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ABSTRACT 

 

GEOMETRIC AND MOBILITY ANALYSIS OF  

THE MIURA-ORI PATTERN AND ITS DERIVATIONS 
 

Origami is a Japanese art of folding paper. Recently it has started to be used in 

aerospace applications such as deployable masts, satellite antennas, and in architectural 

applications such as emergency shelters, temporary shelters, portable exhibition stands.  

Deployable plate structures based origami art are attractive to both architects and 

engineers because of their structural and spatial qualities. They have special geometries 

according to the rigid origami patterns. The Miura-Ori is a rigid origami pattern that is 

formed from a tessellated arrangement of a single repeated unit consists of four 

quadrangle plates. It has fully folded and fully deployed configurations.  

This research investigates geometric and mobility aspects of Miura-Ori pattern 

with its derivations and explore the possibilities of constructing a deployable plate 

structure using the same pattern. The first part of the research investigates geometry of 

the Miura patterns. The aim is to generate derivations by changing the input parameters. 

Small scale physical models are built to verify the geometric design guidelines.  

Miura unit consisted of four plates and four joints is a single degree of freedom 

spherical mechanism. The second part of the research is concentrated on mobility 

analysis. The aim is to develop a method for removing excessive plates and joints 

without changing the mobility. The established equations assist us to determine nth term 

of the excessive plates and joints. A Method of Double Arrangement (MoDA) is 

developed in order to determine the placement of excessive plates. 

Finally, a deployable plate structure based on Miura-Ori pattern is proposed for 

an architectural application. However, the plates cause obstruction of the sky, thereby 

affecting sunlight and daylight availability inside the building. Thus, some excessive 

plates are reduced according to the proposed method. The final form of the structure lets 

to get more energy from the sun to provide heating and lighting.  

 

Keyword: rigid origami, Miura-Ori, spherical mechanisms, mobility. 
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ÖZET 

 

MİURA-ORİ VE TÜREVLERİNİN GEOMETRİK VE SERBESTLİK 

DERECESİ ANALİZİ 

 

Origami bir Japon kağıt katlama sanatıdır. Son yıllarda açılıp-kapanan direkler, 

uydu antenleri gibi uzaya dair uygulamalarda, acil ve geçici sığınaklar, taşınabilir sergi 

stantları gibi mimari alanlarda uygulanmaya başlamıştır.  

Origamiden esinlenilen açılıp kapanabilen plak strüktürler yapısal ve mekansal 

özellikleri nedeniyle mimar ve mühendisler tarafından ilgi çekmektedir. Bu strüktürlerin 

rijit origami desenlerinden kaynaklanan özel geometrileri vardır. Miura-Ori rijit origami  

dört plakadan oluşan bir birimin tekrarlanmasından oluşur. Tam kapanıp açılabilme 

özelliğine sahiptir. 

Bu tez Miura-Ori ve türevlerini geometrisi ve serbestlik derecesi açısından 

inceleyerek bir hareketli plak strüktür oluşturma olasılıklarını incelemektedir. Tezin ilk 

kısmı Miura-Ori rijit origaminin geometrisini önceden belirlenmiş parametreleri ile 

hesaplamalı incelemektedir. Amaç, istenilen formlara ulaşmak için geometrik 

kısıtlamaları türetmektir. Küçük ölçekli fiziksel modeller, geometrik tasarım 

yönergelerini doğrulamak için oluşturulmuştur. 

Miura birimi dört adet sert plakadan ve dört adet döner mafsaldan oluşan tek 

serbestlik dereceli bir küresel mekanizmadır. Tezin ikinci kısmı serbestlik derecesi analizi 

üzerine yoğunlaşmıştır. Amaç tek serbestlik dereceli olma durumunu değiştirmeden 

elimine edilecebilecek plaka ve mafsalları belirlemek için bir yöntem geliştirmektir. 

Son olarak, mimari bir uygulama için Miura-Ori modeline dayanan hareketli bir 

plak strüktür önerilmiştir. Ancak mimari uygulama düşünüldüğünde plakalar gökyüzünü 

kapatarak binanın içinde güneş ışığı ve gün ışığının kullanılabilirliğini etkiler. Bu sebeple 

bazı plakalar önerilen metoda uygun olarak eksiltilmiştir. Yapının nihai şekli, ısıtma ve 

aydınlatma sağlamak için güneşten daha fazla enerji almamızı sağlayacaktır. Çözümleri 

göstermek için fiziksel bir model de yapılmıştır. 

 

Anahtar Kelimeler: rijit origami, Miura-Ori, küresel mekanizmalar, serbestlik 

derecesi. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Motivation 

 

Origami is the art of folding paper. Although it started to be used as a hobby by 

the ancient Japanese, recently origami is applied to different areas, such as architecture, 

engineering, medicine, electronics, astronomy, manufacturing & packing 

industry. Brigham Young University mechanical engineers, Larry Howell and his team 

designed compact solar array (Figure 1(a)) that developed into space to get power for 

space stations in 2013 (Zirbel et al., 2013). Wyss Institute (Harvard) researcher− Shawn 

Douglas and colleagues used Origami DNA in 2012 (Figure 1(b)) to create 3D shapes 

(Douglas, Bachelet, & Church, 2012). In 2013 Arizona State University researchers 

constructed a deployable paper-based lithium-ion battery (Figure 1(c)) that can be folded 

as Miura-Ori pattern (Cheng et al., 2013).  

 

a)    b)       

                                                    

Figure 1.  a) Solar Array (Source: Zirbel et al., 2013); b)  Origami DNA (Source: Douglas    

                et al., 2012); c)  Paper-Based Lithium-Ion Battery (Source: Cheng et al., 2013). 

 

 

 

(cont. on next page) 
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c)  

 

Figure 1.  (cont.) 

 

Designing and construction of folded plate structures began at the beginning of 

the twentieth century. Bruno Taut applied origami as facade detail in Berlin−Grunau in 

1912 (Figure 2), Eduardo Torroja as decks of the dining room in Tarragona in 1956, 

Renzo Piano as mobile structure for Sulfur Extraction in Italy in 1966 (Figure 3), Jørn 

Utzon for stadium and sports complex in Jeddah in 1967 (Figure 4), Mats Karlsson as 

foldable plastic tube in Stockholm in 2008 (Vyzoviti & de Souza, 2012).  

 

 

 

Figure 2. Glass Pavilion, Bruno Taut 

(Source: L. S. d. Lang, 2015.) 
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Figure 3. Mobile Structure for Sulfur Extraction, Renzo Piano 

(Source: Piano, 1966.) 

 

 

 

Figure 4. Stadium and Sports Complex, Jørn Utzon 

(Source: Mariano, 2012.) 

 

In architecture origami progress in three ways, such: folded plate roofs or façades; 

deployable architectural structures; transformable or kinetic architecture (Schenk, 2012).  

Origami folded plate roofs or façades are stable in folded position. Several applied 

examples involve basic V-shaped folded roofs and also special or freeform complicated 

patterns in architecture. An early sample is customs building at Glanerburg covered with 

continuous folded plates (Figure 5). The façades of US Air Force Academy Cadet Chapel 

is enclosed with folded aluminum plates in 1954 (Gordon, 1954). One-way Colour Tunnel 

(Figure 6) with glass plate in 2007 is also folded plate structures base on origami. Mark 

Schenk described the main points of plate roofs or façades with mechanical advantage, 

visual appeal, materiality (timber, glass, etc.), approximation to curved surfaces (Schenk, 

2012). 



 

 16 

 

 

 

Figure 5. Glanerburg Customs Building 

(Source: Beltman & Spit, 1962.) 

 

 

 

Figure 6. One-way Colour Tunnel 

(Source: Schenk, 2012.) 

 

Unlike folded structures, deployable and transformable structures are 

developable. Andre James stated developable objects, in his thesis, such as turning, 

wrapping, enfolding piercing, hinging, knotting, weaving, compressing, balancing and 

unfolding, and he declared that all these manipulations together with each other or 

separately generate a developable object (James, 2008). Deployable structures are easily 
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transported in its fully folded state. To activate the deployable system, whole structure 

should be unfolded. On the other hand, the system of transformable (or kinetic) structures 

active both folded and unfolded states, every position has own duty. Accordion recover 

shelter which designed for disaster in 2008 by Matthew Malone, origami inspired bamboo 

house (Figure 7) in 2008 by Ming Trang, deployable shelter in 2009 by Tachi and etc. are 

the proposed examples for deployable structures (Schenk, 2012). Hypo surface moving 

wall is a kinetic architecture sample, which is controlled by sound and movement (Figure 

8). It was designed in 2000 by Mark Goulthorpe and etc (Burry, 2006). Moving origami 

facade cover is also kinetic architecture samples, has shading function for the Al-Bahar 

Tower facade (Figure 9). 

 

 

 

Figure 7. Accordion Recover Shelter 

(Source: Schenk, 2012.) 
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Figure 8. Hypo surface 

(Source: Burry, 2006.) 

 

 

 

Figure 9. Al-Bahar Tower Façade 

(Source: Boake, Bes, & Arch, 2014.) 
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1.2. Problem Statement 

 

The thesis consists of two main problems: geometric analysis and mobility 

analysis of the Miura pattern (Chapter 3. and 4.).   

Architectural plate structures which are designed with origami patterns as roofs, 

facades, buildings, have specific and complex geometries. Because of its complex 

configuration, it is difficult to apply such structures to a given area or cover a building 

part. There are hundreds of origami patterns, and each origami pattern requires special 

geometry calculation according to its shape. The first problem area is the geometric 

possibilities of rigid Miura patterns and its derivations. These patterns have some 

parameters, such as span lengths (a or b), vertex angles (α or δ). Third chapter includes 

research of geometric characteristics of the rigid Miura pattern with these basic 

parameters. 

