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ABSTRACT

CONTROL OF REDUNDANT ROBOT MANIPULATORS WITH TELEROBOTIC
APPLICATIONS

This thesis focuses on task-space control of kinematically redundant robot ma-

nipulators with telerobotic applications. The first aim is to design asymptotically stable

sub-task controllers for kinematically redundant robot manipulators subject to paramet-

ric uncertainties in their dynamics. Initially, a novel combined analysis of the task-space

tracking and sub-task controllers is performed for redundant robots having only one extra

degree of freedom. Next, an extended task-space controller is designed by integrating ma-

nipulator Jacobian with the sub-task Jacobian. Both controllers ensure task-space tracking

and sub-task objectives at the amount of redundant degree of freedom.

As the second aim, two robust control methods are proposed for task-space track-

ing of robot manipulators. First, a novel continuous robust controller is designed despite

dynamic model and Jacobian uncertainties to ensure asymptotic task-space tracking while

requiring measurements of joint positions and velocities. Then, a robust output feedback

controller is proposed to ensure ultimately bounded task-space tracking requiring neither

measurements of joint positions or velocities nor accurate knowledge of kinematic and

dynamic models.

The third aim is to develop a passive decomposition method for task-space control

of bilateral teleoperation systems. The proposed method ensures coordination of master

and slave robots while achieving a desired overall motion for the bilateral teleoperation

system. The proposed method is firstly considered for teleoperation systems consisting of

kinematically similar master and slave robots, then extended to be applicable to kinemat-

ically redundant teleoperation systems.

Simulation and experimental studies are performed to present the viability of the

proposed methods.
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ÖZET

ARTIK EKLEMLİ ROBOT KOLLARININ KONTROLÜ VE TELEROBOTİK
UYGULAMALARI

Bu tez çalışması kinematik olarak artık eklemli robot kollarının görev uzayında

denetlenmesi ve telerobotik uygulamaları üzerine odaklanmaktadır. İlk amaç kinematik

olarak artık eklemli robot kollarının dinamik modellerindeki parametrik belirsizliklerine

karşı asimptotik kararlı ikincil görev denetleyicileri tasarlamaktır. Öncelikle sadece bir

artık serbestlik derecesine sahip robot kollarının görev uzayında takip ve ikincil görev

denetleyicilerinin yeni bir birleştirilmiş analizi gerçekleştirilmektedir. Daha sonra ise

robot Jakobiyan’ına ikincil görev Jakobiyan’ı ekleyerek uzatılmış bir görev uzayı denet-

leyicisi tasarlanmaktadır. Her iki denetleyici de görev uzayı takibini ve artık eklem sayısına

kadar ikincil görev hedeflerini sağlamaktadır.

Bu tezin ikinci amacında robot kollarının görev uzayında denetlenmesi için iki

farklı gürbüz denetleyici yöntemi önerilir. Öncelikle eklem pozisyon ve hız bilgilerinin

ölçülebildiği durumda dinamik modeldeki ve Jakobiyan’daki belirsizliklere karşı görev

uzayı takibinde asimptotik kararlılık sağlayan yeni bir sürekli gürbüz denetleyici tasar-

lanmaktadır. Daha sonra ise ne eklem pozisyon ve hız bilgilerinin ölçülebildiği ne de

dinamik ve kinematik modelin tam olarak bilindiği durumda görev uzayı takibinde sınırlı

kararlılık sağlayan çıkış geri beslemeli bir gürbüz denetleyici önerilmektedir.

Bu tezin üçüncü amacı ise iki yönlü teleoperasyon sistemlerinin görev uzayında

denetlenmesi için pasif ayrıştırma yöntemi geliştirmektir. Önerilen yöntem iki yönlü tele-

operasyon sisteminin genel hareketini sağlarken ana ve bağımlı robotların koordinasyonu

da sağlanmaktadır. Önerilen yöntem öncelikle kinematik olarak benzer ana ve bağımlı

robotlara sahip teleoperasyon sistemleri için düşünülür ve daha sonra artık teleoperasyon

sistemleri için geliştirilmektedir.

Önerilen tüm yöntemlerin uygulanabilirliğini sunmak için benzetim ve deneysel

çalışmalar yapılmaktadır.
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Ĵ(θ) ∈ Rn×n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Estimated Jacobian matrix.

J̃(θ) ∈ Rn×n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Estimation error of Jacobian matrix.

h(t) ∈ Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Null–space controller.

ys(θ) ∈ R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sub–task function.

Js(θ) ∈ R1×n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sub–task Jacobian.

α,K,Kr,β ∈ Rn×n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control gain matrices.

ks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control gains.

V , V1, V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Non–negative Lyapunov functions.

λmin(·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Minimum eigenvalue of a matrix.

λmax(·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum eigenvalue of a matrix.

φ̂(t) ∈ Rp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Estimate of the uncertain parameter vector.

φ̃(t) ∈ Rp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parameter estimation error vector.

Γ ∈ Rp×p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Adaptation gain matrix.
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CHAPTER 1

INTRODUCTION

According to the tracking control objective being aimed in joint level or end–

effector level, the controllers are classified as joint–space control and task–space control.

1.1. Joint–space Versus Task–space Control

The control objective in joint–space is to develop a feedback controller such that

joint positions θ(t) of a robot manipulator tracks desired joint positions, denoted by θd(t).

As shown in Figure 1.1, firstly, joint–space tracking error is formulated by comparing the

desired joint positions with joint positions. Then, the feedback controller determines the

joint torques, denoted by τ (t), necessary to move the joints of the robot manipulator along

the desired joint trajectories Siciliano and Khatib (2008).

Figure 1.1. Joint–space control method.

If the desired motion of the robot manipulator is defined in task–space, the de-

sired end–effector position, denoted by xd(t), is converted to the desired joint position

by utilizing the inverse kinematics, then after designing the joint–space controller, the

joint positions are obtained from the robot manipulator. When the end–effector position

cannot be measured, it can be calculated via using forward kinematics. This is called in-

direct task–space control method. However, this indirect method requires the calculation

of inverse kinematics of the robot manipulator at the position level.

The control objective for many robotic applications is usually described in the

task–space where the relationship between the robot and external objects is relevant. The
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main goal of task–space control is to design a feedback controller that allows execution

of an end–effector pose, denoted by x(t), that tracks the desired end–effector pose xd(t).

Specifically, the direct task–space controller employs a feedback loop that directly

minimizes task errors without requiring the solution of inverse kinematics at the position

level, and aims to achieve the tracking of a given desired end–effector trajectory. The

flow diagram of direct task–space controller is given in Figure 1.2. A good review on

comparing task–space controllers from both theoretical and empirical perspectives can be

found in Siciliano and Khatib (2008) and Nakanishi et al. (2008). While in the literature,

the term task–space is alternatively named as operational–space, Cartesian space or end–

effector space, in this thesis, the term task–space is preferred.

Figure 1.2. Task–space control method.

A robot manipulator is kinematically non–redundant when the dimension of the

joint–space (i.e., n) is equal to the dimension of the task–space (i.e., m). When n > m,

a robot manipulator is called kinematically redundant and there exists n −m redundant

degree of freedom (dof). In an alternative definition, a robot manipulator is called to be

kinematically redundant when the number of dof is greater than the number of variables

necessary to describe a given task. Robot manipulators with a much larger number of

joints than the dimension of its task–space (n� m) are often called hyper redundant.

For kinematically redundant robot manipulators, the redundancy problem becomes

challenging due to an infinite number of inverse kinematic solutions Hsu et al. (1989),

Nakamura (1991), Nenchev (1989), Conkur and Buckingham (1997). While this may

complicate the control design, after utilizing joint motion in the null–space of the Ja-

cobian matrix, these redundant dof allow the robot manipulator to execute secondary

sub–tasks (such as manipulability, joint limit avoidance, obstacle avoidance, limiting the

impact force, minimizing potential energy).

Both joint–space and task–space controllers may be designed via utilizing linear

controllers or nonlinear controllers Lewis et al. (1993), Lewis et al. (2003). In the litera-

ture, there are many nonlinear control methods that guarantee stability of the robot manip-
2



ulator and ensure joint–space or task–space tracking of a desired trajectory Dawson et al.

(1995), Lewis et al. (2003), Dixon (2003), Khalil (2015). In order to exactly cancel the

nonlinear effects, exact model knowledge controllers may be designed An et al. (1988).

When there are structured/parametric uncertainties in the robot kinematic and/or dynamic

models, adaptive controllers utilizing estimation methods can be developed Krstic et al.

(1995), Ioannou and Sun (1996). In the presence of unstructured uncertainties associated

with the robot dynamics, model free robust controllers can be designed Abdallah et al.

(1991), Qu and Dawson (1995), Sage et al. (1999). These nonlinear control methods

can be classified as full state feedback control and output feedback control depending

on the availability of joint position and velocity measurements. Full state feedback con-

trollers require measurements of both joint positions and joint velocities. On the other

hand, output feedback controllers are designed under the restriction that only joint posi-

tion measurements being available.

1.2. Teleoperation Systems

In a teleoperation system, a master robot handled by a human operator in a lo-

cal station sends commands to a slave robot in a distance station and receives feedback

from the remote environment. The teleoperation system allows the human operator to

perform particular tasks in the remote environment where it is unreachable, expensive,

dangerous or unfeasible to execute the tasks by a human operator. There are many im-

portant application areas of teleoperation systems such as space technologies, underwater

explorations, telesurgery, handling of nuclear or hazardous materials, military operations

or mine searches Sheridan (1992).

According to the choice of transmitted inputs, teleoperation systems can be clas-

sified as unilateral or bilateral. In unilateral teleoperation systems, there is only one way

of information transmission between master and slave systems and no force feedback is

available from the slave system. As shown in Figure 1.3, while the slave robot is perform-

ing the task commanded by the human operator in the remote environment, if the contact

force information is reflected back to the operator (via visual, audio, kinesthetic or haptic

feedback) through the master robot, this is named as bilateral teleoperation Hokayem and

Spong (2006).
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Figure 1.3. Flow diagram of a bilateral teleoperation system.

1.3. Literature Review on Task–space Control of Robot

Manipulators

Some of the earlier research have relied on accurate knowledge of robot kine-

matic and dynamic models. For task–space tracking control of robot manipulators, Khatib

(1983) proposed a control method based on the dynamic model of a manipulator in task–

space. Assuming that the exact knowledge of the robot dynamics is known Hsu et al.

(1989) presented a dynamical feedback linearizing controller that ensures task–space

tracking and enables the self motion of the manipulator flow along the projection of a

given arbitrary vector field. Zergeroglu et al. (2000) and Zergeroglu et al. (2004) designed

an exact model knowledge controller that guarantees exponential task–space tracking.

Xian et al. (2004) developed a quaternion based exact model knowledge controller that

achieved asymptotic task–space tracking.

From a theoretical point of view, when robot kinematics or dynamics are subject

to structured uncertainties, adaptive control techniques can be utilized. In view of this,

several works addressed adaptive task–space tracking control to deal with kinematic un-

certainties. Cheah et al. (1999) proposed a proportional integral derivative controller for

robot manipulators having an uncertain Jacobian matrix. Cheah et al. (2000) proposed

an approximate Jacobian control method for set point control of robots with kinematic

uncertainties. Cheah (2003) proposed an adaptive law to estimate the uncertain kinematic

model parameters for the approximate Jacobian method of Cheah et al. (2000). With-

out requiring the task–space velocity and the inverse of the approximate Jacobian matrix,

Cheah et al. (2003) and Cheah et al. (2004) proposed an approximate Jacobian controller

for robot manipulators having uncertainties in kinematics and in Jacobian. Cheah (2008)

presented approximate transpose Jacobian and inverse Jacobian methods for set point

control of non–redundant robots with parametric uncertainties in kinematics. Adaptive

controller formulations to deal with dynamical uncertainties were also presented in sev-
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eral works. Luo and Ahmad (1997) developed an adaptive control method for redundant

robots by estimating uncertain parameters of dynamic model. Yazarel and Cheah (2002)

proposed an adaptive task–space controller for set point control of robots with uncertain-

ties in kinematics and in gravitational terms. Zergeroglu et al. (2000) and Zergeroglu

et al. (2004) designed an adaptive controller that achieves asymptotic task–space tracking

despite parametric uncertainties associated with the dynamic model. Tee and Yan (2011)

presented an adaptive task–space controller for redundant robots by considering time–

varying uncertainties and without knowledge of their bounds. Tatlicioglu et al. (2005)

and Tatlicioglu et al. (2008)(a) developed a quaternion based adaptive full–state feedback

controller for redundant robot manipulators with parametric uncertainties in their dynamic

model. Tatlicioglu et al. (2008)(b) and Tatlicioglu et al. (2009) designed an adaptive feed-

back linearizing controller to compensate for the parametric uncertainties in dynamics.

While different research problems were solved in the aforementioned past works,

nearly all of them required the parametric uncertainties associated with the robot dy-

namics to meet the linear in parameter property. To deal with unstructured uncertainties,

robust control techniques can be utilized. In robust control literature Dawson et al. (1993),

Qu and Dawson (1995), Sage et al. (1999), Ozbay et al. (2008), two methods are common,

namely, variable structure type controllers and high gain controllers. Variable structure

controllers usually require the use of switching functions, like the signum function, in

their design, making most of them to be discontinuous. On the other hand, high gain

controllers cannot ensure asymptotic tracking. A robust adaptive controller for kinemati-

cally redundant robot manipulators was presented in Colbaugh and Glass (1995). Using

extended task–space formulation, a compliant motion controller was proposed by Peng

and Adachi (1993). Zergeroglu et al. (2006) and Sahin et al. (2006) developed a robust

controller that achieves uniformly ultimately bounded end–effector and sub–task tracking

despite the parametric uncertainties associated with the dynamics and additive external

disturbances. Braganza et al. (2006) and Kapadia et al. (2008) developed robust task–

space tracking controllers for kinematically redundant robot manipulators in the presence

of unstructured uncertainties while achieving different sub–task objectives. As a subclass

of robust controllers, learning controllers also deal with unstructured uncertainties. For

robot manipulators with periodic desired end–effector trajectory, Dogan et al. (2015) de-

veloped a task–space learning controller that ensures asymptotic task–space tracking by

learning the uncertainties associated with the robot dynamics.

While full state feedback controllers require joint position and joint velocity mea-

surements, output feedback controllers do not require joint velocity measurements. For
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task–space tracking control of redundant robot manipulators, Zergeroglu et al. (2000) and

Zergeroglu et al. (2004) designed an exact model knowledge output feedback controller

that eliminates joint velocity measurements via a model based joint velocity observer.

Xian et al. (2004) proposed a quaternion–based output feedback controller in conjunc-

tion with a joint velocity observer for task–space tracking control of non–redundant robot

manipulators.

1.4. Literature Review on Sub–task Control of Kinematically

Redundant Robot Manipulators

The research on kinematically redundant robot manipulators has been active for

quite a long time. This is mostly due to the fact that the design and implementation of

some of the relatively simple problems for conventional robotic manipulators, such as path

planning or dynamic control, might become quite hard when kinematic redundancy has

to be taken into account. For redundancy resolution in task–space control, in the literature

Siciliano and Khatib (2008), there are two main methods as pseudo–inverse Jacobian and

extended Jacobian methods. Khatib (1983) proposed an exact model knowledge control

method for redundant robot manipulators by using pseudo–inverse of the Jacobian matrix.

A configuration control approach in which the end–effector motion is augmented with

sub–tasks was proposed in Baillieul (1985) and Seraji (1989).

Since there are an infinite number of joint configurations for any given end–

effector pose of redundant robot manipulator Walker (1994), among all the possible con-

figurations some can be preferred Nenchev (1989) while performing a desired task. One

way of obtaining a preferred configuration at joint level is through the use of secondary

functions. Examples to this are presented in Yoshikawa (1994) for maximizing the ma-

nipulability, in Seraji (1991) for minimizing joint velocities and joint accelerations, in

Walker (1994) for reducing impact forces, in Kapadia et al. (2008) for obstacle avoidance

in unstructured environment, in Braganza et al. (2006) for grasping, in Tatlicioglu et al.

(2009) for joint limit avoidance, in Tatlicioglu et al. (2008)(a) for minimizing potential

energy. The secondary tasks or sub–tasks are usually utilized as an add–on to the main

task–space control objective Xian et al. (2004)(a), Nakanishi et al. (2008). Recently, there

has been some work on the use of secondary task formulation for kinematically redundant

robot manipulators that obtained practical sub–task tracking as in Tatlicioglu et al. (2005),

Tatlicioglu et al. (2008)(a), Tatlicioglu et al. (2008)(b), and Tatlicioglu et al. (2009).
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1.4.1. Literature Review on Passive Decomposition Based Control of

Bilateral Teleoperation Systems

As detailed in the literature survey of Hokayem and Spong (2006), during the last

six decades, an excessive amount of research has been carried out on bilateral teleopera-

tion. According to the literature, many control methods have been developed that focus

on stability, transparency and time delay in bilateral teleoperation systems. In addition,

passivity of the teleoperator system or in other words, safety of both the human operator

and the remote environment is also a critical issue in several teleoperation applications

that requires contact (such as remote robotic surgery). In order to ensure safe interaction

of human operator with master robot and slave robot with remote environment, controllers

that target coordination of master and slave robots while ensuring passivity of the overall

teleoperation system are designed. Several passivity based control methods have been

developed for bilateral teleoperation Hashtrudi-Zaad and Salcudean (2001), Nuno et al.

(2011), Li and Lee (2000), Lee and Li (2002a), Lee and Li (2002b), Lee and Li (2003),

Lee and Li (2007). Among these past works, passive decomposition approach proposed

by Li and Lee (2000), Lee and Li (2002a), Lee and Li (2002b), Lee and Li (2003), Lee

and Li (2007) achieved both passivity and stability of the overall closed-loop teleoper-

ation system. In general, passive decomposition approach achieves energetic passivity

by decomposing the bilateral teleoperation system into two subsystems namely as shape

and locked subsystems. The shape subsystem quantifies the coordination between mas-

ter and slave robots, while the locked subsystem determines the overall motion of the

closed-loop teleoperation system. Li and Lee (2000) proposed a passive feedforward ap-

proach for linear dynamically similar teleoperation systems. Later, Lee and Li (2002a),

Lee and Li (2002b), and Lee and Li (2003) extended the proposed approach for dynami-

cally dissimilar nonlinear teleoperated manipulators with power scaling. However, all of

these passive decomposition methods were applied to kinematically similar teleoperated

manipulators for joint–space control.
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1.5. Contributions, Comparisons and Advantages of the Proposed

Methods

The first aim of this thesis is to design a task–space controller fused with a novel

sub–task controller that achieves asymptotic task–space tracking with asymptotic sub–

task tracking, as opposed to the asymptotic end–effector tracking with practical sub–task

tracking results presented in the literature. Zergeroglu et al. (2000) and Zergeroglu et al.

(2004) designed an adaptive controller that achieved asymptotic task–space tracking with-

out integrating the sub–task objective into the stability analysis. Later Tatlicioglu et al.

(2005) and Tatlicioglu et al. (2008)(a) addressed this issue by designing a quaternion

based adaptive controller that achieved asymptotic tracking in the task–space with sys-

tematic integration of the sub–task objective into the stability analysis. Different from the

previously proposed controllers of Tatlicioglu et al. (2005) and Tatlicioglu et al. (2008)(a),

the proposed methodology includes a new term that depends on the sub–task function and

its partial derivative with respect to the joint positions. This new term allowed us to con-

duct a combined stability analysis for both task–space tracking and sub–task objective. A

novel Lyapunov function including square of the scalar sub–task function is then intro-

duced. Exponential stability of the exact model knowledge and asymptotic stability of the

adaptive controller that compensates for parametric uncertainties in the robot dynamics

are then ensured via Lyapunov type arguments. When compared to the previous works

of Zergeroglu et al. (2000), Zergeroglu et al. (2004), Tatlicioglu et al. (2005) and Tatli-

cioglu et al. (2008)(a), the null–space component of both controllers achieves asymptotic

sub–task tracking in addition to asymptotic task–space tracking.

Although the first aim of this thesis was accomplished, only one sub–task function

can be achieved due to the proposed methodology being applicable to robots with one

redundant dof (i.e., n−m = 1). The second motivation arises from the need for applying

the same method to redundant robots with more than one redundant dof (i.e., n − m >

1). As another method, an extended task–space formulation is designed by integrating

the manipulator Jacobian matrix with the sub–task Jacobian matrix. Additional sub–task

functions, that depend on the joint positions and have equality constraints, are properly

chosen up to the amount of the redundant dof. For the task–space tracking objective,

an adaptive controller is designed in order to compensate for parametric uncertainties in

the robot dynamics. Asymptotic stability of the designed controller is then ensured via

Lyapunov type arguments. This method presents a major improvement to the literature in

the sense that multiple sub–task objectives can be performed simultaneously along with
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the main task–space objective. In addition, the performance of the proposed extended

task–space formulation is experimentally validated using a planar 3 dof redundant robot

manipulator. For the sub–task objective in the experiments, inspired from Buckingham

and Graham (2005), a novel sub–task function is developed to ensure that a fixed laser or

optic camera on the first joint accurately tracks the end–effector of the manipulator.

Proposed adaptive controllers compensate for only parametric uncertainties in

robot dynamics. Next, dealing with unstructured uncertainties associated with kinematic

and/or dynamic models is aimed. Two different control methods are proposed for robust

task–space tracking control of robot manipulators. In the first method, in a novel depar-

ture from the existing results in the literature, task–space tracking control problem of robot

manipulators under the additional restrictive constraints of dynamic model being subject

to unstructured uncertainties and parametric kinematic uncertainties is tackled via a con-

tinuous robust controller scheme. Specifically, a continuous robust controller is designed

to ensure asymptotic task–space tracking despite the presence of unstructured uncertain-

ties associated with the dynamical terms while also dealing with parametric kinematic

uncertainties. Integral of signum of an auxiliary error term is utilized in the design of the

control input to ensure continuous actuation. The control design is based on Lyapunov

based synthesis and analysis techniques, and asymptotic stability of the task–space track-

ing error is guaranteed. Experiments conducted on PHANToM Omni Haptic device are

presented to demonstrate the feasibility and the performance of the robust controller.

While the above robust controller ensures asymptotic task–space tracking while

dealing with unstructured uncertainties, it requires both joint position and velocity mea-

surements. Next, a robust observer based output feedback controller is proposed to deal

with unstructured uncertainties in both kinematic and dynamic models. Robust output

feedback approach inspired by the works Seshagiri and Khalil (2005) and Chen et al.

(2008) is adapted to task–space tracking control of robot manipulators. Under mild as-

sumptions on both kinematics and dynamics of the robot manipulator, uniformly, ulti-

mately bounded task–space tracking is ensured without requiring neither measurements

of joint positions or velocities nor accurate knowledge of kinematic and dynamic models.

Numerical simulations and experimental studies are performed to present the viability of

the proposed controller.

A close review of the literature on passive decomposition based control of bilateral

teleoperation systems highlighted the fact that they were restricted to joint–space control

of teleoperation systems consisting of kinematically similar master and slave robots. To

address this open research problem, firstly, a passive decomposition controller is designed
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for task–space control of a 2n dof teleoperation system consisting of kinematically similar

n dof master and slave robots. The error system is formed as the difference between the

end–effector poses of master and slave robots while a desired trajectory is to be tracked.

The proposed approach is based on availability of exact model knowledge of kinematic

and dynamic models, and full-state feedback with force sensing from master and slave

robots. A simulation study is performed to illustrate the performance of the proposed

controller. In the simulation study, both human force on master robot and environmental

force acting on slave robot are virtually modeled.

Since the previous study of the passive decomposition based task–space control

considers only kinematically similar teleoperated manipulators, next, a non–redundant

master robot and a kinematically redundant slave robot are considered to be the subsys-

tems of the bilateral teleoperation system. So, the control problem is complicated by the

slave robot having more dof than the master robot. The control problem is formed as

end–effector tracking in accordance with the previous study on passive decomposition.

Since the slave robot has redundant dof, these redundant dof can be utilized to meet some

secondary objectives. Considering an n1 + n2 dof redundant teleoperation system con-

sisting of an n1 dof non-redundant master robot and an n2 dof redundant slave robot (with

n2 > n1), in task–space, the closed-loop teleoperation system is decomposed into two n1

dof subsystems as shape and locked subsystems by utilizing a non-square decomposition

matrix. A task–space controller is then designed. The controller ensures that the end–

effector of the slave robot tracks the end–effector of the master robot while obtaining a

desired overall motion for the closed-loop teleoperation system. The n2 − n1 redundant

dof in the slave robot are made use of via the design of a null–space controller. Specifi-

cally, to solve the redundancy resolution, the pseudo–inverse Jacobian method in Siciliano

(1990) is utilized. Experimental studies are conducted to illustrate the performance of the

proposed control approach.

The main contributions of this thesis are:

• The first asymptotically stable task–space controller with asymptotically stable

sub–task controller is designed. The analysis of two task–space controllers (one

exact model knowledge and one adaptive) are presented for redundant robot ma-

nipulators which has only one redundant dof. The proposed combined stability

analysis is novel when compared to the existing literature on control of redundant

robot manipulators.

• For redundant robot manipulators having more than one redundant dof, an extended

task–space formulation is designed by integrating the manipulator Jacobian matrix
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with the sub–task Jacobian matrix. This method presents a major improvement

to the relevant literature in the sense that multiple sub–task objectives can be per-

formed simultaneously along with the main task–space tracking objective.

• A new robust task–space controller is designed that ensures asymptotic task–space

tracking despite unstructured uncertainties in the robot dynamics and parametric

uncertainties in the kinematic model on the velocity level. As opposed to most

variable structure controller forms, the designed robust controller is continuous,

and asymptotic tracking is ensured.

• A robust observer based output feedback controller is proposed without requiring

measurements of joint positions and velocities and without the need of accurate

knowledge of kinematics and dynamics of the robot manipulator. Only the end–

effector position measurements are used thus a simple control structure is designed

with minimum requirements. The proposed robust output feedback controller en-

sures uniformly, ultimately bounded task–space tracking while dealing with uncer-

tainties in both kinematic and dynamic models. When compared to the previous

robust task–space controllers in the literature, this is one of the few robust and out-

put feedback task–space controllers that achieves practical task–space tracking.

• Passive decomposition approach is proposed for task–space control of bilateral tele-

operation systems for the first time in the literature.

• The passive decomposition approach is extended for task–space control of bilateral

teleoperation systems having kinematically redundant slave robot.

In Table 1.1, a comparison of the proposed task–space controllers in Chapters 3 - 6

is given. The comparison is based on the amount of dynamic model and Jacobian knowl-

edge required by the controller and the availability of the state measurements needed to

implement the controller. As can be seen from Table 1.1, the design of the controllers have

a flow where lesser amount of model knowledge and sensory information are required.

The results in this thesis are presented in the following publications:

• K. Cetin, E. Tatlicioglu, and E. Zergeroglu, "On Null–Space Control of Kinemati-

cally Redundant Robot Manipulators", European Control Conference, pp. 678-683,

Aalborg, Denmark, 2016.

• K. Cetin, E. Tatlicioglu, and E. Zergeroglu, "Pseudo–Inverse Free Control of Kine-

matically Redundant Robot Manipulators with Sub–task Control", Journal of Intel-

ligent and Robotic Systems, 2016, under review.
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Table 1.1. Comparison of the proposed task–space control methods.

Task–space
Control
Methods

Required Model Knowledge Required
MeasurementsDynamic Model Jacobian

Full Partial None Full Partial None Position Velocity
EMK FSFB X X X X
Adaptive FSFB X X X X
Robust FSFB X X X X
Robust OFB X X X

• K. Cetin, E. Tatlicioglu, and E. Zergeroglu, "Continuous Robust Task–Space Track-

ing Control of Robotic Manipulators with Uncertain Dynamics", IEEE Multi - Con-

ference on Systems and Control, pp. 312-317, Sydney, Australia, 2015.

• K. Cetin, E. Tatlicioglu, and E. Zergeroglu, "Task–Space Tracking Control of Robotic

Manipulators with Uncertain Dynamic and Kinematic Terms: A Continuous Robust

Approach", Robotica, 2016, under review.

• K. Cetin, E. Tatlicioglu, and M. Deniz, "Task–space Tracking Control of Robot

Manipulators with Uncertain Dynamics and Kinematics: Robust Output Feedback

Approach", Journal of Intelligent and Robotic Systems, 2016, under review.

• E. Tatlicioglu and K. Cetin, "Passive Decomposition: A Task–space Control Ap-

proach", TrC IFToMM Symposium on Theory of Machines and Mechanisms, pp.

615-618, Izmir, Turkey, 2015.

• K. Cetin and E. Tatlicioglu, "Passive Decomposition Approach for Redundant Tele-

operation Systems in Task–Space Control", Journal of Intelligent and Robotic Sys-

tems, 2016, under review.

1.6. Organization of This Thesis

The rest of the thesis is organized as follows. In Chapter 2, an overview of math-

ematical models of robot manipulators is explained. Then, the kinematic and dynamic

models of the robot manipulators utilized in the numerical studies are presented. In Chap-

ter 3, two task–space tracking controllers (one exact model knowledge and one adaptive)

with a novel sub–task controller are developed for redundant robot manipulators which

have only one redundant dof. In Chapter 4, the sub–task control design in Chapter 3 is
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advanced to redundant robot manipulators having more than one redundant dof where an

adaptive task–space controller is designed in order to compensate for parametric uncer-

tainties in the robot dynamics. In Chapter 5, a novel continuous robust controller formu-

lation is developed for robot manipulators having unstructured uncertainties in the robot

dynamics and parametric uncertainties in the Jacobian. In Chapter 6, a robust observer

based output feedback approach is proposed for task–space tracking control of robot ma-

nipulators in the presence of unstructured uncertainties in both kinematic and dynamic

models. In Chapter 7, passive decomposition method is developed for task–space con-

trol of bilateral teleoperation consisting kinematically similar non–redundant master and

slave robots. In Chapter 8, the results in Chapter 7 are advanced to task–space control of

kinematically redundant teleoperation systems consisting of a non–redundant master and

a redundant slave robots. In Chapter 9, the proposed approaches in this thesis are sum-

marized and compared to the literature. Finally, open problems and research directions

related to the studies in this thesis are presented as possible future works.
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CHAPTER 2

MODELING OF ROBOT MANIPULATORS

This chapter sets the stage for this thesis by providing an overview of mathe-

matical models of robot manipulators. Then the specifications of the robot manipulators

utilized in the numerical studies are presented by giving their kinematic and dynamic

models.

2.1. Mathematical Models of Robot Manipulators

In this section, kinematic models of non–redundant and redundant robot manipu-

lators are presented. Then, dynamic models of the robot manipulators are provided along

with model properties.

2.1.1. Kinematic Model

Robot kinematics concern the relationship between the dimensions and connectiv-

ity of kinematic chains and the position, velocity and acceleration of each of the joints of

the robot manipulator. The formulation of the kinematics relationship between joint posi-

tions and end–effector pose of the robot manipulator allows the study of the forward/direct

kinematics and the inverse kinematics. Forward kinematics compute the pose of the end–

effector using the specified positions of the joints; on the other hand, inverse kinematics at

the position level compute the joint positions from the specified pose of the end–effector.

2.1.1.1. Kinematic Models of Kinematically Non–redundant Robot

Manipulators

The end–effector pose of a non–redundant robot manipulator, denoted by x(t) ∈
Rn, is obtained as a function of the joint position vector θ(t) ∈ Rn as

x = f(θ) (2.1)
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where f : Rn → Rn is the transformation representing the forward kinematics of the

non–redundant robot manipulator. Differentiating (2.1) with respect to time yields

ẋ = Jθ̇ (2.2)

where ẋ(t) ∈ Rn is the task–space velocity vector and the Jacobian matrix of the non–

redundant robot manipulator J(θ) ∈ Rn×n is defined as

J(θ) ,
∂f(θ)

∂θ
. (2.3)

The inverse kinematics of the non–redundant robot manipulator can be obtained

as Dawson et al. (1995)

θ = f̄(x) (2.4)

where f̄ : Rn → Rn is the inverse kinematics. The time derivative of (2.4) can be written

in the form

θ̇ = J−1(x)ẋ (2.5)

where J−1(x) , ∂f̄
∂x
∈ Rn×n is the inverse Jacobian matrix. It is considered that by using

(2.1) and (2.4), the task–space position x and the joint position θ can be written in terms

of each other then both J−1(x) and J−1(θ) will be used interchangeably in the rest of

this thesis.

In Figure 2.1, a 2 dof planar RR (revolute joint) robot manipulator is given as

an example of a non–redundant robot manipulator. Using forward kinematics, its end–

effector position in X and Y axes can be obtained as

x =

[
X

Y

]
=

[
l1 cos(θ1) + l2 cos(θ1 + θ2)

l1 sin(θ1) + l2 sin(θ1 + θ2)

]
(2.6)

where l1 and l2 are the first and second link lengths of the robot manipulator, respectively.

Based on the above forward kinematics, the manipulator Jacobian is obtained as

J =

[
−l1 sin(θ1)− l2 sin(θ1 + θ2) −l2 sin(θ1 + θ2)

l1 cos(θ1) + l2 cos(θ1 + θ2) l2 cos(θ1 + θ2)

]
. (2.7)

For the 2 dof robot manipulator in Figure 2.1, given the position of the end–

effector, the joint positions can be calculated as follows

θ2 = arctan(sin θ2, cos θ2) (2.8)

θ1 = arctan(sin θ1, cos θ1) (2.9)
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Figure 2.1. 2 dof RR planar robot manipulator.

where

cos(θ2) =
X2 + Y 2 − l21 − l22

2l1l2
(2.10)

sin(θ2) = ±
√

(1− cos2 θ2) (2.11)

cos(θ1) =
Y − (l1 + l2 cos θ2) sin θ1

l2 sin θ2
(2.12)

sin(θ1) =
Y (l1 + l2 cos θ2)−X(l2 sin θ2)

(l1 + l2 cos θ2)2 + (l2 sin θ2)2
. (2.13)

2.1.1.2. Kinematic Models of Kinematically Redundant Robot

Manipulators

The end-effector position of an n dof redundant robot manipulator, denoted by

x(t) ∈ Rm, is obtained as follows

x = f(θ) (2.14)
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where f : Rn → Rm denotes the forward kinematics where n > m. The first–order

differential kinematic relationship between end-effector velocities and joint velocities can

be obtained as

ẋ = J(θ)θ̇ (2.15)

where Jacobian matrix J(θ) ∈ Rm×n is defined as

J(θ) ,
∂f(θ)

∂θ
. (2.16)

While the first–order differential kinematics relates task–space velocities to joint–space

velocities, the second–order differential kinematics provides a relationship between ac-

celerations as follows

ẍ = J̇(θ)θ̇ + J(θ)θ̈. (2.17)

The Jacobian, which is always a function of the configuration of the robot ma-

nipulator, describes the linear mapping from the joint velocity space to the task velocity

space. The range space of J(θ) is the sub–space R(J) ∈ Rm of end–effector velocities

that can be generated by the joint velocities for the given robot manipulator configura-

tion. The null space of J(θ) is the sub–space N (J) ∈ Rn of joint velocities that do not

produce any end–effector velocity for the given robot manipulator configuration. If the

Jacobian has full rank, then dimR(J) = m and dimN (J) = n−m are obtained, and the

range space of J(θ) spans the entire Rm. That is, any joint velocity in the null space of

the manipulator Jacobian will not affect the task velocity. Since this motion of the joints

is not observed in the task-space, it is referred to as self-motion. These extra dof allow

the robot manipulator to perform more dexterous manipulation and/or provide the robot

manipulator with increased flexibility for execution of sophisticated sub–tasks.

For a kinematically redundant robot manipulator, since Jacobian is not a square

matrix (n > m), its pseudo–inverse, denoted by J+(θ) ∈ Rn×m, can be defined as

J+ , JT (JJT )−1 (2.18)

which satisfies

JJ+ = Im (2.19)

where Im ∈ Rm×m denotes the m × m identity matrix. The pseudo–inverse of the

Jacobian defined by (2.18) satisfies the Moore-Penrose Conditions given below Nakamura

(1991)

JJ+J = J , J+JJ+ = J+, (J+J)T = J+J , (JJ+)T = JJ+. (2.20)
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In addition to the above properties, the matrix (In − J+J) represents the orthogonal

projection matrix into the null space of the Jacobian and satisfies the following useful

properties

(In − J+J)(In − J+J) = In − J+J (2.21)

(In − J+J)T = In − J+J (2.22)

J(In − J+J) = 0m×n (2.23)

(In − J+J)J+ = 0n×m (2.24)

where In ∈ Rn×n denotes the n× n identity matrix, 0m×n ∈ Rm×n and 0n×m ∈ Rn×m

are zero matrices.

Redundancy resolution is one of the most important problems for kinematically

redundant robot manipulators when finding joint position θ(t) for given end–effector po-

sition x(t). The redundancy resolution problem (or inverse kinematics problem) can be

solved by inverting either the direct kinematics in (2.14) or the first–order differential

kinematics in (2.15) or the second–order differential kinematics in (2.17) Siciliano and

Khatib (2008). The conventional solution to the first–order differential kinematics in

(2.15) can be expressed by using pseudo–inverse of the Jacobian in (2.18) as

θ̇ = J+ẋ+ (In − J+J)θ̇N (2.25)

where θ̇N (t) ∈ Rn is an arbitrary joint velocity vector. The second term at the right–hand

side of (2.25) is a null–space velocity. After setting θ̇N = 0n×1, the minimum norm

velocity solution of (2.15) is obtained as

θ̇ = J+ẋ. (2.26)

As for the second–order differential kinematics in (2.17), the conventional pseudo–inverse

type solution can be formulated as

θ̈ = J+(ẍ− J̇ θ̇) + (In − J+J)θ̈N (2.27)

where θ̈N (t) ∈ Rn is an arbitrary joint acceleration vector. Choosing θ̈N = 0n×1, the

minimum norm acceleration solution of (2.17) is obtained as

θ̈ = J+(ẍ− J̇ θ̇). (2.28)

In the subsequent chapters, during the control development, the common assump-

tion that the minimum singular value of the Jacobian matrix, denoted by σm, being

greater than a known small positive constant ζj > 0, such that max{‖J−1(θ)‖} or
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max{‖J+(θ)‖} is known a priori, will be utilized and all kinematic singularities are

always avoided. The kinematic terms J(θ) and J−1(θ) or J+(θ) are functions of θ(t) as

arguments of trigonometric functions, and hence, remain bounded for all possible θ(t). It

is considered that J(θ), J−1(θ) or J+(θ) are second order differentiable, and J̇ , J̈ , J̇−1,

J̇+, J̈−1, J̈+ ∈ L∞ provided their arguments are bounded.

Property 1 The velocity kinematics in (2.2) is linearly parameterizable in the sense that

Jθ̇ = Wjφj (2.29)

where Wj(θ, θ̇) ∈ Rn×p denotes a known regression matrix, and φj ∈ Rp denotes an

unknown constant parameter vector.

Property 2 The lower and upper bounds for each unknown parameter φj can be written

as follows

φ
ji
≤ φji ≤ φji (2.30)

where φji ∈ R denotes the ith component of φj ∈ Rp and φ
ji

, φji ∈ R denote the ith

components of lower and upper bounds φ
j
, φj ∈ Rp, respectively, which are defined as

follows

φ
j
,
[
φ
j1
, φ

j2
, . . . φ

jp

]T
(2.31)

φj ,
[
φj1, φj2, . . . φjp

]T
. (2.32)

2.1.2. Dynamic Model

Dynamic modeling of a robot manipulator concerns the derivation of the equa-

tions of motion of the robot manipulator as a function of forces and moments acting on

it. Specifically, a mapping is found between the forces and moments exerted on the robot

manipulator, and joint positions, velocities and accelerations. The availability of the dy-

namic model is very useful for mechanical design of the robot manipulator and choice of

actuators, testing and design of control strategies, and computer simulation of the motion

of the robot manipulator. Computer simulation of the motion of the robot manipulator

allows testing control strategies and motion planning techniques without using the ac-

tual system. Computation of the forces and torques required for the execution of typical

motions provides useful information for the design of joints, drivers and actuators.
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In the literature Spong and Vidyasagar (1989), mainly three formulations are used

to derive the dynamic model of robot manipulators: Lagrange, Hamilton and Newton-

Euler methods. Lagrange’s method uses derivations of kinetic and potential energies of

a robot manipulator. Hamilton’s method uses integrations of the changes in kinetic and

potential energies of a robot manipulator. Newton-Euler method uses the computation of

equation of motion through a recursive formulation.

Using Lagrange’s method, the dynamic model of an n dof revolute joint robot

manipulator can be described as Spong and Vidyasagar (1989)

M (θ)θ̈ +N (θ, θ̇, t) = τ (t) (2.33)

where θ(t), θ̇(t), θ̈(t) ∈ Rn are the joint position, velocity and acceleration vectors,

respectively, M (θ) ∈ Rn×n represents the generalized mass matrix, τ (t) ∈ Rn is the

control input torque, and the rest of the dynamical terms are combined inN (θ, θ̇, t) ∈ Rn

and can be defined as

N (θ, θ̇, t) = C(θ, θ̇)θ̇ +G(θ) + Fdθ̇ + τd (2.34)

where C(θ, θ̇) ∈ Rn×n represents centripetal–Coriolis effects, G(θ) ∈ Rn represents

gravitational effects, Fd ∈ Rn×n is the constant, positive–definite, diagonal, dynamic

frictional effects, τd(t) ∈ Rn is a bounded disturbance vector that represents other un-

modeled dynamics (e.g., static friction). The dynamic modeling terms in (2.33) and (2.34)

exhibit the following properties, assumptions and standard remarks which are employed

during control development and stability analysis in the subsequent chapters.

Property 3 The generalized mass matrix M(θ) is symmetric and positive–definite, and

satisfies the following inequalities Khatib (1983), Nicosia and Tomei (1990), Lewis et al.

(2003)

m1 ‖ξ‖2 ≤ ξTM(θ)ξ ≤ m2 ‖ξ‖2 ∀ξ ∈ Rn (2.35)

where m1, m2 ∈ R are known positive constants, and ‖·‖ denotes the standard Euclidean

norm. The induced infinity norm, denoted by ‖·‖i∞, of the inverse of the generalized mass

matrix is assumed to be bounded as∥∥M−1(θ)
∥∥
i∞ ≤ ζM (2.36)

where ζM ∈ R is a known positive constant.

Property 4 The generalized mass and centripetal–Coriolis matrices satisfy the following

skew symmetric relationship Khatib (1983), Nicosia and Tomei (1990), Lewis et al. (2003)

ξT [Ṁ(θ)− 2C(θ, θ̇)]ξ = 0 ∀ξ ∈ Rn. (2.37)
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Property 5 The dynamical terms can be linearly parametrized as Khatib (1983), Nicosia

and Tomei (1990), Lewis et al. (2003)

Y (θ, θ̇, θ̈)φ = M (θ)θ̈ +C(θ, θ̇)θ̇ +G(θ) + Fdθ̇ (2.38)

where Y (θ, θ̇, θ̈) ∈ Rn×p being the regression matrix, and φ ∈ Rp is the constant pa-

rameter vector.

Property 6 The dynamical terms can be upper bounded as Khatib (1983), Nicosia and

Tomei (1990), Lewis et al. (2003)∥∥∥C(θ, θ̇)
∥∥∥
i∞
≤ ζc1

∥∥∥θ̇∥∥∥ (2.39)

‖G(θ)‖ ≤ ζg (2.40)

‖Fd‖i∞ ≤ ζfd (2.41)

‖τd‖ ≤ ζd (2.42)

where ζc1, ζg, ζfd, ζd denote known positive bounding constants.

Property 7 The centripetal–Coriolis matrix satisfies the following switching relationship

Khatib (1983), Nicosia and Tomei (1990), Lewis et al. (2003)

C(θ, ξ)ν = C(θ,ν)ξ ∀ξ,ν ∈ Rn. (2.43)

The entries of centripetal–Coriolis matrix are trigonometric functions of θ(t) (valid

for robots with revolute joints) and they are bounded when θ̇(t) is bounded.

The entries of G(θ) depends on θ(t) via trigonometric functions only, and as

result of this they remain bounded for all possible θ(t).

The left hand–side of (2.33) is assumed to be at least second order differentiable,

with the modeling terms being bounded provided their arguments are bounded. That is

M (θ), N (θ, θ̇, t) ∈ C2, and M , Ṁ , M̈ , N , Ṅ , N̈ ∈ L∞ when their arguments are

bounded.

For teleoperation systems considered in this thesis, the dynamic models of master

and slave systems can be described as

Mi(θi)θ̈i +Ci(θi, θ̇i)θ̇i = τi + τfi (2.44)

where the subscript i = 1 denotes n1 dof master robot and the subscript i = 2 denotes

n2 dof slave robot. In (2.44), θi(t), θ̇i(t), θ̈i(t) ∈ Rni denote joint positions, velocities,

and accelerations, respectively, Mi(θi) ∈ Rni×ni denotes generalized mass matrices,

Ci(θi, θ̇i) ∈ Rni×ni denotes centripetal-Coriolis matrices, τi(t) ∈ Rni denotes control
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input torques, and τf1(t) ∈ Rn1 denotes human forces acting on the joints of the master

robot and τf2(t) ∈ Rn2 denotes environmental forces acting on the joints of the slave

robot. The human and environmental forces τfi(t) are in joint–space and can also be

represented as JTi τ̄fi with Ji(θi) ∈ Rn1×ni being Jacobian matrices of master and slave

robots while τ̄fi(t) ∈ Rn1 represent human and environmental forces applied to the end–

effectors.

From (2.44), an n1+n2 dof combined dynamic model in joint–space can be written

as follows[
M1 0n1×n2

0n2×n1 M2

][
θ̈1

θ̈2

]
+

[
C1 0n1×n2

0n2×n1 C2

][
θ̇1

θ̇2

]
=

[
τ1

τ2

]
+

[
τf1

τf2

]
.

(2.45)

2.2. Experimental Testbeds

To illustrate the performances of the proposed controllers, experimental studies

have been conducted on the following robot manipulators and numerical simulations are

performed on their models.

2.2.1. PHANToM Omni Haptic Device

The highlighted technical specifications of the PHANToM Omni haptic device, as

shown in Figure 2.2, are a weight of 3lbs 15oz, a nominal position resolution of 0.055mm,

back-drive friction of 0.26N, maximum exertable force nominal of 3.3N, continuous ex-

ertable force of 0.88N. The device is 6 dof and can give position on three translational and

three rotational directions. The device has two links, three active joints and three passive

wrist joints connected to the end of the second link. Since the device is only actuated in the

first three joints, it generates haptic force feedback in the translational directions onX , Y ,

and Z. The end-effector of the device has positional sensing onX , Y , and Z measured by

digital encoders. For the communication interface, local area network port were used be-

tween the device and a computer, and OpenHaptics ToolKit allows real-time applications

on the computer. Experimental studies were conducted with ODE3 (Bogacki-Shampine)

solver with a fixed step size of 0.01 seconds in MATLAB Simulink. In the experiments,

Phantom Toolbox were utilized in MATLAB Simulink Quarc Library to transmit torques
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and forces in task–space or joint–space to the Phantom device, and to receive the encoder

values, end-effector position, and joint positions of the device.

The following kinematic and dynamic models obtained from Nygaard (2008),

Silva et al. (2009), Sansanayuth et al. (2012) are utilized.

Figure 2.2. PHANToM Omni haptic device

The end-effector position of the PHANToM Omni haptic device can be expressed

as

x(t) =


X(t)

Y (t)

Z(t)

 =


−s1(l1c2 + l2s3)

−l2c3 + l1s2 + ly

c1(l1c2 + l2s3)− lz

 (2.46)

where ci = cos(θi), si = sin(θi) ∀i, j ∈ {1, 2, 3} and θ = [θ1, θ2, θ3]
T is the joint position

vector, and l1 = 0.133m, l2 = 0.133m represent the first and the second link lengths,

respectively, ly = 0.023m, lz = 0.168m are the task–space transformation offsets between

the origin of the end–effector and the first joint. The Jacobian matrix J(θ) ∈ R3×3 can

be derived from the forward kinematics and is expressed as

J(θ) =


−c1(l1c2 + l2s3) l1s1s2 −l2s1c3

0 l1c2 l2s3

−s1(l1c2 + l2s3) −l1c1s2 l2c1c3

 . (2.47)
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The dynamic model of the PHANToM Omni haptic device can be written as fol-

lows

M (θ)θ̈ +C(θ, θ̇)θ̇ +G(θ) = τ (2.48)

where θ(t), θ̇(t), θ̈(t) ∈ R3 are the joint position, velocity and acceleration vectors,

respectively, M (θ) ∈ R3×3 represents the generalized mass matrix, C(θ, θ̇) ∈ R3×3

represents centripetal-Coriolis matrix, G(θ) ∈ R3 represents the gravitational effects,

and τ (t) ∈ R3 is control input torque. The generalized mass matrix, centripetal-Coriolis

matrix and gravitational effects vector can be represented as

M(θ) =


k1 + k2c2.2 + k3c2.3 + k4c2s3 k5s2 0

k5s2 k6 −0.5k4s2−3

0 −0.5k4s2−3 k7

 (2.49)

C(θ, θ̇) =


C11 C12 C13

C21 C22 C23

C31 C32 C33

 (2.50)

G(θ) =


0

k8c2 + k10 cos(θ2 − 0.5π)

k9s3

 (2.51)

where the entries of the centripetal–Coriolis matrix in (2.50) are given as follows

C11 = −k2θ̇2s2.2 − k3θ̇3s2.3 − 0.5k4θ̇2s2s3 + 0.5k4θ̇3c2c3

C12 = −k2θ̇1s2.2 + k5θ̇2c2 − 0.5k4θ̇1s2s3

C13 = −k3θ̇1s2.3 + 0.5k4θ̇1c2c3

C21 = k2θ̇1s2.2 + 0.5k4θ̇1c2c3

C22 = 0

C23 = 0.5k4θ̇3c2−3

C31 = k3θ̇1s2.3 + 0.5k4θ̇1c2c3

C32 = −0.5k4θ̇2c2−3

C33 = 0 (2.52)

where c2.i = cos(2θi), s2.i = sin(2θi), ci−j = cos(θi − θj) and si−j = sin(θi − θj)
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∀i, j ∈ {1, 2, 3}. The real values of the model parameters k1 to k10 are given as

k1 = 1.798× 10−3Kg.m2 k6 = 2.526× 10−3Kg.m2

k2 = 0.864× 10−3Kg.m2 k7 = 1.652× 10−3Kg.m2

k3 = 0.486× 10−3Kg.m2 k8 = 164.158× 10−3Kg.m2/s2

k4 = 2.766× 10−3Kg.m2 k9 = 94.05× 10−3Kg.m2/s2

k5 = 0.308× 10−3Kg.m2 k10 = 117.294× 10−3Kg.m2/s2.

(2.53)

2.2.2. 3 dof RRR Planar Robot Manipulator

The 3 dof revolute revolute revolute (RRR) robot manipulator, as shown in Figure

2.3, has articulated structure with 3 links and 3 actuators, and works on plane. Direct

drive actuators of E137576 Maxon Motors with the technical features of nominal voltage

of 24 VDC, torque constant of 36.4× 10−3 Nm/A, speed constant of 263rpm/V, nominal

speed of 5530 rpm, nominal torque of 78.2× 10−3 Nm were used. The motors are driven

by Maxon Escon 36/2 DC 4-Q Servo-controller with a maximum power of 72 Watts.

For absolute angular measurement, AS5045 Magnetic Rotary Encoders were used with a

resolution of 4096 positions per revolution based on contactless magnetic sensor technol-

ogy. Experimental studies were conducted with ODE3 (Bogacki-Shampine) solver with

a fixed step size of 0.001 seconds and utilized Real Time Windows Target in MATLAB

Simulink. The control inputs are transmitted to the motor drivers with analog signals and

encoder signals are received as quadrature counter inputs. The data transmission between

the computer and the drivers is carried out with Humusoft MF624 data acquisition board.

It should be noted that when the orientation of the end–effector of the robot ma-

nipulator is not considered, it can be utilized and/or modeled as a kinematically redundant

robot manipulator.

The end–effector position of the 3 dof robot manipulator can be obtained to have

the following form

x(t) =

[
X(t)

Y (t)

]
=

[
l1c1 + l2c12 + l3c123

l1s1 + l2s12 + l3s123

]
(2.54)

where the link lengths are l1 = l2 = l3 = 0.127m, and si, ci, sij , cij , sijk, cijk represent

sin(θi), cos(θi), sin(θi + θj), cos(θi + θj), sin(θi + θj + θk), cos(θi + θj + θk) (i, j, k
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Figure 2.3. 3 dof planar robot manipulator.

∈ {1, 2, 3}), respectively. The Jacobian matrix J(θ) ∈ R2×3 is obtained as

J(θ) =

[
−l1s1 − l2s12 − l3s123 −l2s12 − l3s123 −l3s123
l1c1 + l2c12 + l3c123 l2c12 + l3c123 l3c123

]
. (2.55)

The dynamic model of the 3 dof robot manipulator can be written as follows

M (θ)θ̈ +C(θ, θ̇)θ̇ = τ (2.56)

where θ(t), θ̇(t), θ̈(t) ∈ R3 are the joint position, velocity and acceleration vectors,

respectively, M(θ) ∈ R3×3 represents the generalized mass matrix, C(θ, θ̇) ∈ R3×3

represents centripetal-Coriolis matrix, and τ (t) ∈ R3 is the control input torque. The

generalized mass matrix and centripetal-Coriolis matrix can be represented as

M (θ) =


M11 M12 M13

M12 M22 M23

M13 M23 M33

 (2.57)

C(θ, θ̇) =


C11 C12 C13

C21 C22 C23

C31 C32 C33

 (2.58)

where the entries of the generalized mass matrix in (2.57) and the entries of the centripetal–
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Coriolis matrix in (2.58) are given as follows

M11 = p1c2 + p2(c3 + c23) + p3 M22 = p2c3 + p4

M12 = p6c2 + p2c3 + p7c23 + p4 M23 = p7c3 + p5

M13 = p7(c3 + c23) M33 = p5

(2.59)

C11 = −(p1s2 + p2s23)θ̇2 − p2(s3 + s23)θ̇3

C12 = −(p6s2 + p7s23)θ̇2 − p2(s3 + s23)θ̇3

C13 = −p7(s3 + s23)θ̇3

C21 = (p6s2 + p7s23)θ̇1

C22 = −p2s3θ̇3

C23 = −p2s3θ̇1 − p7s3θ̇3

C31 = p7(s3 + s23)θ̇1

C32 = p2s3θ̇1 + p7s3θ̇2

C33 = 0 (2.60)

where pi (i ∈ {1, ..., 7}) denote the model parameters (i.e., mass of the links, center of

mass of each link, link lengths) and are given as,

p1 = 21.3× 10−3Kg.m2

p2 = 2.9× 10−3Kg.m2

p3 = 43.3× 10−3Kg.m2

p4 = 17.7× 10−3Kg.m2

p5 = 1.7× 10−3Kg.m2

p6 = 10.6× 10−3Kg.m2

p7 = 1.5× 10−3Kg.m2. (2.61)

It should be noted that the gravitational effects were not considered since the manipulator

is moving horizontally on plane. In addition, the frictional effects were also neglected

since it was observed that they do not have a significant effect.
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CHAPTER 3

NULL–SPACE CONTROL OF KINEMATICALLY

REDUNDANT ROBOT MANIPULATORS

This chapter focuses on the null-space control problem of kinematically redundant

robot manipulators. Specifically, for kinematically redundant robot manipulators having

one extra dof, a novel null–space controller is designed to ensure the use of the extra dof

for a possible secondary control objective while still ensuring the task–space tracking ob-

jective via the designs of two task–space controllers, one exact model knowledge and one

adaptive. Combined stability analysis of the task–space tracking objective and sub–task

objective are performed. Exponential stability of the exact model knowledge and asymp-

totic stability of the adaptive controller are then ensured via Lyapunov type arguments.

Numerical studies for the proposed controllers are presented to illustrate the liability of

the proposed method.

3.1. Mathematical Models and Properties

In this chapter, the kinematic model of an n dof revolute joint robot manipulator

given in (2.14) is utilized. The dynamic model given in (2.33) is utilized when τd(t) in

(2.34) is ignored. The dynamic terms satisfy Properties 3, 4 and 5.

3.2. Error System Formulation

The task–space tracking error, denoted by e(t) ∈ Rm, is defined as

e , xd − x (3.1)

where xd(t) ∈ Rm denotes the desired task–space trajectory.

After taking the time derivative of (3.1) and substituting velocity kinematics in

(2.15), following expression can be obtained

ė = ẋd − Jθ̇. (3.2)
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To further facilitate the subsequent analysis, an auxiliary error–like term, denoted by

r(t) ∈ Rn, is defined as follows

r , J+(ẋd +αe) + (In − J+J)h− θ̇ (3.3)

where α ∈ Rm×m is a constant, positive–definite, diagonal control gain matrix, and

h(t) ∈ Rn is a null–space controller that will be designed later. Premultiplying (3.3)

by J and substituting (2.15) and (3.2), following expression can be obtained

ė = −αe+ Jr (3.4)

where (2.19), (2.21), (2.22), (2.23), (2.24) and (3.2) were utilized. For simplicity, another

auxiliary term, denoted by ra(t) ∈ Rn, is defined as follows

ra , J+(ẋd +αe) + (In − J+J)h (3.5)

which can be substituted into (3.3) to obtain

r = ra − θ̇. (3.6)

Taking the time derivative of (3.6), pre–multiplying by generalized mass matrix M (θ),

and then substituting (2.33), following open–loop error dynamics are obtained

Mṙ = Y φ−Cr − τ (3.7)

where

Y φ = Mṙa +Cra +G+ Fdθ̇ (3.8)

with Y (θ, θ̇, ra, ṙa) ∈ Rn×p being the regression matrix depending only on known and

available quantities and φ ∈ Rp is a vector containing dynamic model parameters.

3.3. Controller Design and Stability Analysis

In this section, control design and the accompanying stability analysis will be

presented when exact knowledge of the robot dynamics is available (i.e., (3.8) is known

and available for control design).

From the error system development in Section 3.2 and the subsequent stability

analysis, the control input torque τ (t) is designed as follows

τ = Y φ+Krr + JTe− ysJT
s (3.9)
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where ys(θ) ∈ R is the yet to be designed sub–task function, Js(θ) ∈ R1×n is also yet

to be designed, and Kr ∈ Rn×n is a constant, positive–definite, diagonal control gain

matrix.

The exact model knowledge version of the adaptive controller in Tatlicioglu et al.

(2005) and Tatlicioglu et al. (2008)(a) expressed by using the notation in this chapter is

of the following form

τ = Y φ+Krr + JTe. (3.10)

As opposed to the controller of (3.10), the proposed controller in (3.9) includes the new

term ysJ
T
s which will subsequently allow us to carry out a combined stability analysis

for both task–space tracking and sub–task objectives. This is an important novelty when

compared with Tatlicioglu et al. (2005) and Tatlicioglu et al. (2008)(a).

After substituting (3.9) into (3.7), the closed–loop error system for r(t) can be

obtained as follows

Mṙ = −Cr −Krr − JTe+ ysJ
T
s . (3.11)

The sub–task function ys will be designed to depend only on θ. Special care must

be taken when designing the sub–task function ys. Specifically, in the subsequent stability

analysis convergence of ys to zero will be proven. As a result, when designing the sub–

task function, this should be taken into account and functions that could be driven to zero

must be considered.

The time derivative of ys can be obtained as

ẏs = Jsθ̇ (3.12)

where Js(θ) is an auxiliary Jacobian–like vector defined as

Js ,
∂ys
∂θ

. (3.13)

After utilizing (3.3), from (3.12), following expression is obtained

ẏs = JsJ
+(ẋd +αe) + Js(In − J+J)h− Jsr. (3.14)

Based on the structure of (3.14) and the subsequent stability analysis, the null–space con-

troller h introduced in (3.3) is designed as follows

h = − (In − J+J)JT
s

‖Js(In − J+J)‖2
[ksys + JsJ

+(ẋd +αe)] (3.15)

where ks ∈ R is a positive constant. Notice that, Jh = 0m×1. Provided that the following

sufficient condition holds ∥∥Js(In − J+J)
∥∥ > 0 (3.16)
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there is no singularity issue in h(t).

Mathematically speaking, the term ‖Js(In − J+J)‖ will be equal to zero when

JT
s is in the null–space of (In−J+J). And when this is the case, then, in (3.14), the null–

space controller is multiplied with zero. As a result, it is reasonable to assume that (3.16)

is satisfied. In addition, it should be noted that the condition in (3.16) was previously

introduced in Tatlicioglu et al. (2005) and then utilized in Tatlicioglu et al. (2008)(a),

Tatlicioglu et al. (2008)(b), Tatlicioglu et al. (2009).

The null–space controller in Tatlicioglu et al. (2005) and Tatlicioglu et al. (2008)(a)

expressed by using the notation in this chapter is of the following form

h = −ks[Js(In − J+J)]Tys. (3.17)

In contrast to the null–space controller of (3.17), the proposed null–space controller in

(3.15) is quite different. The novel null–space controller will be useful for the combined

stability analysis.

Finally, substituting (3.15) into (3.14), following closed–loop dynamics is ob-

tained for ys(t)

ẏs = −ksys − Jsr. (3.18)

Now the combined stability analysis can be proceeded by introducing the follow-

ing theorem.

Theorem 3.3.1 The controller in (3.9) with the null–space controller in (3.15) ensures

exponential task–space tracking and exponential sub–task tracking.

Proof The proof starts by defining a non–negative scalar function (i.e., a Lyapunov func-

tion), denoted by V1 (e, r, ys) ∈ R, as

V1 ,
1

2
eTe+

1

2
rTMr +

1

2
y2s . (3.19)

By using (2.35), it can easily be shown that the following bounds hold for (3.19)

λ1 ‖z‖2 ≤ V1 ≤ λ2 ‖z‖2 (3.20)

where λ1 , 1
2

min{1,m1}, λ2 , 1
2

max{1,m2}, and z(t) ∈ R(m+n+1)×1 is the combined

error vector defined as

z(t) ,
[
eT rT ys

]T
. (3.21)

After taking the time derivative of (3.19), following expression is obtained

V̇1 = eT ė+ rTMṙ +
1

2
rTṀr + ysẏs (3.22)
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Substituting (3.4), (3.11) and (3.18) into (3.22) yields

V̇1 = eT (−αe+Jr) +rT (−Cr−Krr−JTe+
1

2
rTṀr+ ysJ

T
s ) + ys(−ksys−Jsr)

(3.23)

and after canceling common terms, following expression is obtained

V̇1 = −eTαe− rTKrr − ksy2s (3.24)

where (2.37) was also utilized. Notice that, (3.24) can be upper bounded as

V̇1 ≤ −λ3 ‖z‖2 (3.25)

where λ3 , min{λmin(α), λmin(Kr), ks} with λmin(·) denoting the minimum eigenvalue

of a matrix.

From (3.19), (3.20) and (3.24), (3.25), it is easy to see that V1(e, r, ys) is expo-

nentially stable Khalil (2002). Therefore z(t) and thus e(t), r(t), ys(t) are exponentially

stable. So, V1(e, r, ys) ∈ L∞, and thus z(t), e(t), r(t), ys(t) ∈ L∞. Based on the bound-

edness of the desired task–space trajectory, from (3.1), it is clear that x(t) ∈ L∞. The

boundedness of e(t) and r(t) can be utilized along with (3.4) to conclude that ẋ(t) ∈ L∞.

Above boundedness statements can be utilized along with (3.3) to prove that θ̇(t) ∈ L∞
and along with (3.7) to prove that ṙ(t) ∈ L∞. The robot manipulator dynamics in (2.33)

can be utilized to demonstrate τ (t) ∈ L∞. Standard signal chasing arguments can then

be used to prove that all signals remain bounded under the closed–loop operation.

In Tatlicioglu et al. (2005) and Tatlicioglu et al. (2008)(a), the Lyapunov func-

tions of task–space tracking (i.e., Vt) and sub–task objectives (i.e., Vs) with their time

derivatives expressed by using the notation in this chapter are of the following forms

Vt =
1

2
eTe+

1

2
rTMr with V̇t = −eTαe− rTKrr

Vs =
1

2
y2s with V̇s ≤ −γy2s + ε (3.26)

where ε, γ are positive scalar constants. While the exact model knowledge version of the

task–space controller of Tatlicioglu et al. (2005) and Tatlicioglu et al. (2008)(a) provided

exponential stability, their null–space controller achieved ultimately bounded sub–task

tracking in the following sense

|ys(t)| ≤
√
y2s(t0) exp(−2γt) +

ε

γ
.

On the other hand, the proposed combined stability analysis achieves exponential task–

space tracking and exponential null–space control which is a major improvement over

Tatlicioglu et al. (2005) and Tatlicioglu et al. (2008)(a).
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3.3.1. Adaptive Controller Extension

In this section, the exact model knowledge controller of (3.9) is modified to com-

pensate for parametric uncertainties in the dynamic model (i.e., φ in (3.8) is considered as

uncertain and thus cannot be utilized in the control design).

The adaptive controller is designed as

τ = Y φ̂+Krr + JTe− ysJT
s (3.27)

where φ̂(t) ∈ Rp is the estimate of the uncertain parameter vector φ, and is updated

according to
˙̂
φ = ΓY Tr (3.28)

where Γ ∈ Rp×p is a constant, positive–definite, diagonal, adaptation gain matrix, and Y

is the regression matrix introduced in (3.8).

The only difference between the exact model knowledge controller and the adap-

tive controller is the time–varying update rule φ̂(t) introduced to compensate for the lack

of accurate knowledge of dynamic model parameters.

The parameter estimation error vector φ̃(t) ∈ Rp is defined as

φ̃ , φ− φ̂. (3.29)

Substituting (3.27) and (3.29) into (3.7), the closed–loop error system for r(t) can be

obtained as follows

Mṙ = −Cr −Krr − JTe+ ysJ
T
s + Y φ̃. (3.30)

Since the dynamics of task–space tracking error and sub–task function ys do not depend

on the dynamic model parameters they remain unchanged. Following theorem can now

be stated to analyze the stability of the adaptive controller.

Theorem 3.3.2 The adaptive controller in (3.27) along with the null–space controller in

(3.15) and the parameter update law in (3.28) ensures asymptotic task–space tracking

and asymptotic sub–task tracking in the sense that

‖e(t)‖ → 0 , |ys(t)| → 0 as t→∞. (3.31)

Proof The proof starts by defining a non–negative scalar function, denoted by V2 (e, r,

ys, φ̃) ∈ R, as

V2 , V1 +
1

2
φ̃TΓ−1φ̃ (3.32)
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where V1(e, r, ys) was defined in (3.19). Similar to (3.20), following bounds can be

obtained for V2
λ4 ‖s‖2 ≤ V2 ≤ λ5 ‖s‖2 (3.33)

where λ4 , 1
2

min{1,m1, λmax(Γ)}, λ5 , 1
2

max{1,m2, λmin(Γ)} with λmax(·) denoting

the maximum eigenvalue of a matrix, and s(t) ∈ R(m+n+p+1)×1 is the combined error

vector defined as

s(t) ,
[
eT rT ys φ̃T

]T
=
[
zT φ̃T

]T
. (3.34)

After taking the time derivative of (3.32), following expression is obtained

V̇2 = eT ė+ rTMṙ +
1

2
rTṀr + ysẏs + φ̃TΓ−1

˙̃
φ. (3.35)

Substituting (3.4), (3.18), (3.30), time derivative of (3.29) along with (3.28), and then

canceling common terms, following expression is obtained

V̇2 = −eTαe− rTKrr − ksy2s ≤ −λ3 ‖z‖
2 (3.36)

where (2.37) was utilized and λ3 was introduced in (3.25).

From (3.32), (3.33) and (3.36), V2(e, r, ys, φ̃) ∈ L∞, therefore, s(t), and thus

e(t), r(t), ys(t), φ̃(t) ∈ L∞. Similar to the proof of Theorem 3.3.1, all the signals can be

shown to remain bounded under the closed–loop operation.

After integrating (3.36) in time from 0 to +∞, the following expression can be

obtained as ∫ +∞

0

V̇2(t)dt ≤ −λ3
∫ +∞

0

‖z(t)‖2 dt (3.37)

and after evaluating the integral on the left hand–side, recalling V2(t) ≥ 0 and then rear-

ranging yields ∫ +∞

0

‖z(t)‖2 dt ≤ V2(0)

λ3
(3.38)

from which it can be seen that z(t) is square integrable. Barbalat’s Lemma in Krstic

et al. (1995) can then be utilized to obtain asymptotic task–space tracking and asymptotic

null–space control as given in (3.31).

3.4. Simulation Results

To illustrate the performance of the task–space controller and the null–space con-

troller, two sets of simulations were performed for the exact model knowledge and adap-

tive controllers on the model of a 3 dof planar robot manipulator given in Section 2.2.2. It
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is highlighted that in both simulations, the model parameters were utilized to simulate the

robot dynamics and they were not utilized in the adaptive controller formulation in (3.27).

For both controllers, the first set of simulations were performed without null–

space control. In the second set of simulations, following sub–task function was selected

ys = θ1 − 0.5 (3.39)

with which the position of the first joint is forced to go to 0.5rad.

The manipulator was initialized to be at rest at the joint position θ(0) = [0, 1.5, 1.5]T

rad. The desired task–space trajectory was selected as

xd =

[
Xd

Yd

]
=

[
0.02 sin(0.1t)

0.15− 0.02 cos(0.1t)

]
(m). (3.40)

For both set of simulations, the controller gains were chosen as α = 2I2, Kr =

3I3, and for the adaptive controller, the adaptation gain was chosen as Γ = 2I7 and

ks = 2 for the second set of simulations. In the simulations of adaptive controller, the

initial values of the parameter update vector were chosen as φ̂(0) = 10−3× [20, 2, 40, 20,

1, 10, 1]T . Exact model knowledge and adaptive controllers were shortly named as EMKC

and AC, respectively, in the simulation results.

The simulation results for the exact model knowledge controller are presented in

Figures 3.1-3.4. In Figures 3.1, 3.2, 3.3 and 3.4, the task–space tracking error, the control

input torques, the joint positions, and desired and actual task–space trajectories are shown,

respectively. From Figures 3.1 and 3.4, it is clear that task–space tracking objective was

met for both simulation sets. From Figure 3.3, it is clear that when there is null–space

control, the position of the first joint went to 0.5 rad. thus satisfying the sub–task function

in (3.39).

The simulation results for the adaptive controller are presented in Figures 3.5-

3.9. In Figures 3.5, 3.6, 3.7, 3.8 and 3.9, the task–space tracking error, the control input

torques, the joint positions, desired and actual task–space trajectories, and the estimates

of uncertain parameters are shown, respectively. From Figures 3.5 and 3.8, it is clear that

task–space tracking objective was met for both simulation sets. From Figure 3.7, it is

clear that when there is null–space control, the position of the first joint went to 0.5 rad.

thus satisfying the sub–task function in (3.39).
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Figure 3.1. Task–space tracking errors e(t) for EMKC.

3.5. Conclusions

This chapter mainly focused on the design of an asymptotically stable null–space

controller and presented the design and the corresponding stability analysis of two task–

space controllers (one exact model knowledge and one adaptive) for redundant robot ma-

nipulators that have one redundant dof to achieve a sub–task objective. The sub–task func-

tion has been designed as an error–like function of joint positions. A combined stability

analysis that ensured stability and convergence of both end–effector and sub–task func-

tion have been presented. The proposed combined analysis is novel when compared to

the existing literature on control of redundant robot manipulators. Numerical simulations

were conducted for both task–space controllers with and without null–space controllers

that demonstrated the performance of the proposed null–space controller.
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Figure 3.2. Control input torques τ (t) for EMKC.
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Figure 3.3. Joint positions θ(t) for EMKC.
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Figure 3.4. Desired xd(t) and actual x(t) task–space trajectories for EMKC.
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Figure 3.5. Task–space tracking errors e(t) for AC.
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Figure 3.6. Control input torques τ (t) for AC.
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Figure 3.7. Joint positions θ(t) for AC.
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Figure 3.8. Desired xd(t) and actual x(t) task–space trajectories for AC.
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Figure 3.9. Estimates of uncertain parameters φ̂(t) for AC.
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CHAPTER 4

PSEUDO–INVERSE FREE CONTROL OF

KINEMATICALLY REDUNDANT ROBOT

MANIPULATORS

The proposed methodology in Chapter 3 was applicable to kinematically redun-

dant robot manipulators with one redundant dof (i.e., n−m = 1). The aim of this chapter

is to design an extended task–space controller for redundant robot manipulators having

more than one redundant dof (i.e., n − m > 1). The extended task–space controller is

designed by integrating the manipulator Jacobian matrix with the sub–task Jacobian ma-

trix. Sub–task functions, that depend on the joint positions and have equality constraints,

are properly chosen up to the amount of the redundant dof. An adaptive controller is de-

signed to deal with parametric uncertainties in robot dynamics and sub–task objectives in

the amount of number of redundant dof are achieved while still ensuring the task–space

control objective. The stability of task–space and sub–task objectives are obtained via

Lyapunov based arguments. An experimental study is presented to illustrate the perfor-

mance of the proposed method by considering a novel sub–task objective.

4.1. Mathematical Models and Properties

In this chapter, the kinematic model of an n dof revolute joint robot manipulator

given in (2.14) is utilized. The dynamic model given in (2.33) is utilized when τd(t) in

(2.34) is ignored. The dynamic terms satisfy Properties 3, 4 and 5.

4.2. Extended Task–space Formulation

The sub–task function, denoted by ys(θ) ∈ R(n−m), will be specifically designed

to depend only on θ(t) as

ys = fs(θ) (4.1)
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where fs : Rn → R(n−m). The time derivative of ys can then be obtained as

ẏs = Jsθ̇ (4.2)

where Js(θ) ∈ R(n−m)×n is the sub–task Jacobian matrix defined as

Js ,
∂ys
∂θ

. (4.3)

In order to avoid utilizing pseudo–inverse of the Jacobian matrix, the m dimen-

sional forward kinematics and the n −m dimensional sub–task objectives are combined

into x̄(t) ∈ Rn defined as

x̄(t) ,

[
x

ys

]
=

[
f(θ)

fs(θ)

]
. (4.4)

Taking the time derivative of (4.4) yields

˙̄x = J̄ θ̇ (4.5)

where J̄(θ) ∈ Rn×n is the extended Jacobian matrix defined as

J̄ ,

[
J

Js

]
. (4.6)

The extended Jacobian matrix J̄ has full rank if and only if the Jacobian matrix

J has full rank and the sub–task function ys(t) is carefully defined in terms of the joint

positions θ. It is highlighted that, inverse of the extended Jacobian matrix J̄−1 exists ∀θ.

The design objectives are to make the end–effector position x go to a desired task–

space position xd(t) ∈ Rm, and to make sub–task function ys go to some desired sub–

task yd(t) ∈ R(n−m). Therefore, an extended desired position, denoted by x̄d(t) ∈ Rn, is

defined as

x̄d ,

[
xd

yd

]
. (4.7)

4.3. Error System Formulation

The tracking error, denoted by e(t) ∈ Rn, is defined as follows

e , x̄d − x̄. (4.8)
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After taking the time derivative of (4.8) and substituting (4.5), the following expression is

obtained

ė = ˙̄xd − J̄ θ̇. (4.9)

To further facilitate the subsequent analysis, an auxiliary error–like term, denoted by

r(t) ∈ Rn, is defined as

r , J̄−1( ˙̄xd +αe)− θ̇ (4.10)

where α ∈ Rn×n is a constant, positive–definite, diagonal, control gain matrix. Pre–

multiplying (4.10) by J̄ and substituting (4.5) and (4.9), we obtain

ė = −αe+ J̄r. (4.11)

Taking the time derivative of (4.10), pre–multiplying by generalized mass matrix M (θ),

and then substituting (2.33), the following open–loop error dynamics is obtained

Mṙ = Y φ−Cr − τ (4.12)

where

Y φ = M
d

dt
{J̄−1( ˙̄xd +αe)}+CJ̄−1( ˙̄xd +αe) +G+ Fdθ̇ (4.13)

with Y (θ, θ̇, x̄d, ˙̄xd, ¨̄xd, e, ė, t) ∈ Rn×p denoting an available regression matrix, and

φ ∈ Rp representing a constant parameter vector.

4.4. Adaptive Controller Design and Stability Analysis

In this section, the control design and the accompanying stability analysis will be

presented. An adaptive controller is designed when parametric uncertainties exist in the

dynamic model (i.e., the parameter vector φ in (4.13) is uncertain).

From the error system development in Section 4.3 and the subsequent stability

analysis, the control input torque τ (t) is designed as

τ = Y φ̂+Krr + J̄Te (4.14)

where Kr ∈ Rn×n is a constant, positive–definite, diagonal, control gain matrix, and

φ̂(t) ∈ Rp is the estimate of the uncertain parameter vector φ, and is updated according

to
˙̂φ = ΓY Tr (4.15)
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where Γ ∈ Rp×p is a constant, positive–definite, diagonal, adaptation gain matrix. As can

be seen from (4.14), pseudo–inverse of the Jacobian matrix is not utilized in the controller.

The parameter estimation error vector φ̃(t) ∈ Rp is defined as

φ̃ , φ− φ̂. (4.16)

Substituting (4.14) and (4.16) into (4.12), the closed–loop error system for r(t) can be

obtained as

Mṙ = −Cr −Krr − J̄Te+ Y φ̃. (4.17)

Now the stability analysis can be proceeded by introducing the following theorem.

Theorem 4.4.1 The adaptive controller in (4.14) along with the parameter update law

in (4.15) ensures asymptotic task–space tracking and asymptotic sub–task control in the

sense that

‖e(t)‖ → 0 as t→∞. (4.18)

Proof The proof is started by defining a non–negative scalar function (i.e., a Lyapunov

function), denoted by V (e, r, φ̃) ∈ R, as

V ,
1

2
eTe+

1

2
rTMr +

1

2
φ̃TΓ−1φ̃. (4.19)

By using (2.35), it can easily be shown that the following bounds hold for (4.19)

λ1 ‖z‖2 ≤ V ≤ λ2 ‖z‖2 (4.20)

where λ1 , 1
2

min {1,m1, λmax(Γ)}, λ2 , 1
2

max {1,m2, λmin(Γ)} and z(t) ∈ R(2n+p)×1

is defined as

z(t) ,
[
eT rT φ̃T

]T
. (4.21)

After taking the time derivative of (4.19), we obtain

V̇ = eT ė+ rTMṙ +
1

2
rTṀr + φ̃TΓ−1

˙̃
φ. (4.22)

Substituting (4.9), (4.17), time derivative of (4.16) along with (4.15) into (4.22), and then

canceling common terms, the following expression is obtained

V̇ = −eTαe− rTKrr (4.23)

where (2.37) was also utilized. Notice that, the right–hand side of (4.23) can be upper

bounded as

V̇ ≤ −λ3(‖e‖2 + ‖r‖2) (4.24)
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where λ3 , min{λmin(α), λmin(Kr)}.
From (4.19), (4.20), (4.23) and (4.24), it is easy to see that V (e, r, φ̃) ∈ L∞,

therefore, e(t), r(t) and φ̃(t) ∈ L∞. From the boundedness of φ̃(t) along with (4.16),

it is clear that φ̂(t) ∈ L∞. Based on the boundedness of x̄d(t), from (4.8), it is clear

that x̄(t) ∈ L∞. The boundedness of e(t) and r(t) can be utilized along with (4.11) to

conclude that ˙̄x(t) ∈ L∞. Above boundedness statements can be utilized with (4.10) to

prove that θ̇(t) ∈ L∞. The boundedness of θ̇(t) can be utilized to prove that C(θ, θ̇) ∈
L∞. The above boundedness statements can be utilized with (4.12) to prove that ṙ(t) ∈
L∞. The robot manipulator dynamics in (2.33) can be utilized to demonstrate τ (t) ∈
L∞. Standard signal chasing arguments can then be used to prove that all signals remain

bounded under the closed–loop operation.

After integrating (4.24) in time from 0 to +∞, the following expression is ob-

tained ∫ +∞

0

V̇ (t)dt ≤ −λ3
∫ +∞

0

(‖e(t)‖2 + ‖r(t)‖2)dt (4.25)

and after evaluating the integral on the left hand–side, recalling V (t) ≥ 0 and then rear-

ranging yield ∫ +∞

0

(‖e(t)‖2 + ‖r(t)‖2)dt ≤ V (0)

λ3
(4.26)

from which it can be seen that e(t) and r(t) are square integrable. Barbalat’s Lemma

in Krstic et al. (1995) can then be utilized to obtain asymptotic task–space tracking and

asymptotic sub–task control as given in (4.18).

4.5. Experimental Studies

In order to demonstrate the performance of the proposed controller, an experimen-

tal study is conducted on the 3 dof robot manipulator given in Section 2.2.2.

The manipulator was initialized to be at rest at the joint position θ(0) = [0, π/2,

π/3]T rad. The desired task–space trajectory was selected as

xd =

[
Xd

Yd

]
=

[
0.017 + 0.02 sin(0.1t)(1− exp(−0.1t))

0.1905− 0.02 cos(0.1t)(1− exp(−0.1t))

]
(m). (4.27)

This experiment introduces a novel sub–task function (i.e., laser/camera tracer)

which aims to allow a perpendicularly fixed laser beam or optic camera on the middle of

the first joint which traces line of the sight of the end–effector of the manipulator. This

sub–task was motivated by the inspiring work of Buckingham and Graham (2005) where
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two hyper redundant robot manipulators worked co–operatively to replace a section of

a critical pipe in a nuclear reactor room where one of them was only utilized to hold a

vision system at its end–effector. Via this sub–task, a similar task can be performed with

only one hyper redundant robot. As represented in Figure 4.1, the sub–task function can

be trigonometrically written as follows

ys =
l1
2

+ l2 cos(θ2) + l3 cos(θ2 + θ3). (4.28)

According to the aim of the sub–task function, the desired sub–task is to force ys to go to

zero, therefore yd = 0.

Figure 4.1. Illustration of the laser/camera tracer sub–task.

The control and adaptation gains were chosen as α = 90 × diag {1.2, 1.1, 1},
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Kr = 45 × diag {1.2, 1.1, 1} and Γ = 10−4 × diag {1, 0.1, 0.1, 1, 1, 1, 1}. In the ex-

periments, the initial values of the parameter update vector were chosen as φ̂(0) =

10−3 × [20, 2, 40, 20, 1, 10, 1]T .

Figures 4.2, 4.3, 4.4, 4.5 and 4.6 show the task–space tracking error, the control

input torques, desired and actual task–space trajectories, the sub–task objective function,

and the estimates of uncertain parameters, respectively. From Figures 4.2 and 4.4, it is

clear that the task–space tracking objective was met and from Figure 4.5, it is clear that

the sub–task function went to the desired value thus satisfying the sub–task objective in

(4.28).
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Figure 4.2. Task–space position tracking error e(t).

4.6. Conclusions

This chapter mainly focused on an extended task–space control design for kine-

matically redundant robot manipulators. Specifically, the main aim is to form the extended

Jacobian by integrating the manipulator Jacobian matrix with the sub–task Jacobian ma-

trix. Another motivation of this chapter is to propose a method that is applicable to hyper

redundant robot manipulators without requiring a separate stability analysis for multiple
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Figure 4.3. Control input torques τ (t).

sub–task objectives. To deal with parametric uncertainties in robot dynamics, an adap-

tive controller was proposed. Lyapunov based stability analysis ensured stability and

convergence of both task–space tracking and sub–task objectives. When compared to

the existing literature on control of redundant robot manipulators, the proposed extended

task–space controller is novel with two important specifications; the first one is that en-

suring asymptotic stability of both task–space tracking and sub–task objectives, and the

second one is that being applicable for multiple sub–tasks on hyper redundant robot ma-

nipulators. Experiments on a 3 dof planar redundant robot manipulator were conducted

to demonstrate the performance of the proposed adaptive controller with a novel sub–

task. In the sub–task objective, the redundant robot manipulator is considered as being

equipped with a camera or a laser tracer on one of the link that traces the end–effector of

the manipulator while performing the task–space tracking objective.
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CHAPTER 5

TASK–SPACE TRACKING CONTROL OF ROBOT

MANIPULATORS WITH UNCERTAIN KINEMATICS AND

DYNAMICS

This chapter considers the problem of task–space tracking control of robot ma-

nipulators with uncertain kinematics and dynamics. Specifically, a continuous robust

task–space controller that achieves asymptotic tracking, despite the presence of unstruc-

tured uncertainties associated with the dynamical terms and parametric uncertainties with

the velocity kinematics, is proposed. Experimental results are presented to illustrate the

feasibility and performance of the proposed method.

During the subsequent design and stability analysis of the robust task–space con-

troller, the dimension of the end–effector position and the number of joints will be con-

sidered same (i.e., m = n). So the presentation is made for non–redundant robot manip-

ulators. However, via utilizing the extended Jacobian method in Chapter 4, the proposed

robust controller can easily be modified to be applicable to kinematically redundant robot

manipulators as well.

5.1. Mathematical Models and Properties

In this chapter, the kinematic model of an n dof revolute joint robot manipulator

given in (2.1) is utilized. The kinematic terms satisfy Properties 1 and 2. The dynamic

model given in (2.33) is utilized. The dynamic terms satisfy Property 3.

5.2. Error System Formulation

The control objective is to ensure that the end–effector of the robot manipulator

tracks a desired task–space trajectory. To quantify this objective, the task–space tracking

error vector e(t) ∈ Rn is defined as

e , xd − x (5.1)
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where xd(t) ∈ Rn denotes the desired task–space trajectory. After taking the time deriva-

tive of (5.1) and substituting (2.15), the following expression can be obtained

ė = −αe+ Ĵr − J̃ θ̇ (5.2)

where α ∈ Rn×n denotes a constant, positive–definite, diagonal, control gain matrix and

r(t) ∈ Rn is an auxiliary error–like vector defined to have the following form

r , Ĵ−1(ẋd +αe)− θ̇ (5.3)

where Ĵ(θ) ∈ Rn×n is the estimated Jacobian matrix defined as

Ĵ , J |φj=φ̂j
(5.4)

where φ̂j(t) ∈ Rp is the estimated parameter vector and J̃(θ) ∈ Rn×n is the difference

between the Jacobian matrix and the estimated Jacobian matrix defined as

J̃ , J − Ĵ . (5.5)

From (5.4) and (5.5), it is easy to see that Ĵ θ̇ = Wjφ̂j and J̃ θ̇ = Wjφ̃j with φ̃j ,

φj − φ̂j ∈ Rp being the parameter estimation error whereWj was introduced in (2.29).

To further facilitate the subsequent control development, another auxiliary error

vector, denoted by s(t) ∈ Rn, is defined as

s , ṙ + Γr (5.6)

where Γ ∈ Rn×n denotes a constant, positive–definite, diagonal, gain matrix. Taking

the time derivative of (5.6), substituting the second time derivative of (5.3) and then pre-

multiplying byM (θ) yields

Mṡ = M
d2

dt2
{Ĵ−1(ẋd +αe)} − τ̇ + Ṁθ̈ + Ṅ +MΓṙ (5.7)

where the time derivative of (2.33) was also utilized. After straightforward mathematical

manipulations, the following expression is obtained

Mṡ = Q− 1

2
Ṁs− r − τ̇ (5.8)

whereQ(x, ẋ, ẍ, e, r, s, t) ∈ Rn is an auxiliary uncertain term defined as

Q ,M
d2

dt2
{Ĵ−1(ẋd +αe)}+ Ṁθ̈ + Ṅ +MΓṙ +

1

2
Ṁs+ r. (5.9)

To facilitate the subsequent analysis, the desired form of Q, denoted by Qd (xd, ẋd, ẍd,
...
xd) ∈ Rn, is defined as follows

Qd , Q|x=xd,ẋ=ẋd,ẍ=ẍd
. (5.10)
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An auxiliary term, denoted by Q̃(x, ẋ, ẍ, e, r, s, t) ∈ Rn, is defined as follows

Q̃ , Q−Qd. (5.11)

As detailed in Appendix A.1, the difference between Q and Qd can be upper

bounded by functions of the error terms in the sense that∥∥∥Q̃∥∥∥ ≤ ρ(‖z‖) ‖z‖ (5.12)

where ρ is a non–negative non–decreasing bounding function of its argument, and z(t) ∈
R3n is the combined error vector defined as

z , [eT , rT , sT ]T . (5.13)

It should be noted thatQ,Qd and Q̃ will be used only for the subsequent stability

analysis, thus they are not required to be known.

5.3. Control Design

From the error system development in Section 5.2 and the subsequent stability

analysis, the control input torque τ (t) is designed as

τ = (K + In)[r(t)− r(0) + Γ

∫ t

0

r(σ)dσ] + Π(t) (5.14)

where K ∈ Rn×n is a constant, positive–definite, diagonal control gain matrix, and

Π(t) ∈ Rn is an auxiliary term updated according to

Π̇(t) = βSgn(r(t)) with Π(0) = 0n×1 (5.15)

where β ∈ Rn×n is a constant, positive–definite, diagonal control gain matrix, and

Sgn(·) ∈ Rn is the vector signum function. It is noted that the term r(0) is introduced

in (5.14) to satisfy τ (0) = 0n×1. The controller in (5.14) and (5.15) requires r(t) only

which has the form r = Ĵ(θ, φ̂j)
−1(ẋd + α(xd − x)) − θ̇ and can be calculated via

measurements of θ and θ̇, and φ̂j which is updated according to

˙̂
φj = proj {µ} (5.16)

where the auxiliary term µ ∈ Rp is defined as

µ , ΓjW
T
j e (5.17)
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where Γj ∈ Rp×p is a constant, positive–definite, diagonal matrix and the projection of

the ith entry of µ (i.e., µi) is designed as follows

proj {µi} =



µi if φ̂ji > φ
ji

µi if φ̂ji = φ
ji

and µi > 0

0 if φ̂ji = φ
ji

and µi < 0

0 if φ̂ji = φji and µi > 0

µi if φ̂ji = φji and µi ≤ 0

µi if φ̂ji < φji

(5.18)

where φ̂ji(t) denotes the ith component of φ̂j(t). The projection algorithm ensures that

lower and upper bounds of the estimated parameter vector satisfy φ
j
≤ φ̂j(t) ≤ φj

provided that φ
ji
≤ φ̂ji(0) ≤ φji ∀i = 1, 2, ..., p is satisfied Krstic et al. (1995), Braganza

et al. (2008).

After substituting (5.11) and the time derivative of (5.14) into (5.8), the closed–

loop error system for s(t) can be written as follows

Mṡ = Qd + Q̃− 1

2
Ṁs− r − (K + In)s− βSgn(r) (5.19)

where (5.6) and (5.15) were also utilized. At this stage, the stability analysis can be

proceeded.

5.4. Stability Analysis

The stability analysis can be proceeded by introducing the following theorem.

Theorem 5.4.1 The controller in (5.14) and (5.15) and the adaptive update law in (5.16)

ensures asymptotic task–space tracking in the sense that

‖e(t)‖ → 0 as t→∞ (5.20)

provided that the controller gains are selected to satisfy

βi ≥ |Qdi(t)|+
1

Γi

∣∣∣Q̇di(t)
∣∣∣ ∀t (5.21)

λmin(α) >
ξĴ
2

(5.22)

λmin(Γ) >
ξĴ
2

(5.23)

and the entries of K are chosen sufficiently large compared to the initial conditions of

the system. In (5.21), (5.22), (5.23), βi, Γi ∈ R denotes the i–th diagonal entry of β
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and Γ, respectively, and Qdi(t) and Q̇di(t) denote the i–th entries of Qd(t) and Q̇d(t),

respectively, and ξĴ ∈ R is a positive bounding constant satisfying ξĴ ≥
∥∥∥Ĵ(θ)

∥∥∥
i∞
∀θ.

Proof The proof is started by defining a non–negative scalar function (i.e., a Lyapunov

function), denoted by V (z̄, t) ∈ R, as

V ,
1

2
eTe+

1

2
rTr +

1

2
sTMs+ P +

1

2
φ̃T
j Γ−1j φ̃j (5.24)

where P (t) ∈ R is an auxiliary function defined as Xian et al. (2004)(b)

P , ζP −
∫ t

0

η(σ)dσ (5.25)

where η(t), ζP ∈ R are defined as follows

η(t) , sT (t)[Qd(t)− βSgn(r(t))] (5.26)

ζP ,
n∑

i=1

βi |ri(0)| − rT (0)Qd(0) (5.27)

and z̄(t) ∈ R(3n+p+1) is defined as

z̄(t) ,
[
eT rT sT

√
P φ̃T

j

]T
. (5.28)

Based on the proof in Appendix A.2, it is clear that P (t) ≥ 0 and thus V (z̄, t) is a

Lyapunov function.

Note that, (5.24) can be lower and upper bounded as follows

λ1 ‖z̄‖2 ≤ V (z̄) ≤ λ2 ‖z̄‖2 (5.29)

where λ1, λ2 ∈ R are positive bounding constants defined as

λ1 ,
1

2
min{1,m1, λmax(Γj)} , λ2 , max{1, 1

2
m2, λmin(Γj)}. (5.30)

Taking the time derivative of (5.24) yields

V̇ = eT ė+ rT ṙ +
1

2
sTṀs+ sTMṡ+ Ṗ + φ̃T

j Γ−1j
˙̃
φj . (5.31)

Substituting (5.2), (5.6), (5.16), (5.19), and the time derivative of (5.25) into (5.31), and

canceling common terms, the following expression can be obtained

V̇ = −eTαe+ eT Ĵr − rTΓr + sT Q̃− sT (K + In)s. (5.32)

After utilizing (5.12), following upper bound for the right–hand side of (5.32) is obtained

V̇ ≤ −λmin(α) ‖e‖2 +
ξĴ
2
‖e‖2 +

ξĴ
2
‖r‖2 − λmin(Γ) ‖r‖2 − ‖s‖2 + ρ ‖s‖ ‖z‖

−λmin(K) ‖s‖2 (5.33)
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where ξĴ >
∥∥∥Ĵ∥∥∥

i∞
was also utilized. Note that the last two terms of (5.33) can be upper

bounded as

ρ ‖s‖ ‖z‖ − λmin(K) ‖s‖2 ≤ ρ2

4λmin(K)
‖z‖2 (5.34)

and in view of this inequality, the right–hand side of (5.33) can further be upper bounded

as

V̇ ≤ −[min{(λmin(α)− ξĴ
2

), (λmin(Γ)− ξĴ
2

), 1} − ρ2

4λmin(K)
] ‖z‖2 . (5.35)

Provided that (5.22) and (5.23) are satisfied, and the entries of K are chosen sufficiently

large when compared to the initial conditions of the system, following expression can be

obtained

V̇ ≤ −λ ‖z‖2 (5.36)

for some 0 < λ < 1.

From (5.24) and (5.36), it can be ensured that V (z̄, t) ∈ L∞. Therefore, z̄(t) ∈
L∞, and thus, based on its definition in (5.28), e(t), r(t), s(t), φ̃j(t) ∈ L∞. Based on

the boundedness of the desired task–space trajectory, from (5.1), it is clear that x(t) ∈
L∞. The boundedness of e(t) and r(t) can be utilized along with (5.2) to conclude that

ẋ(t) ∈ L∞. Above boundedness statements can be utilized with (5.3) to prove that θ̇(t) ∈
L∞. The boundedness of θ̇(t) can be utilized to prove that Wj(θ, θ̇) ∈ L∞. Above

boundedness statements can be utilized with (5.16) to prove that φ̂j(t) ∈ L∞. From (5.6),

it is clear that ṙ(t) ∈ L∞, which can be utilized along with the time derivatives of (5.2)

and (5.3) to show that θ̈(t), ë(t) ∈ L∞, respectively. The above boundedness statements

can be utilized along with (5.19) to prove that ṡ(t) ∈ L∞. The robot manipulator dynamic

model in (2.33) can be utilized to demonstrate τ (t) ∈ L∞. Standard signal chasing

arguments can then be used to prove that all signals remain bounded under the closed–

loop operation.

Integrating the inequality in (5.36) in time from 0 to +∞ results∫ +∞

0

‖z(t)‖2 dt ≤ V (0)

λ
(5.37)

from which, it is easy to see that z(t) is square integrable. Finally, since z(t) ∈ L2 ∩ L∞
and ż(t) ∈ L∞, utilizing Barbalat’s Lemma in Krstic et al. (1995) yields ‖z(t)‖ →
0 as t→∞ from which the asymptotic tracking result given in (5.20) follows.
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5.5. Experimental Study

To illustrate the performance of the proposed controller, experimental studies are

conducted on PHANToM Omni haptic device.

In view of (2.29), from (2.46), the regression matrixWj ∈ R3×2 is obtained as

Wj =


−c1c2θ̇1 + s1s2θ̇2 −c1s3θ̇1 − s1c3θ̇3

c2θ̇2 s3θ̇3

−s1c2θ̇1 − c1s2θ̇2 −s1s3θ̇1 + c1c3θ̇3

 (5.38)

with φj = [l1, l2]
T ∈ R2.

During the experimental studies the desired task–space trajectory is chosen as

xd(t) =


Xd

Yd

Zd

 =


0.05(1− exp(−0.05t))

−0.01− 0.02 cos(0.05t)

−0.01− 0.02 sin(0.05t)

 (m). (5.39)

The control gains were chosen as α = diag {40, 30, 20}, β = 0.1I3, Γ = 0.1I3, K =

diag {0.12, 0.03, 0.02}, and Γj = 2I2. The manipulator was initialized to be at rest at

the following joint positions θ(0) = [0, 0.58, 0.36]T rad. In the experiment, the entries of

the constant parameter vector φj ∈ R2 are assumed uncertain and the initial values were

chosen as φ̂j(0) = [0.1, 0.1]T . Full state feedback control was shortly named as FSFB

control in the experiment results.

The results of the experimental study are presented in Figures 5.1–5.4. Figure

5.1 presents the task–space tracking error. In Figure 5.2, desired and actual task–space

trajectories are presented on X, Y and Z axes. In Figure 5.3, control input torques are

presented. Figure 5.4 presents the estimates of uncertain parameters. From Figures 5.1

and 5.2, it is clear that the tracking control objective was met in the experimental study.

5.6. Conclusions

This chapter presents a novel task–space controller formulation for robot manipu-

lators. The proposed robust task–space controller ensured asymptotic end–effector track-

ing despite unstructured uncertainties in the dynamics and structured uncertainties in the

velocity kinematics. As opposed to most robust or variable structure controllers presented

in the literature, the proposed robust controller was continuous, and asymptotic tracking

was ensured via this continuous actuation. The stability of the proposed controller was
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Figure 5.1. Experiment of Robust FSFB control: Task–space tracking error e(t).

ensured via rigorous theoretical analysis based on Lyapunov techniques. Experimental

studies performed on PHANToM Omni Haptic device confirmed the performance of the

proposed robust controller.

When compared to the previous adaptive task–space controllers in Zergeroglu

et al. (2000), Zergeroglu et al. (2004), Xian et al. (2004)(a), Tatlicioglu et al. (2008)(a),

the proposed controller can compensate for a broader class of uncertainties. And when

compared to the robust controller of Ozbay et al. (2008), asymptotic task–space tracking

is achieved as opposed to ultimate boundedness of the end–effector tracking error.
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Figure 5.3. Experiment of Robust FSFB control: Control input torques τ (t).
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CHAPTER 6

ROBUST OUTPUT FEEDBACK APPROACH FOR

TASK–SPACE TRACKING CONTROL OF ROBOT

MANIPULATORS

In this chapter, task–space tracking control of robot manipulators subject to un-

certainties in kinematic and dynamic models is examined. The control problem is fur-

ther complicated by the lack of joint velocity measurements. A robust observer based

output feedback controller is proposed. While requiring only the measurement of the

end–effector position of the robot manipulator, the proposed controller ensures uniformly

ultimately bounded tracking result that can be adjusted arbitrarily small with high gain

and compensates for both structured and unstructured uncertainties in kinematic and dy-

namic models of the manipulator. Simulation and experimental results are presented to

demonstrate the validity of the proposed controller.

During the subsequent developments of the robust output feedback controller, the

dimension of the end–effector position and the number of joints will be considered same

(i.e., m = n). So the presentation is made for non–redundant robot manipulators. How-

ever, utilizing the extended Jacobian method in Chapter 4, the proposed robust output

feedback controller can easily be modified to be applicable to kinematically redundant

robot manipulators as well.

6.1. Mathematical Models and Properties

In this chapter, the kinematic model of an n dof revolute joint robot manipulator

given in (2.1) is utilized. Both the forward kinematics f : Rn → Rn and the manipulator

Jacobian matrix J(θ) ∈ Rn×n are considered to be uncertain. The dynamic model given

in (2.33) is utilized with Property 3.

Premultiplying (2.33) by the inverse of the generalized mass matrix, joint acceler-

ation vector can be obtained as

θ̈ = M−1τ −M−1N . (6.1)

Taking the time derivative of (2.15), the end–effector acceleration vector can be obtained
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as

ẍ = J̇ θ̇ + JM−1τ − JM−1N (6.2)

where (6.1) was utilized. In (6.2), the control input τ (t) is multiplied with JM−1 where

both J andM are considered as uncertain.

For (6.2), in the literature, usually, a control design with known Jacobian is pre-

ferred where researchers preferred to design τ = JTu with u being an auxiliary con-

troller that results u to be premultiplied with JM−1JT which is both positive–definite

and symmetric. When compared with similar works in the literature, in this chapter, both

J andM being uncertain makes the control problem harder. This chapter deals with this

problem by utilizing the following matrix decomposition Costa et al. (2003)

JM−1 = SMDU (6.3)

where SM ∈ Rn×n is a positive–definite and symmetric matrix, D ∈ Rn×n is a diagonal

matrix with entries ±1 and U ∈ Rn×n is a unity upper triangular matrix. It is noted that

the SMDU decomposition approach applied to several models in the literature and the

decomposition may result inD being an identity matrix.

After premultiplying (6.3) with M̄(θ) , S−1M (θ) ∈ Rn×n, the following expres-

sion is obtained as

M̄ẍ = M̄J̇θ̇ − M̄JM−1N +DUτ . (6.4)

It is noticed that, sinceSM is positive–definite and symmetric, M̄ is also positive–definite

and symmetric.

6.2. Observer and Controller Design

The control objective is to ensure that the end–effector of the robot manipulator

tracks a desired task–space trajectory. The error system development and the subsequent

control design will be restricted by the availability of only x(t) which is assumed to be

available via some external measurement equipment such as laser interferometer, theodo-

lite, opto-camera systems Kam Lau and Haynes (1985), Zobrist and Ho (1996).

To quantify the control objective, the task–space tracking error e(t) ∈ Rn is de-

fined as

e , xd − x (6.5)

where xd(t) ∈ Rn denotes the desired task–space trajectory. An auxiliary error–like term,
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denoted by r(t) ∈ Rn, is defined as

r = ė+ 2e. (6.6)

The control input torque τ (t) is designed as

τ = DSat (Kr̂) +Dτff (6.7)

whereK ∈ Rn×n is a constant, positive–definite, diagonal, control gain matrix, τff (t) ∈
Rn is the feed–forward component of the control input, Sat (·) ∈ Rn is the vector satu-

ration function, which is used to keep the control input bounded, and r̂(t) ∈ Rn is the

observer for the auxiliary error–like term r(t) which is updated as

˙̂r =
1

ε2
α2(e− ê) (6.8)

in which ê(t) ∈ Rn is the observer for the task–space tracking error e(t) which is updated

as
˙̂e = r̂ − 2ê+

1

ε
α1(e− ê) (6.9)

where ε ∈ R is a small positive constant, α1, α2 ∈ Rn×n are constant, positive–definite,

diagonal observer gain matrices.

Theorem 6.2.1 The controller in (6.7) yields a uniformly ultimately bounded tracking

result in the following sense

‖e (t)‖ ≤ ε (6.10)

where ε is a small constant whose value can be adjusted via changing the control gain

K.

Proof The reader is referred to Chen et al. (2008) for a detailed stability analysis of the

full–state feedback version of the controller, and this analysis can be utilized in conjunc-

tion with the high–gain observer analysis in Chapter 12 of Khalil (2015) to prove the

ultimate boundedness of task–space tracking error and observer errors.
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6.3. Simulation Study

To demonstrate the performance of the proposed controller, a numerical simula-

tion was performed by utilizing the model of the PHANToM Omni haptic device given in

Section 2.2.1. The haptic device is considered to be working as a 2 dof planar manipulator

with two links l1, l2 and two joints θ2, θ3 moving in Y and Z axes as shown in Figure 2.2.

The desired task–space trajectory was chosen as

xd(t) =

[
Yd

Zd

]
=

[
−0.08− 0.02 cos(0.1t)

−0.04 + 0.02 sin(0.1t)

]
(m). (6.11)

The simulation studies were run on MATLAB Simulink with a data rate of 1000Hz.

The control gain matrix was chosen as K = diag {4; 3} and no feed–forward compensa-

tion term was utilized. The observer gains were chosen asα1 = α2 = 10I2 and ε = 0.01.

The maximum and minimum values for the saturation function in the control input were

set at ±0.4 Nt-m. Output feedback control was shortly named as OFB control in the

numerical results.

The simulation results are presented in Figures 6.1–6.3. In Figure 6.1, desired

and actual task–space trajectories are presented. Figure 6.2 presents task–space tracking

error versus observed task–space tracking error. In Figure 6.3, control input torques are

presented. From Figure 6.1, it is clear that the tracking control objective was met and

from Figure 6.2, it is seen that observer objective is achieved.

6.4. Experimental Study

To demonstrate the validity of the proposed controller, experimental studies with

PHANToM Omni haptic device shown in Figure 2.2 were performed. In the experiments,

the desired task–space trajectory in (6.11) was utilized. In addition, since the device is

utilized as a 2 dof planar manipulator, the two links with the last two joints of the device

were used and Y and Z axes measurements of the end–effector position were used in the

experiments. The experimental studies run on MATLAB Simulink with a data rate of

100Hz. The control gain matrix was chosen as K = diag {30; 25} for the experiments.

Feed–forward compensation term was not utilized. The observer gains were chosen as

α1 = α2 = 10I2, and ε = 0.75. The maximum and minimum values for the saturation

set at ±0.4 Nt-m.
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Figure 6.1. Simulation of Robust OFB: Desired and actual task–space trajectories.

The results of the experimental study are presented in Figures 6.4–6.6. In Figure

6.4, desired and actual task–space trajectories are presented. Figure 6.5 presents task–

space tracking error versus observed task–space tracking error. In Figure 6.6, control

input torques are presented. From Figure 6.4, it is clear that the tracking control objective

was met while from Figure 6.5, it is seen that observer objective is achieved. It should be

noted that if a feed–forward component is designed then better tracking may be achieved.

6.5. Conclusions

In this chapter, a new task–space tracking controller formulation was presented for

robot manipulators. The proposed robust observer based output feedback controller en-

sured uniformly, ultimately bounded end–effector tracking performance without requiring

measurements of joint variables and without the need of accurate knowledge of kinemat-

ics and dynamics of the robot manipulator. Only end–effector position measurements

were used thus a simple control structure was designed with minimum requirements. Nu-

merical simulation and experiment results confirmed the performance of the proposed

controller.
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Figure 6.2. Simulation of Robust OFB: e(t) vs. ê(t).

When the proposed conroller was compared to the previous robust task–space

controllers in the literature, this is one of the few robust and output feedback task–space

controllers that achieved practical end–effector tracking.
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Figure 6.3. Simulation of Robust OFB: Control input torques τ (t).
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Figure 6.4. Experiment of Robust OFB: Desired and actual task–space trajectories.
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Figure 6.5. Experiment of Robust OFB: e(t) vs. ê(t).
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CHAPTER 7

PASSIVE DECOMPOSITION: A TASK–SPACE CONTROL

APPROACH

In this chapter, a passive decomposition approach is proposed for task–space con-

trol of bilateral teleoperation systems. As shown in Figure 7.1, the proposed approach

is based on availability of exact model knowledge of kinematic and dynamic models,

and full–state feedback with force sensing from master and slave robots. In this study,

master and slave robots are considered to be physically close so the control unit can be

located at either system or in between, and thus there is no communication line induced

time delay neither between the master robot and the control unit nor between the control

unit and the slave robot. Considering a 2n1 dof bilateral teleoperation system consisting

of kinematically similar two n1 dof non–redundant master and slave robots, the closed–

loop teleoperation system is decomposed in task–space into two n1 dof subsystems as

shape and locked subsystems by utilizing a decomposition matrix. A combined task–

space controller is then designed. The aim of the proposed controller is to ensure that the

end–effector of the slave robot tracks the end–effector of the master robot while obtaining

a desired overall motion for the closed–loop teleoperation system.

Figure 7.1. Flow diagram of a passive decomposition system.

7.1. Mathematical Models of Master and Slave Robots

In this chapter, for the kinematic models of master and slave robots, n1 dof non–

redundant robot model in (2.1) is utilized. The dynamic model in (2.44) is utilized with

Properties 3 and 4. During the subsequent development of passive decomposition method,

the numbers of dof of master and slave robots will be considered same (i.e., n1 = n2).
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Therefore, the dimension of the closed–loop teleoperation system is 2n1.

7.2. Problem Formulation

The 2n1 dof teleoperator system is decomposed into two n1 dof subsystems ac-

cording to two design criteria. The first one is obtaining coordination of master and slave

robots (shape subsystem). The second one is ensuring overall motion of the closed–loop

teleoperator system (locked subsystem).

A decomposition matrix, denoted by S ∈ R2n1×2n1 , is defined as

S ,

[ (
In1 − φ̄

)
J1 φ̄J2

J1 −J2

]
(7.1)

where φ̄ (x1,x2) ∈ Rn1×n1 is defined as

φ̄ ,
(
M̄−1

2 M̄1 + In1

)−1 (7.2)

where M̄1(θ1),M̄2(θ2) ∈ Rn1×n1 denote generalized mass matrices of master and slave

robots in task–space, respectively, and are defined as

M̄1 , J−T1 M1J
−1
1 (7.3)

M̄2 , J−T2 M2J
−1
2 . (7.4)

Then, a transformation from joint–space to task–space is defined as follows[
ẋL

ẋE

]
= S

[
θ̇1

θ̇2

]
(7.5)

where ẋL(t), ẋE(t) ∈ Rn1 represent task–space velocities of locked and shape subsys-

tems, respectively.

Using the transformation in (7.5), the combined dynamics in (2.45) can now be

transformed into task–space as[
M̄L 0n1×n1

0n1×n1 M̄E

][
ẍL

ẍE

]
+

[
C̄L C̄LE

C̄EL C̄E

][
ẋL

ẋE

]
=

[
τL

τE

]
+

[
τfL

τfE

]
(7.6)

where M̄L(t), M̄E(t), C̄L(t), C̄LE(t), C̄EL(t), C̄E(t) ∈ Rn1×n1 and τfL(t), τfE(t),

τL(t), τE(t) ∈ Rn1 are obtained from[
M̄L 0n1×n1

0n1×n1 M̄E

]
, S−T

[
M1 0n1×n1

0n1×n1 M2

]
S−1 (7.7)
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[
C̄L C̄LE

C̄EL C̄E

]
, S−T

[
C1 0n1×n1

0n1×n1 C2

]
S−1

−S−T
[

M1 0n1×n1

0n1×n1 M2

]
S−1ṠS−1 (7.8)

[
τfL

τfE

]
, S−T

[
τf1

τf2

]
(7.9)

[
τL

τE

]
, S−T

[
τ1

τ2

]
. (7.10)

From (7.6), the dynamics of locked and shape subsystems can be separately represented

as

M̄LẍL + C̄LẋL + C̄LEẋE = τL + τfL (7.11)

M̄EẍE + C̄EẋE + C̄ELẋL = τE + τfE . (7.12)

7.3. Control Design

Based on the shape subsystem dynamics in (7.12), the shape subsystem controller

τE(t) is designed as

τE = C̄ELẋL −KvẋE −KpxE − τfE (7.13)

where Kv, Kp ∈ Rn1×n1 are constant, positive–definite, diagonal, control gain matrices.

After substituting (7.13) into (7.12), the closed-loop shape subsystem dynamics can be

obtained as

M̄EẍE + C̄EẋE +KvẋE +KpxE = 0n1×1 (7.14)

from which it is easy to see that the first control objective for the shape subsystem is

achieved in the sense that

xE = x1 − x2 → 0n1×1 ⇔ x1 = x2 (7.15)

thus perfect coordination between end–effectors of master and slave robots is achieved.

In order to ensure that the locked subsystem dynamics tracks a task–space trajec-

tory generated by a combination of human and environmental forces, the locked subsys-

tem controller is designed as

τL = C̄LEẋE. (7.16)
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Substituting (7.16) into (7.11) results in

M̄LẍL + C̄LẋL = τfL (7.17)

thus the second control objective is achieved.

7.4. Simulation Results

To illustrate the performance of the proposed controller, a numerical simulation

was performed utilizing the model of the PHANToM Omni haptic device for both master

and slave robots. The human forces affecting the master robot is represented as τf1 =

0.001 × [sin(2πt), cos(2πt), sin(2πt)]T and the environmental forces affecting the slave

robot is represented as τf2 = 0.001× [cos(2πt), sin(2πt), cos(2πt)].

The simulation study was performed with sampling rate of 1000Hz. The control

gains were chosen as Kv = 10I3 and Kp = 20I3. The master and slave robots were

initialized to be at rest at joint positions θ1(0) = θ2(0) = [0, 0.26,−0.37]T rad.

The simulation results are presented in Figures 7.2-7.4. Figure 7.2 presents the

end–effector positions of master and slave robots. Figure 7.3 shows the position of the

shape subsystem. The control input torques of the master and slave robots are presented

in Figure 7.4. From Figures 7.2 and 7.3, it is clear that the control objective is achieved

by ensuring perfect coordination between the master and slave robots.

7.5. Conclusions

In this chapter, a passive decomposition approach was proposed for task–space

control of a 2n1 dof teleoperation system consisting two n1 dof non–redundant master

and slave robots. The 2n1 dof teleoperation system was decomposed into two n1 dof

locked and shape subsystems. Shape and locked subsystem controllers were designed to

achieve coordination between master and slave robots in the task–space, and to obtain a

desired overall motion for the closed-loop teleoperation system. A simulation study was

performed by using the model of PHANToM Omni Haptic device for both master and

slave robots to confirm the performance of the proposed approach.
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CHAPTER 8

PASSIVE DECOMPOSITION BASED TASK–SPACE

CONTROL OF REDUNDANT TELEOPERATION

SYSTEMS

In this chapter, passive decomposition based task–space control of kinematically

redundant teleoperation systems is considered. The control problem is complicated by

the slave robot having more dof than the master robot. As shown in Figure 7.1, the

proposed approach is based on availability of exact model knowledge of kinematic and

dynamic models, and full–state feedback with force sensing from master and slave robots

in accordance with the previous works on passive decomposition. Similar to Chapter 7,

master and slave systems are considered to be physically close. Considering an n1 + n2

dof redundant teleoperation system consisting of an n1 dof non-redundant master robot

and an n2 dof redundant slave robot (with n2 > n1), the closed–loop teleoperation system

is decomposed in task–space into two n1 dof subsystems as shape and locked subsystems

by utilizing a non-square decomposition matrix. A combined task–space controller is then

designed. The controller ensures that the end–effector of the slave robot tracks the end–

effector of the master robot while obtaining a desired overall motion for the closed–loop

teleoperation system. The n2 − n1 redundant dof in the slave robot are made use of via

the design of a null–space controller. Specifically, to solve the redundancy resolution, the

pseudo–inverse Jacobian method in Siciliano (1990) is utilized. Experimental studies are

conducted to illustrate the performance of the proposed control approach.

8.1. Mathematical Models of Master and Slave Robots

In this chapter, the kinematic models in (2.1) and (2.14) are utilized for the n1

dof non-redundant master and n2 dof redundant slave robots, respectively. The dynamic

model in (2.44) and (2.45) are utilized with Properties 3 and 4.
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8.2. Problem Formulation

In order to decompose the model of the redundant teleoperator system into two

n1 dof subsystems according to two design criteria: 1) ensuring coordination of end–

effectors of master and slave robots (shape subsystem); 2) obtaining a desired overall

motion for the closed-loop teleoperator (locked subsystem), a decomposition matrix, de-

noted by S(θ1,θ2) ∈ R2n1×(n1+n2), is defined as follows

S ,

[ (
In1 − Φ̄

)
J1 Φ̄J2

J1 −J2

]
(8.1)

where Φ̄ (x1,x2) ∈ Rn1×n1 is defined as

Φ̄ ,
(
M̄−1

2 M̄1 + In1

)−1 (8.2)

where M̄1(θ1),M̄2(θ2) ∈ Rn1×n1 denote generalized mass matrices of master and slave

robots in task–space, respectively, and are defined as

M̄1 , J−T1 M1J
−1
1 (8.3)

M̄2 , J+T
2 M2J

+
2 . (8.4)

Then a transformation is defined from joint–space to task–space as[
ẋL

ẋE

]
= S

[
θ̇1

θ̇2

]
(8.5)

where ẋL(t), ẋE(t) ∈ Rn1 represent task–space velocities of locked and shape subsys-

tems, respectively. Pseudo–inverse of the decomposition matrix in (8.5), denoted by

S+(θ1,θ2) ∈ R(n1+n2)×2n1 , is also required to transform the combined dynamics in joint–

space to task–space and is defined as

S+ , ST (SST )−1. (8.6)

Using the transformation in (8.5) with (8.6), the combined dynamics in (2.45) can now be

transformed into task–space as[
M̄L 0n1×n1

0n1×n1 M̄E

][
ẍL

ẍE

]
+

[
C̄L C̄LE

C̄EL C̄E

][
ẋL

ẋE

]
=

[
τL

τE

]
+

[
τfL

τfE

]
(8.7)

where M̄L(t), M̄E(t), C̄L(t), C̄LE(t), C̄EL(t), C̄E(t) ∈ Rn1×n1 and τfL(t), τfE(t),

τL(t), τE(t) ∈ Rn1 are obtained from[
M̄L 0n1×n1

0n1×n1 M̄E

]
, S+T

[
M1 0n1×n2

0n2×n1 M2

]
S+ (8.8)
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[
C̄L C̄LE

C̄EL C̄E

]
, S+T

[
C1 0n1×n2

0n2×n1 C2

]
S+

−S+T

[
M1 0n1×n2

0n2×n1 M2

]
S+ṠS+ (8.9)

[
τfL

τfE

]
, S+T

[
τf1

τf2

]
(8.10)

[
τL

τE

]
, S+T

[
τ1

τ2

]
. (8.11)

From (8.7), the dynamics of locked and shape subsystems can be separately represented

as

M̄LẍL + C̄LẋL + C̄LEẋE = τL + τfL (8.12)

M̄EẍE + C̄EẋE + C̄ELẋL = τE + τfE . (8.13)

8.3. Control Design

Based on the shape subsystem dynamics in (8.13), the shape subsystem controller

τE(t) is designed as

τE = C̄ELẋL −KvẋE −KpxE − τfE (8.14)

where Kv, Kp ∈ Rn1×n1 are constant, positive–definite, diagonal, control gain matrices.

After substituting (8.14) into (8.13), the closed-loop shape subsystem dynamics can be

obtained as

M̄EẍE + C̄EẋE +KvẋE +KpxE = 0n1×1 (8.15)

from which it is easy to see that the first control objective for the shape subsystem is

achieved in the sense that

xE = x1 − x2 → 0n1×1 ⇔ x1 = x2 (8.16)

thus perfect coordination between end–effectors of master and slave robots is achieved.

In order to ensure that the locked subsystem dynamics tracks a task–space trajec-

tory generated by a combination of human and environmental forces, the locked subsys-

tem controller is designed as

τL = C̄LEẋE. (8.17)
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Substituting (8.17) into (8.12) results in

M̄LẍL + C̄LẋL = τfL (8.18)

thus the second control objective is achieved.

Since the slave robot is kinematically redundant, this redundancy can be utilized

to satisfy a sub–task objective. To achieve a sub–task objective, the modified control input

torque, denoted by τ 2(t) ∈ Rn2 , is designed by fusing τ2(t) with a null-space controller,

denoted by τnull(θ2) ∈ Rn2 , as

τ 2 = τ2 + (In2 − J+
2 J2)τnull. (8.19)

Here, (In2 − J+
2 J2) represents an orthogonal projection matrix into the null–space of

J2. In the literature, there are many redundancy resolution methods utilizing null–space

projection Nakanishi et al. (2008). In this study, the null–space controller is designed as

τnull = −Knull∇g (8.20)

whereKnull ∈ Rn2×n2 is a constant, positive–definite, diagonal, control gain matrix, and

∇g ∈ Rn2 is the gradient of a scalar sub–task function g(θ2) ∈ R.

8.4. Experimental Results

To illustrate the performance of the proposed controller, a 2 dof revolute joint

planar robot manipulator was utilized as master robot and the model of a 3 dof revolute

joint planar robot manipulator was used as virtual slave. For the master robot, PHAN-

ToM Omni haptic device shown in Fig. 2.2 was used as a 2 dof planar manipulator after

mechanically fixing the first joint and utilizing the last two joints of the device. As can be

seen from Figure 2.2, as a result of not using the first joint, the device only moves in Y Z

plane. It should be noted that since the device was considered to be a 2 dof planar ma-

nipulator, the first joint angle and motion on X axis were not utilized in the mathematical

models in Section 2.2.1.

For redundant slave robot, the kinematic and dynamic models of 3 dof planar robot

manipulator given in Section 2.2.2 is virtually implemented on the computer and run on

MATLAB Simulink.

In the experiments, a torque sensor was not used to measure forces on the master

robot, and instead a force observer was designed to estimate the applied forces by the
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human operator. In order to design a force observer, the joint acceleration can be written

from (2.44) as

θ̈1 = M−1
1 (τ1 −C1θ̇1) +M−1

1 τf1 . (8.21)

The estimated joint acceleration, denoted by ¨̂θ1(t) ∈ R2, is designed as

¨̂
θ1 = M−1

1 (τ1 −C1θ̇1) + τ̂f.1 (8.22)

where τ̂f.1(t) ∈ R2 represents the observer for the vector M−1
1 τf1 . The joint velocity

observation error, denoted by ef (t) ∈ R2, is defined as

ef , θ̇1 − ˙̂θ1. (8.23)

The force observer is designed as

τ̂f.1 = (Kf + I2)(ef (t) +

∫ t

0

ef (σ)dσ) +Kl

∫ t

0

Tanh(ef (σ))dσ (8.24)

where Kf ,Kl ∈ R2×2 are constant, positive–definite, diagonal, observer gain matrices,

and Tanh(·) ∈ R2 represents the vector hyperbolic tangent function. Provided that Kf

and Kl are chosen appropriately τ̂f.1 approaches to the neighborhood of M−1
1 τf1 Das-

demir and Zergeroglu (2015).

For the virtual slave, an environmental force feedback was modeled by utilizing a

spring-damper model, denoted by fsd ∈ R2, as

fsd = Kdẋ
∗ +Ksx

∗ (8.25)

where Ks,Kd ∈ R2×2 are constant, positive–definite, diagonal, spring and damper gain

matrices, respectively, x∗ ∈ R2 is the position between the end–effector and the position

of the virtually defined surface, and ẋ∗ ∈ R2 is the velocity after applying force on the

virtual surface. The applied force on the joints of the slave robot can be written as follows

τf2 = JT
2 fsd. (8.26)

The sub–task function was selected as g = (θ2.2−θ2.3)2 which is minimized when

the second and third joints have the same angular positions.

The experimental study was performed with a sampling rate of 100Hz. The control

gains were chosen as Kv = diag {15; 10} and Kp = diag {7.5; 5}. The master and

slave robots were initialized to be at rest at joint positions θ1(0) = [0.55, 0.43]T rad.

and θ2(0) = [0, 1.57, 1.57]T rad., respectively. The force observer gains were chosen as

Kf = 10× diag {5; 4} and Kl = 0.5× diag {5; 4}. The corner of position of the virtual
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surface was defined at [0;−0.2](m) in Y and Z coordinates of the workspace of the virtual

slave system. The spring and damper gain matrices were chosen as Ks = Kd = 0.1I2.

The null–space control gain matrix was chosen asKnull = 1.2I3.

The results of the experimental study are presented in Figures 8.1–8.6. Figure 8.1

presents the end–effector positions of master robot and virtual slave. Figure 8.2 presents

the end–effector trajectories of master robot and virtual slave. Figure 8.3 presents posi-

tion of shape subsystem xE(t). The control input torques applied on master robot and

virtual slave are presented in Figure 8.4. In Figure 8.5, joint positions of virtual slave

are presented from which it is clear that the sub–task objective was met as θ2.2 is very

close to θ2.3. Figure 8.6 presents estimation of human force applied on master robot and

the modeled environmental force affecting virtual system when the end–effector of the

virtual slave contacted with the determined virtual surface. From Figures 8.1, 8.2, and

8.3, it is clear that the main control objective is achieved by ensuring perfect coordination

between master robot and virtual slave.
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Figure 8.1. End–effector positions of master robot and virtual slave.
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Figure 8.2. End–effector trajectories of master robot and virtual slave.

8.5. Conclusions

This chapter proposed a passive decomposition approach for task–space control of

an n1+n2 dof bilateral teleoperation system consisting of an n1 dof non-redundant master

robot and an n2 dof redundant slave robot. Provided that exact model knowledge of kine-

matic and dynamic models being available and full-state feedback with force sensing from

both master and slave robots, the n1 + n2 dof teleoperation system was decomposed into

two n1 dof locked and shape subsystems. After introducing a non-square decomposition

matrix, shape and locked subsystem controllers were designed to achieve coordination

between master and slave robots in the task–space, and to obtain a desired overall motion

for the closed–loop teleoperation system. To make use of the redundancy of the slave

subsystem, its controller was fused with a null–space controller to minimize a quadratic

scalar function of joint positions to achieve a secondary objective. An experimental study

was conducted by using PHANToM Omni Haptic device as the non–redundant master

robot and the model of a 3 dof planar robot manipulator as the redundant slave system to

illustrate the performance of the proposed approach. The experiment results confirmed

the performance of the proposed approach.
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CHAPTER 9

CONCLUSIONS

This thesis presented a three–stage framework for task–space control of robot ma-

nipulators with telerobotic applications. The first stage mainly focused on the design of an

asymptotically stable sub–task controller for kinematically redundant robot manipulators.

In the second stage, two robust control methods were proposed for task–space tracking of

robot manipulators. The third stage aimed to develop passive decomposition methods for

task–space control of bilateral teleoperation systems.

In order to design an asymptotically stable sub–task controller for kinematically

redundant manipulators, two different approaches have been discussed in Chapters 3 and

4. Chapter 3 presented design and the corresponding stability analysis of two task–space

controllers (one exact model knowledge and one adaptive) for redundant robot manipula-

tors that utilizes the redundant dof for a predefined sub–task. The task–space controllers

included a novel null–space controller. The sub–task function has been designed as an

error–like function of joint positions. A combined stability analysis that ensured stabil-

ity and convergence of both end–effector and sub–task function have been presented. To

our best knowledge, the proposed combined stability analysis is novel when compared to

the existing literature on control of redundant robot manipulators. Numerical simulations

were conducted for both task–space controllers with and without null–space controllers.

In Chapter 4, an extended task–space control design with sub–task objectives was

presented for kinematically redundant robot manipulators. Specifically, the main aim was

to construct the extended Jacobian to be full rank by integrating the manipulator Jacobian

matrix with the sub–task Jacobian matrix with the amount of the extra dof. Another mo-

tivation of Chapter 4 was to propose a method that is applicable to hyper redundant robot

manipulators without requiring a separate stability analysis for multiple sub–task objec-

tives. To deal with parametric uncertainties associated with robot dynamics, an adaptive

controller was proposed. Lyapunov based stability analysis ensured stability and con-

vergence of both task–space tracking and sub–task objectives. To our best knowledge,

when compared to the existing literature on control of redundant robot manipulators, the

proposed extended task–space controller is novel with two important specifications; the

first one is that ensuring asymptotic stability of both task–space tracking and sub–task

objectives, and the second one is that being applicable for multiple sub–tasks on hyper re-
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dundant robot manipulators. Experiments on a 3 dof planar redundant robot manipulator

were conducted to demonstrate the performance of the proposed adaptive controller with

a novel sub–task. For the sub–task, the redundant robot manipulator was considered as

being equipped with a camera or a laser tracer on the first link that traces the end–effector

of the robot manipulator while performing the task–space tracking objective. Conse-

quently, while the approach in Chapter 3 was based on pseudo–inverse Jacobian method

and achieved asymptotically stable sub–task control for kinematically redundant robot

manipulators which have only one redundant dof, the approach in Chapter 4 is based on

extended Jacobian method and achieved asymptotically stable sub–task control for hyper

redundant robot manipulators.

In Chapters 5 and 6, two robust control methods were proposed for task–space

tracking of robot manipulators. Chapter 5 presented a novel continuous task–space con-

troller formulation for robot manipulators. The proposed robust task–space controller

ensured asymptotic task–space tracking despite unstructured uncertainties in the robot

dynamics and structured uncertainties in the velocity kinematics. As opposed to most ro-

bust or variable structure controllers presented in the literature, the proposed robust con-

troller is continuous, and asymptotic tracking was ensured. The stability of the proposed

controller was ensured via rigorous theoretical analysis based on Lyapunov techniques.

Experimental studies performed on a PHANToM Omni Haptic device confirmed the per-

formance of the proposed robust controller.

In Chapter 6, a robust observer based output feedback controller formulation was

presented for robot manipulators. The proposed robust output feedback controller ensured

uniformly, ultimately bounded end–effector tracking performance without requiring mea-

surements of joint position and velocity and without the need of accurate knowledge of

kinematics and dynamics of the robot manipulator. Only end–effector position measure-

ments were used thus a simple model–free control structure was designed with minimum

requirements. Numerical simulation and experiment results confirmed the performance

of the proposed controller. When the proposed conroller was compared to the previous

robust task–space controllers in the literature, this is one of the few robust and output feed-

back task–space controllers that achieved practical end–effector tracking. When the two

robust task–space controllers are compared, the continuous robust controller in Chapter 5

ensured asymptotic task–space tracking where measurements of joint positions and veloc-

ities are required, while the robust observer based output feedback controller in Chapter 6

ensured ultimately bounded task–space tracking without requiring neither measurements

of joint positions or velocities nor accurate knowledge of kinematic and dynamic models.
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While the designs in Chapters 5 and 6 were for non–redundant robots, via utilizing the

extended Jacobian method in Chapter 4, they can be applied to kinematically redundant

robot manipulators as well.

The third objective of this thesis was to develop a passive decomposition method

for task–space control of bilateral teleoperation systems. In Chapter 7, a passive decom-

position approach was proposed for task–space control of a 2n1 dof teleoperation system

consisting of two n1 dof non–redundant master and slave robots. The 2n1 dof teleopera-

tion system was decomposed into two n1 dof locked and shape subsystems. The proposed

controllers of locked and shape subsystems in Chapter 7 ensured coordination of master

and slave robots while achieving overall motion of the bilateral teleoperation system.

Chapter 8 proposed a passive decomposition approach for task–space control of

an n1 + n2 dof bilateral teleoperation system consisting of an n1 dof non–redundant mas-

ter robot and an n2 dof redundant slave robot. Provided that exact model knowledge of

kinematic and dynamic models being available and full–state feedback with force sensing

from both master and slave robots, the n1 + n2 dof teleoperator system was decomposed

into two n1 dof locked and shape subsystems. After introducing a non–square decompo-

sition matrix, shape and locked subsystem controllers were designed to achieve coordina-

tion between master and slave robots in task–space, and to obtain a desired overall motion

for the bilateral teleoperation system. To make use of the redundancy of the slave subsys-

tem, its controller was fused with a null–space controller to minimize a quadratic scalar

function of joint positions to achieve a secondary objective. An experimental study was

conducted to illustrate the performance of the proposed approach by using PHANToM

Omni Haptic device as the non–redundant master robot and the model of a 3 dof planar

robot manipulator as the redundant slave system. As a conclusion, in Chapters 7 and 8,

the proposed passive decomposition method was considered for task–space control of bi-

lateral teleoperation systems for the first time. While, in Chapter 7, kinematically similar

master and slave robots were decomposed into locked and shape subsystems, in Chap-

ter 8, the proposed method was modified to be applicable for kinematically dissimilar

teleoperation systems by introducing a non–square decomposition matrix.

9.1. Future Works

As future works for Chapters 3 and 4, the proposed full state feedback based con-

trollers can be extended to output feedback based controllers. In Chapter 4, the viability of

the proposed extended Jacobian method was experimentally verified on a 3 dof redundant
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robot manipulator by utilizing only one sub–task objective. A possible future work can

be experimentally verifying the proposed method on hyper redundant robot manipulators

(n � m) by utilizing multiple sub–task objectives. For the proposed continuous robust

controller in Chapter 5, there are some possible future works that could be done based

on adaptive, optimal or neural network methods. This full state feedback based contin-

uous robust controller can also be extended in future work by designing an observer to

compensate for the lack of joint velocity measurements. As another future work, the

proposed robust observer based output feedback controller in Chapter 6 can be modified

to include an adaptive compensation component. Internet–based experimental studies of

the proposed passive decomposition methods in Chapters 7 and 8 can be demonstrated

on real master and slave systems which are far away from each other. As another future

work, time delay challenges may be dealt with as an extension of the proposed passive

decomposition methods.
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APPENDIX A

PROOFS OF BOUNDS

A.1. Upper Bound Development for Q̃(t)

In view of the similar derivations in Tatlicioglu et al. (2006) and Dasdemir and

Zergeroglu (2015), the development is started by rewriting (5.9) as follows

Q = M [ ¨̂J
−1

(ẋd +αe) + 2 ˙̂J
−1

(ẍd +αr +α2e)

+Ĵ−1(
...
xd +α2r +α3e+αs−αΓr)]

+Ṁ( ˙̂J
−1
ẋ+ Ĵ−1ẍ) + Ṅ +M (Γs− Γ2r) +

1

2
Ṁs+ r (A.1)

where (5.2) and (5.6) were utilized. Utilizing (2.4) and its first two time derivatives, (5.10)

is rewritten as follows

Qd = M(f̄(xd))(
¨̂J
−1

(xd, ẋd, ẍd)ẋd + 2 ˙̂J
−1

(xd, ẋd)ẍd + Ĵ−1(xd)
...
xd)

+Ṁ (f̄(xd), Ĵ
−1(xd)ẋd)(

˙̂J
−1

(xd, ẋd)ẋd + Ĵ−1(xd)ẍd)

+Ṅ (f̄(xd), Ĵ
−1(xd)ẋd, (

˙̂J
−1

(xd, ẋd)ẋd + Ĵ−1(xd)ẍd)). (A.2)

After adding and subtracting auxilary terms, the right–hand side of (5.11) is rewritten as

follows

Q̃ = [Q(x, ẋd, ẍd,0n,0n,0n,
...
xd)−Qd(xd, ẋd, ẍd,0n,0n,0n,

...
xd)]

+[Q(x, ẋ, ẍd,0n,0n,0n,
...
xd)−Q(x, ẋd, ẍd,0n,0n,0n,

...
xd)]

+[Q(x, ẋ, ẍ,0n,0n,0n,
...
xd)−Q(x, ẋ, ẍd,0n,0n,0n,

...
xd)]

+[Q(x, ẋ, ẍ, e,0n,0n,
...
xd)−Q(x, ẋ, ẍ,0n,0n,0n,

...
xd)]

+[Q(x, ẋ, ẍ, e, r,0n,
...
xd)−Q(x, ẋ, ẍ, e,0n,0n,

...
xd)]

+[Q(x, ẋ, ẍ, e, r, s,
...
xd)−Q(x, ẋ, ẍ, e, r,0n,

...
xd)]. (A.3)

95



Applying the Mean Value Theorem in Khalil (2002) to (A.3) yields

Q̃ =
∂Q(σ1, ẋd, ẍd,0n,0n,0n,

...
xd)

∂σ1

|σ1=v1(x− xd)

+
∂Q(x,σ2, ẍd,0n,0n,0n,

...
xd)

∂σ2

|σ2=v2(ẋ− ẋd)

+
∂Q(x, ẋ,σ3,0n,0n,0n,

...
xd)

∂σ3

|σ3=v3(ẍ− ẍd)

+
∂Q(x, ẋ, ẍ,σ4,0n,0n,

...
xd)

∂σ4

|σ4=v4(e− 0n)

+
∂Q(x, ẋ, ẍ, e,σ5,0n,

...
xd)

∂σ5

|σ5=v5(r − 0n)

+
∂Q(x, ẋ, ẍ, e, r,σ6,

...
xd)

∂σ6

|σ6=v6(s− 0n) (A.4)

where v1 ∈ (xd,x), v2 ∈ (ẋd, ẋ), v3 ∈ (ẍd, ẍ), v4 ∈ (0n, e), v5 ∈ (0n, r) and

v6 ∈ (0n, s). The right–hand side of (A.4) can be upper bounded as follows∥∥∥Q̃∥∥∥ ≤ ∥∥∥∥∂Q(σ1, ẋd, ẍd,0n,0n,0n,
...
xd)

∂σ1
|σ1=v1

∥∥∥∥ ‖e‖
+

∥∥∥∥∂Q(x,σ2, ẍd,0n,0n,0n,
...
xd)

∂σ2

|σ2=v2

∥∥∥∥ ‖ė‖
+

∥∥∥∥∂Q(x, ẋ,σ3,0n,0n,0n,
...
xd)

∂σ3

|σ3=v3

∥∥∥∥ ‖ë‖
+

∥∥∥∥∂Q(x, ẋ, ẍ,σ4,0n,0n,
...
xd)

∂σ4

|σ4=v4

∥∥∥∥ ‖e‖
+

∥∥∥∥∂Q(x, ẋ, ẍ, e,σ5,0n,
...
xd)

∂σ5

|σ5=v5

∥∥∥∥ ‖r‖
+

∥∥∥∥∂Q(x, ẋ, ẍ, e, r,σ6,
...
xd)

∂σ6

|σ6=v6

∥∥∥∥ ‖s‖ . (A.5)
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The partial derivative terms in (A.4) can be calculated as follows

∂Q(σ1, ẋd, ẍd,0n,0n,0n,
...
xd)

∂σ1

=
∂[M ( ¨̂J

−1
ẋd + 2 ˙̂J

−1
ẍd + Ĵ−1

...
xd)]

∂σ1

+
∂[Ṁ( ˙̂J

−1
ẋd + Ĵ−1ẍd)]

∂σ1

+
∂Ṅ

∂σ1

(A.6)

∂Q(x,σ2, ẍd,0n,0n,0n,
...
xd)

∂σ2

=
∂[M ( ¨̂J

−1
ẋd + 2 ˙̂J

−1
ẍd)]

∂σ2

+
∂[Ṁ( ˙̂J

−1
σ2)]

∂σ2

+
∂Ṅ

∂σ2

(A.7)

∂Q(x, ẋ,σ3,0n,0n,0n,
...
xd)

∂σ3

=
∂[M ¨̂J

−1
ẋd]

∂σ3

+
∂[ṀĴ−1σ3]

∂σ3

+
∂Ṅ

∂σ3

(A.8)

∂Q(x, ