kites 

 

 

Figure 5.11. Angulated scissor linkage formed by different kite loops with equal semi-
lengths but different interior angles 
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For this assembly, the motion of the linkage has the same transformation 

capability with previous ones. It can bend up and down. The center point of the linkage, 

where the unit lines intersect, moves along the y-axis during the motion of the linkage. 

When the linkage bends upward unit lines intersect at the positive side of the y axis and 

when the linkage bends downward unit lines intersect at the negative side of the y axis. 

In the fourth type of assembly of kite loops, there are two types of kites, not only 

interior angles but also semi-lengths are different from each other (Figure 5.12). 

 

 

Figure 5.12. Flat configuration of the assembled different kite loops 
 

For this condition, there exist an angulated scissor unit, which possesses different 

semi lengths and kink angles (Figure 5.13). 

 

 

Figure 5.13. Angulated scissor unit with different semi lengths and different kink angles 
created with different kites 

 

The scissor linkage for the fourth condition (Figure 5.14) has also the same 

transformation capacity with the other linkages.  
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Figure 5.14. Angulated scissor linkage formed by different kite loops with different semi-
lengths and interior angles 

 

5.2. Assembly of Dart Loops 

 

For the first condition of the assembly mode, there are identical darts illustrated 

in Figure 5.15. Firstly, identical dart loops are assembled in a flat configuration where the 

symmetry axes are parallel to each other and perpendicular to the horizontal-axis. 

 

 

Figure 5.15. Flat configuration of the assembled identical dart loops 
 

Scissor units are detected from the assembled dart loops. It can be observed that 

there are angulated scissor units generated from the sides of the dart loops (for example 

|AD| and |DF|, |ED| and |BD|) that define the axes of the angulated bars. An angulated 

scissor unit resides between two symmetry axes (Figure 5.16).  Once an angulated scissor 

unit is defined between the two symmetry axes, symmetry axes define the unit lines of 

the angulated scissor unit. The connection point of the dart loops (for example point D) 

determines the scissor hinge of an angulated scissor unit. It is observed that, Hoberman’s 

nonsymmetrical angulated elements are obtained from the assembly of identical dart 

loops. But the obtained scissor unit (Figure 5.16) is different from the Hoberman’s unit. 
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While the Hoberman’s unit is obtained from the assembly of similar rhombuses, this new 

type of angulated unit it is obtained from the assembly of identical dart loops. 

 

 

Figure 5.16. Angulated scissor unit with equal semi-lengths and kink angles created with 
identical darts 

 

The scissor linkage composed of mentioned angulated elements is illustrated in 

Figure 5.17. The point A is assumed as the fixed point of the linkage and point B is the 

movable point of the linkage.  

 

 
Figure 5.17. Angulated scissor linkage formed by identical dart loops 

 

The new type angulated scissor linkage also was modeled on Solidworks® as 

illustrated in Figure 5.18 and Figure 5.19. Also, the transformation capability of a single 
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shown. This linkage is investigated under three different situations. For the first situation, 

the linkage is in the flat configuration. It is seen that unit lines are parallel to each other 

so the curvature is equal to zero. The second situation is bended upward configuration 

(Figure 5.18). This is accomplished by moving point B (Figure 5.17) along the y-axis as 

well as the angle θ of dart loop decreases at the same time. The linkage continues bending 

upward. Loops of the linkage remain as darts. The third situation is bended downward 

configuration (Figure 5.19). After some point, when the loops of the linkage become 
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triangles, if the linkage continues to bend down darts become kites. Due to the fact that 

the segment angles varying during the deployment, center point, which is formed by unit 

lines intersection, is translated on y-axis. As a result, the radius of curvature changes. 

 

 

Figure 5.18. The bending upward motion of the linkage modelled on Solidworks 
 

 

Figure 5.19. The bending downward motion of the linkage modelled on Solidworks 
 

In the second assembly type of dart loops, there are two types of darts whose 

interior angles are equal to each other but semi-lengths are different (Figure 5.20). As a 
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first step, two types of darts are assembled in a flat configuration in a sequence where the 

symmetry axes are parallel to each other and perpendicular to the x-axis. After the 

assembly, an angulated scissor unit is detected from the assembly of two dart loops. 