Origami based architectural structures are fully surrounded with plates. Rigid 

plates strengthen mechanism and increase the durability of the structure. Although this 

configuration has beneficial side, the placement of the plates make space fully covered, 

so structures could not be adequately illuminated with daylight. These deployable 

structures may also require energy consumption. The second problem is around the 

mobility aspect of Miura pattern by the analysis of degrees of freedom. With this concept, 

number of excessive plates and excessive joints are obtained and number of placement of 

excessive alternatives are analyzed. 

 

1.3. Previous Studies Related to Origami-Inspired Deployable 

Structures 

 

There are several studies on origami-inspired structures. Arzu Gönenç and et al., 

Ulrich Buri, Martin Trautz and Ralf Herkrath, Tomohiro Tachi have discussed different 

origami patterns which are applied to architecture.  

Arzu Gönenç and et al. proposed development of 2-D diagram to understand the      

matematical relations of the patterns in order to explore solid modeling in computational 

media. The researchers noted: "This relation between 2-D diagrams and the resulting 3-

D solid models have also clues for the manufacturing/ fabrication of these models from 

simple sheets of raw materials to complex forms" (Sorguç, Hagiwara, & Selçuk, 2009). 

https://azerdict.com/english/surround
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            The researchers discussed several student workshops on origami structures.  

Students obtained "mesh networks" of structural forms with using diagram method. By 

the mesh networks, Middle East Technical University (METU) students experienced shell 

structure, The University of Cambridge students designed cardboard structure, and built 

"Packaged" pavilion (Sorguç et al., 2009).  

            Martin Trautz and Ralf Herkrath studied the development of folded plate principles 

on spatial structures. Researchers analyzed free-form geometry details of the structures 

with a Finite Element Method (FEM) programme. The program was set some parameters 

to  

change variables of the free-form geometry structures. These parameters are height, 

frequency of the folding, thickness of a metal element (Trautz & HERKRATH, 2009). 

Ulrich Buri investigated new methods of designing folded structures which could 

be built with timber plates (Figure 10). He was convinced that a design method which 

rapidly generates and modifies folded plate structures is of great interest, and can form 

the basis of a productive collaboration between architects and engineers.  He proposed 

modeling in a 3D CAD software for regular folding patterns. To analyze the geometry of 

the folds, classical representations of architectural drawings (plans and sections) were 

used (Buri, 2010).  

 

 

 

Figure 10. Test of the Timber Folding Patterns Prototype 

(Source: Buri, 2010.) 

 

Tomohiro Tachi developed a method to design free-form variations of Resh-like 

origami tessellations with Japan Science and Technology (JST) Presto program. They 

optimized the surface to make it developable and also non-intersecting at the vertices 

(Tachi, 2013). 

https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjHqPuBzI7KAhVBiBoKHeBTCnUQjBAIITAB&url=http%3A%2F%2Fwww.metu.edu.tr%2F&usg=AFQjCNFl2THyVWbxM9QRuWW9Qz9H7ekgnA&bvm=bv.110151844,d.bGQ
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If we look at the studies that relates origami mechanisms, we can recognize that 

the most of the themes are form generation of the Miura-Ori. Joseph M. Gattas and Zhong 

You described parametrizations of curved-crease geometries of Miura-ori (Gattas, Wu, 

& You, 2013), Jianguo Cai and et al. analyzed geometry and motion of origami-based 

deployable shelter structures (Cai, Deng, Xu, & Feng, 2015). Marcelo A. Dias et al. 

worked on mechanics of curved crease origami with analyzing multiple curved structures 

(Dias, Dudte, Mahadevan, & Santangelo, 2012).  

The previous studies presented in the second part of the thesis review such topics, 

as: degrees of freedom origami inspired structures and mobility of origami. L.A. Bowen 

et al. worked on a position analysis of action origami vertex observing relationship 

between input and output angles. The researchers suggest future work to demonstrate this 

method for mechanisms which allow spherical centers to move (Bowen et al, 2014). Tarek 

AlGeddawy’s et al. studied design model of regular product to help designers connect 

foldability and mobility (AlGeddawy, Abbas, & ElMaraghy, 2014).  

 

1.4. Methodology 

 

The first part of the study is based on calculations in order to design desired Miura 

Pattern. In this part parameters are identified to analyze and define geometric variations. 

Miura derivative patterns are demonstrated with several trigonometric formulas and 

theorems. Studied patterns are drawn in Autocad and calculated with Microsoft Excel to 

determine validity of the analysis. 

The second part of the study investigates to remove excessive plates from the 

structure considering mobility factors to let daylight into the structure. In order to 

investigate mobility, 12 different Miura-Ori patterns are analyzed. During the 

investigation excessive plates and its joints are determined without changing the mobility. 

A new method is developed to pick relevant excessives. This part is procured with 

perception and analytical thinking on the behavior of the patterns and some calculations. 

In the both parts, several paper model of the Miura derivative patterns are made 

to observe the geometric and mechanical behavior. Rigid Origami Simulator which was 

introduced by Tomohiro Tachi, is used to simulate kinematics of the Miura derivative 

patterns. 

https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjqteXsnZDKAhVjqHIKHc5aDAAQFggaMAA&url=http%3A%2F%2Fwww.mathportal.org%2Falgebra%2Ftrigonometry%2Ftrigonometric-formula.php&usg=AFQjCNFGtrd-3Ujjfe4VSKJbm-4Lkuwl7A&bvm=bv.110151844,d.bGQ
https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwjY7Z6mn5DKAhUi7nIKHeL9C-MQFggtMAM&url=http%3A%2F%2Fwww.ms.uky.edu%2F~lee%2Famsptech%2FRunningSimulation.doc&usg=AFQjCNHAzRiW5lICffJIBEDSP-tEQuUB5Q&bvm=bv.110151844,d.bGQ
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In the case study, a designed pattern is proposed as a deployable shelter to show 

the real-world application. The origami shelter is visualized in the 3ds MAX and Lumion. 
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CHAPTER 2 

 

REVIEW OF THE LITERATURE 

 

2.1. History of Origami   

                           

Origami ( 折り紙  ) from ori - "folding", and kami - "paper" is the ancient 

Japanese art of paper folding (Dureisseix, 2011). The process of folding doesn`t require 

stretching, cutting, or gluing and crossing (E. Demaine, 2010). 

"Origami involves the creation of paper forms usually entirely by folding" (Katz, 

2001-2014) 

There is an ongoing debate as to who were the first paper folders. Certainly, paper 

folding is a part of Chinese culture: perhaps they were the first. When people are buried, 

replicas of items are folded and included in their tombs. Also, the Chinese have always 

been frugal people who would not waste something that could be reused. So, a paper that 

has served its original purpose now can be recycled for origami. Many origami toys were 

developed by the Chinese. The most famous of these is the "waterbomb". Children make 

balloons out of paper, fill them with water and throw them down with a loud splat. 

It is believed that paper has been invented by Ts`ai Lun, a Chinese court official, 

in 105 AD. By the invention of paper, origami spread out several countries primarily in 

China and Japan, then Uzbekistan, Egypt, Spain, France, England, Italy and etc. (Smith, 

2005).  

In Japan Origami was developed in special period, as follows: 

794-1185 A.D. Heian Period- evolution of ceremonial fold and some basic origami 

models; 

1185-1333 A.D. Kamakura Period- Origami extension everywhere in Japan; 

1333-1573 A.D. Muromachi Period- development of "Modern" origami; 

1603-1867 A.D. Edo Period- Origami had become an entertainment; 

1868-1912 A.D. Meiji Period- Gaining popularity of origami usage in schools (E. O. E. 

Demaine, Joseph 2007). 

The first famous origami book "The Secret of One Thousand Cranes Origami" or 

"How to Fold a Thousand Cranes" was published in 1797. The book name is the 

http://en.wikipedia.org/wiki/Paper_art
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translation of "Hiden Senbazuru Orikata". In Japanese language Sen nen (千年) is ‘one 

thousand years’ and Senba zuru (千羽鶴) is ‘one thousand cranes’ (Ishii, 2013).  

Akira Yoshizawa (1911-2005) is known as a master of origami. When he was  just 

three years old, he started working with origami as a hobby and at the age of 26, 

Yoshizawa worked full time on origami and published several books. In 1935 he 

developed universal symbols to help people understand diagrams, without understanding 

his native language (Hoover, 2006-2014).  

 

2.2. Terminology  

 

After unfolding a fold trace is formed on paper, that trace is a crease (R. J. Lang, 

2004-2014b). 

Crease pattern is a collection of creases which presents an origami model on a 

flat piece of paper. Note that there can be dual crease patterns (Figure 11.) that shows 

different origami models. It is easy to define crease pattern in traditional origami (Figure 

11), as, creases starting from corners and create angles by connecting with vertex. 

(Dureisseix, 2011).  

"A fold is an action and a crease is the product of that action" (Greenberg, 2011). 

If we look at a crease pattern with unfolded paper, we can see that there are two main 

folds: mountain and valley folds. They are dual of each other because they can 

interchange by changing the face of the paper. In spatial position, mountain folds follow 

concave 3D shapes and valley folds follow convex 3D shapes (Dureisseix, 2011).  
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Figure 11. Crease Patterns and Folding Steps for the Preliminary Base (top) and  

                  Waterbomb Base (bottom) (Source: Dureisseix, 2011.) 

 

"Vertex : a point in a crease pattern where multiple creases come together" (R. J. 

