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December 2016
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ABSTRACT

IMPORTANCE OF DATABASE NORMALIZATION FOR RELIABLE PROTEIN
IDENTIFICATION IN MASS SPECTROMETRY-BASED PROTEOMICS

One of the revolutionary steps towards proteomics, was introducing mass spec-

trometry to protein inference analysis. Its powerful aspects such as speed, and accuracy

towards identifying and quantifying proteins have made it the first choice to obtain high-

throughput data. Due to development of a variety of fragmentation techniques, mass

spectrometry-based analysis even made it possible to acquire knowledge about single

polymorphisms and modifications of amino acids of a peptide.

Although this technology provides enormous amounts of data, identification of the

proteins is still a hard challenge to overcome due to the shortcomings of computational

methods. Herein a novel methodology is offered to better analyze mass spectrometry data

and overcome the deficiency of protein identification algorithms in terms of speed and

accuracy.

When the spectral data is acquired from an organism by mass spectrometry, databa-

se search algorithms are used for protein identification if the protein sequences of the

organism are known. These algorithms compare the experimental data from mass spec-

trometry analysis to theoretical data gathered from known databases of organism to try

and find the best match by ranking the PSMs via scoring functions.

Since the databases can be too large to search and multiple databases with different

sizes can contain the peptides of experimental data, database search algorithms may fail

to produce fair, fast or complete results.

In this work a methodology is presented to overcome unfair scoring of peptides

in different size databases and enable database search algorithms to utilize relatively big

sized entries such as human chromosome six frame translations. In terms of speed and

accuracy the method is found to be better than some of the existing methods.
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ÖZET

KÜTLE SPEKTROMETRİ TABANLI PROTEOMİK ÇALIŞMALARINDAKİ
GÜVENİLİR PROTEİN TANIMLANMASINDA VERİTABANI

NORMALİZASYONUNUN ÖNEMİ

Protein tanımlaması çalışmalarında kütle spektrometrinin kullanılması proteomik

alanındaki devrim niteligindeki adımlardan biri oldu. Protein nicelik ve nitelik belir-

lemelerindeki doğruluk ve hızlı olması gibi özellikleriyle, yüksek-işleme veri alımında

kullanılmak üzere ilk seçim haline geldi. Farklı fragmentasyon yöntemlerinin geliştirilme-

siyle, kütle spektrometri tabanlı analizler, bir peptiddeki tekli polimorfizmleri ve amino

asitlerdeki modifikasyonlarla ilgili bilgi edinilmesini bile mümkün kıldı.

Bu teknolojinin muazzam ölçülerde veri üretmesine rağmen, protein tanımlama

çalışmaları, hesaplamalı metodların eksikliklerinden dolayı, aşılması güç bir hedef halinde.

Bu çalışmada, protein tanımlama algoritmalarının protein belirlemedeki eksikliklerinin

üstesinden gelmek ve kütle spektrometri verilerini hız ve doğruluk yönlerinden daha iyi

analiz etmek için orjinal bir algoritma önerilmiştir.

Bir organizmadan kütle spektrometri aracılığıyla spektral veri elde edildiğinde,

eğer organizmanın protein sekansları bilinmekteyse, protein tanımlaması için veritabanı

arama algoritmaları kullanılır. Bu algoritmalar, peptid-spektrum eşleşmelerindeki en iyi

eşleşmeyi skorlama fonksiyonlarına göre bulmak için, kütle spektrometri analizlerinden

alınan deneysel verileri, organizmaya ait veritabanlarından elde edilen teorik verilerle

karşılaştırır.

Deneysel verilerin karşılığı olan peptidler farklı boyutlardaki veritabanlarında dağ-

ınık halde olabileceğinden ve veritabanlarının arama yapılmak için fazla büyük olabile-

ceklerinden dolayı, veritabanı arama algoritmaları adaletli, hızlı veya eksiksiz sonuçlar

çıkarmakta başarısız olabilmektedir.