 

 

Figure 5.20. Flat configuration of the assembled similar dart loops with identical interior 
angles but different semi-lengths  

 

From the second assembly type of darts, angulated scissor unit is detected that 

have different semi-lengths but equal kink angles. In the second type of assembly, the 

type of angulated scissor units obtained are different from the first one. Because of the 

identical interior angles of darts, kink angles of the angulated bars of the scissor unit are 

equal to each other. But the angulated elements of a scissor unit are different from each 

other (Figure 5.21). If the proportions of short sides and long sides are equal to each other, 

similar GAEs are obtained. But the obtained scissor unit (Figure 5.21) is different from 

the Type II unit. While the Type II unit is obtained from the assembly of identical or 

similar parallelograms, this new type of angulated unit it is obtained from the assembly 

of similar dart loops. 

 

 

Figure 5.21. Angulated scissor unit with different semi-lengths and equal kink angles 
created with similar darts 
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Figure 5.22. Angulated scissor linkage formed by similar dart loops with identical interior 
angles but different semi-lengths  

 

For the second type of assembly of the dart loops, the obtained angulated scissor 

linkage (Figure 5.22) has the same transformation capacity as the first one. The linkage 

transforms between bended upward and bended downward configurations. Thus the 

curvature of the linkage changes. 

According to the third assembly type, there are two types of dart loops whose 

semi-lengths are equal to each other but interior angles are different (Figure 5.23). An 

angulated scissor unit that has equal semi-lengths but different kink angles is obtained 

(Figures. 5.24-25). 

 

 

Figure 5.23. Flat configuration of the assembled different dart loops with different interior    
angles but equal semi-lengths  

 

Considering the assembly of darts in a flat configuration, there exists angulated 

scissor unit, that has equal semi-lengths but different kink angles (Figure 5.24). Thus we 

can obtain Equilateral GAEs. But the new type of angulated scissor unit (Figure 5.24) is 

different from the Type I unit. While the Type I unit is obtained from the assembly of 

different rhombuses, this new type of angulated unit it is obtained from the assembly of 

different dart loops. 
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Figure 5.24. Angulated scissor unit with equal semi-lengths and different kink angles 
created with different darts 

 

 

Figure 5.25. Angulated scissor linkage formed by different dart loops with different 
interior angles but equal semi-lengths 

 

For this assembly (Figure 5.25), the motion of the linkage has the same 

transformation capability with previous ones. It can bend up and down. The center point 

of the linkage, where the unit lines intersect, moves along the y axis during the motion of 

the linkage. When the linkage bends upward unit lines intersect at the positive side of the 

y-axis and when the linkage bends downward unit lines intersect at the negative side of 

the y-axis. 

In the fourth assembly type of dart loops, there are two types of darts with different 

interior angles and semi lengths (Figure 5.26). A new type of angulated element is 

obtained (Figure 5.27). 
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Figure 5.26. Flat configuration of the assembled different dart loops with different interior 

angles and semi-lengths 

 

For this condition, there exist an angulated scissor unit, which possesses different 

semi lengths and kink angles (Figure 5.27). 

 

 

Figure 5.27. Angulated scissor unit with different semi-lengths and kink angles created 
with different darts 

 

The fourth assembly has the same transformation capability with the other 

linkages (Figure 5.28). 

 

 

Figure 5.28. Angulated scissor linkage formed by different dart loops with different 
interior angles and semi-lengths 
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5.3. Conclusion 
 

This Chapter reveals that angulated scissor linkages can be obtained by kite and 

dart loops. It is observed that using identical or different kite or dart loops do not make a 

difference to a transformation capability of the linkage. 

In the literature, existing three type of angulated units are obtained by rhombi or 

parallelograms. Also, the unit lines intersect at one point and the segment angle between 

unit lines is constant. The angulated units obtained from kite or dart loops, have different 

geometrical features from the existing ones in the literature. They do not provide the 

existing deployability conditions for angulated scissor units in the literature. They have 

nonstable unit lines. The segment angle between unit lines change during the motion. 

Thus the linkage can transform between convex and concave configurations. 
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CHAPTER 6 

 

ANALYSIS OF THE ASSEMBLIES OF KITE AND DART 

LOOPS 

 

This chapter reveals the analysis of geometrical conditions of the scissor linkages 

constructed by assembling identical kite and dart loops. Then, the position analysis of the 

scissor linkage consist of identical kite loops is proposed. 

 

6.1. Geometrical Conditions of Angulated Scissor Linkage Composed 

of Kite Loops 

 

In this section three main configurations that are flat, bended downward and 

bended upward positions of scissor linkage consist of identical kite loops is investigated.  