Lang, 2004-2014b). Vertex is the point where several folds meet (Figure 12).  

 

 

 

Figure 12. Left: Unfolded Origami Single Vertex. Right: Partially Folded Origami  

                 Vertex  (Source: Lang J., 2013.) 

 

Apart from mountain and valley fold, there are other four folds mostly using as a 

term (Figure 13.): 

● Inside reverse fold. Open edges of the paper is turned inside-out. 

http://www.langorigami.com/glossary/glossary.php#crease pattern
http://www.langorigami.com/glossary/glossary.php#crease
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● Outside reverse fold. Open edges of the paper is turned outside-out. 

● Crimp fold. A pair of valley folds and mountain folds converge at one point. 

● Pleat fold. Mountain and valley fold are parallel, or near. They are folded together 

(Engel, 2011). 

 

 

 

Figure 13. (a) Inside reverse fold; (b) Outside reverse fold; (c) Crimp fold;  

                  (d) Pleat fold. 

 

Most origamists decompose the folding process into two stage: base and shape 

(R. J. Lang, 2004-2014c). "Base : a regular geometric shape that has a structure similar 

to that of the desired subject" (R. J. Lang, 2004-2014b). Lang`s tree method focuses on 

the design of the origami base. “The usage of a base has many benefits; the folding 

sequence will be easier to remember and create diagrams for”. (WikiBooks, 2014). Shape 

is the  end of transforming a base  into the actual origami model (E. O. E. Demaine, Joseph 

2007). In Figure 14, there is Standard Origami Bases:  
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Figure 14. The Six Standard Origami Bases; (a) Waterbomb; (b) preliminary; (c) fish;  

                  (d) bird; (e) windmill; (f) frog (Source: E. O. E. Demaine, Joseph 2007) 

 

2.3. Theorems 

 

According to unfolding process four type of behaviours are possible for the 

conditions of origami shapes: (non) developable and (non) flat-foldable. 

“Developed state” and “flat-folded state” are defined as follows in Tachi`s paper 

(Scheme 1.)  

 

 

 

Scheme 1. Developed State and Flat-Folded State 

(Source: Tachi, 2010.) 

 



 

 28 

 

In order to prove flat vertex folds condition several theorems were achieved. 

Mathematical approaches about origami are on the three main bases: 

        Huzita-Hatori axioms; 

        Kawasaki's Theorem; 

        Maekawa`s theorems. 

 

2.3.1. Huzita- Hatori axioms  

 

Huzita- Hatori axioms firstly discovered by Jacques Justin in 1989, then in 1991 

recovered by Humiaki Huzita. These 7 axioms were finalized by Koshiro Hatori, Justin 

and Robert Lang in 2001 (Fei, 2013). 

The axioms are (Figure 15): 
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Figure 15. Huzita- Hatori axioms 

(Source: R. J. Lang, 2004-2014a.) 
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2.3.2. Toshikazu Kawasaki's Theorem 

 

Kawasaki Theorem explains that for affirming a given crease pattern is foldable, 

all the sequences of angles around each (interior) vertex must be summed to 180° as given 

in eq. (1) and eq. (2) and showed in Fig. 16 (Fei, 2013). 

α1- α2 + α3 - α4 + .... - α2n=0                                                    (2.1) 

α 1+ α3+...+ α2n-1 = α2+ α4+...+ α2n=180°                                  (2.2) 

α1,α2,,..., α2n  is the consecutive angles between the creases (Lim, 2007).  

 

 

 

Figure 16. Application of Kawasaki's Theorem in a Foldable Paper Crane 

(Source: Fei, 2013.) 

 

2.3.3. Maekawa's Theorem 

 

If the difference between the number of mountain creases and valley creases are 

equal to 2, origami crease pattern is a flat, shown in eq. (3) (Fei, 2013). 

M - V = ±2                                                                         (2.3) 

where, M is the number of mountain creases; V is the number of valley creases. 

 

2.3.4 Sufficiency Control 

 

According to the Maekawa's theorem flat origami can be described by its MV 

assignment. In Figure 17. we can recognize that Maekawa's description is not enough for 

flat-foldability. Origami patterns may overlap differently with the same MV-assignment 

(Figure 17).  
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Figure 17.  Two Origamis with the Same MV-Assignment but Different Overlap Maps 

 

In the Figure 17, same patterns are folded differently. Hense, first sample is valid 

MV assignment, while another still fails to fold flat. M. Bern and B. Hayes showed that 

assigning mountain and valley folds for flat origami is NP-hard (Non-

deterministic Polynomial acceptable problems).  

Figure 18 is the alteration of Figure 19. Each vertex has equal number of creases, 

but one is flat foldable, another is not. In figure 19 Bern and et al. were omitted NP 

hardness proofs, and modified vertex angles from 90° to 35 (Bern, 1996). 

 

       

 

Figure 18. Inconsistency of Flat Folding (90º) 
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Figure 19. Possibility of  Flat Folding (35º) 

 

Crease patterns can be locally flat-foldable but that have no global flat folding 

that works for the whole crease pattern at once (Hull, 2011).  

"Because global at foldability depends on the whole structure not only the 

point, you should consider some area, not a point" (Lim, 2007). 

Schneider proposed four conditions in his study. He proposed four conditions for 

flat-foldability: 

"1. All crease lines must be straight line segments. 

  2. All interior vertices in the crease pattern must be of even degree. 

  3. At each interior vertex, the sum of every other angle must be 180°. 

  4. There must exist a superposition ordering function that does not violate the non-

crossing condition" (Schneider, 2004). 

 

2.4. Type Classification with Most Famous Origami Examples 

 

2.4.1. Traditional origami   

 

"Traditional designs are designs of uncertain origin. Nobody knows where they 

were first folded, when, by whom and sometimes why. Some may be a thousand years 

old or more" (Jackson, 1990). 
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Traditional origami is a straight fold on a square, planar piece of paper (Figure 

20). During that process tearing, cutting or gluing are not allowed. It is commonly static 

and representational (Greenberg, 2011). 

 

 

 

Figure 20. Yoshizawa`s Butterfly 

(Source: Jackson, 1990.) 

 

“Traditional origami models were often developed from similar patterns. While 

some of them are rarely used, there are six that are used quite frequently (Fig. 14): the 

waterbomb base, preliminary fold, kite base, fish base, bird base and frog base“ 

(WikiBooks, 2014). They also called as the classic bases, share the same symmetry, and 

certain structural properties, were used until the 1960s (WikiBooks, 2014). 

 

2.4.2. Action Origami 

 

"Action origami (Fig. 21) is a field of origami dealing with models that are folded 

so that they exhibit motion in their final, deployed state" (Lang J., 2013). Motion is not 

observed from folded state to unfolded state in action origami. Action origami models 

mostly have been improved as children’s toys: flapping cranes, tops, and paper airplanes. 

There are in fact hundreds of action origami models. From a single flat sheet of paper, 

engineers use many of complicated patterns to accomplish act,  with one manufacturing 
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process- folding (Lang J., 2013). Engineers introduce the term “action origami” as 

"kinetic origami" (Greenberg, 2011).         

Action origami (Figure 21) models have been created by various origami artists. 

The primary sources of action origami is in Lang and Shafer’s book (Lang J., 2013). 

 

 

 

Figure 21. Shafer’s “Venus Fly Trap” is an Example of Action Origami 

(Source: Lang J., 2013.) 

 

2.4.3. Rigid Origami 

 

Rigid origami is a type of origami where all surfaces are rigid, except the crease 

lines. "If the plates could be replaced with nonflexible material and the creases with 

hinges while maintaining motion, the origami is considered rigid" (Lang J., 2013). 

Commonly rigid origami in used in manufacturing and packaging industry. A basic 

example is a shopping bag (Figure 22). Benefit of the material maintains self-folding of 

the origami structures. It transforms without the deformation of each facet (Figure 23). 

Folding process does not require bending or twisting (Greenberg, 2011).  
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Figure 22. Origami Shopping Bag 

(Source: Wu & You, 2011.) 

 

 

 

Figure 23. A Corrugated Vault Used as a Transformable Architecture that Connects Two   

                 Existing Buildings (Source: Tachi, 2010.) 
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2.4.4. Origami Tessellation  

 

Tessellations is repetition patterns of specific shapes (Figure 24 (a)). "The word 

“tessellation” comes from the Latin “tessella” meaning “small square” - which the 

Romans used for making mosaics and tile designs" (Gjerde, 2007).  

In origami tesellation from a single sheet of paper, a complex repeating pattern of 

shapes are made. It was extended from simple square tilings to various pieces inspired by 

Islamic art. "There are three basic tessellation patterns, called “regular tessellations” 

which tile infinitely using only one shape" (Gjerde, 2007) These tilings are equilateral 

triangles, squares, and hexagons (Gjerde, 2007). It is clear that during developed acts 

from folded to unfolded forms tiles rotate Figure 24 (b)). 

 

 

a)  

 

 

b) 

 

Figure 24. a) Hexagon, Square and Triangle- Basic Tessellation Patterns  

                  (Source: Gjerde, 2007); b) A Tessellation from a Square Twist Fold. 
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2.4.5. Kirigami (and Pop Up) 

 

Kirigami is a variation of origami (Figure 25 and 26). The Japanese word- 

Kirigami came from "Cyrus" or "kiru" means "to cut", "kami" means "paper". In order to 

make kirigami pattern, folded base is used and then it is cut. The cuts are opened and 

flattened to make the finished kirigami.  It is defined as the art of folding and cutting 

paper (Hart, 2007). Kinetic kirigami models are often made planar materials, especially 

kirigami pop-up models (Greenberg, 2011). 

