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ABSTRACT 

 

FINITE ELEMENT SIMULATIONS OF IMPACT TEST FOR LIGHT 
ALLOY WHEELS 

 
Static and dynamic finite element models for the simulation of the wheel impact 

test defined in ISO7141 were developed for the AlSi7Mg and AlSi11Mg alloy wheels. The 

dynamic model consists of the striker, the wheel with radial pneumatic tire, and the hub 

adapter structure. Two types of tire models, composite and simplified, are formed in this 

study. The finite element model in the dynamic model, referred to as composite tire, 

involves bead, bead core, casing and crown plies, tread, and side walls. A simplified tire 

model that does not include bead cores, casing and crown plies is also generated. Although 

these items are not used in the second model directly, they are considered using their 

equivalent effects. It is shown that a simplified tire model can be used instead of the 

composite tire model. 

The dynamic model is validated by experimental studies. Such studies are related to 

the plastic deformations at the impact point of the wheel. It is shown that simulation of the 

failure of the wheel during impact tests can be determined using von Mises and effective 

plastic strain occurs in the wheel. 

In total, forty-one experiments are done to see the wheel behaviors and whether it 

performes according to the standard. The experimental results and the corresponding 

simulations focusing on von Mises stresses along with effective strains are shown in box 

plots. Thus, critical values for design are found. 

The static model consists of the wheel with simplified tire and the lumped model of 

the hub adapter structure. The stiffness characteristic of the impact point of the wheel is 

determined by using the static model. It is shown that the maximum von Mises stress that 

occurs in the wheel due to impact load is found using energy conversions. Significant time 

can be saved by this manner. 
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ÖZET 

 

HAFİF ALAŞIMLI JANTLAR İÇİN DARBE TESTİNİN SONLU ELEMAN 
BENZETİMLERİ 

 
Bu tezde, AlSi11Mg ve AlSi7Mg alaşımlı jantlar için ISO 7141 de tanımlanan 

darbe testi benzetiminin statik ve dinamik sonlu elemanlar modeli elde edilmiştir. Dinamik 

sonlu elemanlar modeli; vurucu, radyal lastikli jant ve darbe tezgâhından oluşmuştur. 

Tezde, kompozit ve basitleştirilmiş lastik olarak iki tip lastik oluşturulmuştur. Kompozit 

lastik olarak isimlendirilen dinamik modeldeki lastiğin sonlu elemanlar modeli topuk, 

topuk çemberi, sentetik ve çelik kuşak, sırt ve yan duvarlardan oluşur. Ayrıca, topuk 

çemberi, sentetik ve çelik kuşağı kullanmayan basitleştirilmiş lastik modeli 

oluşturulmuştur. Ancak, ikinci modelde doğrudan kullanılmadığı belirtilen unsurların 

eşdeğer etkileri göz önüne alınmıştır. Basitleştirilmiş lastik modelinin kompozit lastik 

yerine kullanılabilirliği gösterilmiştir. 

Dinamik model deneysel çalışmalarla doğrulanmıştır. Deneysel çalışmalar jantın 

darbe noktasında meydana gelen kalıcı şekil değişimleri ile ilgilidir. Jantın darbe testinden 

geçişinin benzetiminde, jantta meydana gelen von Mises ve efektif plastik birim şekil 

değiştirmelerin kullanılabileceği gösterilmiştir. 

Bunlardan başka, standarda göre jantların testi geçip geçemeyeceğini görmek için 

toplam kırk bir deney yapılmıştır. Elde edilen deneysel sonuçlar ve bu sonuçların her birine 

karşılık yapılan maksimum von Mises gerilimleri ve birim şekil yer değiştirmelere 

odaklanmış benzetimlerin değerleri kutu grafikleri ile gösterilmiştir. Böylece tasarım için 

kritik değerler bulunmuştur. 

Statik sonlu elemanlar modeli, basitleştirilmiş lastik modeli, jant ve topaklanmış 

test tezgâhından ibarettir. Jantın darbe noktasının yay karakteristiği statik modelle elde 

edilmiştir. Darbe yükünden dolayı jantta meydana gelen von Mises gerilimlerinin enerji 

dönüşümü ile bulunacağı gösterilmiştir. Böylece önemli bir zaman tasarrufu sağlanabilir. 
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CHAPTER 1 

 

INTRODUCTION 

 

An automobile wheel is a very crucial component in automobiles due to the 

functionality. Moreover, when safety is considered, the wheel is also one of the most 

important parts of a vehicle. Due to these reasons, the design validation process of wheels 

has strict qualifications. The wheel design has to not only meet these qualifications, but 

also be aesthetic and economic. There are several destructive mechanic tests performed to 

validate wheel design after sample production. These are (i) rotating bending tests, (ii) 

radial fatigue test and (iii) impact test. All these destructive mechanic tests are performed 

after the mold and sample production based on the initial or modified design. If the wheel 

does not pass the tests, the design validation process restarts to modify the wheel geometry, 

which requires the mold modifications. The simulations of these tests have an important 

role to avoid restarting the design verification process and decrease time and cost. 

Although simulations of rotating bending tests and radial fatigue tests have been performed 

widely by wheel designers for the last decades, impact test simulations force wheel 

producers to effectively complete the design requirements. It should be emphasized that 

impact test simulation models are very complex and related with the nonlinear dynamic 

problem as material and large deformation. 

The wheel is one of the oldest and most important inventions for humans. Although 

it is simple form of a circular disc rotating about an axle, humans obtained mechanical 

mobility which had a great effect on history. It is not known exactly how or where the 

wheel was invented, but research indicates that the first use of wheels was about 3000 BC. 

The first cart wheels were developed by the inhabitants of the Middle East. The first spoke 

wheels appeared around 2000 BC in Egypt found in the catacombs of the Pharaohs 

illustrated in Figure 1.1. 

At the time of the Iron Age, around 1200 BC, an important advance was achieved. 

The rims of wooden wheel were covered with iron hoops by skilled Hittite blacksmiths. 

This type of wheel was widespread throughout the Assyrian Empire and people of other 

races. 
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Figure 1.1 A typical Egyptian chariot with six-spoke wheels. 
(Source: http://www.touregypt.net/featurestories/chariots.htm) 

 

During the middle ages, spoke and solid wooden wheels were used widely on rough 

country roads. As the towns flourish, the wheels with their iron hoops caused severe 

damage to the stone-paved streets and they were banned out of cities. The use of wheels of 

different sizes on the rear and front axles also improved the mobility of carts and wagons 

during this period. 

Until Scottish inventor, Robert William Thomson invented the first pneumatic tire 

shown in Figure 1.2 in 1845, wheels with wooden, steel and wire spokes were used without 

any type of shock absorption. Though this was a great invention, Thomson’s tire was never 

commercially successful due to the cost of rubber at that time. Forty years later, in 1888, 

John Boyd Dunlop developed a practical pneumatic tire. The motor car had been invented 

a few years earlier by Carl Benz (Kermelk 1999). 

 

 

 

 

 

 

 

 

 

Figure 1.2. First pneumatic tire invented by Robert William Thomson 
(Source: http://blog.hemmings.com/index.php/2013/12/10/this-day-in- 

history-1845-robert-william-thomson-patents-the-pneumatic-tire/) 
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A number of developments have been obtained for different purposes and applied 

to a wide range of applications over the years. One of the most important one was a tire 

with a flexible bead that allowed it to be directly fitted over the rim flange. 

The weight of the wheels has always been a consideration. So, a variety of 

lightweight center sections were specially designed or arranged in order to enable vertical 

as well as axial and tangential forces to be transmitted from the tire to the axle. The 

development of rims led to the use of steel profiles with variations in thickness to be 

obtained during rim production to have homogenous stress distribution and a lighter wheel. 

Meanwhile, entirely different production methods for casting and forging have been 

gradually adapted with alternative materials such as aluminum and magnesium or 

combinations of them. The most diverse types of materials and technological options are 

now available, enabling the optimum level of functional efficiency, weight and cost. 

The function of the wheel shown in Figure 1.3 provides connection from the axle to 

the tire and to transmit forces from one to the other. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Typical car wheel mounting arrangement 
(Source: Kermelk, 1999) 
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The rim and either the disc or wheel bodies are the principal components of the 

wheels. The wheel can be one piece or multiple parts as a disc-type or spoke wheel, 

depending on the type of material and technology used. It is properly shaped to house the 

tire (to form an airtight seal) and to permit mounting to the hub. At the same time, wheels 

are progressively becoming a styling feature for vehicles and are also required to provide 

efficient ventilation for the brakes.  

The wheel is one of several crucial safety parts of an automotive, including the 

wheel stud and steering system. If the functions of these systems malfunction, the car is 

totally lost. Due to this reason, the design and design verification phase of the wheel is 

crucial. The design of the wheel must match all the requirements defined by international 

standards, regulations and direct instructions of the vehicle manufacturer. 

Wheel types change according to production methods, material and the intended 

purpose. Steel disc wheels, cast light alloy and forged wheels are the main types according 

to material and production methods. The wheel’s rim profile and disc shape may vary 

depending on type of vehicle such as passenger cars, commercial vehicles, agricultural 

tractors, cycles and motorcycles. 

Steel disc wheels consist of two parts - the disc and the rim. They are made from 

bot-rolled sheet steel manufactured by rolling and deep drawing processes. The disc and 

the rim are spot or arc welded together. This type of wheel has the optimum design in 

terms of economy, serviceability and safety. 

Cast light alloy and forged wheels are categorized by low weight and very good 

uniformity. These types of wheels can have stylish designs. Aluminum or, more rarely, 

magnesium is usually cast in one piece by the low-pressure or gravity die casting method. 

A sample of light alloy wheel is shown in Figure 1.4. 

 

 

 

 

 

 

 

 

 

Figure 1.4. A sample of light alloy wheel 
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Forged wheels are shaped in a number of forging and flow forming processes. In 

both cases, finishing takes place with the turning of functional faces or contours, such as 

the rim profile, wheel flange and center hole, and the drilling or milling of stud boles and 

valve. Depending on the degree of strength required, these operations may be preceded by 

heat treatment. 

Wheel impact test is standardized with ISO7141 and SAE J175 standards. 

However, these standards refer to the vehicle manufacturer requirements in some steps. 

Therefore, impact test machines must be produced according to these standards. Also, the 

calibration procedure of the impact test machine is defined in the standards. 

It is possible to find a few studies on impact test simulations generally based on the 

finite element method. On the other hand, since the tire is a critical part of the impact test, 

a suitable finite element model of the tire is necessary to obtain more accurate results. 

Unlike the wheel impact test, there are many different studies on the finite element 

modeling of tires. Selected studies about finite element modeling of the impact test and the 

tire are summarized chronologically below. 

Riesner et al (1986) applied finite element analysis and used total plastic work 

approach to predict the result of SAE J175 wheel impact test. Their study is based on three 

separate analyses; static, dynamic and fracture mechanics. The spring constant for the 

impact point of the wheel is obtained from the static finite element model of the 720 

portion of the wheel instead of the entire wheel. They modeled the impact test as a 

dynamic model which consists of lumped masses, springs, and dampers to simulate the 

dynamic response. The maximum displacement of the impact point of the wheel is 

obtained from dynamic analysis. The peak force occurred during impact was calculated by 

multiplying spring constant and the maximum displacement of the impact point of the 

wheel. The peak force was applied to the static model of the wheel to calculate the stress 

and strain energy density distribution, and total plastic work approach was used to predict 

the wheel failure. 

The impact test system used for their study shown in Figure 1.5 is different from 

the the system used today. Their test system had a main weight of 2000 lb with an auxiliary 

weight of 220 lb, and combined three springs. The spring system was preloaded before 

impact and the distance between the two weights was 2.5 in before contact. However, the 

present impact test system modeled in this study does not have such a spring assembly and 

an auxiliary weight due to the current standard. Moreover, the wheel is mounted to a 

different fixture known as wheel hub adapter structure. 
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Figure 1.5. Wheel impact test system of Riesner 
(Source: Riesner et al., 1986) 

 

Lee et al (2000) studied the effect of strain rate on the stress–strain curve for 

aluminum alloys. Their studies indicated that if the strain rate is low (έ<102–103 s-1), the 

effect of strain rate on the mechanical properties is insignificant. 

Orengo et al (2003) investigated several tire finite element models for simulation of 

vehicle impact to roadside hardware and showed that a tire model composed of isotropic 

shells with uniform thickness for rubber leads to very unrealistic deformations. They used 

anisotropic modeling technique and developed a radial tire model consisting of bead coils, 

radial fibers, rubber sidewall, steel belt and tread by using LS-DYNA. They modeled the 

bead coils using two rings of shell elements with elastic properties and a relatively high 

Young’s modulus. Radial fibers were considered as beam elements with properties of the 

equivalent to a distributed layer of radial fibers. The model is shown in Figure 1.6. 

 

 

 

 

 

 

 

 

 
Figure 1.6. FEM of the radial reinforcement fibers and of the bead coils 

(Source: Orengo et al., 2003) 
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Hall et al (2004) developed a tire model using shell and solid elements for a 

P195/65 R15 tire to simulate the behavior of the tire under different vertical loading and 

contact patch geometry. They used hyper-elastic rubber material model for the main body 

of the tire, an orthotropic elastic material for the plies/bands and mild steel for bead. They 

found a good correlation between the load-deflection characteristics of the tire. 

Shang et al. (2005) developed a numerical model of the impact test for an A356 

aluminum alloy wheel by using LS-DYNA. Their model consists of a wheel, tire and 

striker as shown Figure 1.7. They considered material inhomogeneities using tensile test 

results obtained from a different part of the wheel: hub, spoke, and rim. Also, they used a 

nonlinear elasto-plastic material model for the whole wheel. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 Model of the wheel impact test 
(Source: Shang et al., 2005) 

 

They modeled the tire P215/60R16 by shell and solid elements. However, they used 

homogenous properties for the tire regions such as side wall, top wall, and tread. They used 

“Airbag simple pressure volume” keyword command in LS-DYNA for the air pressure 

within the tire. They asserted that the tire is capable of transmitting impact loads but 

modeling a tire is complex and needs additional computing time. Therefore, to remove the 

tire from the finite element model, while considering the von-Mises stresses and plastic 

strain, they found that the energy absorption ratio of the tire is 20 %. They verified their 

numerical model by comparing the length of “A” shown in Figure 1.8 with experimental 

results. 
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Figure 1.8 Definition of Line A 
(Source: Shang et al., 2005) 

 

Reida et al (2007) developed a detailed tire model for a LT245/75R16 tire 

considering the main parts shown in Figure 1.9. Their model can be summarized as 

follows: 

1. Tread: solid elements, hyper-elastic rubber material model 

2. Sidewall: shell elements, elastic material model 

3. Steel beads, steel belts, and body plies: beam elements, elastic material model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9. The complete model of the tire 
(Source: Reida et al., 2007) 



 9 

Chang and Yang (2009) performed nonlinear dynamic finite element analysis to 

simulate the behavior of a forged aluminum wheel 6061-T6 for impact test. The analysis 

model is shown in Figure 1.10 with the components. 

They used the strain energy density as a damage parameter to predict the wheel 

failure. The fracture criterion was based on the total plastic work obtained from the tensile 

test with test specimens cut from the wheel. They also showed that the effect of strain rate 

on the mechanical properties of the wheel can be neglected. The material properties and 

material models are available in their publications. ABAQUS/Explicit commercial finite 

element software was used to carry out the nonlinear dynamic analysis of the wheel impact 

test. The finite element types used in the model are given as follows: 

 Striker : Hexahedron element 

 Wheel : Hexahedron and tetrahedron elements 

 Tire : Shell element 

 Cushion : Hexahedron element 

 Support : Hexahedron element 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10. Finite element model for wheel impact test 
(Source: Chang and Yang, 2009) 

 

They also showed that optimum mesh size for the wheel is 5 mm. Mesh 

convergence study is carried out according to the displacement at the contact point 

between the striker and the wheel. Mesh convergence plot at contact points is shown in 

Figure 1.11. 
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Figure 1.11. Mesh convergence study at contact points 
(Source: Chang and Yang, 2009) 

 

They modeled the air pressure of tire as static pressure. The model involved 

clamping load induced by the tightening torque on the bolt. The clamping force was 

simulated by applying both a concentrated force on the support plate and a surface load on 

the conical surface of bolt hole as shown in Figure 1.12 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12. Clamping force region 
(Source: Chang and Yang, 2009) 

 

Cheng et al (2011) developed the 3D finite element model of a 195/60R14 radial 

tire shown in Figure 1.13 and studied the load performance of the radial tire numerically by 

using finite element software MARC. They used the rebar model shown in Figure 1.16 for 

rubber matrix which is composed of two belt layers in rubber. The individual cords and 
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rubbers were assumed as isotropic. Eight-node brick elements were used for the 3D finite 

element model. The material models of the rubber matrix and the cords were Mooney–

Rivlin and linear elastic, respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 1.13. The Finite element model of the tire. 
(Source: Cheng et al., 2011) 

 

 

 

 

 

 

 

Figure 1.14. Rebar model 
(Source: Cheng et al., 2011) 

 

Jigang and Guozh (2012) performed the finite element model of impact test of 

wheel, shown in Figure 1.15 by using ANSYS/LS-DYNA. In their study, the maximum 

equivalent stress obtained from simulation was used as a damage parameter to predict the 

wheel failure. They considered the material of the wheel as a brittle material and measured 

the yield stress as impact strength of the wheel. They performed two numeric analyses and 

experimental impact tests using two different wheel models. The impact load was 540 kg 

and the tire was P225/60R16. The maximum equivalent stress occurred on the wheels was 

241 MPa and 210 MPa for the first and second model of the wheel, respectively. The 

second wheel passed but the first one failed in the test. The first wheel broke down where 

the maximum stress occurred in the numerical analyze. 
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Figure 1.15. The finite element mesh model of the impact test 

(Source: Jigang and Guozh, 2012) 
 

Yuan et al. (2012) obtained the finite element model of whole system shown in 

Figures 1.16. The first principal strain from simulation was used as a damage parameter to 

predict the wheel failure. The Mooney-Rivlin model, which has two parameters, was used 

to describe hyper elastic behavior of rubber under large deflection. Air pressure of tire was 

modeled as static pressure. The material of wheel was A356 (AlSi7Mg) and its uniaxial 

tensile test data was provided in their study. According to the experimental data, nonlinear 

plastic materials were used to simulate the wheel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.16 The finite element model of whole system for impact test 

(Source: Yuan et al., 2012) 
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Tsai and Huang (2013) studied the wheel impact test without modeling the tire, but 

they considered the pre-stress that occurred in outer rim flanges due to the tire pressure by 

applying tire the force Tf, shown in Figure 1.17, to the wheel model. In the figure, P0 is tire 

pressure, a is the distance from the center of the wheel to the inside wall of the wheel, rf is 

the radius of the wheel rim. Bilinear isotropic hardening material model was used for the 

wheel. The equivalent plastic strain was selected as failure criteria. 

 

 

 

 

 

 

 
 

Figure 1.17. Side pressure distribution of the wheel rim. 
(Source: Tsai and Huang, 2013) 

 

Ishikawa et al (2014) conducted the finite element and experimental analysis of the 

13° and 90° impact tests of the aluminum wheel by using the ABAQUS. The models 

involved both wheels and tires. The hub adapter structure of 13° for the impact test was 

also considered in the model. The structure of the tire model is shown in Figure 1.18. 

 

 

 

 

 

 

 

 

 

 

Figure 1.18. The structure of tire model. 
(Source: Ishikawa et al., 2014) 

 

They used static pressure for air inside of the tire. Neo-hookean hyperelastic 

material model was used for the tire; rebar model is used for the belts and carcass. The 
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bead was modeled by three dimensional solid elements. Ten nodes modified tetrahedron 

solid elements were used for the model of the wheel. The entire model of the 13° impact 

test is shown in Figure 1.19. The hub adapter structure was supported by dashed connector 

elements which figured the rubber inelastic behavior. The 90° impact test is illustrated in 

Figure 1.20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.19. The entire model of the 13° impact test 
(Source: Ishikawa et al., 2014) 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.20. The 90° impact test 
(Source: Ishikawa et al., 2014) 
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Moreover, they performed two different types of numerical analyses of the 13 

impact tests. First type was with the tire model, and second was without. The deformed 

section outlines of the wheel that were obtained numerically and experimentally are shown 

in Figure 1.21. The outlines obtained from the model with tire and experiments are very 

similar. However, the outline of the wheel obtained from the model without the tire is 

significantly different from the experimental result. Therefore, the finite element model of 

the 13° impact test has to involve a tire model. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.21. Comparison of deformed outlines of the wheel. 
(Source: Ishikawa et al., 2014) 

 

 In Table 1.1, a general review of the finite element models of 13° wheel impact test 

available in literature is summarized according to the modeled portions of the test, wheel 

material, and the failure criteria. 

 Depending on the literature presented in Table 1.1, it can be concluded that the 

finite element modeling of the wheel, hub adapter structure having natural rubbers, and the 

tire have important roles for the finite element analysis. All authors used elasto-plastic 

material model and tetrahedron elements for the wheel models. Most of the authors 

modeled the hub adapter structure with natural rubbers. Elastic and Mooney-Rivlin with 

two parameters material models were used for the natural rubbers. But, a few authors 

modeled the impact test in which the tire consists of major components such as the tread, 

sidewall, steel beads, steel belts and body plies. Former studies also show that the shell and 

membrane elements can cause unrealistic deformations of the tire in the area of contact. 
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Moreover, it is concluded that 3D solid elements should be used for rubber parts of 

the tire. Rebar elements in the ABAQUS or beam elements in the LS-DYNA are used for 

the reinforcement elements of the tire; steel belts and body plies. Dynamic modeling of the 

pressure in the tire is a more realistic method than static modeling. Thus, the simple 

pressure airbag keyword of the LS-DYNA is used for dynamic modeling of the pressured 

air in the tire. A few authors considered the clamping load induced by the tightening torque 

on the bolt. 

 

Table 1.1. General review of the finite element models of the 13° wheel impact test 
 

Component 

Authors 

Riesner et al 
(1986) 

Shang et al 
(2005) 

Chang and 
Yang 

(2009) 

Jigang and 
Guozh 
(2012) 

Yuan et al 
(2012) 

Ishikawa 
et al. (2014) 

Th
e 

pa
rts

 o
f t

ire
  

Tread 

No 

Yes/3D 
elements Yes/Shell 

elements 

Not 
mentioned 

Yes/No 
detail is 
given 

Yes/3D 
elements Sidewall Yes/Shell 

elements 
Steel 
beads No No 

Steel 
belts No No 

Yes/Rebar 
elements Body 

plies No No 

Pressure 
load Dynamic Static Static Static 

O
th

er
s 

Hub 
adapter 
structure 

No No Yes 
Yes/ No 
detail is 
given 

Yes Yes 

Wheel 
material 6061-T6 A356 6061-T6 Aluminum 

Alloy A356 A356 

Damage 
parameter 
(Failure 
criteria)* 

TPW EPS TPW VM FPS EPS 

* TPW: Total plastic work, EPS: Effective plastic strain, VM: von Mises, FPS: First principal strain 

 

The computational time of the wheel impact test simulations declared by some 

authors are listed in Table 1.2. 
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Table 1.2. The computational time of the 13° wheel impact test simulations 
 

Definition 
Authors 

Shang et al (2005) Ishikawa et al. (2014) 

Central process unit, CPU, type 
of the computer  

AMD Athlon  
1.7 GHz 

Intel Xeon E5645  
2.40 GHz 

Memory of the computer 1 GB Not mentioned 

Number of cores of the 
computer 1 8 

Number of nodes of the FE 
model 140895 (with tire) 225892 

Number of elements of the FE 
model 257840 (with tire) 137528 

End or termination time of the 
simulation [sec] ~ 0.85 (with tire) 

0.60 (without tire) 0.1 

Computational time of the FE 
model (Hour) 

72 (with tire) 
28 (without tire) ~50 Hours 

 

It is useful to mention that Ishikawa et al. (2014) and Shang et al (2005) verified 

their numerical simulations regarding plastic deformations by experimental studies. 

 In the current study, static and dynamic finite element models for the simulation of 

the wheel impact test defined in ISO7141 were developed for the AlSi7Mg and AlSi11Mg 

alloy wheels by considering all modeling methods of the impact test discussed above. 

The dynamic model consisted of the wheel, complete hub adapter structure, and the 

tire having major components: the tread, sidewall, steel beads, steel belts and body plies. 

Natural rubber mounts of the hub structure were modeled as spring and damper elements. 

The dynamic model was used for the pressured air inside of the tire. Moreover, the 

clamping load induced by the tightening torque on the bolts was considered. The dynamic 

model was verified by using plastic deformation values of the wheel spoke that were 

obtained experimentally. 

 Some parts of the model were also simplified to reduce the computational time. 

1D/2D finite element models of the complete hub adapter structures were formed and 

verified. In addition to these, a simplified tire model was developed and tested numerically. 



 18 

 Forty-one experimental impact tests were carried out for fourteen different 

AlSi11Mg and AlSi7Mg alloy wheels. The maximum von Mises stresses on the wheel 

during the impact were obtained from numerical simulations of these models. Box-plot 

statistical method was used to show the maximum von Mises stress predictions for both 

AlSi11Mg and AlSi7Mg alloy wheels. 

 The static model consists of the wheel with simplified tire and the lumped model of 

the hub adapter structure. Force-displacement curve and von Mises stresses distribution of 

the wheel according to the displacement of the impact point of the wheel are obtained by 

means of the static model. Force-displacement and strain energy -displacement functions 

are found. It is shown that the maximum von Mises stress on the wheel due to any impact 

load can be calculated by using energy approach instead of running the dynamic 

simulation. 
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CHAPTER 2 

 

THEORETICAL BACKGROUND 

 

2.1. Introduction 

 
During the impact test of the light alloy wheel, an impact mass is released from a 

specified height onto a wheel with the pneumatic radial tire fixed on a standard test stand 

as detailed in this Chapter. To evaluate the deformation of the wheel during this period, the 

test components and their physical behaviors are introduced. 

 First, the characteristics of the standard test stand, wheel and pneumatic tire are 

presented. The composite structures of the tire are illustrated and their special terms are 

given. Then, to understand the physical behavior of the objects under the time dependent 

load, namely impact load, the equation of motion for lumped systems is summarized. 

Moreover, the most common damping types such as linear-viscous damping, Coulomb/dry 

friction damping, hysteretic/solid/structural damping and proportional/Rayleigh damping 

are explained. 

Based on these results, time responses of linear and nonlinear lumped systems are 

written for single-degree-of-freedom and multi-degree-of-freedom systems. 

Direct central impact and the coefficient of restitution along with impulse and 

momentum concepts are described by considering the two different particles having 

velocities in the same directions. It is known that coefficient of restitution is related with 

the energy transform mechanism of the impact and is based on the material characteristics 

of the particles. 

Finally, the main subject of the impact test assessing the deformations of objects 

due to impact are examined both elastically and plastically by considering a vertical bar 

with a collar. This is a classical example to show the potential energy transform from 

falling collar to strain energy of the vertical bar. This concept is used in this thesis to 

simplify the analysis. 
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2.2. Impact Loading Test Machine 

 
The road vehicles-light alloy wheels-impact test is specified by ISO7141. It is used 

to examine the lateral kerb impact collision properties of a wheel produced by light alloys 

completely or partially. In this test, impact loading test machine shown in Figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Impact loading test machine 
(Source: ISO7141, 2005) 

 

The test machine has a steel striker falling from 230±2 mm freely and having at 

least 125 mm wide and 375 mm long impact face as shown in Figure 2.1. The mass of the 

striker mass m is given as 

 

1806.0  Wm      (2.1) 

 

where m is in kg within a tolerance of ± 2% and W is specified by vehicle manufacturer as 

the maximum static wheel load in kg. 
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 Wheel hub adapter structure shown in Figure 2.1 is given in Figure 2.2 with 

dimensions. The geometry of the tire used in this test is specified by the vehicle 

manufacturer. If the tire is not specified, the smallest nominal section width tubeless radial-

ply tire is used. Similarly, If the vehicle manufacturer does not specify the inflation 

pressure, it is taken as 200 kPa. 

 Calibration of the wheel hub adapter structure shown in Figure 2.2 is accomplished 

by using a calibration adapter. Vertical deflection under the calibration load is given in 

Figure 2.2 for calibration testing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Wheel hub adapter structure 
(Source: ISO7141, 2005) 

 

According to ISO7141, the wheel is considered to have failed the test if any of the 

following apply: 

a. Visible fracture(s) penetrate through a section of the center member of the 

wheel assembly; 

b. The center member separates from the rim, 

c. The tire loses all air pressure within 1 minute. 

The wheel is not considered to have failed the test by deformation of the wheel 

assembly or by fractures in the area of the rim section by the face plate of the striker. 
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2.3. Wheel Characteristics 

 
Passenger car wheels are generally manufactured in two types: 

1. Sheet metal disc-type wheel shown in Figure 2.3. 

2. Cast alloy wheel shown in Figure 2.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. The sheet metal disc-type wheel 
(Source: Reimpell et al., 2001) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Cast alloy wheel 
(Source: Reimpell et al., 2001) 
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 Sheet metal disc wheels are commonly used due to their low cost and high stress 

limits. Its general geometrical features are shown in Figure 2.3. Depending on the design 

load of the wheel, cold-formable or band steel with a high elongation can be used. Sheet 

metal thicknesses range from 1.8 to 4.0 mm and 3.0 to 6.5 mm for the rim and the 

attachment faces, respectively. 

 Conversely, cast alloy wheels have the following advantages (Reimpell et al, 2001): 

 lower mass; 

 extensive styling options and better appearance; 

 precise centering and limitation of the radial and lateral run out 

 good heat transfer for brake-cooling 

However, cast alloy wheels cost four times as much as sheet metal disc wheels. 

 It should be noted that both types of wheel must satisfy the same design rules, 

namely, impact tests, dynamic cornering test, etc. 

 

2.4. Pneumatic Tire Characteristics 

 
There are two types of pneumatic tires as follows (Bonnick and Newbold, 2005): 

1. cross-ply or bias tire shown in Figure 2.5. 

2. radial-ply tire shown in Figure 2.6. 

It is clear that tires are made of composite materials having different laminated 

structures. Therefore, the term ply is used to classify them. 

 It can be seen from Figure 2.5 that the plies are placed one upon the other in the 

angles that are not in the radial directions. The angle between the cords is about 100°. 

Also, the angle between each cord and the tire bead and wheel rim is about 40°. 

 It is clear form Figure 2.6 that the cord plies of radial-ply tire have 90° to the 

direction of travel. This type of tire has a more flexible side wall, thus it has a greater 

contact area with the road when it is in cornering. 

 Figure 2.7 shows the difference between the first and second type of tire when they 

are under cornering conditions. It is remarkable that radial-ply tire has better road contact 

than bias tire. 
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Figure 2.5. Cross-ply tire construction 
(Source: Bonnick and Newbold, 2005) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Radial-ply tire construction 
(Source: Bonnick and Newbold, 2005) 

 

 

 

 

 

 

 

 

 

Figure 2.7. Cross-ply and radial-ply tires under cornering conditions 
(Source: Bonnick and Newbold, 2005) 
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 Details of the construction of a radial ply tire are shown in Figure 2.8. The beads 

consist of steel wires wrapped with fabric to form bundle in the shape of a ring. Also, they 

are wrapped by the ends of the plies. Radial plies are generally rayon for car tires due to 

the bonding ability, good fatigue resistance, and low cost. Other materials for plies are 

rayon, nylon or polyester. Beneath the tread, bracing plies have 2-3 bias layers of steel or 

4-6 of rayon. Bracing plies have many critical functions such as preventing the tire from 

distortion due to centrifugal force and increasing the resistance to punctures. 

The tread is made of a special rubber for wear resistance. It is important that 

different types of rubber are used for the treads, side walls, beads and fillers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8. Construction of radial ply tire 
(Source: Garretts et al., 2001) 
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2.5. Equation of Motion of Lumped Systems 

 
When the system parameters are discrete sets of finite numbers, these systems are 

also named as discrete, lumped-parameter, or finite-dimensional systems. In these systems, 

point masses are separated by springs and dampers. The simplest one is a single degree of 

freedom system of which parameters can be described by scalar numbers. If the degree of 

freedom of the system is greater than one, it is called multi-degree-of freedom system. For 

this type of system, mass, damping and stiffness properties are given by matrices and 

displacements, velocities, and accelerations are represented by vectors. Thus, equation of 

motion is expressed by Yardımoğlu (2012) as, 

 

)}({)}(]{[)}(]{[)}(]{[ tFtqKtqCtqM       (2.2) 

 

where {q(t)} is the displacement vector that is counterpart of w(x, y, t), {F(t)} is the force 

vector. Moreover, [M], [C], and [K] are mass, damping, and stiffness matrices, 

respectively.. 