   

6.1.1. Flat Position of Kite Loops 

  

In Figure 6.1 the kinematic diagram of the new type of angulated scissor linkage 

obtained by assembling identical kite loops is illustrated. Three parameters uniquely 

define a kite loop. The parameters are selected as the sides a and b, and half of the bottom 

angle θ1. 
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Figure 6.1. Kinematic diagram of the flat configuration of the linkage  
 

In flat position of the linkage, unit lines of the angulated scissor units are parallel 

to each other. In this case, the deployment angle between the kite loops is equal the bottom 

angle of the kite: 

 

β=2θ1 (6.1) 

 

According to sine law we can calculate unknown parameters of a kite loop with 

the known parameters a, b, and θ1: 

 

a

sinθ1
=

b

sinθ2
(6.2) 

 

θ2 =  - sin-1 b.sin θ1

a
(6.3) 

 

By calculating the angle θ2 we can calculate the third angle (θ3) of the triangle 

∆ABC: 

 

θ3 =180 - (θ1+θ2) (6.4) 

 

The other side length of ∆ABC which is the long diagonal of the kite at the same 

time, is calculated by the help of cosine law: 
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c2 = a2 + b2 - (2ab cos θ3) (6.5) 

 

Kink angles are equal to each other for every angulated bar of the linkage. Kink 

angle of an angulated bar can be calculated as: 

 

ψ = 2θ1 + θ3 (6.6) 

 

6.1.2. Bended Downward Position of Kite Loops 

 

When the linkage bends downward the deployment angle decreases continuously. 

The unit lines intersect at a point M' (Figure 6.2) which is on the -y axis. At a specific 

configuration, points such as B, E, H, etc. lie on a small circle with radius r1d, points such 

as C, F, I, etc. lie on a medium circle with radius r2d and points such as A, D, G, etc. lie 

on a large circle with radius r3d. As the structure further bends downward, the radii of the 

circles decrease, hence curvature increases. In order to calculate the segment angle ' and 

the deployment angle ', the value of the bottom angle (θ1') of the kite loop needs to be 

known for the new position. 

 

 

Figure 6.2. Kinematic diagram of the bended downward position of the linkage 
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Kink angle  of the angulated bar is always constant. In bended downward 

configuration, because the unit lines are no longer parallel to each other, the angle β' can 

be calculated with the help of kink angle as: 

 

ψ = 2θ1 + θ3 (6.7) 

 

β՛ = ψ - θ3՛ (6.8) 

 

The sum of the two of the interior angles of the triangle is equal the one exterior 

angle. According to this condition for the triangle ∆BM՛C the segment angle of one 

angulated unit is calculated as: 

 

α

2
 + 

β՛

2
 = θ1՛ (6.9) 

 

α = 2θ1՛ - β՛ (6.10) 

 

From Eq. 5.10 it is seen that in the bended downward configuration of the linkage, 

the segment angle is equal to the difference between the bottom angle of one kite and the 

deployment angle between kites. 

The small radius of the bended downward configuration of the linkage can be 

calculated by means of the triangle ∆BM'C. According to sine law r1d is found as in the 

equation 5.11: 

 

r1d = 
bsin β՛

2
sin α՛

2
(6.11) 

 

The medium radius can be found by the cosine law: 

 

r2d = - r1d
2 + b2 + 2r1db cos(θ1՛)

1
2 (6.12) 

 

The large radius can be found by the sum of the small radius and the long diagonal 

of the loop: 



72 
 

 

r3d = r1d + c՛ (6.13) 

 

6.1.3. Bended Upward Position of Kite Loops 

 

When the linkage bends upward the unit lines intersect at a point M' (Figure 6.3) 

which is on the +y axis. At a specific configuration, points such as A, D, G, etc. lie on a 

small circle with radius r1u, points such as C, F, I, etc. lie on a medium circle with radius 

r2u and points such as B, E, H, etc. lie on a large circle with radius r3u. As the linkage 

further bends downward, the radii of the circles decrease, hence curvature increases. Thus 

the deployment angle β increases. In order to calculate the segment angle '' and the 

change of the deployment angle, we need to know the new degree of the bottom angle 

(β'') of the kite loop for this position. 
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Figure 6.3. Kinematic diagram of the bended upward position of the linkage 
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The sum of the two of the interior angles of the triangle is equal the one exterior 

angle. According to this condition for the triangle ∆ BM՛C the segment angle of one 

angulated unit is calculated as: 

 

α՛

2
 + θ1՛՛ = 

β՛՛

2
(6.15) 

 

α՛ = β՛՛ - 2θ1՛՛ (6.16) 

 

From Eq. 5.15 it is seen that in the bended upward configuration of the linkage, 

the segment angle is equal to the difference between the bottom angle of one kite and the 

deployment angle between kites. Compared to the downward configuration the new 

segment angle is negative of the one computed in Eq. 5.9. 