Pop-up is similar to kirigami, but they have also a difference. Kirigami is made 

from a single piece of paper. Otherwise pop ups can be made of several pieces glued 

together (Carrek, 2014). 

 

 

 

Figure 25. A Kirigami House Made in Cardstock 

(Source: Greenberg, 2011.) 
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Figure 26. Duomo Milan 

(Source: Carrek, 2014.) 

 

2.4.6. Unit Origami (Modular Origami) 

 

As the name emphasised, different numbers of units are prepared and assembled 

to produce many forms in unit origami folding method (Fuse, 1990). 

"Because no adhesives are used, sometimes assemblies are unstable" (Fuse, 

1990). But it never reduce interest of unit origami. There are also reasons for that 

curiosity. First it is easy. Second, folding process is like some of puzzles. 

In 2012, 42-year-old Sergei Tarasov, a school teacher from the Russian village 

of Tigritskoe, has recently completed an incredibly detailed modular origami model of 

Moscow’s St. Basil cathedral (Figure 27), 1.5 meter tall.  

 

 

 

Figure 27.  Modular Origami Model of St. Basil Cathedral 

(Source: Spooky, 2012.) 

 

http://www.odditycentral.com/pics/russian-teacher-creates-mind-blowing-modular-origami-models-of-famous-cathedrals.html
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2.4.7.  3D Geometric Origami 

 

Much of the previous origami examples can be unfolded flat. In 3D origami main 

works focus on polyhedral structures (Dureisseix, 2011). That geometric foldings are 

created with Platonic or Archimedean solids by interlocking modules to each other. 

Module types and the base shape of the paper depend on the design of the solid (Karaveli, 

2014).    

"The Masu box (Figure 28) is a traditional Japanese design. It is a classic folded 

box; strong, adaptable, functional, and elegant in construction and final form" (Jackson, 

2011). 

 

 

 

Figure 28. Masu Box. 

 

2.4.8.  Wet Folding 

 

Wet folding was a secret folding technique of the great Japanese master Akira 

Yoshizawa. In the latter half of the twentieth century, during the West tour Akira`s 

audiences were impressed by his organic creation. The difference and effect of this 

folding is rather than making every crease sharp, soft, curved and rounded creases are 

obtained when the paper dries (R. J. Lang, 2004-2014d). For the wet folding, usually the 

heavier, stiffly art paper is suggested. A common problem occurred when beginners add 

too much water to paper (Figure 29).  
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Figure 29. Wet Folding 

(Source: Origami, 2014.) 
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CHAPTER 3 

 

GEOMETRIC ANALYSIS OF THE  

MIURA-ORI PATTERN AND ITS DERIVATIONS 

 

The Miura-Ori is a rigid foldable origami pattern that is formed from a tessellated 

arrangement of a single repeated unit geometry. The unit consists of four identical 

parallelogram plates. It can fold by rotation of rigid plates about hinged creases without 

twisting or stretching of the plates. Miura unit has a basic geometry with single vertex 

angle (α) and single span length (a) (Figure 30). Joseph M. Gattas and et al. introduced 

some derivative patterns by modifying single characteristic of the base Miura pattern. In 

this chapter, three samples are studied: Miura, Arc-Miura and Tapered Miura patterns 

(Gattas et al., 2013). 

 Arc-Miura pattern has common parameters with Miura pattern, just plus one 

more constant as vertex angle β for Arc-Miura (Figure 31). The specific feature of 

Tapered Miura pattern is its tapered lines spread out from a common center point (Figure 

32). It has also one vertex angle. In this section, a new derivation of Miura-Ori is 

introduced by adding second vertex angle to Tapered Miura pattern. It is called as 

Tapered Arc-Miura pattern (Figure 33). Unlike Miura and Arc-Miura, Tapered Miura 

and Tapered Arc-Miura has one more angle parameter (taper angle ω), where in Miura 

and Arc-Miura this angle is zero and the straight crease lines are parallel.    
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a) 

        

b) 

             

c)  

 

Figure 30. Miura-Ori pattern: a) Miura-Ori unit; b) Flat-Folded Miura-Ori Pattern; 

                 c) Partly Folded Miura-Ori Pattern.    

 

 

 



 

 43 

 

 

a) 

 

      

b)    

 

c)    

 

Figure 31. Arc-Miura Patterns: a) Arc-Miura Unit; b) Flat-Folded Arc-Miura  

                 Pattern; c) Partly Folded Arc-Miura Pattern. 
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a)        

                                                         

 

b)  

 

 

c) 

 

Figure 32. Tapered Miura patterns: a) Tapered Miura Unit; b) Flat-Folded Tapered Miura 

                  Pattern; c) Partly Folded Tapered Miura Pattern. 
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a)            

 

 

b) 

 

 

c) 

 

Figure 33. Tapered Arc-Miura Patterns (left unfolded, right folded pattern): a) Tapered   

                  Arc-Miura Unit; b) Flat-Folded Tapered Arc-Miura Pattern; c) Partly Folded    

                  Tapered   Arc-Miura Pattern. 

 

As shown in the figures above, unfolded geometry of the pattern units involves 

vertex angles and span lengths. Miura pattern has single vertex angle α, however Arc-

Miura and introduced Tapered Arc-Miura pattern has two vertex angles α, β that follows 

each other. Span lengths are equal in the all three patterns. During the analysis, the 
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possibility of different span lengths are also considered, so b is included as a second span 

length. The flat-folded forms of the patterns indicate main differences. Flat-folded Miura 

and Tapered Miura patterns illustrate as straight form, however Arc-Miura and Tapered 

Arc-Miura illustrate an arc form. 

 

3.1. Geometric Approach to Miura-Ori Pattern 

 

The geometry of the Miura-Ori pattern is analyzed by specified parameters. Vertex 

angle of Miura-Ori is always constant (Figure 30 (a)).  

Specified parameters are expressed below,  

Vertex angle = α 

Span length1 = a 

Span length2 = b 

Rotation angle (δ) and length of one unit (k) are another parameters will help to 

analyze the geometry (Figure 35). As, 

Rotation angle = δ 

Length of one unit = k 

 

3.1.1. Rotation Angle (δ)   

      

In this step the rotation angle (δ) need to be calculated. Rotation angle is the 

turning value of a unit.  

The angle ε is assistance angle for arranging relationship between vertex angle α 

and rotation angle δ (Figure 35). Using figure 34. the angle can be calculated as, below 

ε = 180°−α                                                                        (3.1) 

 

 

 

Figure 34. Assistance Angle ε on the Unfolded Miura-Ori Pattern. 
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       To define the rotation angle δ in folded position (Figure 35), we refer flat position of 

the mechanism.  

δ = ε−α = (180°−α) −α = 180°−2α                                  (3.2) 

 

3.1.2. Unit Length (k) 

 

The unit length of Miura-Ori pattern kssl (with same span length) is obtained by 

sine theorem.   

kssl/ sin δ = a/ sin α  

kssl = a sin δ / sin α = a sin (180°−2α) / sin α                   (3.3) 

The unit length Miura-Ori pattern kdsl (different span length) is obtained specially. 

The simple definition of the kdsl is (Figure 35 (b)) 

kdsl = c + y                                                                         (3.4) 

And, 

y = (d−c)/ 2                                                                       (3.5) 

Using eq. (3.4.) and eq. (3.5.), 

kdsl = c + y = c + (d−c)/ 2 

kdsl = (d+c)/ 2                                                                    (3.6) 

d is the base side of the triangle which consists of a, a, d sides and c is the base 

side of the triangle which consists of b, b, c sides. With the sine theorem c and d is 

expressed as, 

d= a sin δ/ sin α                                                                 (3.7) 

c = b sin δ/ sin α                                                                (3.8) 

Thus, the final definition of the kdsl  is expressed with leading eq. (3.6.) 

kdsl = (d+c)/ 2 =  (a sin δ/ sin α + b sin δ/ sin α ) /2  

kdsl = (a+b) sin δ/ 2sin α                                                    (3.9) 
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a)  

 

 

 

b)  

 

Figure 35. Parameters in the Folded Position of the Miura-Ori Pattern: a) flat-folded  

                 position with same span length (a=b); b) flat-folded position with different  

                 span length (a≠b). 

 

3.2. Geometric Approach to Arc-Miura Pattern 

 

Geometric possibilities of Arc-Miura pattern are analyzed using specified 

parameters of vertex angles α, β, and span lengths a and b. The measurement module for 

the geometric analysis is the unit that is composed of 4 facets. In the first stage we have 

only four specified parameters (Figure 31 (a)), expressed as below  

Vertex angle1 = α 

Vertex angle2 = β 
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Span length1 = a 

Span length2 = b 

Geometric analysis is developed on the flat-folded position of the pattern. The 

next step is to calculate other parameters δ1, δ2, γ, k, r, θ that are necessary to analyze 

whole pattern. The constants of c, d, x, y are assistant parameters (Figure 36). To extend 

and calculate parameters flat and folded positions of the pattern are observed and 

opposed. These parameters expressed as below 

Rotation angle1 = δ1 

Rotation angle2 = δ2 

External angle = γ 

Unit Angle = θ 

Length of one unit = k 

Radius of the Pattern = r 
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Figure 36. Parameters in the Folded Position of the Arc-Miura Pattern. 

 

3.2.1. Rotation Angles of a Unit (δ1, δ2) 

 

Calculation of second rotation angle δ2 of Arc-Miura is same with rotation angle 

of Miura-Ori pattern. According to eq (3.2), δ2 is expressed below 

δ2 = ε−α = (180°−α) −α = 180°−2α                               (3.10) 

The first rotation angle δ1 is specified by another assistance angle φ (Figure 37). 

Using figure 37. the angle can be calculated as, below 

φ = 180°−β                                                                      (3.11) 
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Figure 37. Assistance Angles ε and φ on the Unfolded Arc-Miura Pattern. 

 

Then first rotation angle δ1 is obtained according to folded position of the pattern 

(Figure 36), we refer flat position of the mechanism.   

δ1 = φ−β = (180°−β) − β = 180°−2β                             (3.12) 
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3.2.2. External Angle (γ) 

 

            The external angle γ is obtained by the formula for the sum of the x, δ2, y, 2γ is 

equal 360° (Figure 38).  

 

 

 

Figure 38. Piece of Pattern for Developing the External Angles. 

 

            According to figure 38, external angles can be expressed as below, eq (3.5).                                                                                                                              

                                               x+δ2+y+2γ = 360º                                                            (3.13) 

            Using sum of the interior angles of a triangle helps to identify the x and y angles. 

x+δ1+y = 180º 

where x+y is 

x + y = 180º - δ1                                                                                              (3.14)                              

            After defining the sum of angles, the external angle γ can be calculated with using 

the eq. (3.13 and 3.14). 
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                                                 γ = (360º−(x+δ2+y))∕2 = (360º−(180º−δ1+δ2 ))/2 

                                            = (360º−180º+δ1−δ2)/2 = 90º+δ1/2−δ2/2 

                                           = 90º+90°−β−90°+α = 90°−β+α                                       (3.15)   

There is a special condition; 

                                                 If   β>α, γ = 90°−β+α; 

                                                 If   β<α, γ = 90°−α+β; 

The external angle γ helps to find radius r of the full pattern and unit angle θ. 

 

3.2.3. Unit Angle (θ) 

 

The unit angle can be calculated after γ is known. The formula for the sum of the 

angles in a triangle helps to define the unit angle θ. According to the triangle with r, k and 

r sides (Figure 36), θ can be specified as  

2γ+θ = 180° 

θ = 180°−2γ = 180°−180°+ 2β−2α = |2β−2α|             (3.16)  

The formulation is presented in a module because of α and β amount.  

 

3.2.4. The Length of a Unit (k) 

 

k is the length of one unit and is also the base side of the triangle which consists of 

a, k and b sides. There, span lengths a, b and the rotation angle δ1 are the specified 

parameters. In this triangle, k is obtained by using cosine theorem.  

k2 = a2 + b2 – 2 ab cos δ1 

k = √ a2 + b2 – 2 ab cos δ1                                                                       (3.17)                  

 

3.2.5. The Radius of the Pattern (r) 

 

r is the radius of the pattern and obtained by the triangle which consists of r, k and 

r sides, with sine theorem. 

r/ sin γ = k/ sin θ 

where r is 

r =   k sin γ / sin θ = k sin γ / sin (180° - 2γ)                    (3.18) 
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3.3. Geometric Approach to Tapered Miura and Tapered Arc-Miura 

Pattern 

 

Tapered Miura is basically similar with Miura pattern as seen in figure 39. The 

added lines create new angle that is called taper angle ω. Taper angle is also the starting 

vertex angle of Tapered Miura. Pattern starts with taper angle ω, then first vertex angle α 

and second vertex angle β. Tapered Arc-Miura has the same characters with Arc-Miura. 

As a consequence, Miura and Tapered Miura, Arc-Miura and Tapered Arc-Miura are 

similar patterns of each other. Because of these resemblances, these patterns do not have 

special geometric studies. Taper angle is an independent variable and does not affect the 

analysis. Taper angle is obtained according to the number of plates.  

 

 

    a)                                                                   b)   

 

Figure 39. Creating of Tapered Miura and Tapered Arc-Miura Pattern: a) From Miura 

Pattern             

                 to Tapered Miura; b) From Arc-Miura to Tapered Arc-Miura Pattern. 

 

 

3.4. Validity of the Developed Formulas 

 

Miura-Ori and its derivations are reviewed with three different vertex angles and 

same span lengths.  In order to testify the validity of the developed formulas Microsoft 

Excel is used. Derived formulas are placed into the cells. According to assigned values of 

the specified parameters, rest parameters are calculated. Then flat-folded positions of the 
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patterns are drawn in Autocad. This software helps to measure exact values of the 

drawings. 

 

3.4.1. Review of the Miura-Ori 

 

Three different Miura-Ori are analyzed. These patterns have 30º, 45º, 60º vertex 

angles. Span length a is 4 and equal to b in all three. (Table 1. and Figures 40). 

Table 1. below shows Excel calculations of all the studied constants. Vertex angle 

α is different in all three examples. 

 

Table 1. Comparison of the Unit Lengths Caused by Different Vertex Angles. 

 

 

 

 

 

Figure 40. Miura-Ori folded patterns where α is equal to 30º, 45º and 60º. 
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Figure 40. is Autocad drawings of the analyzed patterns. The measurement of the 

constants on the drawings validates the study. 

The research on Miura-Ori result the distinction in folded position of the patterns 

(Figure 40). The vertex angles affect the pattern rotations and cause the distinction of the 

unit lengths.  

According to figure 40. we can explain relations between vertex angles and unit 

lengths. In the first example, the folded pattern with 30º vertex angles has 6.93 cm unit 

length. The unit length of the second pattern (α=45º) is 5.65 cm, and third pattern (α=60º)  

is 4 cm. Three examples verify that vertex angle α is inversely proportional to unit length 

k. The increase of the vertex angles cause the decrease of the unit lengths of the patterns. 

 

3.4.2. Review of the Arc-Miura 

 

Type 1. Three different type 1 Arc-Miura are analyzed. These arcs have 45º&30º, 

45º&60º, 45º&75º vertex angles. Span length a is 4 cm and equal to b. (Table 2. and 

Figure 41). 

 

Table 2. Checking for Calculation of Type 1. 
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a)  

 

 

b)  

 

Figure 41. Type 1 Patterns. a) The Arc-Miura unit with 45º&30º vertex angles; b) The   

                  Arc- Miura unit with the 45º&60º Vertex Angles; c) The Arc-Miura unit with  

                  45º&70º vertex angles. 

 

 

 

 

(cont. on next page) 

 



 

 58 

 

 

c)  

 

Figure 41. (cont.) 

 

Type 2. Three different type 2 Arc-Miura are analyzed. These arcs have 45º&30º, 

45º&60º, 45º&75º vertex angles. Span length a is 4 cm and equal to b. (Table 3. and 

Figure 42). 

 

Table 3. Checking for Calculation of Type 2. 
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a)  

 

b)  

 

c)  

 

Figure 42. Type 2 Patterns. a) Arc-Miura unit with the 30º&15º vertex angles;  

                  b) Arc-Miura unit with the 30º&45º vertex angles; c) The 30º&60º Vertex   

                  Angles Pattern. 
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The table 2. and table 3. show Excel calculations of all the studied constants. Each 

vertex angle α is equal for its three examples and second rotation angle δ2, and first vertex 

angles α are dependent to each other. Thus the second rotation angle (δ2) of all three 

samples are equal. In the first and second samples, unit angle θ are equal, because they 

were specified by the relationship of vertex angles β and α. Furthermore, the values of the 

γ are also equal. In the Figure 41 (c). equilateral triangle and in the Figure 42 (c). isosceles 

triangle is shown which consists of r, k and r sides.  

Figure 41. and b26. are Autocad drawings of the studied patterns. The validity of 

the calculation is approved after measurement of the constants on the drawings. 

 

3.4.3. Review of the Tapered Miura Pattern 

 

Three different Tapered Miura patterns are analyzed. These patterns have 30º, 45º 

and 60º vertex angles. In these patterns, a is 4 and equal to b. (Table 4. and Figures 43). 

Tapered pattern has only one vertex angle α is different in all examples. Table 4. 

Below shows Excel calculations of all the studied constants which is exactly same with 

Miura pattern calculation (same with Table 1).  

 

Table 4. Comparison of Tapered Patterns. 

 

 

 

 

a)  

 

Figure 43. Miura-Ori Folded Patterns. a) The Piece of the 30º Vertex Angles; b) The Piece 

of the 45º Vertex Angles; c) The Piece of the 60º Vertex Angles. 

(cont. on next page) 
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b) 

c)   

 

Figure 43. (cont.) 

 

Figure 43. is Autocad drawings of the studied patterns. The measurement of the 

constants on the drawings validates the study.  

 

3.4.4. Review of the Tapered Arc-Miura Pattern 

 

Three different Tapered Arc-Miura will be analyzed. These arcs have 45º&30º, 

45º&60º, 45º&75º vertex angles. Span length a is also 4 cm and equal to b. (Table 5. and 

Figure 44). 

Table 5. shows Excel calculations of all the studied constants. It is exactly same 

with Arc-Miura pattern calculation (same with Table 2).  

 

Table 5. Checking for Calculation of Tapered Arc-Miura. 
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a)  

 

 

 

b)  

 

Figure 44. Tapered Miura folded pattern with Same Span Lengths. a) The Piece of the  

                  45º&30º Vertex Angles; b) The Piece of the 45º&60º Vertex Angles; c) The  

                  45º&75º Vertex Angles Pattern. 

 

 

 

 

 

(cont. on next page) 
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c)  

 

Figure 44. (cont.) 

 

Figure 44. is Autocad drawing of the studied patterns. The validity of the 

calculation is approved after measurement of the constants on the drawings. 

 

3.4.5. Conclusion 

 

During the research of Arc-Miura, the curvature distinctions are recognized in 

folded position of the patterns (Figure 45). The vertex angles affect the pattern rotations.  

            Considering figure 45. we can explain relations between the vertex angles and the 

folded forms. In the first example, the folded pattern with 45º&30º vertex angles takes a 

convex form. Second example with  45º&45º  vertex angles presents a straight form. Third 

example with 45º&60º vertex angles, and fourth example with 45º&75º vertex angles take 
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concave forms. As a consequence of the curvature distinction (Figure 45), three 

circumstances can be investigated, as below 

1) if  α > β , folded pattern takes  convex form; 

2) if  α = β , folded pattern takes  straigth form;  

3) if  α < β , folded pattern takes  concave form. 

 

 

 

Figure 45. Curvature Distinction of Folded Arc-Miura Pattern. 

 

            The difference between the vertex angles determine the radius of the folded 

pattern. If the difference between the angles decrease, the radius increase or vice versa. 

            Although the span lengths of the patterns are equal, 45º&30º and 45º&60º angle 

patterns complete full surroundings with 12 units, however 45º&75º pattern with 6, 

numbered in figure 46 (a). The angle difference in the 45º&30º and 45º&60º patterns are 

±15º, while it is ±30º in the 45º&75º pattern. The result is also same for type 2.; if vertex 

angle difference is ±15º, circle complete with 12 units and if it is ±30º, circle complete 

with 6 units (Figure 46 (b)).  
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            Unit number can be obtained by the difference of vertex angles,  

360º / (β− α) = nlink                                                          (3.19) 

            Type 1. and type 2. have different vertex angles, but the vertex angle difference is 

similar in each first, second and third example. Some similarities are observed as: δ2 in 

each parts are equal, γ and θ in all types are equal (Table 2. and 6). 

 

 

a)                                                                                          

 

Figure 46. Numbered folded patterns. a) Type 1. Pattern; b) Type 2. Pattern. 

(cont. on next page) 
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b)  

 

Figure 46. (cont.) 
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CHAPTER 4 

 

MOBILITY ANALYSIS OF MIURA ORI PATTERN 

 

            The Miura-Ori unit is composed of a symmetrical degree-4 vertices. Degree-4 

vertex consists of four intersecting crease lines which are symmetric about a horizontal 

centerline. This unit is a four bar spherical mechanism with a single degree of freedom 

(DOF). A four bar spherical mechanism is a rotational manipulator with all axes 

intersecting at the center of the sphere (Lum, Rosen, Sinanan, & Hannaford, 2006). The 

axes indicate the directions of all revolute joints. A spherical four-bar mechanism is 

shown in figure 47. 

 

 

 

Figure 47. A Spherical Four-Bar Mechanism. 

 

            Figure 48 illustrates the similarity between a Miura-Ori unit and a spherical 

mechanism. The origami creases are analogous to hinges and the facets are analogous to 

rigid plates. Note that four creases intersect at a vertex. 
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Figure 48 Miura-Ori Unit as a Spherical Mechanism 

(Source: Mooth, 2014.) 

 

4.1. Determining DoF of Miura-Ori Pattern 

 

            Miura-Ori unit is a spherical mechanism with its rigid plates and revolute joints. 

An unfolded unit of the Miura-Ori pattern, constructed from four identical parallelogram 

plates and four revolute joints, is shown in Fig. 49. Each vertex has four crease lines and 

the mechanism works with one degree of freedom. 

 

 

 

Figure 49. An Unfolded Miura-Ori Unit. 
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            Considering Miura-Ori origami as a mechanism, the mobility of the unit can be 

calculated with Grubler Kutzbach formula (Phillips, 2006) as (4.1.), 





5

1
)()1(

i
ijinM                                                      (4.1.) 

where λ is the DoF of space in which the mechanism operates (λ = 3 for spherical 

mechanisms), n is number of plates and ji is number of joints having i DoFs. 

 The dimension of active motion of rigid body for spherical mechanism is RRR. 

The dimension of subspace is λ=3. So, the formula is given, as 

    212)1(3 jjnM                                                           (4.2.) 

where j1 is the number of single degree of joints, j2 is the number of two degree of freedom 

joints.  

            The joints of the Miura-Ori are all revolute. Revolute joints have one degree of 

freedom, so j2 is reduced from eq. (4.2.). Mobility of a Miura-Ori can be calculated as 

follows,  

     M = 3(n−1) − 2j1                                                               (4.3) 

     M = 3(4−1) − 2 × 4 = 1 

            The sum of plates in Miura-Ori pattern can be calculated by eq. (4.4.),  

∑plate = a×b                                                                     (4.4) 

where ∑plate is the number of plates, a is the number of columns  and b is the number of 

rows. 

            The sum of joints can be calculated by eq. (4.5.), 

∑j = a (b−1)+b (a−1)                                                        (4.5) 

where ∑j is the sum of joints. 

            Developing a mobility analysis on Miura-Ori involves studying twelve items 

(Figure 50, 51 and 52). These patterns are established with adding new facets to the base 

pattern. Patterns in the numbered steps line up horizontally. Numbered steps differ by 

column numbers, each one has one more column facets. The derivations are needed to 

check whether there are mobility variations or not. Following steps are recovered by 

mobility calculations on the classified examples. 

1) Miura-Ori patterns consist of two columns. All four examples have one degree of 

freedom. 

a) M = 3(4−1) −2×4 = 1  

b) M = 3(6−1) −2×7 = 1  
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c) M = 3(8−1) −2×10 = 1  

d) M = 3(10−1) −2×13 = 1  

 

 

                                   1a)               1b)               1c)               1d) 

 

Figure 50. Miura-Ori Patterns Consist of Two Columns. 

 

2) Miura-Ori patterns consist of three columns: 

a) M = 3(6−1) −2×7 = 1  

b) M = 3(9−1) −2×12 = 0 

c) M = 3(12−1) −2×17 = −1 

d) M = 3(15−1) −2×22 = −2 

 

 

                  2a)                        2b)                        2c)                         2d) 

 

Figure 51. Miura-Ori Patterns in Three Columns. 
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3) Miura-Ori patterns consist of four columns.  

a) M = 3(8−1) −2×10 = 1  

b) M = 3(12−1) −2×17 = −1 

c) M = 3(16−1) −2×24 = −3 

d) M = 3(20−1) −2×31 = −5 

 

 

         3a)                             3b)                             3c)                             3d) 

 

Figure 52. Miura-Ori Patterns in Four Columns. 

 

            It is known that deployable Miura-Ori pattern is a single DoF mechanism. 

However, Grubler Kutzbach formula fails above examples. While the derivation 

processes, mobility calculations variate with zero and negative values in the examples. 

The patterns are single DoF but the equation fails in some generated Miura-Ori patterns. 

Zero and negative amount of mobility can be explained with excessive plates in Miura-

Ori patterns. In that case, how many and where are they situated in the pattern? 

            In order to find exact solution with Grubler Kutzbach formula, a new parameter 

(qmax) is necessary. qmax  is the number of maximum excessive plates. It helps to find 

number of excessive plates for each mechanisms in Miura-Ori generations. Modified 

Grubler Kutzbach formula is given below 

M = 3 (n−1) −2 j1 + qmax = 1                                             (4.6) 

            It is known that all the generated Miura-Ori patterns are single DoF mechanisms. 

Thus, there is not any excessive plate in the pattern shown in figure 49. 

M = 3 (n−1) −2 j1 + qmax = 1 
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M = 3 (4−1) −2 × 4 + qma x= 1 

qmax = 0 

 

4.2. Determining the Excessive Plates and Joints of Miura-Ori 

 

            Mobility results except one state presence of excessive plates. The aim of this 

subchapter is to find the number of excessive plates and joints. Additionally, determining 

the place of excessive plates is another aim of the subchapter. 

            Modified Grubler Kutzbach formula in eq. (4.6.) helps to find maximum number 

of excessive plates. 

            Figure 53 shows a single DoF pattern with excessive plates. According to the 

calculation, the number of maximum excessive plates are two. 

M = 3 (n−1) −2 j1 + qmax = 1 

M = 3 (12−1) −2 × 17 + qmax = 1 

qmax = 2 

 

 

 

Figure 53. Pattern with Two Excessive Plates. 

 

            In figure 53 there are two excessive plates. But these plates are not determined 

randomly. To eliminate excessive plates from proper place, the number of excessive joints 

is also necessary. Finding the number of excessive joints helps us to pick up proper plates.  

                             q1 = qmax ;                                        jexc.1 = 2 × qmax ;                               

                             q2  = q1−2 ;                                     jexc.2 =  jq1 −3 ;                               

                             q3 = q2−2 ;                                     jexc.3= jq2−6 ; 

                             q4 = q3−2 ;                                     jexc.4 = jq3−9 .          
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  So,  

q1 = qmax                                                                             (4.7) 

jexc.1 = 2 × qmax                                                                    (4.8) 

qn = qn-1−2                                                                          (4.9) 

jexc.n = j exc.n-1−3                                                                 (4.10) 

            To find desired number of excessive plates and joints (qn, jn) without determining 

number of previous one (qn-1, jn-1), arithmetic sequence rule is used. The nth term of an 

arithmetic sequence is below, where n is the number of terms and d is the common 

difference (Boyer & Merzbach, 2011). 

an = a1 + (n−1)d                                                              (4.11) 

The common difference for arithmetic sequence is obtained below, 

d = an+1−an                                                                       (4.12) 

For the excessive plates, if an+1 = qn  and an = qn−1 , and using eq. 4.9. 

dq = qn−qn−1 = (qn−1 –2) – qn−1  = -2                                (4.13) 

So the nth term of a plate is obtained, 

qn  = q1– 2(n−1)                                                                (4.14)  

For the excessive joints, if an+1 = jexc.n  and an = jexc.n−1 , and using eq. 4.10. 

dj = jexc.n−jexc.n−1 = – jexc.n−1 −3− jexc.n−1= -3                    (4.15) 

So the nth term of a joint is obtained, 

jn  = j1– 3(n−1)                                                                  (4.16)  

            To check the excessive plate equations, figure 53 is used. 

qmax = 2, 

I exc. plate = 2 and I exc. joint = 4; 

II exc. plate = 0 and II exc. joint = 1. 