Bu çalışmada farklı boyutlardaki veritabanlarında peptidlerin adaletsiz skorlamala-

ra tabi tutulmasının üstesinden gelmek ve insan kromozomlarının 6 çerçeve translasyon-

ları gibi göreceli olarak büyük boyutlardaki protein sekanslarının, veritabanı arama algo-

ritmaları tarafından işlenmesini sağlamak amacıyla bir metodoloji sunuldu. Metodun, hız

ve doğruluk payı pencerelerinden bakıldığında hali hazırda kullanılan çeşitli metotlardan

daha iyi olduğu bulundu.
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CHAPTER 1

INTRODUCTION

1.1. Proteomics

Proteins consist of amino-acid sequences translated by the instructions encrypted

within the genome (Schorlemmer et al., 2012) and are crucial to cells for sustaining their

existences. They are the building blocks of any living organism that invoke certain dys-

functions if their structural conformation is in any way deformed (Uversky and Dunker,

2010). One of the main interests of the life sciences is to infer protein sequences and dis-

cover their structural properties (Domon and Aebersold, 2006). Development of different

approaches has been made to achieve such objectives however, the aim remains elusive

(Nesvizhskii et al., 2007).

Total protein content of an organism, proteome, is constantly being illuminated

by the discipline of proteomics by means of proteins’ interaction with other molecules,

their duties, quantitations, post translational modifications and their expressions (Allmer,

2012).

In the early years of peptide sequencing, Edman degradation method was used to

generate sequences by controlled separation of single amino acids from the N-terminus of

a peptide (Edman, 1950). Great deal of expertise was needed to control such method and

it generally failed to identify long sequences (Steen and Mann, 2004). In addition, Ed-

man degradation would take too much time to complete a sequence in a high-throughput

manner (Shadforth et al., 2005) and couldn’t identify the peptide if it was acetylated at its

amino acid terminus (Barton et al., 2009). In early 1990s the mass spectrometry method

was begun to widely used for sequencing peptides (Wilm et al., 1996) which was signif-

icantly more rapid and could identify the peptide by the means of mass to charge ratios

belonged to amino acids (Tyers and Mann, 2003).
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1.2. Mass Spectrometry

The analytes of a sample are moved through fields which use electric or electro-

magnetism therefore, have to be ionized (Eidhammer et al., 2008b). Ionized compounds

are analysed and assigned a mass-to-charge ratio (m/z) each, by a technique called mass

spectrometry (Aebersold and Mann, 2003). Three critical parts form a mass spectrometer.

Initially molecules are converted into gas-phase ions (generally they are protonated which

is addition of a proton (Mann et al., 2001)) by an ionization source. After conversion, a

mass analyser measures the m/z value belongs to each ion, then comes the part for an ion

detector to detect the ions at a certain time (Figure 1.1) (Yates, 2000).

After the innovation of techniques used for ionization processes such as electro-

spray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) ms-based

proteomics became an ultimate tool for researchers (Aebersold and Mann, 2003)

Figure 1.1. A mass spectrometer performing the first stage of mass spectrometry. This
stage requires three devices: an ionization source, mass analyser and an
ion detector. In this system the ions pass through the mass analyser from
ion source to detector which takes a certain amount of time (time-of-flight)
that will be used to calculate ions m/z value. (Source: (Yates, 2000))

To identify proteins using mass spectrometry, there are two methods being used

traditionally (Pappin et al., 1993). One is called peptide mass fingerprinting (PMF) and

the other tandem mass spectrometry (MS/MS) to further inform researcher about the se-

quential information (Henzel et al., 1993).
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PMF is being widely used because when united with a database, it can speed up

the identification process and identify the proteins relatively well (McHugh and Arthur,

2008). The m/z values gathered by the experimental spectra as shown in Figure 1.2, are

searched through the reference database to align theoretical mass of an expected peptide

(e.g. tryptic) to experimental mass(Kilby, 2007a).

Figure 1.2. An example of the use of PMF. Digestion of matrix metalloproteinase 2
protein with trypsin, results into peptides with matching theoretical masses
from the database with isotopic differences. The difference of isotopic
peaks are 1 which indicates that single charge is carried by the peptides
(Source: (Eidhammer et al., 2008a))

.

Although PMF is being widely used for identification, the experimental spectrum

may fail to match any theoretical mass from database, due to unexpected causes of mass

differences in a peptide like post-translational modifications, erronous databases or single

nucleotide polymorphisms (SNPs) (McHugh and Arthur, 2008).
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In MS/MS analysis, tandem mass analyzers are used to measure and select the

peptide of interests m/z range and then, after a fragmentation step, calculate the m/z of

fragment ions, respectively 1.3 (Nesvizhskii and Aebersold, 2005). Different fragmenta-

tion techniques have emerged but in the end, the aim is to procure smaller pieces (gen-

erally referred to as ”daughter” or ”fragment” ions) of the selected peptide from the first

MS (generally referred to as ”precursor” or ”parent” ions) (Nesvizhskii and Aebersold,

2004).

Figure 1.3. MS/MS spectrum obtain workflow. Peptide of interests m/z value is se-
lected after first stage MS for further analysis, which then goes under a
fragmentation step to be analyzed again with a new MS run. Construct-
ing MS spectrum isn’t needed for such goal. (Source: (Eidhammer et al.,
2008c))

.

Information provided by tandem MS data is far more detailed and useful to iden-

tify proteins than PMF (Küster et al., 2001) and can be used to determine the even single

amino acid variants 1.4, post translational modifications or other structural characteristics

since they all cause masses to differ (Domon and Aebersold, 2006).
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Figure 1.4. Tandem ms result of isotopically recoded glycopeptides. B ions are shown
in red and y ions are shown in blue as fragmentation spectra. Single amino
acid changes are shown in bold red font. (Source:(Woo et al., 2015))

.

1.3. Bottom-up and Top-down Proteomics

There are currently two approaches that are used to perform proteomic analy-

sis: top-down and bottom-up proteomics (Chait, 2006). To identify proteins , gather de-

tailed information about their sequential information and posttranslational modifications,

bottom-up approach is widely used (Aebersold and Mann, 2003).

In bottom-up workflow, proteins are digested with an enzyme in to peptides then

ionized by an ionization source for a mass spectrometer to analyse the sample followed

by fragmentation if second MS analysis will be used (Chait and Kent, 1992) (Figure 1.5,

top panel).
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When exercising top-down proteomic approach, researcher must keep the protein

intact when introducing the sample to the mass spectrometer where the sample will be

converted into the gas phase ions and fragmentated, yielding proteins and its fragments

masses (Chait, 2006). Although it seems nice to get both of these informations from a

sample, it is hard to analyze large proteins by top-down proteomics as Han et al. managed

to set the limit around 200 kD (Han et al., 2006).

Figure 1.5. Work principals for bottom-up and top-down proteomics. At the top panel,
bottom-up method is shown. The analytes are digested then processed
by a mass spectrometer whereas at the latter strategy, protein stays intact
when ionized and then fragmentated within the mass spectrometer (Source:
(Chait, 2006))

.

1.4. Ionization Techniques

As mentioned earlier, in order to measure the molecular weights of an analyte,

sample must be ionized and converted into gas phase. Molecules with higher masses are

hard to transform into intact gas-phase ions. MS caught biochemists attention with early

ionization techniques (Burlingame et al., 1994) but MALDI MS (Whitehouse et al., 1989)

and ESI MS (Karas and Hillenkamp, 1988) have made the breakthrough.

Using minimum fragmentation, these ionization methods have the advantage of

creating gas-phase ions from larger biomolecules with higher efficiency. Usually, MALDI
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combined with TOF mass analyzer (one of the cheapest setups) and ESI combined with

ion trap or a Q-TOF mass analyzer are used as instrument setups (Kilby, 2007b).

1.4.1. MALDI

MALDI is used to carry out MS/MS tasks but it is the general choice of ion-

ization source when performing single MS (Eidhammer et al., 2008e). Beside peptides

and proteins, it can selected to analyse large, non volatile biomolecules, oligonucleotides,

oligosaccharides (Zenobi and Knochenmuss, 1998). MALDI setup is comprised of a ma-

trix, which bears the analyte and a laser source, which energize the matrix compound

followed by proton transfer to the analyte (Bökelmann et al., 1995).