 

2.6. Damping 

 
Several forms of damping models are available for modeling of energy dissipating 

mechanical systems. The most common models are as follows: 

1. Linear-viscous damping 

2. Coulomb or dry friction damping 

3. Hysteretic damping or solid damping or structural damping 

4. Proportional or Rayleigh damping 

Another useful model of damping is related with the object vibrating in air or fluid. 

This model is called as air damping, quadratic damping, or velocity-squared damping. 

Moreover, displacement-squared damping occurs due to material damping. 

 Linear-viscous damping occurs when the parts have relative motions with respect to 

each other with lubricated contact. For this type of damping, damping force is directly 

proportional to the relative velocity between the parts. This is illustrated in Figure 2.9. 
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Figure 2.9. Simple model for viscous damping 
 

 When a body slides on a dry surface as shown in Figure 2.10, the damping due to 

friction is known as Coulomb or dry friction. Damping force is related with the dry friction 

coefficient, denoted by μ, of the contact surfaces. 

 

 

 

 

 

Figure 2.10. Simple model for Coulomb damping 
 

 Hysteretic damping is based on the energy lost due to the internal friction of the 

material per cycle under a harmonic load. Figure 2.11 shows an experimental stress–strain 

plot for one cycle of harmonically loaded material. 

 

 

 

 

 

 

 

Figure 2.11. Hysteresis loop due to internal damping 
(Source: Inman, 2014) 

 

Energy loss per cycle is given by Inman (2014) as: 

 
2XcE eq      (2.3) 

 

where ω is forcing frequency, ceq is equivalent viscous damping coefficient, and X is 

magnitude of the steady-state response. Equivalent viscous damping coefficient is given as 
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

h
ceq        (2.4) 

 

where h is known as hysteretic damping constant which is given as: 

 

kh        (2.5) 

 

where k and γ are stiffness coefficient and loss factor of the material, respectively. If 

equivalent viscous damping and stiffness forces are combined, complex stiffness 

coefficient k* is found as follows: 

 

)1(* ikk         (2.6) 

 

For proportional damping, damping matrix [C] in Equation (2.2) is a linear 

combination of stiffness matrix [K] and mass matrix [M] as (Inman, 2014): 

 

][][][ KMC        (2.7) 

 

where α and β are coefficients. Damping matrix [C] is also expressed as 

 

][][ KCk  ,  ][][ MCm         (2.8.a,b) 

 

Equations (2.8.a) and (2.8.b) are known as stiffness and mass proportional damping 

matrices, respectively. Figure 2.12 illustrates the Equations (2.7), (2.8.a), and (2.8.b) as rth 

damping ratio versus rth natural frequency. 

 

 

 

 

 

 

 

Figure 2.12. Proportional damping with its components 



 29 

2.7. Time Response of Linear Lumped Systems 

 

2.7.1. Single-Degree-of-Freedom Systems 

 
 For a single-degree-of-freedom system shown in Figure 2.13, Equation (2.2) is 

reduced to the following scalar form: 

 

)()()()( tFtxktxctxm        (2.9) 

 

 

 

 

 

 

 

 

 

Figure 2.13. A single-degree-of-freedom system 
 

 Time response x(t) of an under damped system to arbitrary input F(t) is given by 

Inman (2014) as 
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where n  is the natural frequency,   is the damping ratio and d  is damped natural 

frequency. All these are given as follows: 

 

mkn          (2.11) 
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21   nd
       (2.13) 

 

2.7.2. Multi-Degree-of-Freedom Systems 

 
 As an example, three-degree-of-freedom system is shown in Figure 2.14. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14. A three-degrees-of-freedom system 
 

If the n-degree-of-freedom system given in Equation (2.2) has proportional damping, 

Equation (2.2) can be written in the form of independent modal equations (Meirovitch, 

2000) 

 

nrtNttt rrrrrrr ,...2,1),()()(2)( 2       (2.14) 

 

where rth modal force Nr(t) is given as 

 

nrtFutN T

rr ,...2,1)},({}{)(       (2.15) 

 

in which {ur} is the rth modal vector. 
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Solution of Equation (2.14) to arbitrary input {F(t)} is simply 

 

 
t

drrrr

dr

r nrdtNt
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,...2,1,sin)exp()(1)( 


   (2.16) 

 

where 
r , 

r , dr  are rth natural frequency, damping ratio and damped natural frequency, 

respectively. 

 

2.8. Time Response of Non-Linear Lumped Systems 

 

2.8.1. Single-Degree-of-Freedom Systems 

 
Since nonlinear systems are much more difficult to solve, numerical simulation is 

introduced in this section. The differences between linear and nonlinear systems are 

summarized as follows (Inman, 2014): 

1. A nonlinear system has more than one equilibrium point and each may be either 

stable or unstable. 

2. Steady-state response of a nonlinear system does not always exist, and the 

solution is strongly dependent on the initial conditions. 

3. The oscillation period of a nonlinear system depends on the initial conditions, 

the amplitude of excitation, and the physical parameters. 

4. Resonance in nonlinear systems may occur at excitation frequencies that are not 

equal to the linear system’s natural frequency. 

5. Superposition principle cannot be used in a nonlinear system. 

6. In a nonlinear system, a harmonic excitation may cause a non-periodic or 

chaotic response. 

The general equation of motion for a single-degree-of-freedom nonlinear system 

may be written as  

 

)())(),(()( tFtxtxftx        (2.17) 
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where ))(),(( txtxf  may be linear or nonlinear, and forcing function F(t) may be in any 

form. It should be noted that acceleration coefficient is unity. Equation (2.17) can be 

expressed in state space form as 

 

)())(),(()(
)()(

2

21

tFtxtxftx

txtx
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     (2.18) 

 

State space vector {x(t)} is given as 
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Equation (2.18) can be written by using Equation (2.19) as 

 

)}({)}(({)}({ tftxFtx       (2.20) 
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 The Euler integration method can be used for the solution of Equation (2.20), 

 

ttfttxFtxtx iiii  )}({)})}(({{)}({)}({ 1   (2.23) 

 

where the time step is ii ttt  1 . 

 

2.8.2. Multi-Degree-of-Freedom Systems 

 

 The classical eigenvalue methods are not suitable for nonlinear dynamic analysis of 

the system shown in Figure 2.15. (Ginsburg and Gellert, 1980). Therefore, efficient 

algorithms for the direct numerical integration of the equations of motion are needed. 
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Figure 2.15. A two-degrees-of-freedom system 
 

2.9. Impulse and Momentum-Central Impact 

 

Let us consider a force F


 acting on a particle of mass m. Newton’s second law can 

be written in the form 

 

)( vm
dt

d
F


        (2.24) 

 

where vm


 is linear momentum of the particle. Multiplying both side of Equation (2.24) by 

dt and integrating from t1 to t2, it yields, 

 

 
2

1
21
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       (2.25) 

 

The integral in Equation (2.25) is known as linear impulse 21I


. Also, if the interval of 

time 12 ttt   is a very short, the force is called as impulsive force. If 021 I


 in 

Equation (2.25) then it reduces to 

 

21 vmvm


        (2.26) 

 

Equation (2.26) is known as conservation of linear momentum. 
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Collision of two particles is an example for impulse-momentum application. There 

are two types of central impacts of two particles depending on their initial velocity 

directions as shown in Figure 2.16. The line of impact is determined by using the contact 

point of the particles. Thus, line of impact passes through from center of the particles. 

 

 

 

 

 

 

 

 

 

Figure 2.16. Central Impact types 
(Source: Beer et al, 2010) 

 

Now, direct central impact is detailed. Assuming vA > vB, collisions of two particles 

A and B shown in Figure 2.17 is considered. In first step, particle A strikes particle B. In 

second step, particles A and B deform and have a common velocity u. Then, the two 

particles can return to their original shape or can have permanent deformation depending 

on the magnitude of the impact forces occurred in second step. This time is called the 

restitution period. 

 

 

 

 

 

 

 

 

 

 

Figure 2.17. Direct central impact  
(Source: Beer et al, 2010) 
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If the total momentum of the two particles having central impact is conserved, the 

scalar form, which is based on a rule that right is positive and left is negative, can be used 

as 

 

BBAABBAA vmvmvmvm       (2.27) 

 

In this subject, deformation and restitution times shown in Figure 2.18 are the most 

critical. During the deformation, the following equation can be written for particle A 

 

  umPdtvm AAA
      (2.28) 

 

Notation can be seen from Figure 2.18. Also, during the period of restitution for particle A 

 

  AAA vmRdtum       (2.29) 

 

In general, 

 

  RdtPdt        (2.30) 

 

The coefficient of restitution e is defined as 
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Figure 2.18. Periods of deformation and restitution 
(Source: Beer et al, 2010) 
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 Due to Equation (2.30), e is always between 0 and 1 and depends on the particles 

geometry, materials and velocities. Solving Equations (2.28) and (2.29) for the two 

impulses and substituting into Equation (2.31), the coefficient of restitution e becomes 
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Similarly, for particle B, 
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 Since the Equations (2.32) and (2.33) are equal to each other, they are also equal to 

the quotient obtained by adding, respectively, their numerators and their denominators as 
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 There are three cases depending on the value of the coefficient of restitution e: 

1. Perfectly elastic impact, if e = 1, 

2. Elasto-plastic impact, if 0 < e <1, 

3. Perfectly plastic impact, if e = 0. 

 

2.10. Elastic Deformation of Structures Under Impact Load 

 
 Structures may have several geometrical components such as bar, beam, plate, shell 

etc. Elastic deformation analysis of aforementioned members has several methods 

depending on the problem. The general approach is based on energy method. 

In order to obtain an analogical procedure for this topic, the system having a 

vertical bar AB fixed at the upper end and a collar with mass M shown in Figure 2.19 can 

be considered. The collar is initially at rest and falls from height h measured from the 

bottom end of the bar AB. It can be seen from Figure 2.19 that the vertical bar AB has a 

flange at the bottom end B to stop the collar. 



 37 

 

 

 

 

 

 

 

 

 

Figure 2.19. Impact load on a bar due to a falling object of mass M 
(Source: Gere, 2004) 

 

When the collar hits the flange, the bar starts to elongate. After a very short time, 

both the flange and the collar reach maximum deformation position. Thereafter, the bar 

shortens and lengthens, repeatedly. Due to the material damping effect, the motion of the 

bar ends, namely, the bar comes to rest with the mass M on the flange. 

The following assumptions are made to simplify the analysis: 

1. Bar AB deforms elastically, 

2. Kinetic energy of the collar transforms into strain energy in the bar AB. 

3. Changes in potential energy of the bar due to the elongation are neglected. 

4. Damping is neglected. 

Now, the maximum elongation of the bar δmax shown in Figure 2.19 is found by 

equating the potential energy of the collar to the maximum strain energy of the bar as 
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where E is Young’s modulus, g is gravitational acceleration, A and L are cross section area 

and length of the bar, respectively. Equation (2.35) is solved for the positive root to find 

the maximum deflection 
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It should be noted that the elongation δst under static load W=Mg is given by 

 

EA

MgL

EA

WL
st        (2.37) 

 

Equation (2.36) can be written in terms of st  by using Equation (2.37) 

 
212

max ]2[ ststst h       (2.38) 

 

If h >> st  then 

 
21

max ]2[ sth        (2.39) 

 

On the other hand, the energy conversation of the collar can be written as 

 

MghMv 25.0       (2.40) 

 

Therefore, h in Equation (2.39) can be expressed in terms of velocity of collar v 

 

gvh 2/2        (2.41) 

 

Substituting Equations (2.37) and (2.41) into Equation (2.39) yields 

 

EA

LvM 2

max        (2.42) 

 

The ratio of the dynamic maximum displacement of a structure to the static 

displacement for the same load is called an impact factor and can written as follows 

 

Impact Factor = 
st

max       (2.43) 

 

Equation (2.38) can be expressed in terms of Impact Factor to see the dynamic load effect. 
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If the collar released from h=0, this type of loading is called as suddenly applied 

load. For this type of loading, maximum displacement is found by substituting h=0 into the 

Equation (2.38) 

 

st 2max         (2.44) 

 

Due to the assumption for material behavior, deformation of the bar AB remains in 

the elastic region. Maximum elastic strain due to the dynamic load applied by collar is 
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Maximum stress in the bar can be calculated by using Hook’s law as 

 

L
EE max

maxmax


       (2.46) 

 

By following the same procedure used for displacements, 
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If h >> st  

 

AL

EvM

L

hE st

2

max
2




      (2.49) 

 
Note that as the kinetic energy increases the stress also increases. The stress in the 

bar σ = W / A is independent of the length of the bar L and Young’s modulus E for static 

load, but for impact load, an increase in L of the bar reduces the stress and an increase in E 

of the bar decreases the stress. 
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2.11. Plasticity 

 

2.11.1. Stress-Strain Curve 

 
A test specimen shown in Figure 2.20 is produced and inserted into the tensile 

machine which applies the axial load gradually. Test machine provides the data on the 

stress-strain behavior of the material of specimen. A typical stress-strain curve is shown in 

Figure 2.21. 

 

 

 

 

 

 

 

 

 

 

Figure 2.20. Tensile test specimen under the axial load 
(Source: Mendelson, 1968) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.21. Conventional stress-strain curve diagram 
(Source: Mendelson, 1968) 
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The vertical axis of the plot shown in Figure 2.21 is known as nominal stress, and 

gives as 

0A

P
n        (2.50) 

 

where A0 is the original cross sectional area. Also, the horizontal axis of the same plot is 

called as the conventional or engineering strain and written as 

 

0

0

l

ll 
       (2.51) 

 

where l and l0 are shown in Figure 2.21. It is clear that l is the original length. 

It can be seen from Figure 2.21 that the relation between stress and strain is linear 

in the first region between origin and the point A that is proportional limit. Thus, in this 

region, the linear theory of elasticity based on Hook's law is valid. Also, until point B that 

is called elastic limit or yield point the material still remains in elastic region. This means 

that if the load is removed, the specimen returns to its original length. However, in most 

material the proportional limit A and elastic limit B are very close. 

After point B, the deformation of the specimen is permanent, so it is called as 

plastic deformation. It can also be seen from the same figure that the slope of the curve 

reduces when the strain increases. The behavior of the material in the region from B to C is 

known as work hardening or strain hardening. The stress necessary in this region is called 

flow stress. When the curve reaches to point C, the load P is at the maximum. After this 

point of instability, the specimen "necks down" rapidly and fractures at D. The stress 

distribution between C and D is the state of triaxial. 

Eventually, point C is a limit for the useful part of the tensile test as far as plasticity 

theory. The stress at the maximum load point C is called the tensile strength, or ultimate 

stress. If the load is removed at any point between B and C, for example B', then point B' 

moves to C' during the unloading as shown in Figure 2.21. Thus, although the strain at 

point B' is ε, the strain at point C' is εp which is plastic strain. Therefore,  

 
pe         (2.52) 

 

where ε is total strain and εe is elastic strain. 
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If the specimen is reloaded from point C', the unloading line B'C' is not followed 

exactly, the reloading path has very minor deviations. This is known as hysteresis loop. 

Plastic flow does not start again until the point B' is reached. With further loading, the 

stress-strain curve is continued along B'C as if no unloading had occurred. Point B' can 

thus be considered as a new yield point for the strain-hardened material. 

 

2.11.2. Main Concepts of Plasticity 

 
 Plasticity theory has three main parts: 

1. Yield criterion is based on a yield function F as function of material 

characteristics, plastic work per unit volume associated with hardening rule. If 

the yield function is equal to zero, yield occurs. Several yield surfaces based on 

different approaches are shown in Figure 2.22. 

2. Flow rule is related with plastic potential Q which represents a surface and a 

plastic strain rate vector έp perpendicular to mentioned surface. 

3. Hardening rule has two types: kinematic and isotropic hardening. In the first, 

the yield surface size and shape do not change, but the center axis of the yield 

surface translates as illustrated in Figure 2.23.a. In the second one, the yield 

surface size changes, but the center axis and the general shape of the yield 

surface do not change as shown in Figure 2.23.b. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.22. Yield surface in principal stress space 
(Source: Boresi and Schmidt, 2003) 
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Figure 2.23. Kinematic and Isotropic hardening 
(Source: ANSYS, 2009) 

 

2.11.3. Idealization of the stress-strain curve 

 
Figure 2.24 shows idealized curves as well as corresponding dynamic models 

which can be used to describe the material behavior. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.24. Idealized stress-strain curves 
(Source: Mendelson, 1968) 

 



 44 

2.11.4. Effect of strain rate 

 
The effect of increasing the strain rate is generally to increase the tensile yield, as 

shown in Figure 2.25. For materials with a lower yield, such as mild steel, the stress-strain 

curve may approach that of a perfectly plastic material. 