 The small radius of the bended upward configuration of the linkage can be 

calculated by means of the triangle ∆BM'C. According to the sine law r1u is found as 6: 

 
a

sin α՛
2

=
r1u

sin 180 - β՛՛
2  - θ3՛՛

(6.17) 

 

The medium radius can be found by the cosine law: 

 

r2u = r1u
2 + a2 + 2r1a cos(θ2՛՛) 2 (6.18) 

 

The large radius can be found as the sum of the small radius and the long diagonal 

of the loop: 

 

r3u = r1u + c ՛՛ (6.19) 

 

6.2. Geometrical Conditions of Angulated Scissor Linkage Consist of 

Dart Loops 

 

In this section three main configurations that are flat, bended downward and 

bended upward positions of scissor linkage consist of identical dart loops is investigated.  
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6.2.1. Flat Position of Dart Loops 

 

The first linkage constructed by identical dart loops is proposed by Kiper (2015). 

In Figure 6.4 the kinematic diagram of the scissor linkage assembly is illustrated.  

The linkage assembly is formed by identical dart loops in flat configuration. In 

order to uniquely define a dart loop, at least three known parameters are needed which 

can be the sides a and b, and half of the bottom angle θ1. 

 

 

Figure 6.4. Kinematic diagram of the flat configuration of the linkage 
  

In the flat position of the linkage, unit lines of the angulated scissor units are 

parallel to each other. In this case, the deployment angle between the kite loops is equal 

a bottom angle of the dart: 

 

β = 2θ1 (6.20) 

 

According to the sine law the unknown parameters of a kite loop can be calculated 

in terms of the known parameters a, b, and θ1: 

 

a

sinθ1
=

b

sinθ2
(6.21) 

 

θ2=  - sin-1 b.sin θ1

a
(6.22) 
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By calculating the angle θ2 we can calculate the third angle (θ3) of triangle ∆ABC: 

 

θ3 = 180 - (θ1+θ2) (6.23) 

 

The other side length of ∆ABC which is the long diagonal of the dart at the same 

time, is calculated by the help of cosine law: 

 

c2 = a2 + b2 - (2ab cos θ3) (6.24) 

 

Kink angles are equal to each other for every angulated bar of the linkage. Kink 

angle of one angulated bar can be calculated as: 

 

ψ = 2θ1 + θ3 (6.25) 

 

6.2.2. Bended Downward Position of Dart Loops 

 

When the linkage bends downward the deployment angle decreases continuously. 

Similar to the case with the kite loops, small, medium and large circles (with radii r1d, r2d 

and r3d, respectively) passing through joints can be defined (Figure 6.5) The unit lines of 

scissor units intersect at the centre of these circle which changes moves along the -y axis. 

Thus the deployment angle β decreases. In order to calculate the segment angle α' and the 

change of the deployment angle β', the bottom angle (θ1') of the dart loop for this position 

needs to be calculated. 
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Figure 6.5. Kinematic diagram of the bended downward configuration of the linkage 
 

Kink angle of the angulated bar always constant. In this situation, because the unit 

lines are no longer parallel to each other the angle β' can be calculated as: 

 

β՛ = ψ - θ3՛ (6.26) 

 

Sum of the two of the interior angles of the triangle is equal an exterior angle. 

According to this condition for the triangle ∆BM'C the segment angle of one angulated 

unit is calculated as: 
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2
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α = 2θ1՛ - β՛ (6.28) 
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b

sin α՛
2

 = 
r1d

sin β՛
2

(6.29) 

 

The medium radius can be found  with cosine law: 

 

r2d = r1d
2 + b2 + 2r1d b cos(θ1՛)

1/2
(6.30) 

 

The large radius can be found by the sum of the small radius and the long diagonal 

of the loop: 

 

r3d = r1d + c (6.31) 

 

6.2.3. Bended Upward Position of Dart Loops 

 

When the assembly bends upward the deployment angle changes. Once again 

joints reside on small, medium and large circles (Figure 6.6). Unit lines of scissor units 

intersect at the centre of these circles which moves along the +y axis. Thus the deployment 

angle β increases as the assembly bends upward. In order to calculate the segment angle 

α'' and the change of the deployment angle β'', the bottom angle (θ1'') of the kite loop for 

this position needs to be calculated. 
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Figure 6.6. Kinematic diagram of the bended upward configuration of the linkage 
 

Deployment angle β'' can be calculated as: 

 

β՛՛= ψ - θ3՛՛ (6.32) 

 

Sum of the two of the interior angles of the triangle is equal an exterior angle. 