Figure 1.6. MALDI-TOF instrument setup. Here the analyte acquired from 2d gel is
coupled with a matrix. Laser beams ionize the molecules which then enter
a vacuum chamber and as soon as they hit the detector, according to their
retention time, assigned a m/z value. (Source: (Din et al., 2007))

One of the most important factors that affects a MALDI-MS spectra is the ma-

trix quality (Beavis and Chait, 1990). Dried droplet technique is the first and most used

method of matrix-sample preparations (Cohen and Chait, 1996). In this technique, apply-

ing matrix-analyte mixture comes after the pure surface introduction via rapid evaporation

(Vorm et al., 1994). Using volatile compounds like acetone can aid the rapidness of evapo-

ration. For the sake of achieving better MALDI-MS results, different prepatation methods

should be used for different samples given that some peptides might not be able to couple

well with the used matrix (Kussmann et al., 1997).
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1.4.2. ESI

ESI depends on a needle containing electromagnetic field which the sample passes

through. Ions are generated by the high electric potential (Patterson and Aebersold, 1995)

and the analytes as charged droplets evaporates which leads to higher charge density

(Ikonomou et al., 1991). This increase in charge density plays a crucial role in resolv-

ing analyte ions into the gas phase, given that dense drops will eventually have a force

(Coulomb repulsion force) greater than the surface tension resulting in the creation of

smaller drops (Figure 1.7) (Covey et al., 1988).

Figure 1.7. ESI workflow (Source: (Steen and Mann, 2004))

In positive ion mode the analyte is sprayed at low pH to encourage positive ion

formation.

Positive ionization mode is generally used in MS/MS spectra (Köcher et al., 2003)

of analytes to positively charge the ions at low pH (Keshishian et al., 2009) which causes

of the appearance of relatively high amounts of anions (Gatlin and Turecek, 1994). For

proteins and peptides, ESI effectively produces gas-phase ions (Covey et al., 1988) and

different charge states can be present due to the lenght of polypeptide chain (Mirza and

Chait, 1994).
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1.5. Fragmentation Techniques

To generate structural or sequential knowledge about peptides, various fragmen-

tation techniques have been used for many years (Paizs and Suhai, 2005). In mass spec-

trometry, peptide fragmentation process relies on imparting energy onto the molecule

(Biemann, 1992). Applying energy to the peptide causes breakage of the amide bonds

which leads to backbone fragments. Fragment ion type can be a,b,c if the charge is re-

tained on the N-terminal fragment or x,y,z if the charge is retained on the C-terminal

fragment (Figure 1.8) (Roepstorff and Fohlman, 1984).

Figure 1.8. Peptide fragmentation scheme leading to different ion types. (Source:
(Roepstorff and Fohlman, 1984)).

Different fragmentation techniques have been developed such as CID, HCD, ETD,

ECD and EtcD which are useful in specific areas.

1.5.1. Collision Induced Dissociation

Colliding peptides with neutral gas has become the most frequently used fragmen-

tation method in MS/MS. It is commonly referred as collision-induced dissociation (CID)

when the ion goes through an activation process by collision and fragmentation (Wells and

McLuckey, 2005). Between the carbonyl and amine groups, the peptide backbone amide

bonds dissociate by the energy ,built up from the continuous collision of neutral gas and

the peptide inside the collision cell, resulting in the product ions and/or neutral losses

from the precursor molecule (Figure 1.9). Generated fragment ions are often observed as

b and y ions (Molina et al., 2008).
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Figure 1.9. The principle of CID. (Source: (Eidhammer et al., 2008d)).

1.5.2. Higher-Energy Collisional Dissociation

Originated from CID a new technique called higher-energy collisional dissociation

(HCD) is used specifically by orbitrap mass spectrometer. In HCD ions are trapped first

then fragmented later on in a collision cell and returned to C-trap before mass analysis by

orbitrap. Like CID technique, it mainly create b and y ions (Olsen et al., 2007).

1.5.3. Electron Capture Dissociation

When free electrons interact with multiply charged peptides, ECD occurs. This

electron beam irradiation causes the backbone to fragmentate to mostly c and z fragments

(Zubarev et al., 2008). When identifying peptides with modifications, ECD has a great

usability (Zubarev et al., 1998). ECD is a nonergodic process given its rapidness of the

cleavage being faster than the intramolecular energy randomization (Bakhtiar and Guan,

2005). Disadavantage of ECD however, is that it can only be used with Fourier transform

ion cyclotron resonance (FT-ICR) mass spectrometry (Zubarev et al., 2008).
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1.5.4. Electron Transfer Dissociation

Replacing free electrons with anionic species, ETD carries the mechanism of ECD

fragmentation that can be used with non-FT-ICR instruments that can trap ions long

enough for the electron transfer to occur. Peptide backbone fragmentation in ETD is

extremely similar to ECD resulting in the creation of c and z ions (Syka et al., 2004).

1.5.5. EThcD

One of the latest techniques in fragmentating the peptides is the combination of

two: ETD and HCD. In EThcD, ions are first exposed to ETD technique in the ion trap

stage.For further fragmentation, resulting ions (both precursors and products) are then

moved to the collision cell to be exposed to the HCD technique (Frese et al., 2012). Since

its a combination of HCD and ETD, EThcD fragmentation shown to produce b, c, y, and

z ions and and better spectral quality than ETD or HCD alone (Frese et al., 2013).
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1.6. Mass Spectrometers

1.6.1. Orbitrap Mass Analyzers

Mass spectrometers such as orbitrap, work by the principle of changing ion ve-

locity in an electrostatic field. In orbitrap, ions are confined by the coaxial and outer

electrodes, allowing ions to oscillate along the axial electrode. Severance and detection

of the ions are accomplished by their different oscillation frequencies, caused by their

distinctive m/z values (Figure 1.10) (Makarov, 2000).

Figure 1.10. Ion trajectory shown by schematic diagram of the Orbitrap. (Source: (Hu
et al., 2005)).
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1.6.2. Time of Flight Mass Analyzers

Time of flight analyzers depend on the acceleration and deceleration of passing

ions peculiar to their m/z values. First, ions are exposed to electrical potential which

makes them faster in accordance with their charges. Next comes the field-free drift re-

gion where ions move through without any accelerating effect which makes them pierce

through the field solely depending on their kinetic energies. Therefore, time taken to pass

through the field free region is characteristic to different m/z values of ions (Guilhaus,

1995).

1.7. Computational Methods

In proteomics, one of the crucial tasks that needs to be done meticulously, is the

correct identification of the proteins by computational methods. To accomplish such aim,

there are two methods that are generally used by the researchers: database search and de

novo sequencing.

De novo sequencing is used for finding novel peptides when the sequential in-

formation of the proteins origins is ambigious, but if the spectra acquired from MS or

MS/MS processes are known to be in a database containing proteome of the sample,

database search algorithms are used (Allmer, 2011).

1.7.1. Database Search Algorithms

One of the most frequently used method is database searching when identify-

ing proteins. Commercial (Peaks (Ma et al., 2003)), and free software programs such

as X!Tandem (Craig and Beavis, 2003), Omssa (Geer et al., 2004), MS-GF+ (Kim and

Pevzner, 2014), PFind (Li et al., 2005), MyriMatch (Tabb et al., 2007), MS Amanda (Dor-

fer et al., 2014) and InsPecT (Tanner et al., 2005) have been developed in order to tackle

the protein identification problem.

General idea of a database search algorithm is digesting the database with an en-

zyme defined by user (usually trypsin as default), generating theoretical spectra of the

13



digested peptides, comparing input spectra to the theoretical spectra and scoring accord-

ingly (Xu and Ma, 2006).

1.7.2. False Discovery Rate

When analyzing MS/MS data by using database search algorithms, depending on

the quality of spectral data and target database (actual sequences of the organism of inter-

est), a level of ambuiguity arises for peptide-spectrum matches (PSM) (Chen et al., 2005).

False discovery rate (FDR) is a commonly used method to identify the false positive re-

sults of PSM population (Elias and Gygi, 2007).

For this method, beside of the target database, a decoy database (database that

ideally should contain none of the correct PSMs) must be created. Creating a database

with the reversed forms of the target sequences provides a simple way to create decoy

databases. After acquiring PSM results for both databases, FDR is used to explain false

positive identifications by confining the PSM that passed the score criteria for decoy

database (Elias and Gygi, 2007).