 

 

 

 

 

 

 

 

 

Figure 2.25. Effect of strain rate 
(Source: Mendelson, 1968) 

 

2.12. Plastic Deformation of Structures under Impact Load 

 
This section is an extension of the former section for plastic deformation. 

Therefore, the tension test diagram for a specimen under axial load P and with elongation δ 

shown in Figure 2.26 is considered. 

 

 

 

 

 

 

 

 

Figure 2.26. Tension test diagram 
(Source: Timoshenko, 1940) 
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It is known that the shaded area in Figure 2.26 is equal to elasto-plastic energy to 

produce a elasto-plastic displacement δmax in the tension test specimen. For this case, the 

former assumptions are modified as follows: 

1. Bar AB deforms elasto-plastically, 

2. Kinetic energy of the collar transforms into strain energy in the bar AB. 

3. Changes in potential energy of the bar due to the elongation are neglected. 

4. Damping is neglected. 

Now, the maximum elongation of the bar δmax shown in Figure 2.19 is found by 

equating the potential energy of the collar to the maximum strain energy of the bar as 

 




dPhMg )()( max

0max       (2.53) 

 

The right side of Equation (2.53) corresponds to area OADF in Figure 2.26. The 

maximum elongation of the bar δmax is found from this equation. After finding δmax, 

corresponding axial force Pmax and elastic deformation δmax-e are obtained. Therefore, 

considering the equation δmax = δmax-e + δmax-p, plastic deformation δmax-p is calculated. 

Finally, corresponding elastic and plastic stresses are determined. 

 

2.13. Summary of FEM-ANSYS Workbench LS-DYNA/LS-Prepost 

 

2.13.1. Overview 

 
ANSYS is a software for finite element simulations. It has structural, mechanical, 

fluid, and electromagnetic simulation capabilities. ANSYS Classical has two different 

types of usage: 1) Graphic User Interface (GUI), 2) ANSYS Parametric Design Language 

(APDL). On the other hand, ANSYS Workbench (hereafter Workbench) has a more user 

friendly GUI. 

LS-DYNA is another software for finite element simulations, but is especially 

developed for highly nonlinear, transient dynamic finite element analysis using explicit 

time integration. Workbench Explicit Dynamic is one of the more well-known and user 

friendly software. LS-PrePost is a preprocessor for LS-DYNA and is distributed freely. 
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In this thesis, static and explicit dynamic finite element simulations are carried out 

using “static structural” and “explicit dynamic” applications of Workbench, respectively. 

Moreover, some finite element model features in LS-DYNA, such as simple airbag, as 

used in this thesis, are not supported in Workbench. Therefore, aforementioned difficulties 

are overcome by LS-PrePost. 

The objectives of this section are to present the Finite Element Method, 

Workbench, and LS-PrePost for LS-DYNA. 

 

2.13.2. Basis of Finite Element Method 

 
 The finite element method is a well known numerical procedure for solving a wide 

range of engineering problems such as stress analysis, etc. Basic procedure of this method 

is outlined in next paragraphs by using Figure 2.27. 

 Finite element method is based on the division of the entire body into small and 

geometrically simple bodies which are known as finite elements. Depending on the 

problem type, physical equations of each element such as equilibrium equations are 

obtained. 

 

 

 

 

 

 

 

 

Figure 2.27. The nodal displacements of a 2D 4-node quadrilateral element 
(Source: Lee, 2014) 

 

 The elements are connected by the nodes located on the vertices and edges of 

elements. Discrete values at the nodes such as displacements are nodal unknowns. Nodal 

unknowns are related with the element shape functions. The element displacement vector 

{d} is written as 
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Tddddddddd }{}{ 87654321     (2.54) 

 

The relationship between the element displacements vector {d} and the 

displacement vector {u(x,y)} over the element is provided by shape function matrix 

[N(x,y)] 

 

})]{,([)},({ dyxNyxu       (2.55) 

 

where {u(x,y)} is 2x1 due to the x and y directions. Therefore, [N(x,y)] is 2x8. Since the 

element shown in Figure 2.27 has interpolating points on the vertices of the element, the 

shape function of the element is linear. When the element has linear shape function it is 

called a linear element, first-order element, or a lower-order element. If a node is added on 

the middle of each edge of the element; called the midside nodes, the element is called a 

quadratic element, second-order element, or a higher-order element. In these cases, the 

shape function of the element has quadratic form. 

 Equilibrium equations for each finite element is 

 

}]{[}{ dkf         (2.56) 

 

where {f} and [k] are element force vector and stiffness matrix, respectively. 

 Displacement vector of the entire body {D} is combination of the element 

displacement vectors {d} and obtained by assemble procedure. Similarly, if the capital 

letters are used for the entire body, the system of equilibrium equations of the entire body 

has the following form, 

 

}]{[}{ DKF         (2.57) 

 

where {F} and [K] are external force vector and stiffness matrix of the entire body. The 

size of Equation (2.57) is equal to total number of nodal freedoms. Boundary conditions 

can be applied to Equation (2.57) by several methods, and then the size of [K] changes. 

The solution of modified Equation (2.57) gives the displacement vector of the 

entire body. After the displacements are known, the strain and stress at any point can be 

found. 
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If the stiffness matrix is a function of displacements, the static analysis is called 

nonlinear static analysis. A nonlinear structural behavior occurs due to geometric, material 

nonlinearities, and changing contact status (ANSYS, 2015). 

Large deformation and stress stiffening are two main types of geometric 

nonlinearity. If the displacements or rotation of the structure is large compared to its 

dimension to such an extent that its original dimensions, position, and loading direction 

change significantly, this kind of state causes nonlinearity. For instance, a fishing rod 

having a low lateral stiffness under a lateral load has nonlinear stiffness behavior as shown 

in Figure 2.28. A structure that has little or no stiffness in one direction, while having 

considerable stiffness in another direction, exhibits this behavior too. For example, cables, 

membranes, or spinning structures have stress stiffness behavior (Madenci and Güven, 

2006). 

 

 

 

 

 

 

 

Figure 2.28. The nonlinear stiffness behavior of fishing rod. 
(Source: ANSYS, 2015) 

 

Material nonlinearity occurs due to the nonlinear stress-strain relationship, such as 

metal plasticity explained in Section 2.11. When the contact status of the bodies changes as 

shown in Figure 2.29, contact type nonlinearity occurs. 

 

 

 

 

 

 

 

Figure 2.29. The nonlinear stiffness behavior due to status of contact. 
(Source: ANSYS, 2015) 
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Equation (2.57) is solved directly for a linear analysis. However, for a nonlinear 

analysis, an iterative process called the Newton-Raphson method can be used to solve the 

problem. This method is presented in this Chapter. 

Finite element method is also very effective for dynamic problems. The most 

common ones are presented as follows: 

 Modal analysis: Equation (2.2) is solved for homogeneous case to find the 

natural frequencies and mode shapes. Damping is detailed in Section 2.6. 

 Transient structural analysis: Equation (2.2) can be solved by using a direct 

integration method called an implicit integration method. Explicit dynamic 

analysis based on conservation of mass, momentum and energy in Lagrange 

coordinates. 

 Harmonic response analysis: Equation (2.2) is solved for sinusoidal force of 

known frequency to determine the steady state response. 

 Finite element method requires hourglass control. Hourglass modes are zero-energy 

modes of deformation that produce zero strain and no stress. The energy is dissipated by 

the hourglass forces. It occurs when solid, shell, and thick shell elements have single 

integration point. Triangular shells and tetrahedral solid elements do not have hourglass 

modes. Typical hourglass modes are shown in Figure 2.30. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.30. Typical hourglass modes of an eight-node element. 
(Source: LSTC, 2015) 
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2.13.3. ANSYS Workbench 

 
The Workbench uses GUI shown Figure 2.31. The main steps for static structural 

analysis can be seen from the small window appeared at the rights side of the screen under 

the title A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.31. Workbench GUI 
(Source: ANSYS Workbench, 2015) 

 

Static analysis is performed in Workbench by the flowchart shown in Figure 2.32. 

Explicit dynamic analysis of a structure is not performed completely in Workbench due to 

the limitations of LS-DYNA applications available in Workbench. Flow chart of the 

explicit dynamic analysis is shown in Figure 2.33. 

Structural dynamic analyses performed with the Workbench are 

 Modal, 

 Transient structural analysis, 

 Harmonic response analysis, 

 Explicit dynamics, 

 Respond spectrum analysis, 

 Random vibration analysis. 

Each analysis type has own module in the Workbench. 
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Figure 2.32. Flow chart of structural static FEA by Workbench. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.33 Flow chart of the explicit dynamic FEA 
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Material properties, rigid or flexible stiffness behavior are assigned to parts within 

the geometry branch of the Mechanical GUI. A rigid body, or part, is represented as a 

single mass element, thus it is very efficient for solution time. Mechanical application 

provides solid, surface and line bodies. Solid bodies are volumes or areas, surface bodies 

are only areas and finally line bodies are only curves. Although the thickness of surface 

bodies is defined in the “Details” view of the “Geometry” branch, the cross-section and 

orientation are defined within Design Modeler for line bodies and are imported into 

Mechanical automatically (Lee, 2014). 

Touching two separate surfaces of bodies each other is termed contact. Contacts 

and contact types are defined within the contact branch of the Mechanical GUI. Contact 

surfaces have some flowing characteristics. Interpenetration does not occur and normal 

compressive and tangential friction forces are transmitted but tensile normal forces usually 

are not transmitted. Surfaces can separate and move away from each other. Touching or 

separating of the surfaces changes the contact status and the stiffness of the system. 

Therefore, some contact types are nonlinear. Workbench supports five contact types given 

below. 

1. Bonded: This type of contact does not allow penetration, separation and sliding 

between faces or edges. 

2. No Separation: This type of contact does not allow penetration or separation but 

frictionless sliding is allowed along contacting faces. 

3. Frictionless: This type of contact does not allow penetration, but surfaces are 

free to slide and separate without resistance. 

4. Rough: This type of contact does not allow penetration or sliding, but surfaces 

are free to separate without resistance. 

5. Frictional: This type of contact does not allow penetration, but surfaces are free 

to slide with resistance proportional to user defined coefficient of friction and 

separate without resistance. 

While the first and second contact types are linear and require only one step 

iteration, other contact types are nonlinear and need multiple iterations. 

Numerous bodies may be grouped into multi-body parts in the Design Modeler. 

Multi-body parts’ common boundaries are shared and the contact surfaces behave as 

bonded contact type. Contact definition is not needed in these situations. 

In addition to contact connections, there are body to body or to ground connection 

branch for tying entities together using spring elements for static structural FEA in 
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Workbench. From the connections branch, a spring element with nonlinear properties can 

be inserted between two scoped entities. Spring element connection is not supported by 

Workbench Explicit Dynamic (LS-DYNA Export) application. Spring element connections 

for explicit dynamic analyses are defined within the LS-DYNA PrePost GUI. 

Meshing operations are carried out within the Mesh branch of the Mechanical GUI 

of Workbench. Some finite elements are introduced below. 

The SOLID187 element shown in Figure 2.34 is a higher order 3-D, 10-node 

element and each node has three degrees of freedom: translations in the nodal x, y, and z 

directions. The capabilities of the element are suitable for plasticity, hyperelasticity, creep, 

stress stiffening, large deflection, and large strain. 

 

 

 

 

 

 

 

Figure 2.34. SOLID187 element 
(Source: ANSYS, 2009) 

 

The SOLID186 element shown in Figure 2.35 is a higher order 3-D 20-node solid 

element and each node has three degrees of freedom: translations in the nodal x, y, and z 

directions. The capabilities of the element are suitable for plasticity, hyperelasticity, creep, 

stress stiffening, large deflection, and large strain capabilities. 

 

 

 

 

 

 

 

Figure 2.35. SOLID186 element 
(Source: ANSYS, 2009) 
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The SURF154 element shown in Figure 2.36 is defined by four to eight nodes. It is 

used for various load and surface effect applications in 3-D structural analyses. 

 

 

 

 

 

Figure 2.36. SURF154 element 
(Source: ANSYS, 2009) 

 

The SOLID164 element is an 8-node brick element shown in Figure 2.37 is used 

for the 3-D modeling of solid structures. It is defined by eight nodes having the following 

degrees of freedom at each node: translations, velocities, and accelerations in the nodal x, 

y, and z directions. Wedge, pyramid, and tetrahedral shaped SOLID164 elements are 

degenerated bricks formed by repeating some of the nodes. This element is used in explicit 

dynamic analyses only. The capabilities of the element are suitable for isotropic elastic, 

bilinear kinematic and isotropic, Mooney-Rivlin rubber material models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.37 SOLID164 element with options 
(Source: ANSYS, 2009) 

 

The BEAM161 element has 3 nodes and each node has the following degrees of 

freedom: translations, rotations, velocities, and accelerations in the nodal x, y, and z 
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directions. This element is used in explicit dynamic analyses only. The capabilities of the 

element are suitable for isotropic elastic and bilinear kinematic material models. 

Analysis settings, initial conditions, loads and supports of the finite element model 

are specified within the Static Structural and Explicit Dynamic branch of the Mechanical 

GUI of Workbench. A series of static analyses called Multi-Step Analysis can be set up 

and solved sequentially by means of Number of Steps option of analyze settings. 

Requested results such as total deformation and von-Mises stress distributions are 

viewed from the Solution branch of the Mechanical GUI of Workbench except explicit 

dynamic (LS-DYNA) analysis type, because all post-processing operations can be done by 

using LS-PrePost. 

 

2.13.4. Generating LS-DYNA Keyword File in Workbench 

 
 After pre post operations for explicit dynamic (LS-DYNA) analysis is performed in 

Workbench, the LS-DYNA keyword file is generated in the explicit dynamic branch of 

Mechanical GUI of Workbench. During this process, ANSYS file format is converted to 

LS-DYNA keyword file format. For explicit dynamic (LS-DYNA) analysis, LS-DYNA 

keywords used in this thesis are given in Tables 2.1-2.3 for the material models, contact 

and element types defined in the Workbench. Also, LS-DYNA keywords used in this 

thesis and defined in LS-PrePost are listed in the Table 2.4. 

 

Table 2.1. The Workbench materials models / LS-DYNA material keywords 
 

Workbench material 
models Corresponding LS-DYNA material keywords 

Isotropic elasticity *MAT_ELASTIC 

Bilinear isotropic 
hardening *MAT_MODIFIED_PIECEWISE_LINEAR_PLASTICITY 

Bilinear kinematic 
hardening *MAT_PLASTIC_KINEMATIC 

Mooney Rivlin with 
two parameters *MAT_HYPERELASTIC_RUBBER 

Rigid *MAT_RIGID 



 56 

 
Table 2.2. The Workbench contact types / LS-DYNA contact keywords 

 

Workbench Contact name Corresponding LS-DYNA contact keyword 

Bonded *CONTACT_TIED_NODES_TO_SURFACE 

Frictionless *CONTACT_AUTOMATIC_NODES_TO_SURFACE 

Frictional *CONTACT_AUTOMATIC_NODES_TO_SURFACE 

 

Table 2.3 The Workbench element types / LS-DYNA contact keywords 

 

Workbench Element Name corresponding LS-DYNA element *keyword 

Tet4 (SOLID164-tetrahedral option) *SECTION_SOLID, ELFORM 13 

Hex8 (SOLID164) *SECTION_SOLID, ELFORM 1 

Low Order Beam (BEAM161) *SECTION_BEAM, ELFORM 1 

 

2.13.5. LS-Prepost 

 

Some pre- and all post-processing operations are done by using LS-PrePost since 

Workbench does not support the viewing. The operations used in this thesis and given in 

Table 2.4 are performed by using Page Menu and Main Button menu shown in Figure 2.38. 

 

Table 2.4. LS-DYNA keywords defined by using LS-PrePost 
 

Purpose LS-DYNA keyword 

Defining the dynamic relaxation of 
the impact system before impact due 
to inflated tire and preloaded bolts. 

*CONTROL_DYNAMIC_RELAXATION 

Defining reinforcement elements of 
the tire. *CONSTRAINED_LAGRANGE_IN_SOLID 

Dynamic modeling of the pressured 
air inside the tire. *AIRBAG_SIMPLE PRESSURE VOLUME 

Nonlinear spring and dashpot model 
of the rubber. 

*MAT_SPRING_NONLINEAR_ELASTIC 
*MAT_DAMPER_VISCOUS 
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Figure 2.38. LS-PrePost GUI 
(Source: LS-PrePost, 2015) 

 

2.13.6. Numerical Methods in ANSYS Workbench and LS-DYNA 

 
 The numerical methods used in ANSYS Workbench and LS-DYNA are 

summarized below by illustration. 

 The Newton-Raphson method: This is an iterative process used to find 

displacement corresponding to the applied load Fa as illustrated in Figure 2.39. More 

details are available in finite element textbook written by Bathe (1996). 

 

 

 

 

 

 

 

 

Figure 2.39 Illustration of the Newton-Raphson solution steps 
(Source: ANSYS, 2009) 
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 The notations used in Figure 2.39 are listed here for clarity: 
aF  Applied load 

iu  Displacement at iteration i 

1iu  Displacement at iteration i+1 

2iu  Displacement at iteration i+2 

nr

iF  Restoring force at iteration i 

nr

iF 1  Restoring force at iteration i+1 

iK  Tangent stiffness at iteration i 

The general method is as follows: 

1. Assume an initial displacement {u0}. It is zero for the first step. 

2. Calculate the updated tangent stiffness [KiT] and restore force {Fi
nr} from current 

displacement {ui}. 

3. Calculate {Δui} from }{}{}]{[ nr

iai

T

i FFuK   and {ui+1} from }{}{]{ 1 iii uuu  . 

4. Repeat the last two steps until toleranceFFa nr

n  }{}{ . 

In other words, the final converged solution has to be in equilibrium such that 

}{}{ nr

n

a FF   

 

Implicit time integration method: The Newmark time integration method is used. It 

is based on the usage of central difference method to solve equation of motion 

given in Equation (2.2). The equation of the method is given by Petyt (2010) as 
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where 

2/1 ta  ,  2)(2 ta       (2.60) 

 
2

3 ))(5.0( ta   , 3))(25.0(4 ta     (2.61) 

 

Equation (2.58) is solved for {q1} then {qj+1} are used to find the next ones. 

 

 Explicit time integration method: The explicit central difference method is used in 

LS-DYNA to integrate the equations of motion (LSTC 2015). 

 

}{}{}{}]{[ nnnn HSPqM       (2.62) 

 

where {Pn} includes all external and body forces, {Sn} is the stress divergence vector, and 

{Hn} is the hourglass resistance. Using the central difference time integration to advance to 

time tn+1, the following equations are written 

 

}){}{}({][}{ 1
nnnn HSPMq       (2.63) 

 

nnnn tqqq   }{}{}{ 2/12/1       (2.64) 

 

2/12/11 }{}{}{   nnnn tqqq       (2.65) 

 

where 

 

2/)( 12/1   nnn ttt      (2.66) 

 

and }{q  and }{q  are the global nodal velocity and displacement vectors, respectively. The 

geometry is updated by adding the displacement increments to the initial geometry {x0}. 

 

}{}{}{ 101   nn qxq       (2.67) 
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2.14. Dynamic Properties of Rubbers 

 
Rubber has elastic properties, like a metallic spring, and more energy absorbing 

properties like a viscous liquid. Rubber maintains its original shape after a deformation 

load is removed. The viscosity of rubber is based on elastomers and temperature. The 

Hooke’s law is valid for the elasticity of rubber. The dynamic properties of elastomers are 

affected by temperature. The effect of temperature on the damping of compounds 

containing different elastomers is shown in Fig. 2.40 where the natural rubber is 

represented as “NR” (Harris and Piersol, 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 2.40 The damping coefficient of typical isolating and damping compounds 
(Source: Harris and Piersol, 2002) 

 

The elastic and viscous components of rubber are frequently illustrated by spring 

and dashpot to create theoretical models of rubber. The spring and dashpot is combined in 

parallel or series, representing the Voigt or Maxwell elements. 
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2.15. Introduction to Hyperelasticity 

 
 A hyperelastic material can have a large strain, up to 700%, that is recoverable. 

Elastomers such as rubber, many other polymers, and some biological materials are 

hyperelastic materials. 

 Polymers have flexible chain-like molecules that highly twisted, coiled, and 

randomly oriented in an undeformed state. The large elastic strain capability is due to the 

untwisting of cross-linked molecular chains. Under a tensile load, the chains become 

partially straightened and untwisted. The chains return to their original configuration when 

the load is removed. The stress-strain relationship of these materials can be highly 

nonlinear (ANSYS, 2010). Although polymers usually exhibit isotropic material properties 

at small deformation, it shows anisotropic material properties at the larger deformation. 

However, isotropic material properties are usually used to simplify the problem in the 

modeling of polymers. 

 Fiber reinforced polymer composites cannot be modeled as isotropic. If the stiffness 

of the fibers are 50-1000 times of the polymer matrix, this leads to strongly anisotropic 

material behavior. Biomaterials, such as muscles and arteries are another class of 

anisotropic materials. The anisotropic behavior of the biomaterials is due to their fibrous 

structure. 

 According to volumetric behavior of the hyperelastic materials, they are grouped 

into two classes: Incompressible or nearly-incompressible and compressible materials. 

Polymers and foam are typically first and second type of materials, respectively.  

 The strain energy potential (or density) function is used to obtain constitutive 

hyperelastic models. However, the response function model based on experimental data is 

an exception. Four types of hyperelastic models are available in ANSYS as follows 

(ANSYS, 2013). 

1. Incompressible or nearly-incompressible isotropic models: Mooney-Rivlin, Neo-

Hookean, Polynomial Form, Ogden Potential, Arruda-Boyce, Gent, Yeoh, and 

Extended Tube. 

2. Compressible isotropic models: Blatz-Ko and Ogden Compressible Foam. 

3. Incompressible or nearly-incompressible isotropic response function hyperelastic 

model. 

4. Invariant-based anisotropic strain-energy potential. 
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 As two parameter Mooney-Rivlin and Neo-Hookean models are considered in the 

thesis, only these two models are explained. 

 

2.15.1. Finite Strain Elasticity 

 
 Hyperelastic material has the strain energy density function (or an elastic potential 

function) W that is a scalar function of one of the strain or deformation tensors. Derivation 

of the function with respect to a strain component determines the corresponding stress 

component as follows (ANSYS, 2010). 
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where Sij is the components of the second Piola-Kirchhoff stress tensor, W is the strain-

energy function per unit undeformed volume, Eij is the components of the Lagrangian 

strain tensor, and Cij is the components of the right Cauchy-Green deformation tensor. Eij 

can be expressed by:  
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where δij is kronecker delta (δij=1, i=j; δij=0, i≠j) and Cij is the deformation tensor that is 

comprised of the products of the deformation gradients Fij 

 

kjkiij FFC         (2.70) 

 

The Kirchhoff stress is defined as 

 

jlklikij FSF        (2.71) 

 

and the Cauchy stress is obtained by 
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ijij
J
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1
        (2.72) 

 

The eigenvalues (principal stretch ratios) of Cij are 2
1 , 2

2 , and 2
3 , and exist only if: 
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where p=1, 2, 3 and I1, I2, and I3 are invariants of Cij, 
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     (2.74) 

 

and 

 

 ijFJ det        (2.75) 

 

 J is also the ratio of the deformed elastic volume to the undeformed volume of 

materials. 

 

2.15.2. Deviatoric-Volumetric Multiplicative Split 

 
 If it is assumed that material response is isotropic, the strain-energy function can be 

expressed by (Simo and Huges, 1997). 

 

),,(),,( 21321 JIIWIIIWW      (2.76) 

 

or 

 

),,( 321 WW        (2.77) 

 

 The modified principal stretch ratios and invariants can be written as 
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Equation (2.76) and (2.77) can be rewritten as  

 

),,,(),,( 32121 JWJIIWW      (2.79) 

 

2.15.3. Isotropic Hyperelasticity 

 
 Following models are for the simulation of incompressible or nearly incompressible 

isotropic hyperelastic materials. The two-parameter Mooney-Rivlin model can be defined 

as 

 

2
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IcIcW    (2.80) 

 

where c10, c01, and d are material constants. The initial shear modulus μ, bulk modulus K, 

and Young’s Modulus E0, can be calculated as  
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where the v  is the Poisson's ratio. The Neo-Hookean model can be defined as 
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      (2.82) 

 

 The two-term Mooney-Rivlin model is most commonly used and it can be used for 

up to 90-100 % tensile strains, although the model does not account for stiffening effects of 

the material, usually present at larger strains. The model can be also used for pure shear 
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behavior may be characterized up to 70-90 %. Although the model can be used to 

characterize moderate compression behavior well up to 30 % (ANSYS, 2010). 

 The Neo-Hookean model is the simplest hyperelastic model and it may be used for 

up to 30-40 % tensile strains, characterizing of pure shear and compression behavior up to 

70-90 % and 30 %, respectively. 

 

2.16. Graphical Representation of Data, Box Plot 

 
 Assessments of the collected data can be accomplished with graphical 

representations. Histograms and box plots are commonly used graphs in statistics. In this 

thesis, box plots are used for this purpose. Therefore, the box plot and its components are 

defined in this section. 

 The box plots show how the data are spread. A typical box plot and its components 

are shown in Figure 2.41. The quartiles, the median, and the highest and lowest values are 

the interest of the box plots. A box plot shows how data are distributed within those ranges. 

The median is the value in the middle of a distribution. There are three quartiles which are 

denoted as Q1, Q2, and Q3. The middle number between the smallest number and the 

median of the data set is the first quartile, Q1. The median of the data is the second quartile, 

Q2. The middle value between the median and the highest value of the data set is the third 

quartile, Q3. Interquartile range, denoted as IQR, is the difference between Q1 and Q2.. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.41 A typical box plot and its components 
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The presence of outliers, any observation away from the closest quartile by more 

than 1.5, can be easily seen by using a box plot. If an outlier is away from the closest 

quartile by more than 3IQR, it is considered extreme (Bass 2007). 

Several box plots can be used to compare date sets with each other on the same 

graph. 
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CHAPTER 3 

 

EXPERIMENTAL STUDIES 

 

3.1. Introduction 

 
Material characteristics are based on the manufacturing process. Most light alloy 

wheels are produced using the LPDC (low pressure die casting) method. The common 

materials for LPDC are AlSi11Mg and AlSi7Mg. Foundries generally have their own 

experience on casting which cannot be fully controlled. Although the same molds are used 

and the same process conditions are applied in casting, it is observed that mechanical 

properties of the product are not identical. Therefore, to have a general material data 

adequate numbers of tension, tests are also done. 

 In order to verify the catalog values of the rubber mounts used in the test stand, 

several compression tests are performed to find the force-displacements characteristics. 

 In total, impact tests are completed for fourteen wheel models. However, only two 

different wheels with different geometrical shape are chosen to present their finite element 

simulation details in next Chapter. 

 

3.2. Tension Test of Aluminum Alloy Wheel Specimens 

 
The round tension test specimens are prepared from the spokes of the wheel1 and 

wheel2 produced by the same casting charge according to DIN 50125. The material of the 

wheel1 and wheel2 tested in this step is AlSi11Mg. The specimen shown in Figure 3.1 has 

test piece diameter do=5 mm. Ten experiments conducted in the test machine are shown in 

Figure 3.2 for each wheel and the average material data are given in Table 3.1. 

 

 

 

 

Figure 3.1. The round tension test specimen 



 68 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Zwick/Roell Z100 Tension test machine 

 

Table 3.1. Material properties of the wheel1 and wheel2 

 

Material Properties Wheel1 Wheel2 

Young’s Modulus (MPa) 37540 38070 

Yield Stress (MPa) 109 118 

Fracture Stress (MPa) 210 210 

Fracture Strain (%) 5.9 5.5 

 

By using the experimental data given above, the bilinear isotropic hardening 

material model, discussed in Section 2.11.2-3, shown in Figure 3.3 is obtained to use them 

in numerical computations. 

 

 

 

 

 

 

 

 

 

Figure 3.3. Bilinear isotropic hardening material model  
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 It is known that the reliability of the finite element simulation results is based on 

tension test results. However, the mechanical properties of a wheel cannot be precisely 

known before casting wheel to be designed. Because of this reason, the tension tests of 

wheels of different shapes and sizes are performed to obtain general data about the wheel 

materials AlSi11Mg and AlSi7Mg. 

 The nine fully processed AlSi11Mg alloy wheels are chosen for the tensile tests. 

These wheels have different shapes and sizes to represent all possible types of AlSi11Mg 

alloy wheels. In total, twenty-four test specimens are obtained. Test results are given in 

Table 3.2. Also, statistical results are provided in Table 3.3. 

 The eight fully processed AlSi7Mg alloy wheels are chosen similarly. In total, 

thirty test specimens are obtained. Test results are given in Table 3.4. Also, statistical 

results are provided in Table 3.5. 

 

Table 3.2. Tensile tests results of AlSi11Mg wheels 

 

Sample 
Number 

Yield 
Stress 
(MPa) 

Fracture 
Stress 
(MPa) 

Fracture 
Strain 
(%) 

Sample 
Number 

Yield 
Stress 
(MPa) 

Fracture 
Stress 
(MPa) 

Fracture 
Strain 
(%) 

1 112.13 193.33 3.65 13 111.43 187.51 3.32 

2 114.70 187.13 2.60 14 111.53 198.62 5.43 

3 104.49 173.45 2.63 15 111.65 186.42 3.37 

4 104.58 169.21 2.48 16 103.88 168.82 2.98 

5 106.62 175.58 2.81 17 105.68 184.99 5.20 

6 103.69 163.42 2.54 18 104.63 185.24 5.27 

7 111.08 195.50 4.70 19 103.15 184.75 5.95 

8 110.84 174.19 2.36 20 105.81 171.89 2.89 

9 112.12 189.79 3.51 21 104.26 174.65 4,5 

10 102.72 187.33 2.75 22 113.46 180.52 2.47 

11 113.66 178.41 2.18 23 113.79 177.10 2.09 

12 111.40 189.17 3.41 24 104.70 175.19 2.93 
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Table 3.3. Statistical results for tensile tests of AlSi11Mg wheels 

 

 Yield Stress 
(MPa) 

Fracture Stress 
(MPa) 

Fracture Strain 
(%) 

Young 
Modulus 
(MPa) 

Average 108.90 181.34 3.42 37437 

Minimum. 102.72 163.42 2.09 27087 

Maximum. 114.84 198.62 5.95 46285 
Standard 
deviation 4.1 8,9 1.11 5244 

 

 

Table 3.4. Tensile tests results of AlSi7Mg wheels 

 

Sample 
Number 

Yield 
Stress 
(MPa) 

Fracture 
Stress 
(MPa) 

Fracture 
Strain 
(%) 

Sample 
Number 

Yield 
Stress 
(MPa) 

Fracture 
Stress 
(MPa) 

Fracture 
Strain 
(%) 

1 196.89 254.33 5.89 16 195.78 238.14 2.7 

2 205.79 251.4 3 17 201.18 237.54 3.2 

3 199.69 251.15 3.88 18 196 236.75 2.66 

4 198.33 246.85 3.25 19 194.72 236.59 3.02 

5 194.71 244.57 3.59 20 193.23 236.18 3.1 

6 202.28 243.91 3.1 21 187.79 235.63 3.2 

7 203.63 243.63 2.8 22 181.2 235.45 3.48 

8 187.18 242.97 4.04 23 193.57 234.35 2.44 

9 195.15 242.67 3.1 24 196 234.22 2.35 

10 193.9 242.41 3.44 25 193.31 230.32 2.3 

11 183.56 242.35 4.5 26 188.36 223.79 3.15 

12 204.24 241.97 2.34 27 180.68 220.83 3.11 

13 200.05 239.39 3.2 28 178.59 219.53 3.3 

14 192.9 238.79 3.05 29 195.78 238.14 2.7 

15 191.19 238.23 3.11 30 201.18 237.54 3.2 
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Table 3.5. Statistical results for tensile tests of AlSi7Mg wheels 

 

 Yield Stress 
(MPa) 

Fracture Stress 
(MPa) 

Fracture Strain 
(%) 

Young Modules 
(MPa) 

Average 194.58 239.95 3.29 59931 

Minimum. 178.6 219.53 2.3 51143 

Maximum. 205.8 258.39 5.89 71321 
Standard 
deviation 7.21 9.1 0,74 5056 

 

3.3. Compression Test of Rubber Mounts 

 
Rubber mounts shown are on the left side of the Figure 3.4 and used in the legs of 

the wheel hub adapter structure as an isolator. In order to have the compression force-

displacement behavior of rubber mounts, the compression test device shown in Figure 3.4 

is used. It can be seen from Figures 3.5 that the rubber mount is placed in the fixture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Rubber mount and compression test device of rubber mount 



 72 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. A rubber mount under compression force 

 

The test results of five sample rubber mounts having the same dimensions with the 

rubber mounts used in the impact test machine are plotted in a graph shown in Figure 3.6. 

It should be noted that compression force is taken as positive in the plot. 

From the plots mentioned above, rubber mount stiffness characteristics can be 

represented by bilinear form. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Compression test results of five identical rubber mounts 
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 The plots in Figure 3.6 are reduced to a curve of which data is given in Table 3.6. 

 

Table 3.6. Compression characteristics of rubber mount 

 

Force (N) Displacement (mm) 

0 0 

4000 10.76 

5000 11.79 

6000 12.71 

7000 13.51 

8000 14.08 

9000 14.66 

10000 15.11 

11000 15.57 

12000 15.92 

13000 16.26 

14000 16.49 

15000 16.72 

17000 17.23 

20000 17.78 

26000 18.09 

 

3.4. Impact Tests 

 
First, the road vehicles-light alloy wheels-impact test machine specified by 

ISO7141 standard and branded as MAKRA shown in Figure 3.7 is examined for 

calibration. The deflection at the center of the beam under the calibration load 1000 kg is 

found in the range of 7.5 mm ± 0.75 mm which is given by the standard. 

According to ISO7141, the wheel is considered to have failed the test if any of the 

case given Section 2.2 occurs. 
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Figure 3.7. MAKRA Impact test machine 

 

 The two models, wheel1 and wheel2, are chosen for impact tests. The selected wheel 

model geometries are given in Figures 4.1. and 4.3, respectively. The nine and six samples 

are taken for wheel1 and wheel2, respectively. Although the impact load is determined by 

ISO7141, which is related with the maximum static wheel load provided by the vehicle 

producer, different loads are applied in this study to see their effects. 
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 Plastic deformations due to impact load at the impact region of sample wheels are 

measured by using the CMM (coordinate measuring machine) shown in Figure 3.8. As an 

example of plastic deformation at the impact region is shown in Figure 3.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Measuring the plastic deformation by CMM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Plastic deformation value of the spoke 
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 The measured plastic deformations for nine samples of wheel1 and six samples of 

wheel2 under different impact loads are given in Table 3.7 and 3.8, respectively. 

 

Table 3.7. Impact test results for wheel1 
 

Sample number Impact Load (kg) Plastic deformation (mm) 

1.1 450 6.153 

1.2 450 6.557 

1.3 450 7.100 

1.4 550 8.928 

1.5 550 8.870 

1.6 550 7.412 

1.7 800 17.364 

1.8 800 16.515 

1.9 800 16.348 
 

Table 3.8. Impact test results for wheel2 
 

Sample number Impact Load (kg) Plastic deformation (mm) 

2.1 400 6.842 

2.2 400 6.891 

2.3 400 5.540 

2.4 540 9.866 

2.5 540 12.258 

2.6 540 10.880 
 

In order to determine the failure characteristics of the wheels based on the criteria 

given before as “Visible fracture(s) penetrate through a section of the center member of the 

wheel assembly”, totally 31 impact tests under different impact loads are accomplished for 

four different AlSi11Mg alloy wheel models and ten different AlSi7Mg alloy wheel 

models. The wheels have different sizes and shapes. 



 77 

Increasing the impact load from design load to failure level, numerous conditions 

are considered. The results are given in Table 3.9. 

 
Table 3.9. Experimental results based on visible fracture 

 
Model number Alloy type Impact load (kg) Experimental result 

1 AlSi11Mg 450 No fracture 
1 AlSi11Mg 550 No fracture 
1 AlSi11Mg 800 No fracture 
2 AlSi11Mg 400 No fracture 
2 AlSi11Mg 540 No fracture 
2 AlSi11Mg 900 No fracture 
3 AlSi11Mg 468 No fracture 
4 AlSi11Mg 396 No fracture 
5 AlSi7Mg 825 Fracture 
5 AlSi7Mg 775 No fracture 
5 AlSi7Mg 725 No fracture 
5 AlSi7Mg 675 No fracture 
5 AlSi7Mg 627 No fracture 
6 AlSi7Mg 775 Fracture 
6 AlSi7Mg 725 No fracture 
6 AlSi7Mg 625 No fracture 
6 AlSi7Mg 575 No fracture 
6 AlSi7Mg 525 No fracture 
7 AlSi7Mg 800 No fracture 
7 AlSi7Mg 750 No fracture 
7 AlSi7Mg 700 No fracture 
7 AlSi7Mg 650 No fracture 
8 AlSi7Mg 468 No fracture 
8 AlSi7Mg 468 Fracture 
9 AlSi7Mg 558 No fracture 
9 AlSi7Mg 558 Fracture 
10 AlSi7Mg 573 No fracture 
11 AlSi7Mg 850 Fracture 
12 AlSi7Mg 615 No fracture 
13 AlSi7Mg 585 No fracture 
14 AlSi7Mg 498 Fracture 
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 Examples of failed wheels from the impact tests are shown in Figure 3.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.10. Some of the wheels failed in the impact tests 
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CHAPTER 4 

 

MODELLING OF THE IMPACT TEST 

 

4.1. FE Modeling of the Wheels 

 

The 3D solid models of the wheels studied on this thesis were modeled by CATIA. 

The first model is shown in Figure 4.1. Then, the 3D model is transferred to ANSYS for 

finite element analysis. It is meshed by tetrahedral solid elements as shown in Figure 4.2. 

 
 

 

 

 

 

 

 

 

 

Figure 4.1. 3D solid model of wheel1 with 6.5Jx16H2 

 
 

 

 

 

 

 

 

 

 

Figure 4.2. Finite element model of the wheel1 
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The second model is shown in Figure 4.3. Similar to the first model, the 3D model 

is transferred to ANSYS for FE (finite element) analysis. It is also meshed by tetrahedral 

solid elements as shown in Figure 4.4. 

Wheel material is AlSi11Mg and is considered isotropic, homogeneous and strain 

rate independent (as discussed Chapter 1 and Section 2.11.4) Density and Poisson’s ratio 

are 2.77x103 kg/m3 and 0.33, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. 3D solid model of wheel2 with 6.5Jx16H2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Finite element model of the wheel2 
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 The selected tetrahedral element has 4 nodes. According to the convergence studies 

done for the size of mesh, 5 mm is selected for general mesh size. Additionally, due to the 

complex shape of the wheel, for the critical regions, such as rim part and other smaller 

regions, mesh size is taken as 4 mm and 2.5 mm, respectively. 

 

4.2. FE Modeling of the Pneumatic Tire 

 

4.2.1. 3D FE Model of the Pneumatic Tire 

 
There are many types of tires depending on the application area. Radial tubeless 

tires named P205/55 R16 for passenger cars are used in this study. 

The dimensional parameters such as thickness, position of the beads, carcass and 

cord elements of the selected tire are found by cutting the tire as shown in Figure 4.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Half cross-section of the tire 

 

It is known that dimensions of the tire profiles are available in the ETRTO (2011). 

Bead core, crown and casing plies of the tire are reinforcement components. Each bead 

core has 20 steel wires having totally 19.625 mm2 cross sectional area which corresponds 

to approximately a wire with diameter of 5 mm. 
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In thread region, defined in Figure 2.8, of the present cross-section, there are double 

crown plies (belts) that have steel wires of diameter 1 mm. 

A single casing ply is shown in Figure 4.6 and its diameter is 1 mm. 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Casing ply of the tire 

 

Tire materials are considered as isotropic, homogeneous, and strain rate 

independent. The material properties used in the finite element model is given in Table 4.1. 

Additionally, tread is modeled by the two parameter Mooney-Rivlin model of 

which parameters are as follows: C10= 1 MPa, C01=0, and D1=5x10-14 MPa (Neves et al, 

2010). Also, bilinear kinematic hardening model is used for bead core wire and belt wire. 

 

Table 4.1. The material properties and material models of the tire 
(Sources: Reid et al., 2016 Neves et al., 2010) 

 
Part Name Bead wall and 

Side walls 
Tread Bead wire and 

belt 
Casing ply 

Material Rubber Rubber Steel Synthetic 

Density (kg/m3) 1.1x103 0.94x103* 7.85x103* 1.39x103 

Poisson’s ratio 0.45 0.4995 0.3 0.28 

Young’s modulus (MPa) 30 E0=6* 200000 5000 

Yield stress (MPa) - - 350 - 

Tangent modulus (MPa) - - 700 - 

* Calculated by using Equation 2.81. 
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Various types of finite elements are used for finite element modeling of the tire. 

Rubber parts are modeled by 8 noded hexahedron finite elements. Mesh size of the side 

walls and tread are 5 mm while bead parts are 3 mm. 

Beat wires, belts and casing plies are modeled by reinforcement elements. Average 

mesh size of these elements are taken 15 mm. Finite element model of the whole tire is 

given in Figure 4.7. 

Lagrange in solid option in LS-DYNA is used for constraining of the reinforcement 

elements inside the tire. This option allows all reinforcement elements to move with rubber 

elements of the tire during inflation and impact. Airbag simple pressure volume option in 

LS-DYNA is used to simulate air pressure in the tires for both inflation and impact phase 

of the test for more realistic simulation. If only a pressure load is defined for control 

volume for the tire, the pressure does not change during the impact. Airbag simple pressure 

volume option considers that when the volume changes, the pressure will also change. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Finite element model of the tire 
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4.2.2. Simplified Model of the Pneumatic Tire 

 
Pneumatic tire components are presented in Section 2.4 by showing cross-ply tire 

and radial-ply tire construction in Figures 2.5 and 2.6, respectively. The technical 

terminology of the components of the tire is illustrated in Figure 2.8 in detail. Figure 2.8 

can be reduced to a cross-section model as shown in Figure 4.8. 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Section of the rubber part of the tire 
 

If Figures 2.8 and 4.8 are examined carefully by considering the finite element 

modeling approaches, a simple model shown in Figure 4.8 can be obtained. 

 

 

 

 

 

 

 

 

Figure 4.9. Simplified cross-section of the tire 

 

 Let us imagine a pneumatic tire having an internal pressure. Due to the internal 

pressure, it is clear that the tire has major stresses in different part in different directions. 

While tread and bead parts have major stresses in circumferential directions, the side wall 



 85 

is under major stresses in radial directions. Because of these realities, crown plies, casing 

plies and bead core mainly have tension. 

 Now, let us consider a rubber with continuous longitudinal fiber in the shape of a 

tension test specimen. The cross-section of this composite test specimen has two different 

materials: rubber and fiber. Also, total cross-sectional area Arf is simply 

 

frrf AAA         (4.1) 

 

where Ar and Af are cross-section of the rubber and fiber parts of the specimen, 

respectively. Using the equivalent axial stiffness approach for the specimen having length 

L, the following equation can be written 

 

L

AE

L

AE

L

AE ffrrrfrf
      (4.2) 

 

where Erf, Er and Ef are equivalent modulus of elasticity of specimen, rubber and fiber 

parts of the specimen, respectively. Geometrical representation of the Equation (4.2) is 

shown in Figure 4.10 as parallel connection of two springs. 

 

 

 

 

 

 

 

Figure 4.10. Equivalent stiffness for parallel connection of springs 
 

From Equation (4.2), equivalent modulus of elasticity of specimen Erf can be written as 

 

rf

ffrr

rf
A

AEAE
E


       (4.3) 

 Modulus of elasticity of the material of the tire components are provided in Table 

4.1. Equivalent modulus of elasticity for tread, side wall and bead parts can be obtained by 
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using the Equation (4.2). The term “fiber” used in Equation (4.2) corresponds to crown ply, 

casing ply and bead wire. 

 Thus, equivalent modulus of elasticity for tread and bead are calculated as 
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 In the numerical calculations given above, the areas Ar and Af can be seen from 

Figure 4.8. However, for the side wall, the area normal to casing ply is considered. It is a 

cylindrical strip having an average radius at side wall as shown in Figure 4.11. Thus, 
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Figure 4.11 Area of the cylindrical strip of the side wall 
 

Following the same procedure used for equivalent modulus of elasticity, equivalent 

densities for tread, side-wall and bead are found as 998.02 kg/ m3, 1101.6 kg/ m3, 1492.9 

kg/ m3, respectively. 
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4.3. Modeling of the Wheel and the Pneumatic Tire 

 

4.3.1. 3D FE Model of the Wheel and the Pneumatic Tire 

 
In this section, a 3D FE model of the wheel given in Figure 4.2 and/or Figure 4.4 is 

combined with FE model of tire given in Figure 4.7 by taking into account frictional 

contacts. Contact surfaces between bead parts of the tire and the wheel are defined as 

frictional contacts, as it is in the real system. Friction coefficient is 0.8, dynamic friction 

coefficient is 0.3. (Dirac Delta 2016) The benefit of this contact definition is to determine 

the contact condition. Thus, one of the failure criteria given in ISO7141 can be checked by 

using the contact condition. If the contact between the tire and the wheel is lost by impact 

load, air pressure of the tire drops. Using these details, the mentioned criteria can be 

evaluated. 

Air pressure inside of the tire, which is taken as 200 kPa, is modeled by airbag 

option available in LS-DYNA. 

 

4.3.2. 3D FE Model of the Wheel and the Simplified Pneumatic Tire 

 
In order to reduce the degrees of freedom of the whole system obtained in Section 

4.3.1, especially in LS-DYNA, the simplified tire model based on equivalent system 

approach given in Section 4.2.2 can be used. It is shown in Figure 4.12. 

 

 

 

 

 

 

 

 

 

 

Figure 4.12. Cross-section of a wheel2 with simplified tire mounted to the hub adapter 
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4.4. Modeling of the Impact Loading Test Machine 

 

4.4.1. 3D FE Model of the Impact Loading Test Machine 

 
The dimensions of the wheel hub adapter structure shown in Figure 2.2 are 

considered. To obtain 3D geometrical model of the structure, the undefined dimensions of 

the structure are taken from the real machine shown in Figure 3.7. 

 3D solid model of the wheel hub adapter structure and striker are modeled in CAD 

software as shown in Figure 4.13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13. 3D solid model of the impact loading test machine 

 

The material of the structure is steel with density 7.85x103 kg/m3, modulus of 

elasticity 200 GPa and Poisson’s ratio 0.3. As stated before, dampers are natural rubber. 

The steel part of the solid model is meshed by 8-node hexahedron finite elements. 

The element size for plate and horizontal connection beam is set to be 5 mm. The rubber 

part of the solid model is modeled by spring and damper in finite element. Linear damping 

coefficient is found as 3 Ns/mm from Figure 2.40. The finite element model shown in 

Figure 4.14 is verified by applying the calibration load 1000 kg. 
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Figure 4.14. 3D FE model of the wheel hub adapter structure 

 

4.4.2. 2D FE Model of Impact Loading Test Machine 

 
It is very well known that the degrees of freedom of the FE model of a system is 

very effective on the modeling efforts and solution time especially for time dependent 

and/or iterative solution methods. Therefore, finite element modeling of a geometrical 

model is a crucial step. 

Based on the experience obtained from the former studies, the wheel hub adapter 

structure is modeled by 1D/2D finite elements as shown in Figure 4.15. Boundary 

conditions are applied as in Figure 2.2, namely, long legs are fixed at the ground, but short 

legs have freedom in lengthwise direction. The arrow at the top of the picture represents 

the calibration testing load 1000 kg. The elements used in ANSYS are listed below with 

the modeled part of the structure. 

Plate having hub adapter : SHELL63 

All beams   : BEAM4 

Rubber mounts  : COMBIN39 

Revolute joints  : COMBIN7 

Rigid connections  : MPC184 



 90 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15. 1D/2D FE model of the wheel hub adapter structure 

 

4.4.3. Lumped Model of the Impact Loading Test Machine 

 
 Figures 4.13-4.15 show the geometrical and finite element models of the wheel hub 

adapter structure. The lumped model of the wheel hub adapter structures shown in Figure 

4.13 can be obtained easily. In order to find the static stiffness coefficient of the structure, 

a vertical force is applied to the hub adapter as shown in Figure 4.15. On the other hand, 

the lumped mass is simply summation of the mass of the hub adapter and the lumped mass 

of the beam connected to hub adapter. Thus, a lumped model can be obtained as shown in 

Figure 4.16. 