Accordingly, for the triangle ∆ BM'C the segment angle of an angulated unit is calculated 

as: 
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(6.33) 

 

α՛ = β՛՛ - 2θ1՛՛ (6.34) 

 

From Eq. 5.27 it is seen that in the bended upward configuration of the assembly, 
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deployment angle between darts. Compared to the downward configuration the new 

segment angle is has opposite sign.  

The small radius of the bended upward configuration of the linkage can be 

calculated by means of the triangle ∆AM'C. According to the sine law r1u is found as: 

 
a

sin α՛
2

 = 
r1u

sin - α՛
2  - θ2՛՛

(6.35) 

 

The medium radius can be found by the cosine law: 

 

r2u = r1u
2 + a2 + 2r1a cos(θ2՛՛) 1/2 (6.36) 

 

The large radius can be found as the sum of the small radius and the long diagonal 

of the loop: 

 

r3u = r1u + c՛՛ (6.37) 

 

6.3. Position Analysis 

 

Kinematic analysis is the study of motion characteristics in a known mechanism. 

One of the main principal goals of the kinematic analysis is to determine the location and 

orientation of rigid bodies. Location of a rigid body (link) or a particle (point) in a rigid 

body with respect to a given reference frame is called as the Position of that point or body 

(Söylemez 2000). 

In order to understand the kinematic analysis of the proposed system first, we need 

to calculate the mobility of the linkage. According to the Grübler’s equation for planar 

linkages: 

 

M = 3(L – 1) - 2j1 - j2 (6.38) 
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Where M is the degree of freedom, L is the number of links, j1 is the number of 

joints which have one DoF, and j2 is the number of 2 DoF joints. In Figure 6.7 there is a 

kinematic diagram of the linkage. The mobility calculation for this linkage is: 

 

M = 3(12 – 1) – 2.16 – 0 = 1 (6.39) 

 

 

Figure 6.7. Kinematic diagram of the linkage 
 

It is observed that according to the Grübler’s mobility formula the degree of 

freedom of the linkage is 1. Only one parameter is needed to define the positions of all 

links of the assembly shown in Figure 6.8. This parameter can be chosen as the angle θ1. 

All link lengths (a, b) and the angle of the input link (θ1) are assumed to be known. Thus 

it is possible to determine c, θ2 and θ3 according to the known parameters. 

The proposed linkage consists of the following constant parameters: 
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|BC| = |CE| = |EF| = |FH| = |HI| = |IK| = |KL| = |LN| = |NO| = |OQ| = b 

 

Variable parameters of the linkage are θ1, θ2, θ3 and |AB| = |DE| = |GH| = |JK| = 

|MN| = |PQ| = c. 
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Figure 6.8 shows all the variables used in kinematic analysis of the mechanism. 

According to given lengths of (a, b) and θ1 variable, all angles (θ2 and θ3), c, all 

coordinates of A, B, …, Q points and angles α1, α2, α3…α15 can be found. 

In kinematic analysis of the system, firstly point A is assumed as origin (0, 0). 

While point B could change its position along y axis by the help of a prismatic joint. 

 

 

Figure 6.8. The position of the linkage when c=50 and θ1  ̴35º 
 

A parametric model of this mechanism is constructed in Microsoft Excel®. See 

(Söylemez, 2008) for use of Excel® in mechanism applications. As an example, the Excel 

model was constructed for a =30, b =50 and θ1 = 35º at the initial configuration. After 

finding the angles θ2 and θ3, the variable length c is calculated. Then, the coordinates of 

the points are calculated. The angles that are needed to find the coordinates of the points 

are calculated. 

The coordinates of the point A is assumed as (0,0). And the coordinates of the 

point B depends on the variable length c (0, c). 
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Step 1: In order to calculate the coordinates of the other points first we need to 

calculate the angle α1: 

 

α1 = 90° – θ1 (6.40) 

 

Next, the coordinates of point C are found: 

 

Cx = Bx + (b.cosα1) (6.41) 

 

Cy = By + (b.sinα1) (6.42) 

 

Step 2: In order to calculate the coordinates of point D first, the auxiliary angle β1 

needs to be calculated: 

 

β1= α2 – 180° (6.43) 

 

With the help of the β1, the angle for point D can be found: 

 

α2 = β1 – ψ (6.44) 

 

By finding the angle α2 the coordinates of point D can be calculated as: 

 

Dx = Cx + (a. cos α2) (6.45) 

 

Dy = Cy + (a. sin α2) (6.46) 

 

Step 3: This step contains two phases. First one is to find the coordinates of point 

E and the second one is to find the coordinates of point F. In order to find the coordinates 

of point E first the auxiliary angle should be found: 

 

β2 = α2 – 180° (6.47) 

 

α3 = 180° + β2 (6.48) 
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Ex = Cx + (b. cos α3) (6.49) 

 

Ey = Cy + (b. sin α3) (6.50) 

 

Fx = Ex + (b. cos α4) (6.51) 

 

Fy = Ey + (b. sin α4) (6.52) 

 

For the rest of the coordinates of points Step 2 and Step 3 are repeatedly applied. 

For the coordinates of the points G, J, M and P Step 2 is used. And for the other points H 

and I, K and L, N and O, and Q Step 3 is used. The Excel sheet is illustrated in Figure 

6.9. 

 

 

Figure 6.9. Analytical position analysis of the angulated scissor linkage in the position of 
c=50 and θ1  ̴35º 

 

It is observed that the loops of the assembly transform between kite and dart forms 

during the motion. While the assembly bends downward, the loops remain as kites and 

the angle θ1 decrease continuously. But when the structure bends upward from downward 

configuration angle θ1 continues to increase until the loops of the structure turn into 

triangles. At this position angle θ2 becomes a right angle (90º). That is, two short sides of 

a kite loop (a) become collinear. After that, when the structure continues to bend upward 

angle θ1 decreases again until the structure reaches maximum bending. Therefore, the 

linkage can have two different configurations for an angle value of θ1 such as illustrated 

in Figures. 6.10 and 6.11. 
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Figure 6.10. Initial position of the linkage c=59,88 cm, θ1 = 30º, θ2 = 56,44º, θ3 = 93,56º 
 

 

Figure 6.11. Bended upward position of the linkage c=26,72 cm, θ1 = 30º, θ2 = 123,56º, 
θ3 = 26,44º 
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6.4. Conclusion 

 

In this chapter the geometrical conditions of the proposed linkages have been 

investigated. The three defined positions (flat, bended downward and bended upward 

configurations) have been examined for both of the linkages constructed with kite and 

dart loops. It is seen that in order to find segment angle and radius of both kite and dart 

loops the same mathematical formulations are used. In both systems, when the 

mechanism is in bended and/or downward position they define a centre which moves 

along the y-axis. When the system is in bended position the centre is on –y axis, while in 

bended upward position the centre is on +y axis. 

It is observed that the linkages have the same geometrical conditions during their 

motions between convex and concave configurations. Then, by using Microsoft Excel® 

position analysis of one of the linkages consisting of kite loops has been evaluated. It is 

observed that during the motion of the linkage, it has two positions for a given bottom 

angle value. While the linkage is bending upward the bottom angle increases. It reaches 

maximum value when all the loops of the linkage transform into triangles. At this position 

the loops of the linkage start to transform from the kite loops into the dart loops. When 

the linkage keeps bending upward, the bottom angle again decreases.  
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CHAPTER 7 

 

CONCLUSION 

 

This chapter offers the aforementioned contributions of the dissertation in the 

development of transformable planar structural linkages. 

This thesis is restricted to planar scissor linkages only. In this thesis, common 

deployable scissor linkages were thoroughly investigated. The geometric and kinematic 

conditions of the scissor units were examined in detail. In addition to this, the loop types 

of scissor units and their assembly conditions for every type of scissor units were also 

revealed. New type of deployable scissor linkages that can transform between convex and 

concave configurations were developed. 

The new type planar angulated scissor assemblies have different configurations 

that are flat, bended upward and bended downward configurations. It results in 

remarkable transformation capability compared to the existing ones in the literature. It 

can even form different configurations with only one input parameter. 

In the first type of novel linkages, angulated elements are constructed via kite 

loops. Moreover, the present study reveals that dart loops could also be used which results 

in new angulated scissor units.    

In the context of the aforementioned framework, a novel type of scissor unit that 

is derived from kite or dart loops, has been introduced. A novel planar angulated scissor 

linkage has been developed by the utilization of this unit. Moreover, kinematic analysis 

of the novel angulated scissor linkage has been presented. 
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