1.7.3. Aim

Protein identification by database searching methods, relies on the aspects of both

spectra and database. Some of the algorithms fail to scan relatively big sizes of database

and even if they don’t, aspects of the database such as size and redundancy affects the scor-

ing system thus the identification of the protein directly. Herein a normalization method

is described in order to enable database search algorithms to effectively analyze spectral

data.
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CHAPTER 2

MATERIAL AND METHODS

2.1. Spectral Dataset

A total of 45 peptides were synthesized from 5 proteins (cytochrome c (ACN:

P00004), bovine serum albumin (ACN: P02769), oval albumin (ACN: P01012), myo-

globin (ACN: P68082) and lysozyme c (ACN: P61626)) by GL Biochem Ltd. These pep-

tides were mixed mixture at LC-LTQ Orbitrap XL facility at FCGZ. HCD, ETD, EthcD,

CID fragmentations were used to generate MS/MS data by the Orbitrap and TOF mass an-

alyzers. 5000 spectra were arbitrarily chosen to measure speed of algorithms on sequence

databases with different total size and database entry size. 4137 spectra were selected

according to consensus of results of 8 algorithms run on human protein database with

default settings of database search algorithms.

2.2. Split and Merge Method

Given that the scoring systems of database search algorithms react differently de-

pending on the candidate peptide counts of the databases and algorithms themselves may

fail to work because of higher sized databases.

In order to integrate different sized databases and enable all tools to utilize them,

split and merge (SM) method was used. In split method, all entries in all databases were

first split into 1000 amino acid long entries and 100 amino acid long overlap entries be-

tween splitting points. Overlap entries must be generated since the continuum of the

peptide sequence might be broken in splitting process.Trypsin enzyme was used for pro-

tein cleavage so each type of entry was extended until a Lysine (“K”) or an Arginine (“R”)

amino acid was found.

After splitting of the raw databases they were all merged into 6 databases which

were created by taking entries proportionally from each database and basically merge
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them in six files. Merging was done proportional in respect of size so that every merged

database had the same size and in respect of entry number from each split file so that

every merged database had the similar redundancy with the others.

Figure 2.1. The principle of split and merge method.

Split version and split-merge version of human chromosome databases were used

in score and accuracy comparisons. In total 6 split files and 6 split-merge files (all files

have the db size 275MB) were produced.

2.3. Evaluating the Influence of Contig Size on Database Search Tool

Performance

2.3.1. Speed and Limitation Measurements

The main aim of this step is to prove that algorithms are struggling to process large

fasta elements and some of them even fail to produce any result or take much longer than

split versions of them. In this study, 7 different sized raw (contains one fasta element)
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databases and split versions of them were used for speed comparisons and tool limitations

(Table :2.1).

Table 2.1. Database source and sizes for speed evaluation.

Contig Composition Raw Size Split Size
Human Chr1 + Part of Chr2 500 MB 607 MB
Part of human Chr1 250 MB 305 MB
Part of human Chr1 100 MB 120 MB
Part of human Chr1 50 MB 60 MB
Part of human Chr1 10 MB 12 MB
Part of human Chr1 5 MB 6 MB
Part of human Chr1 1 MB 1.3 MB

After creating the databases required, each tool was run on default settings of the

algorithms, using 38MB sized MGF file containing 5000 spectra and all 14 of databases,

5 times for each database size (pFind and Peaks were run only once since they don’t have

any command line executables). Processes that took more than 5 hours were not evalu-

ated. Inspect, Myrimatch, MSAmanda were run on Ubuntu 15.04, XTandem, OMSSA,

MS-GF+, pFind and PEAKS were run on Windows systems respectively.

2.3.2. Accuracy and Score Comparisons

6 Frame translated Human chromosomes 1, 2, 11, 20, MT and Ensembl human

protein database were used for accuracy and score comparisons. Unknown amino acids

(“X”) were removed from all databases and any character sequence that matches our syn-

thetic peptides were replaced with Alanine (“A”) characters. Synthetic peptide replace-

ment was done in order to prevent unfair score comparisons between databases due to

different peptide candidate counts (Table :2.2).
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Table 2.2. Database sources and sizes for accuracy and score comparisons.

Contig Composition Raw Size Split Size
Human Chr1 456.2 MB 552.9 MB
Human Chr2 482.4 MB 585.6 MB
Human Chr11 265.5 MB 322.2 MB
Human Chr20 120.5 MB 146.2 MB
Human ChrMT 33.6 KB 40.5 KB
Human Protein Database 35.7 MB 43.5 MB

There are two case tests for score and accuracy comparisons. In one case, the

synthetic peptides were distributed equally amongst both split and merge versions of

databases as a single entry, considering the spectral data is obtained from multiple sources.

After the peptide distribution, split and merge versions of the databases are searched

for the spectral data. Based on these algorithm runs, FDR method was used for fur-

ther data analysis. Another method called Second Run Search (SRS) was also used. In

SRS method, the resulting PSM’s of the first algorithm search were brought together to

form a database entry for each spectrum. Which means that if a spectrum was assigned

to peptides in 4 databases, an entry was created formed by these peptides and searched

again. This case involves accuracy comparisons for FDR, SRS and SM.

In another case, all of the peptides are put in all databases as a single entry. The

aim here was to place the correct identifications to first rank by removal of all competitive

peptides and compare score differences. All the peptides that came with a higher score

than the correct identification in the previous run were removed from database and search

took place again for two competitive removal rounds (cr2). After placing the correct

identification to first rank, the score differences between different size databases were

shown to demonstrate the effects of database sizes to scoring functions.

The algorithm settings were adjusted as following: precursor mass tolerance 1.5

Da, fragment mass tolerance 0.4 Da, trypsin cleavage with maximum 2 missed cleavage

allowance, monoisotopic mass. There were no post-translation modifications set as fixed

or variable.
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CHAPTER 3

RESULTS

This chapter involves the results of tool limitations and speed comparisons be-

tween split and raw databases as well as accuracy and score comparisons between SM,

FDR and SRS methods.

3.1. Tool Limitations and Speed Assessment

Selected tools were subjected to limitation test which was done by using raw

databases (sequence under one identifier) size up to 500 MB. Only Peaks program demon-

strated dependence to spectra size limited to 5000 spectra, the other tool limits were irrel-

evant to spectral data (Table :3.1).

Table 3.1. Contig size limit for selected database search algorithms.

Algorithm Raw Size Limit
MSAmanda 10 MB
Inspect 5 MB
XTandem 1 MB
Peaks 260 MB
pFind 24 MB
Myrimatch No Limitation
OMSSA No Limitation
MS-GF+ No Limitation

Split versions of these raw databases however, demonstrated none of the limi-

tations above up to 600 MB of databases but caused many algorithms to crash, when

spectral data and database size was increased up to 150k and 7.5 GB respectively, proving

the need of separating entries when enormous data search is required (Table :3.2).
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Table 3.2. Database size: 7.5 GB; 150k spectra PC: 64GB RAM; 8 cores

Database Search Algo-
rithm

Run Report

MsAmanda Crashes after two weeks with disk
full problem (>20GB)

MS-GF+ Crashes after 2 hours due to memory problem (when load-
ing db)

Omssa Crashes after several hours due to Cthread: WrapperError
pFind Doesn’t end but no errors given.
XTandem Crashes after a 1.5 weeks at the end of run (“unanticipated

cleavage”)
Inspect Crashes within minutes trying to index database
Peaks (commercial ver-
sion)

Finishes after 1.5 hours (free version may differ)

Myrimatch Finishes after 11 days

For speed assesment, raw and split sized databases, mentioned in Table 2.1., are

searched for 5000 spectra on default settings. As seen in figure 3.1 and figure 3.2 rapid-

ness of the tools are increased at least two folds for all algorithms except MS-GF+ when

used split databases.
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Figure 3.1. Speed assesment of the given algorithms. Using raw databases up to 500
MB, MB of database processed per second is shown in the figure. Given
that some of the algorithms (Inspect and MSAmanda) are too slow com-
pared to other algorithms, their speed values are shown in secondary y axis
at the right side of the figure. Except for Myrimatch, MS-GF+ and Omssa,
tools are limited to certain size of raw databases as shown in table 3.1
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Figure 3.2. Speed assesment of the algorithms searched on split databases. All of the
tools could process up to 500 MB of database and their speeds were much
higher than its raw versions.
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3.2. Accuracy Comparisons of Different Methodologies

For accuracy comparisons, default scoring systems of all algorithms are used to

provide correct identification percentages for all methodologies (SM,FDR,SRS). As seen

in figure 3.3 SM method towers above FDR and SRS methods for all algorithms. The

correct identification percentages are acquired by dividing the correct identification counts

in all databases by the spectra count.

Figure 3.3. Method comparisons of all algorithms. From left to right the scoring
systems belongs to; Inspect, MSAmanda, MS-GF+, Myrimatch, Omssa,
Peaks, pFind, XTandem.
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In respect of different scoring systems of algorithms, an example is given in fig-

ure 3.4 which represents accuracy comparisons of methodologies for all scoring systems

belongs to Inspect search tool.

Figure 3.4. Comparison of methodologies for different scoring functions of Inspect
algorithm
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3.3. Score Comparisons Between Different Sized Databases by

Competitive Removal

The main aim of competitive removal (cr) step was to carry all of our correct

peptides to first rank in order to compare their scores fairly for all databases. In order to

achieve this the wrongly identified peptides that had better scores than the correct peptides

were removed from databases.

Two cases were represented in figures 3.5 and 3.6. In figure 3.5 score differences

belonging to correctly identified peptides in all SM databases were compared to score

differences of all correctly identified peptides of Human Chromosome 1 database and

Human Chromosome MT (relatively big and small sized databases).

Figure 3.5. Scatter plot of the score differences between merged databases (shown in
red dots) and Human Chromosome 1 and Human Chromosome MT. While
the score differences are clustered around 0 which indicates that the cor-
rectly identified peptides have similar scores in all databases when SM
is used, the score differences between the correctly identified peptides in
Human Chromosome 1 and Human Chromosome MT varies from 0 to -4
which clearly indicates the size effects of databases towards scoring func-
tions.
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In figure 3.6 a medium sized database (Human Chromosome 11) was used to

compare the score differences between the raw (Split) database and the same database

after the competitive removal step to further prove that the candidate peptide counts effects

the scoring functions of database search algorithm.

Figure 3.6. Box plot of the score differences between the raw and cr2 induced Human
Chromosome 11 database. Since the peptide candidates are abundantly
present in raw database, the score assigned to correctly identified peptides
are lower.
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In figure 3.7 score differences between the peptide sequence matches of split and

merge databases and between chromosome 1 and chromosome MT databases were shown.

As seen in the figure, the differences are much smaller in split and merged databases which

demonstrates the normalization effect.

Figure 3.7. Score differences of the peptide sequence matches between the same sized
databases and different sized databases. Scoring algorithms depending on
the candidate peptide counts are significantly closer to zero in the split and
merged databases than raw databases.
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CHAPTER 4

CONCLUSION

In proteomics mass spectrometry is the most used technique for identifying pro-

teins. Database search method is one of the main strategies to analyze mass spectrometric

data. Due to enormous amount of data provided by mass spectrometers and the database

sizes that can haul up to gigabytes, splitting the databases in order to increase speed and

accuracy of database search algorithms has become crucial.

Herein a new methodology named Split and Merge is presented to better ana-

lyze large and different sized databases. The first step of the method involves splitting

the databases to entries by dividing them to desired amino acid sequence length and at

the same time, preserve the possible candidate peptides by keeping track of the overlaps

between splitting points.

After enabling the database search algorithms to utilize large databases, merging

step of the different sized databases to a single, desired sized of multiple databases is done

to prevent wrong identifications through scoring deficiencies caused by high\low peptide

candidate counts. The merging step allowed database search algorithms to increase the

accuracy of the PSMs above commonly used methods such as FDR and SRS when using

different sized databases.

28



CHAPTER 5

FURTHER WORK

Since the database search algorithms have different scoring methods and the ac-

curacy of the peptide identification proccess is dependent on the spectral quality, there

are two tasks that need to be done. First the analysis should be done using one workflow,

organised by the superior parts of the currently available database search algorithms. To

achieve this task separate parts of the tools should be joined into one tool that could use the

best part of each algorithm. After creating the algorithm, it must be optimized to proccess

spectra that is generated by different types of machines which may be done using genetic

algorithms to generate optimal settings for peptide identification.
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