 

 

 

 

 

 

 

Figure 4.16. Lumped model of the wheel hub adapter structure 
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4.5. Modeling of the Test Systems 

 

4.5.1. 3D FE Model of the Test Systems 

 
In this section, the wheel with tire model is combined with the wheel hub adapter 

structure. The geometric model is shown in Figure 4.17. Complete FE Model of impact test 

system is shown in Figure 4.18. 

The test procedure defines that striker mass is released from 230 mm ± 2 mm above 

of the highest point of the rim flange with zero velocity. However, it requires too much 

computing time in computer simulation. To overcome this, the striker mass is released 

from about 30 mm above of the highest point of the rim flange with a velocity based on the 

energy conversation. During the falling of the striker in computer simulations, its motion is 

restricted in horizontal directions and about all axes, namely it has one freedom in vertical 

direction. Contact surfaces between striker and wheel with tire are defined as frictionless 

surfaces. 

Because of the test procedure provided by vehicle manufacturer, bolts are fastened 

to the wheel hub adapter with a torque 12 Nm which is accomplished in LS-DYNA by 

initial stress section option. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17. Complete 3D solid model of the impact test machine 
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Figure 4.18. Complete FE Model of the impact test system 

 

4.5.2. Semi-Lumped Model of the Test Systems 

 
 The system is based on combination of the former lumped models and shown in 

Figure 4.19. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19. Semi-Lumped model of the impact test system 



 93 

CHAPTER 5 

 

NUMERICAL STUDIES 

 

5.1. Comparisons of the Tire Models 

 
Pneumatic tire is modeled in finite element analysis by using two approaches: 

composite pneumatic tire and simplified pneumatic tire. Composite and simplified 

pneumatic tires are detailed in Section 4.2.1 and 4.2.2, respectively. It is clear that 

simplified model has some advantages such as modeling efforts, modeling time, number of 

degrees of freedom in finite element model and computation time. 

The function of a pneumatic tire in an impact test is to provide an inner pressure 

effect on the rim of the wheel.  Bead wires of the pneumatic tire provide a circumferential 

resistance force to inner and outer flange of the rim of the wheel. Therefore, comparisons 

of the models should be based on the functionality of the tire. 

The displacements of wheels with two different tire models under the inner pressure 

0.2 MPa are found. The displacements of the rim and tire are shown in Figures 5.1-5.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Comparison of total displacements for the tire models 
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 If the functionality of the tire on impact test given above is considered, it is seen 

from Figure 5.1 that total displacements of both models are in good agreements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. Comparison of X-displacements for the tire models 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Comparison of Y-displacements for the tire models 

 

 It is seen from Figures 5.2 and 5.3 that displacements of both models in the region 

of rim and bead of the tire are in good agreements. 
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Figure 5.4. Comparison of Z-displacements for the tire models 

 

 The comments stated for Figures 5.1-5.3 can be said one more time for Figure 5.4. 

 

5.2. Theoretical Verification of the Wheel Hub Adapter Structure 

 
Under the vertical calibration load 1000 N, static displacements of the midpoint of 

the beam defined in ISO7141 for the two following models are found and compared with 

respect to each other: 

1. 3D FE model of wheel hub adapter structure 

2. 1D/2D FE model of wheel hub adapter structure 

 The results are given in Table 5.1. 

 

Table 5.1 Comparisons of wheel hub adapter structure models 
 

Model Displacements (mm) 

3D FE model of wheel hub adapter structure 7.77 

1D/2D FE model of wheel hub adapter structure 7.82 

 

 It can be shown that the structure models are consistent with each other. 
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5.3. Effect of Tire Models on the Impact Test 

 
To see the effect of different tire models on the vertical displacements of the impact 

point of the wheel and von-Mises stress occurring on the spoke near to the impact point, 

wheels with composite tire models and simplified tire models are considered. 

For the impact load, 900 kg is selected although the normal impact load is about 

500 kg. Wheel2 with tire on 3D FE model of test stand is simulated in LS-DYNA for 

impact loading response. 

The maximum vertical displacements of the impact point of the wheel2 with 

different tire models and maximum von-Mises stresses occurring on the spoke in the same 

radial direction with the impact point are given in Table 5.2. 

It should be stated that the vertical displacements and von-Mises stresses are based 

on dynamic response, namely obtained from time simulation of the system. 

 

Table 5.2 Comparisons of tire models 
 

 Vertical displacements (mm) Stress (MPa) 

3D FE with composite tire 56.8 270 

3D FE with simplified tire 54.3 259 

Difference % 100x(56.8-54.3)/56.8=4.4 100x(270-259)/270=4.1 

 

It is clear that finding the vertical displacements and stresses based on the 

composite tire model requires a FE model having more degrees of freedom comparing to 

another one. Also, the model with composite tire needs more computation time. However, 

simplified tire model provides simplicity and less computation time if the percentile 

difference is considered in the acceptable range. 

 

5.4. Stiffness Curve of the Lumped Model of the Wheel Hub Adapter 

 
 The lumped model of the wheel hub adapter structure shown in Figure 4.16 is 

considered here. Following the procedure given in Section 4.4.3, stiffness characteristics of 

the 3D FE model of system is found. The displacements of the top center of the wheel hub 

adapter shown in Figure 2.2 are found, tabulated in Table 5.3 and plotted in Figure 5.5. 
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Table 5.3. Stiffness characteristics ks of the system in Figure 4.18 
 

Force (N) Deflection (mm) 

0 0 

-10000   -8.08 

-20000 -12.99 

-30000 -15.70 

-40000 -17.64 

-50000 -19.44 

-60000 -20.81 

-70000 -22.13 

-80000 -23.48 

-90000 -24.80 

-95000 -25.46 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Stiffness characteristics ks of the system in Figure 4.16 
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5.5. Static Simulations with Semi-Lumped Model 

 
The semi-lumped model shown in Figure 4.19 has been modified here as shown in 

Figure 5.6 by adding a vertical static force F acting on the impact point to find the stiffness 

characteristics of the impact point of the wheel1 and wheel2 with the simplified tire. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. Semi-lumped model for the impact point stiffness 

 

To find the stiffness characteristics of the semi-lumped model at the impact point in 

vertical direction, multi-step static analyses are carried out in Workbench for wheel1 and 

wheel2 by following the procedure explained in Section 2.13.3. The hub adapter structure 

is modeled as COMBIN39 nonlinear spring and a point mass. It is known that damping 

coefficient cs is not effective on static analysis. SOLID187 and SOLID186 are used for 

finite element modeling of the wheels and the tire, respectively. The same material 

properties at the dynamic analyses are used in the static analysis. In the first step, only 

static pressure inside of the tire is defined, then the force acting on the impact point of the 

wheels is increased gradually at each analysis step. 

As result of the multi-step static structural analyses, the displacements where the 

force acting on and the maximum von Mises stress on the wheels are obtained 

simultaneously. Stiffness characteristics of the semi-lumped models and the maximum 

von-Mises stresses are given in Table 5.4 and Table 5.5. 



 99 

Table 5.4. Stiffness characteristics and von-Mises stresses for wheel1 
 

Force (N) Displacement of impact point (mm) von-Mises stresses (MPa) 

0 0.00 0.58 

10000 8.85 52.14 

20000 14.47 104.5 

30000 17.96 111.95 

40000 20.95 117.66 

50000 23.95 127.71 

60000 28.16 145.09 

70000 34.27 171.11 

80000 42.14 202.75 

90000 50.00 234.39 

95000 53.95 250,21 
 

 

Table 5.5. Stiffness characteristics and von-Mises stresses for wheel2 
 

Force (N) Displacement of impact point (mm) von-Mises stresses (MPa) 

0 0.00 9.84 

10000 9.48 85.21 

20000 15.88 124.48 

30000 20.47 129.12 

40000 24.92 142.20 

50000 29.82 161.24 

60000 36.82 189.40 

70000 47.44 229.94 

80000 61.71 279.89 
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The results given in Table 5.4 and Table 5.5 are plotted as force-displacement 

curves and shown in Figure 5.7. Moreover, the von-Mises stress values given in second 

and third columns of Table 5.4 and Table 5.5 are given in graphical forms in Figure 5.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. Stiffness characteristics of the system for wheel1 and wheel2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8. von Mises stresses versus displacements for wheel1 and wheel2 

 

von Mises stress distributions under the static loads 95000 N and 80000 N acted on 

the impact point of the wheel1 and wheel2 are shown in Figure 5.9 and Figure 5.10. 
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Figure 5.9. von Mises stress distribution of wheel1 under static load 95000 N 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10. von Mises stress distribution of wheel2 under static load 80000 N 
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Stiffness curves of the semi lumped model given in Figure 5.7 for wheel1 and 

wheel2 can be obtained as polynomial functions of displacement by using MATLAB 

(MathWorks, 2015). The best fitting polynomial function for the force-displacement curve 

for wheel1 

 

78.3125167.425

779.415486.10249.00001.0)(
2

3456
1







sP
  (5.1) 

 

where Ps1(δ) is in (N) and δ is the vertical displacement of the impact point of wheel1 in 

(mm). Similarly, the force-displacement curve for wheel2 is found as below 

 

99.233002.5191.1270071.30209.0)( 234
2  sP  (5.2) 

 

R-squared values of the polynomials of Ps1(δ) and Ps2(δ) are 0.9997 and 0.9994, 

respectively. Comparison of the polynomial and the stiffness curves for wheel1 and wheel2 

are given in Appendix A.  

As discussed in Sections 2.10 and 2.12, the area under the Force-displacements 

curves shown in Figure 5.7 for wheel1 and wheel2 gives the elasto-plastic energies of the 

semi lumped systems. If Equations (5.1) and (5.2) are integrated with respect to δ, similar 

to the right hand side of Equation (2.53), the elasto-plastic strain energy denoted as SEep(δ) 

are found. 

During the impact test, the striker is dropped from 230 millimeters above to impact 

point of the wheel. When the striker hits the wheel, it keeps falling down. If the distance 

between the initial and lowest position of the impact point of the wheel is represented as δ, 

Equation (2.53) can be rewritten as below 

 

)()230.0(  epSEMg       (5.3) 

 

where M is the impact load in kg and g is the gravitational acceleration. 

To find the solution of the Equation (5.3) for different impact loads for wheel1 and 

wheel2, the MATLAB codes are given in Appendix B and C, respectively. Graphical 

representations of these solutions are indicated by the points D1, D2, and D3 for different 

impact loads in Figures 5.11 and 12. 
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Now, the maximum von Mises stress on the wheel can be found for any solution 

point such as D1 by using linear interpolation techniques applied to data available in Table 

5.4 and Table 5.5. It should be noted that if the allowable maximum von Mises stress is 

known, δmax corresponding to that value can be interpolated from Table 5.4 and Table.5.5. 

Moreover, maximum impact load Mmax can also be found by using δmax in Equation (5.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11. Graphical representation of the solution of Equation (5.3) for wheel1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12. Graphical representation of the solution of Equation (5.3) for wheel2 
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5.6. Experimental Verification of the Dynamic 3D FE Model 

 
In this section, plastic deformation values of the impact region of the wheels 

obtained from the experiments and dynamic simulations in LS-DYNA are compared. 

Experimental results and the results of 3D model of wheel1 with tire and wheel2 

with tire are presented in Table 5.6. 

 

Table 5.6. Comparison of experimental and numerical plastic deformations 
 

Model 
 

Impact load 
(kg) 

Experimental results 
(mm) 

Numerical results 
(mm) 

Difference 
% 

wheel1+tire 450 6,603 6,677 1% 

wheel1+tire 550 8,403 9,305 11% 

wheel1+tire 800 16,348 17,147 5% 

wheel2+tire 540 11,001 11,995 9% 

wheel2+tire 400 6,424 6,478 1% 

 

5.7. Comparisons of Dynamic and Static Models of the Test Systems 

 
In this section, the von Mises stress distribution in the wheel due to impact load in 

the dynamic model is compared with the static approach. 

 According to the impact load and the wheel model given in Table 5.7, vertical 

displacements at the impact point and maximum von Mises stresses occurred in the wheel1 

and the wheel2 are found.by using dynamic and static models.. All results in this section 

are given in Table 5.7. 

The last column of Table 5.7 shows the percentage difference of the von-Mises 

stresses given in the third and fourth column of the Table 5.7. The formula used for the 

percentage difference is as follows 

 

ModelDynamic

ModelStaticModelDynamic
Difference


100%    (5.4) 
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Table 5.7. Comparison of maximum von Mises stresses 
 

Model 
 

Impact 
load 
(kg) 

Deflection 
in static 

model (mm) 

Deflection 
in dynamic 
model (mm) 

Von Mises Stress 
(MPa) 

Static 
model 

Dynamic 
model 

Difference 
(%) 

wheel1+tire 450 35.39 34.4 175.6 174 -0.9% 

wheel1+tire 550 39.17 39.4 190.8 192 0.6% 

wheel1+tire 800 48.15 51.34 226.9 239 5% 

wheel2+tire 400 37.60 32.2 192.4 175 -9.9% 

wheel2+tire 540 43.82 39.5 216.1 210 -2.9% 

wheel2+tire 900 58.96 56.8 270.3 270 -0.1% 
 

 Therefore, the static model based on energy approach can be used for finding the 

von-Mises Stress distribution due to impact load acting on the wheel. 

 On the other hand, for example for the wheel2 under 900 kg impact load, while the 

computational time of the static model is about 20 hours, it is about 60 hours for the 

dynamic model. Details of the computational time are given in Appendix D. 

 

5.8. Important Moments of the Dynamic Impact Test Simulation 

 
The important moments of the dynamic impact test simulation are explained in this 

section. The dynamic impact test simulation of wheel2 was chosen, as an example, for this 

purpose and is illustrated in Figure 5.13. The explanations of Figure 5.13 are as follows. 

a) The wheel studs are fastened to wheel hub adapter with an initial stress 

corresponding to torque 12 Nm. Striker mass 900 kg is released from 30 mm 

above the top edge of the wheel with a speed v = 1.980 m/s. 

b) Until the time t = 0.0015 s, the striker falls to touch the sidewall of the tire. 

c) When the time is equal to 0.012 s, the striker touches the wheel. 

d) After the striker reaches its lowest position at a time of 0.055 s, it begins to 

move upward due to the spring back effect of the system. 

e) During the spring back period of the system, the contact between the striker and 

the wheel is lost at time 0.0830 s. 
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f) While the striker keeps on moving to upward, the contact between the striker 

and the tire is lost at time 0.117 s. 

g) The striker keeps on moving upward until the time reaches 0.193 s. This is the 

second highest position of the striker. 

h) The striker begins to fall and touch the wheel at time 0.298 s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13. Important moments of the impact test simulation 
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5.9. Shortening of Natural Rubbers during Impact Test 

 
Shortening of the natural rubbers during impact test simulations are shown in 

Figure 5.14 and Figure 5.15. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14. Shortening of the natural rubbers under 800 kg impact load for wheel1 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.15. Shortening of the natural rubbers under 900 kg impact load for wheel2 

 

 It can be seen from Figures 5.15 and 5.16 that shortening of rubber does not exceed 

the limit given in Figure 3.6 and Table 3.6. 
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5.10. Displacements of the Hub Adapter 

 
The vertical displacements of top center A and bottom center B of hub adapter 

obtained from the dynamic simulations of the impact tests of the wheel1 and wheel2 under 

the maximum applied impact loads are plotted in Figure 5.16 and 5.17, respectively. It can 

be said that due to the rotation of line AB during the bending of beam, points A and B have 

different vertical displacements. It is noted that the maximum effective stress of the beam 

is found as 342 MPa which is within the elastic limit of the beam material. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16. Vertical displacements of hub adapter centers A and B for wheel1 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17. Vertical displacements of hub adapter centers A and B for wheel2 
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5.11. Displacements and Energies of the Striker and Wheel 

 
 Displacements and kinetic energy of the striker and strain energy of the wheel2 are 

shown in Figure 5.18. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18. Displacements and energy variations during the test 

 

Figure 5.18 also can be treated as the energy transformations between kinetic 

energy of the striker and strain energy of the wheel. It can be seen that striker starts to 

transfer energy to the wheel when it reaches to 30 mm with respect to its initial position. 

Note that when the striker reaches its first lowest position, the kinetic energy of the 

striker is zero and the strain energy of the wheel is at the maximum. This shows that the 

maximum elasto-plastic deformation occurs during quarter of the first cycle of 

displacements, namely quarter of the natural vibration period. Since the time required to 

reach the first maximum displacement is 0.055 second, two times of this duration which is 

approximately 0.1 second can be taken as simulation time to evaluate the maximum stress 

and strain formed for this wheel. It is known that explicit analysis time is related with the 

termination time described in LS-DYNA. By doing this, remarkable computation time is 

saved. For example, in this study the termination time is 0.1 second and computing time is 

2.5 days for a computer with Intel Core i7 3630 QM 2.4 GHz, 16 GB RAM configuration. 

Otherwise, for the full simulation time of 0.4 seconds, 9.5 days is required. 

Coefficient of restitution, discussed Section 2.9, of first impact can be calculated 

from the ratio of first maximum kinetic energy of the striker to second maximum kinetic 
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energy of the striker as 0.22. This means that if the damping of the system is neglected, 

energy dissipated for plastic deformations is 78%. 

Vertical positions of the impact points of the striker and wheel with respect to a 

selected reference is presented in Figure 5.19. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19. Vertical positions of wheel and striker’s impact points. 

 

The von Mises stress distribution at 0.055 second corresponds to the time when 

maximum strain energy stored in the wheel is shown in Figure 5.20. Maximum stress 

occurs on the spoke of the wheel to which the impact load is applied. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20. von Mises stress distribution at time 0.055 second 
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5.12. Investigations for Impact Test Failure Load 

 
Here damage parameter of impact test simulation is determined by von Mises and 

effective plastic strain. The simulations corresponding to the experimental tests given in 

Table 3.9 are accomplished in LS-DYNA, and then both results are given in Table 5.7. 

 

Table 5.8. Comparison of experimental results with dynamic simulation results 
 

Wheel 
number Alloy type 

Impact 
load 
(kg) 

Dynamic Simulation Results Experimental 
impact test 

result 
Maximum von 

Mises stress (MPa) 
Maximum % 

effective strain 
1 AlSi11Mg 450 175 3.7 No fracture 
1 AlSi11Mg 550 185 4.5 No fracture 
1 AlSi11Mg 800 230 7 No fracture 
2 AlSi11Mg 400 175 3.5 No fracture 
2 AlSi11Mg 540 210 5.3 No fracture 
2 AlSi11Mg 900 270 8.5 No fracture 
3 AlSi11Mg 468 174 3.6 No fracture 
4 AlSi11Mg 396 243 7.1 No fracture 
5 AlSi7Mg 825 252 4.5 Fracture 
5 AlSi7Mg 775 243 3.9 No fracture 
5 AlSi7Mg 725 237 3.4 No fracture 
5 AlSi7Mg 675 231 2.9 No fracture 
5 AlSi7Mg 627 227 2.6 No fracture 
6 AlSi7Mg 775 269 5.9 Fracture 
6 AlSi7Mg 725 261 5.3 No fracture 
6 AlSi7Mg 625 258 5 No fracture 
6 AlSi7Mg 575 254 4.7 No fracture 
6 AlSi7Mg 525 247 4.2 No fracture 
7 AlSi7Mg 800 247 4.2 No fracture 
7 AlSi7Mg 750 243 3.9 No fracture 
7 AlSi7Mg 700 237 3.4 No fracture 
7 AlSi7Mg 650 235 2.7 No fracture 
8 AlSi7Mg 468 265 5.4 No fracture 
8 AlSi7Mg 468 265 5.4 Fracture 
9 AlSi7Mg 558 250 4.4 No fracture 
9 AlSi7Mg 558 250 4.4 Fracture 
10 AlSi7Mg 573 220 1.9 No fracture 
11 AlSi7Mg 850 343 11 Fracture 
12 AlSi7Mg 615 233 3.1 No fracture 
13 AlSi7Mg 585 227 2.6 No fracture 
14 AlSi7Mg 498 250 4.1 Fracture 
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It should be noted that the stress and strain obtained from the simulations are true stress 

and true strain. 

As an example from the Table 5.7, wheel5 under impact load 825 kg is selected to 

illustrate the crack occurred due to impact load and von Mises stress distribution on wheel. 

Aforementioned illustrations are shown in Figures 5.21 and 5.22, respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure.5.21 Experimental impact test result of the wheel5 under impact load 825 kg 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22. The von Mises stresses on the wheel5 under impact load 825 kg. 
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It can be seen from Figures 5.21 and 5.22 that fractures occur where the maximum 

von Mises stresses find on the wheel. 

The box plot technique defined in Section 2.15 is used to classify and compare the 

experimental and simulation results given in Table 5.8. Maximum von Mises stresses and 

maximum effective strains of AlSi7Mg alloy wheels available in Table 5.8 are presented in 

the box plots in Figures 5.23 and 5.24, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.23 Box plots of AlSi7Mg alloy wheels for stresses 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.24 Box plots of AlSi7Mg alloy wheels for strains 
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When Figures 5.23 and 5.24 are examined, it can be said that if the maximum von 

Mises stress is more than approximately 250 MPa or the maximum effective strain is more 

than approximately 0.045, the wheel fails in the experimental impact test. 

There is no impact test failure for the AlSi11Mg alloy wheels in Table 5.8. The box 

plots of numerical maximum von Mises and maximum effective strain values for the 

AlSi11Mg alloy wheels are shown in Figure 5.25. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.25 Box plots of AlSi11Mg alloy wheels for stress and strain 

 

If Figure 5.25 is examined by considering median values, it can be said that if the 

maximum von Mises stress is less than 200 MPa or the maximum effective strain is less 

than 0.05, the wheel does not fail the experimental impact test. 

 The maximum von Mises stress values can also be used as failure limit for the static 

model of impact test simulations of the AlSi17Mg and AlSi11Mg alloy wheels because the 

maximum von Mises stresses obtained from static model and dynamic model of impact test 

simulations are in good agreement as shown in Table 5.7. 
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CHAPTER 6 

 

CONCLUSIONS 

 

Finite element simulation of the wheel impact test has significant benefits to design 

a wheel that satisfies all design requirements. However, finite element modeling of the 

wheel impact test is a complex problem due to the composite structure of the tire, 

nonlinearity of contacts, and large and plastic deformations. 

In this thesis, the nonlinear 3D dynamic and semi lumped static finite element 

model of the wheel impact test as described in the international standard ISO 7141 were 

developed for the AlSi11Mg and AlSi7Mg alloy wheels. ANSYS LS-DYNA and 

Workbench were used for the dynamic and static models, respectively. Different finite 

element models of tire, wheel hub adapter structure were developed to simplify the finite 

element model of the impact test by noting the accuracy of the model. 

Material properties of the AlSi11Mg and AlSi7Mg alloy wheels were obtained 

from tensile tests. The specimens were taken from spokes of the wheels. Bilinear isotropic 

hardening material model of the wheel was used in numerical computations. The stiffness 

curve of the rubber mount of the hub adapter structure was obtained by compression tests. 

 In total, forty-one experimental impact tests were done for different wheel models 

with two different materials: AlSi11Mg and AlSi7Mg. The number of wheel model for 

impact tests were selected as four and nine for AlSi11Mg and AlSi7Mg alloy wheels, 

respectively. Plastic deformations due to impact load at the impact region of fifteen wheels 

were measured by using the CMM (coordinate measuring machine). 

3D and 2D finite element models of the wheel hub adapter structure were obtained. 

In order to simplify the model, natural rubber parts of the structure were modeled as spring 

and damping elements. Theoretical verification of 3D and 2D finite element models of the 

structure were performed according to the procedure defined in ISO 7141. Furthermore, 

nonlinear stiffness characteristics of the wheel hub structure under a vertical load was 

found by finite element static analysis to obtain the lumped model of the wheel hub adapter 

structure. 

The tire was modeled in two different ways. The first model is a composite finite 

element model of tire that involves bead core, casing and crown plies, tread, side wall, and 
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bead parts of the tire. However, the second model is a simplified tire model that does not 

have bead core or casing and crown plies. The strength effects of these parts were taken 

into account using an equivalent stiffness approach in the simplified tire model. von Mises 

stresses on the spoke of wheel found from dynamic simulations for composite and 

simplified tire models were compared. Results of the simplified tire model were found to 

be 4.1 % less than the results of composite tire model. 

3D dynamic finite element model of the impact test consists of the finite element 

models of the 3D wheel hub adapter structure, wheel, and composite tire model. The 

pressure inside the tire is modeled as an airbag in the dynamic model. Verification of the 

dynamic model and simulations in LS-DYNA are performed by comparing the 

experimental results of the plastic deformations of the impact region of the wheels with the 

associated numerical results. The maximum difference between these values is 11%. 

The dynamic simulations show the following: the striker reaches its lowest position 

at time about 0.05 s. When the striker reaches its first lowest position, it transfers its total 

potential energy to wheel-tire and its supports. Therefore, the maximum elasto-plastic 

deformation of the wheel occurs during this time interval, which corresponds to quarter of 

the natural vibration period. Two times of this duration can be taken as simulation time to 

evaluate maximum stress and strain formed in the wheel. 

Simulation of the failure of the impact test can be determined by using von Mises 

and effective plastic strain occurred in wheel. To find a critical value of the von Mises and 

effective plastic strain, the box plot technique is used. 

Semi lumped model of the wheel impact test consists of the wheel hub adapter 

structure which is modeled as a nonlinear spring and a lumped mass, and wheel with 

simplified tire model. The force-displacement curve of the semi lumped model at the 

impact point in the vertical direction and maximum von Mises stresses occurrs on the 

wheel are found simultaneously. Elasto-plastic energy function of the semi lumped system 

is found. Then, using the energy balance, the maximum von Mises stress in the wheel 

under the corresponding impact load can be found. 

Comparison of maximum von Mises stresses obtained from static and dynamic 

model show that the difference between the two models is less than 9.9% whereas, for 

example for the wheel2 under 900 kg impact load, the computational time of the static and 

dynamic model are found as 20 and 60 hours, respectively. Namely, it is about to % 67 less 

than the dynamic model .Therefore, the static model based on energy approach can be used 

for finding the von-Mises stress distribution due to impact load acting on the wheel. 
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It is also shown that once the force-displacement curve of the semi lumped model is 

obtained, the maximum von Mises stress in the wheel under any impact load and 

maximum impact load of the wheel can be found without running to the static model again. 

Significant time can be saved by this manner. 
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APPENDIX A 

 

THE POLYNOMIAL AND THE STIFFNESS CURVES 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1. Comparison of the polynomial and the stiffness curves for wheel1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2. Comparison of the polynomial and the stiffness curves for wheel2 
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APPENDIX B 

 

MATLAB CODE FOR WHEEL1 

 

% MATLAB 2015 code for finding potential-strain energy equilibrium points of  
% the semi-lumped system for wheel1 
syms x FX ESX ESX1 ESX2 ESX3 Fit 
% Defining force in N, displacement in mm values of the semi-lumped system. 
Displacement = [ 0 8.85 14.47 17.96 20.95 23.95 28.16 34.27 42.14 50 53.95] 
Force= [0 10000 20000 30000 40000 50000 60000 70000 80000 90000 95000] 
% Defining impact load and drop height of the striker. 
Impactload1=450 ;Impactload2=550 ;Impactload3=800;dropheight=230 
% Obtaining the force-displacement function of the semi-lumped system. 
p1=polyfit (Displacement, Force,6) 
a1=p1(1); b1=p1(2); c1=p1(3); d1=p1(4); e1=p1(5); g1 = p1(6); r1 = p1(7) 
FX=a1*x^6+b1*x^5+c1*x^4+d1*x^3+e1*x^2+g1*x+r1 
% Checking maximum error of the polynomial function. 
Fit = polyval(p1,Displacement); 
T = table(Displacement,Force,Fit,(Force-
Fit),'VariableNames',{'Displacement','Force','Fit','FitError'}) 
% Obtaining the strain energy-displacement function of the semi-lumped system. 
ESX=int(FX,x) 
%Finding potential - internal energy equilibrium points in mm. 
ESX1=Impactload1*9.81*(dropheight+x) 
D1= vpasolve(ESX1 == ESX, x, [0 60]) 
ESX2=Impactload2*9.81*(dropheight+x) 
D2= vpasolve(ESX2 == ESX, x, [0 60]) 
ESX3=Impactload3*9.81*(dropheight+x) 
D3= vpasolve(ESX3== ESX, x, [0 60]) 
%Drawing the Force-Displacement points and the corresponding polynomial function. 
figure;plot (Displacement,Force,'o');hold on 
x= [0:1:54] 
subs(FX);plot(x,ans,'-') 
%Drawing potential and strain energy curves 
x= [0:1:60] 
figure;subs(ESX);plot(x,ans) 
hold on;subs(ESX1);plot(x,ans);subs(ESX2);plot(x,ans);subs(ESX3);plot(x,ans) 
hold off 
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APPENDIX C 

 

MATLAB CODE FOR WHEEL2 

 

% MATLAB 2015 code for finding potential-strain energy equilibrium points of  
% the semi-lumped system for wheel2 
syms x FX ESX ESX1 ESX2 ESX3 Fit 
% Defining force in N, displacement in mm values of the semi-lumped system. 
Displacement = [ 0 9.48 15.88 20.47 24.92 29.82 36.82 47.44 61.71] 
Force= [0 10000 20000 30000 40000 50000 60000 70000 80000] 
% Defining impact load and drop height of the striker. 
Impactload1=400 ;Impactload2=540 ;Impactload3=900;dropheight=230 
% Obtaining the force-displacement function of the semi-lumped system. 
p1=polyfit (Displacement, Force,4) 
a1=p1(1); b1=p1(2); c1=p1(3); d1=p1(4); e1=p1(5) 
FX=a1*x^4+b1*x^3+c1*x^2+d1*x+e1 
% Checking maximum error of the polynomial function. 
Fit = polyval(p1,Displacement); 
T = table(Displacement,Force,Fit,(Force-
Fit),'VariableNames',{'Displacement','Force','Fit','FitError'}) 
% Obtaining the strain energy-displacement function of the semi-lumped system. 
ESX=int(FX,x) 
%Finding potential - internal energy equilibrium points. 
ESX1=Impactload1*9.81*(dropheight+x) 
D1= vpasolve(ESX1 == ESX, x, [0 60]) 
ESX2=Impactload2*9.81*(dropheight+x) 
D2= vpasolve(ESX2 == ESX, x, [0 60]) 
ESX3=Impactload3*9.81*(dropheight+x) 
D3= vpasolve(ESX3== ESX, x, [0 60]) 
%Drawing the Force-Displacement points and the corresponding polynomial function. 
figure;plot(Displacement,Force,'o');hold on 
x= [0:1:62] 
subs(FX);plot(x,ans,'-') 
%Drawing potential and strain energy curves 
figure;subs(ESX);plot(x,ans) 
hold on;subs(ESX1);plot(x,ans);subs(ESX2);plot(x,ans);subs(ESX3);plot(x,ans) 
hold off 
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APPENDIX D 

 

DETAILS OF THE COMPUTATIONAL TIME 

 

 
Table D.1. Details of the computational time of the static and dynamic model for 

wheel2 under impact load 900 kg 
  

Definition 
Model 

Static Dynamic 
Central process unit, CPU, type 
of the computer  Intel Core i7 3630 QM 2.4 GHz 
Memory of the computer 16 GB 
Number of cores of the 
computer 4 (Number of threads 8) 
Number of nodes of the FE 
model 670479 231244 
Number of elements of the FE 
model 306237 501671 
End or termination time of the 
simulation [sec] Not applicable  0.1 
Computing time of the FE 
model (Hour) 20 60 
 

 

 



VITA 

 
 Uğur PEHLİVANOĞLU was born in Ankara/TURKEY in January 01, 1973. After 

graduation from Mechanical Engineering department of İstanbul Technical University, he 

continued his MSc. studies in the same university. After he worked in the private sector for 

thirteen years, and then began his PhD studies in the Department of Mechanical 

Engineering of İzmir Institute of Technology. 

 

Education 

 PhD in English, 2016, Mechanical Engineering, İzmir Institute of Technology.  

 MSc. in Turkish, 1997, Mechanical Engineering, İstanbul Technical University. 

 B.Sc. in Turkish, 1994, Mechanical Engineering, İstanbul Technical University. 

 

Professional Experience 

 CEVHER Alloy Wheels, R&D Supervisor, 2011-2016, İzmir/TURKEY 

 CEVHER Alloy Wheels, Mold Design and Production Supervisor, 2002-2011, 

İzmir/TURKEY. 

 CMS, Design Engineer, 1998-2002, İzmir/TURKEY. 