            It means, one of the excessive variation is 2 plates and 4 joints, another is 0 plate 

and 1 joints.      

            Modified Grubler Kutzbach formula is not enough to determine the proper 

excessive plates. A Method of Double Arrangemet (MoDA) should be concerned. The 

Method of Double Arrangement is demand of two-line plates for both two concurrent 

edge. As figure 54, MoDA involves the plates which are along the dashed lines. 
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a)  

 

 

b) 

 

Figure 54. A Method of Double Arrangemet (MoDA) examples. a) Maximum 20  

                 excessive plates; b) 22 excessive plates. 

 

            After the calculation and determination of number of excessive plates and joints, 

if the placement of necessary plates are not conformed with the MoDA, the pattern does 

not deploy. There are determination examples in figure 55. The pattern has 3 excessive 

plates and 6 excessive joints. Three placement variations are designated. First two 

examples are correct, the Method of Double Arrangement have been fitted in the edges 

of left and top side. Third variation is wrong, because the hatched plate is single, the 

MoDA is not provided. 

M = 3 (n−1) −2 j1 + qmax = 1 

M = 3 (15−1) −2 × 22 + qmax = 1 

qmax = 3 
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3L6j 

M = 3 (12−1) −2 × 16 = 1 

             1) 3L6j √                             2) 3L6j √                              3) 3L6j × 

 

 

 

Figure 55. Correct and Wrong Determination of Excessive Plates and Joints. 

 

4.2.1 Excessive Plates and Joint Studies on the Six Derivations 

 

            Following step focuses on the excessive plates and joints layout designs of 6 

derivations. The 6 derivations with single DoF are studied again with Modified Grubler 

Kutzbach formula to find excessive plates. With the eq. From 4.7. to 4.10. the excessive 

plates and joints are obtained. Then, the locations of excessive plates and joints are chosen 

(Fig. 56-60). 

 

2b) M= 3 (9−1) −2×12 + qmax =1 

qmax = 1 
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2b1) 1L2j 

q1 = 1;  

 jexc.1 = 2. 

M= 3 (8−1) −2×10 = 1 

 

       

      2b1) 

 

Figure 56. Determination of Excessive Plates and Joints on the Pattern of Fig. 51 (2b). 

 

2c) M= 3 (12−1) −2×17 + qmax =1 

qmax = 2 

2c1) 2L4j 2c2) 0L1j 

 

q1 = 2; 

jexc.1 = 4. 

M= 3 (10−1) −2×13 = 1 

q1 = 0; 

jexc.1 = 1. 

M= 3 (12−1) −2×16 = 1 

 



 

 77 

 

 

                                 2c1)                                     2c2) 

 

Figure 57. Determination of Excessive Plates and Joints on the Pattern of Fig. 51 (2c). 

 

2d) M = 3(15−1) −2×22 + qmax =1 

qmax = 3 

2d1) 3L6j 2d2) 1L3j 

q1 = 3; 

jexc.1 = 6. 

M= 3 (12−1) −2×16 = 1 

q1 = 1; 

jexc.1 = 3. 

M= 3 (14−1) −2×19 = 1 
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                                     2d1)                                 2d2) 

 

Figure 58. Determination of Excessive Plates and Joints on the Pattern of Fig. 51 (2d). 

 

3b) M = 3 (12−1) −2×17 + q max = 1 

qmax = 2 

3b1) 2L4j 3b2) 0L1j 

q1 = 2; 

jexc.1 = 4. 

M= 3(10−1)−2×13= 1 

q2 = 0; 

jexc.2 = 1. 

M= 3(12−1)−2×16 = 1 
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                            3b1)                                         3b2) 

 

Figure 59. Determination of Excessive Plates and Joints on the Pattern of Fig. 52 (3b). 

 

3c) M = 3 (16−1) −2×24 + q max =1 

qmax = 4 

3c1) 4L8j 3c2) 2L5j 3c3) 0L2j 

q1 = 4;   

jexc.1 = 8. 

M= 3(12−1)−2×16= 1 

q2 = 2;  

jexc.2 = 5. 

M= 3(14−1 −2×19= 1 

q3 = 0;   

jexc.3 = 2. 

M= 3(16−1)−2×22= 1 

 

 

          3c1)                                      3c2)                                      3c3) 

 

Figure 60. Determination of Excessive Plates and Joints on the Pattern of Fig. 52 (3c). 
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3d) M = 3 (20−1) −2×31 + q max =1 

q max = 6 

 

 

 

 

 

 

 

 

 

 

 

       3d1)                            3d2)                             3d3)                            3d4) 

 

Figure 61. Determination of Excessive Plates and Joints on the Pattern of Fig. 52 (3d). 

 

Miura-Ori derivations share common mechanical features with Miura-Ori. Miura-

Ori (Figure 30 (a)),  Arc-Miura (Figure 31 (a)), Tapered Miura (Figure 32 (a)) and 

Tapered-Arc Miura (Figure 33 (a)) patterns can be characterized commonly, as: 

-Unit (of each patterns) is composed of a symmetrical degree-4 vertices. 

3d1) 6L12j 3d2) 4L9j 

q1 = 6;   

jexc.1 = 12. 

M = 3(14−1)−2×19= 1 

q2 = 4;  

 jexc.2 = 9. 

M= 3(16−1)−2×22=1 

 

3d3) 2L6j 3d4) 0L3j 

q3 = 2;   

jexc.3 = 6. 

M= 3(18−1)−2×25=1 

q4 = 0;   

jexc.4 = 3. 

M= 3(20−1)−2×28=1 
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-Unit (of each patterns) is a four bar spherical mechanism with a single degree of 

freedom (DOF). 

-Unit (of each patterns) is consisted from 4 revolute joints on the axes, which 

intersect at the sphere center of mechanism. 

Because of common mechanical features only Miura-Ori has been analyzed in this 

chapter. The same calculations and results can be applied to other Miura patterns 

(derivations). 
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CHAPTER 5 

 

CASE STUDY 

 

In this section, a design is proposed to show the application and possibility of the 

analyzed Miura-Ori pattern and its derivatives. 

 

5.1. Example Problem 

 

Example problem starts with a short geometric description of the design. It is a 

path of a folded origami pattern (figure 62 bold line) which is consisted from three curves 

and two straight lines. Here some specific conditions are given for calculation:  

a) The radii of the draft curves are given  

curve1 =180 cm; 

curve2 =135 cm; 

curve3 =90 cm. 

b) Curve angles are 150º, 96º and 99º.  

c) Straight line measurements are 220 cm and 150 cm. And, 

α line1 = α curve1 

α line2 = β curve3  

d) Span length is preferred equal (a=b) as 60 cm.  

The problem is to design Arc-Miura pattern shelter according to the draft path and 

remove excessive plates and joints.  
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Figure 62. Draft Path of the Example Problem. 

 

            Following steps include solution of the problem sequentially.   

1. Identify the vertex angles of curves 

            Defined parameters for the curves are written below 

 r1 = 180 cm;  

r2 = 135 cm;  

r3 = 90 cm, 

a=b=60 cm, 

            To calculate vertex angles radius formula is used. 

r = k sin γ / sin (180° - 2γ)                                               (3.18) 

Hence, indefinite parameters should be calculated, 

                                               γ = 90°−β+α (for β>α) 

                                               γ = 90°−α+β (for β<α)                                                     (3.15)  

                                               k =√ a2 + b2 – 2 ab cos (180°−2β)                                     (3.17)                 

            There are three different curves, so three different calculations are necessary. In 

the third chapter, angle relation with curve was described. Thus, if α is bigger than β the 

curve is convex, if not the curve is concave. In there, first and third curves are concave, 

second is convex. According to this condition, vertex angles are obtained for all types. 

In curve 1. (concave β>α) 

r = 180 cm 
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a = 60 cm    

β – α is accepted as 15º 

γ = 90°−β+α = 90°−α−15º+α = 75º 

k =√ a2 + b2 – 2 ab cos (180°−2β) = √ a2 + a2 – 2a2 cos (180°−2β)= √2a2 (1 − 

cos (180°−2β))= √7200 (1 − cos (180°−2β))= √7200 (1 + cos2β) 

       So with eq (3.10),  

             r = k sin γ / sin (180° - 2γ) 

180 = √7200 (1 + cos2β) sin 75º / sin 30º = √7200 (1 + cos2β) × 1.93 

93.26 = √7200 (1 + cos2β) 

              8698.2 = 7200 (1 + cos2β) 

0.21 = cos2β 

 

 

 

In curve 2. (convex α >β)  

r = 135 cm 

a = 60 cm 

α – β is accepted as 16º 

γ = 90°− α + β = 90°−β-16º+β = 74º     

k = √7200 (1 + cos2β) 

So with eq (3.10), 

r = k sin γ / sin (180° - 2γ) 

135 = √7200 (1 + cos2β) sin 74º / sin (180° - 2γ)        

5538.2055 = 7200 (1 + cos2β) 

cos2β = -0.231   

2β = 103°21' 21.431"  

 

 

             

             In curve 3. (concave β>α) 

r = 90 cm 

a = 60 cm 

β – α is accepted as 16º 30' 

β = 39º 22'  

α = β −15º = 24º 22' 

β = 51°40'  

α = β +16º = 67º 40'             
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γ = 90°−β+α = 90°−α−16º 30'+α = 73º 30' 

k = √7200 (1 + cos2β) 

       So with eq (3.10),  

             r = k sin γ / sin (180° - 2γ) 

90 =  √7200 (1 + cos2β) sin 73º 30' / sin 33º       

2613.2697 = 7200 (1 + cos2β) 

cos2β = -0.637   

2β = 129°34' 6.525" 

 

 

 

2. Identify number of the units and plates of curves 

            For curve 1. (β = 39º 22'; α = 24º 22' ), 

The angles of curve 1. is 150º. To identify unit number unit angle are necessary. 

θ = 180°−2γ                                                                     (3.16) 

θ = 180° −150º = 30º 

Pattern angle is 150º, so unit number is 

150º / θ = 150º / 30º = 5 

As described in third chapter, each unit has 4 plates. Plates number is obtained as  

A unit number ×  a unit plates = 5×4 = 20 

For curve 2. (β = 51º 40'; α = 67º 40'),  

θ = 180° −148º = 32º 

Pattern angle is 96º, so unit number is 

96º / θ = 96º / 32º = 3 

Plates number is obtained as  

A unit number ×  a unit plates = 3×4 = 12 

For curve 3. (β = 64º 47'; α = 48º 17' ), 

θ = 180° −147º = 33º 

Pattern angle is 99º, so unit number is 

99º / θ = 99º / 33º = 3 

Plates number is obtained as  

A unit number ×  a unit plates = 3×4 = 12 

3. Identify the vertex angles of lines 

β = 64°47'  

α = β −16º 30' = 48º 17' 
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            Given angle conditions is below, 

α line1 = α curve1 = 24º 22' 

α line2 = β curve3 = 64º 47' 

4. Identify number of the units and plates of lines 

            Defined parameters for the lines are written below 

l1 = 218,6 cm; l2 = 153.4 cm 

a = b = 60 cm 

α line1 = 24º 22'            

α line2 = 64º 47'      

            Unit length formula is used to obtain number of the units and plates. 

kssl = a sin (180°−2α) / sin α                                              (3.3) 

Hence,  

In line 1. 

kssl = a sin (180°−2α) / sin α = 60 × sin 131º 16'/ sin 24º 22' = 60 x 0.7516 

/ 0.4126 = 109.3 

In line 2. 

kssl = a sin (180°−2α) / sin α = 60 × sin 50º 26'/ sin 64º 47'= 60 × 0.771/ 

0.905 = 51.12       

            To identify unit number line length is divides by unit length. 

In line 1. 

l1/ k = 220/ 109.3 = 2.01 ~ 2  

In line 2. 

l2/ k = 150/ 51.12 = 2.93 ~ 3     

            Unit numbers of line1 and line2 are fractional numbers. To fold the example pattern 

number should be integer.  So, these fractions are simplified by rounding off. And, line 

lengths are changed (Figure 73). 

               Line 1.  2 × k = 218.6 

               Line 2.  3 × k = 153.4 

            Each unit has 4 plates. Plates number is obtained as 

In line 1.  

number of units ×  number of unit plates = 2×4 = 8 

In line 2. 

number of units ×  number of unit plates = 3×4 = 12 



 

 87 

 

5. Draw crease pattern 

            The example shelter has 5 pattern parts; line1, curve1, curve2, curve3, line2. These 

parts are drawn according to obtained vertex angles and defined parameters. Then 

mountain and valley folds are assigned (Figure 63-67).     

            Line1. Vertex angle of the line1 are 24º 22'. Span length is 60 cm. Line1 is 

composed of 8 plates. 

 

 

 

Figure 63. Curve1 Pattern. 

 

            Curve1. Vertex angles of the curve1 are α = 24º 22' and β = 39º 22'. Span length 

is 60 cm. Curve1 is composed of 20 plates. 

 

 

 

Figure 64. Curve3 Pattern. 

 

            Curve2. Vertex angles of the curve2 are α = 67º 40' and β = 51º 40'. Span length 

is 60 cm. Curve2 is composed of 12 plates. 

 

 

 

Figure 65. Curve2 Pattern. 

 

            Curve3. Vertex angle of the curve3 are α = 48º 17' and β = 64º 47'. Span length is 

60 cm. Curve3 is composed of 12 plates. 
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Figure 66. Curve3 Pattern. 

 

            Line2. Vertex angle of the line2 are α = 64º 47'. Span length is 60 cm. Line1 is 

composed of 12 plates.  

 

 

 

Figure 67. Line2 Pattern. 

 

            The parts are connected together in order to get whole pattern. To combine parts, 

β of previous parts is attached with α of next part. During this combination, different 

angles generate a problem. As a solution of the problem, last vertex angle of the previous 

part is accepted as α of next part. The change of α is only take up first plate. For the next 

plate current vertex angles continue (Figure 68).  

 

 

a) Parts before combination. 

 

 

b) Parts after combination. 

 

Figure 68. Combination of Different Parts. 
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            Whole pattern is composed of 64 plates (Figure 69). 

            Connected parts are multiplied in order to design its shelter. The full shelter is 

composed from 544 plates (Figure 70). 

6. Determining of the excessive links and joints 

∑plates = a× b                                                                  (4.4) 

∑j = a (b−1)+b (a−1)                                                       (4.5) 

In there, 

∑plates = 32× 17 = 544 

∑j = 17×31+32×16 = 1039 

7. Identify excessive rigid plates 

M = 3 (n−1) −2 j1 + qmax = 1                                            (4.6) 

1629 −2078 + qmax = 1 

qmax = 450 

            The system has 450 excessive plates.           

                                                             

8. Layout maximum excessive plates and joints           

q1 = qmax                                                                             (4.7) 

jq1 = 2 × qmax                                                                      (4.8) 

            In there, first and maximum excessive plate is 450, first excessive joint is 840 

(Figure 71). So, revise mobility calculation of the pattern, 

q1 = 450 

 j1 = 2×450 = 900 

450L900j 

M = 3((544−450)−1)−2 × (1039−900) = 279−278 = 1 

9. Layout 236th excessive plates and joints          

qn  = q1– 2(n−1)                                                               (4.14)  

jn  = j1– 3(n−1)                                                                 (4.16)  

Thus, 

q236 = q1–2(n−1) = 544–2(236−1) = 74 

j236 = j1– 3(n−1) = 1039– 3(236−1) = 334 

            236th excessive plates and joints can be expressed as 74L334j. 

10. Pickup the excessives 
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            First excessive plates and joints (450L900j) are indicated maximum excessive 

plates and joints. The excessives are removed from the pattern and the resulted simple 

pattern also has single DoF (Figure 71). 

            236th excessive plates and joints (74L334j) are removed from the pattern and the 

resulted pattern still has single DoF (Figure 72). To choose 74L334j,  74 plates and 296 

joints (four joints for each plates) are reduced firstly. However, 38 joints out of the 334 

are reduced without plates. 
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11. Fold the pattern   

According to the calculation, all given parameters of the problem are established 

(Figure 73).   

 

 

 

Figure 73. Folded Shelter. 

 

12. Vizualize the architectural origami shelter 

Designed n is proposed as a deployable roof. It is vizualized in the architectual softwares 

of the 3d MAX and Lumion (Figure 74). 

 

 

Figure 74. Shelter Visualizations. 

 

 

 

 

(cont. on next page) 

https://azerdict.com/english/compensate
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Figure 74. (cont.) 
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CHAPTER 6 

 

CONCLUSION 

 

In this thesis, Miura-Ori pattern and its derivations have been analyzed in 

geometric and mobility aspects.  

Studied derivations are Arc-Miura, Tapered-Miura and Tapered Arc-Miura 

patterns. The main differences between these patterns are around the vertex angles (α, β), 

span lengths (a, b) and tapered line (which creates taper angle ω).  

Behind the input parameters (α, β, a, b), several depended parameters are 

identified. By the changing input parameters, different geometries of the Miura-Ori pattern 

and its derivations are investigated. At the end of the geometric analysis, the patterns are 

drawn with Autocad and calculated with Excel in order to validate the study. 

Besides, twelve different Miura-Ori patterns’ mobility are analyzed with Grubler 

Kutzbach formula. Although the pattern is single DoF mechanism, studied six patterns 

give negative mobility results. Negative mobility results mean that there are excessive 

plates. Then fourteen different excessive placements are found in the six patterns. After 

all the research on the number and placement of excessive plates, two steps are developed 

to determine excessive plates and joints. First step is determining the first and nth term of 

a plates and joints for the patterns with Modified Grubler Kutzbach formula, and second 

step is using the Method of Double Arrangement (MoDA).  

 In the last chapter, in order to utilize geometrical and mobility analysis, example 

problem is proposed as an architectural origami shelter. The shelter is composed of five 

different Miura derivations. The geometry of the derivations are developed with given 

parameters. Later, number of excessive plates and joints of the shelter application were 

calculated and reduced according to the MoDA. 174th excessive alternative is found that 

there are 74 plates and 321 excessive joints. Introduced folded origami shelter is modelled 

in 3Ds Max and Lumion. 

 We suggest further research for the geometric analysis of partly deployed of 

Miura-Ori and its derivations. Also the research can be expanded with various rigid 

origami patterns. 
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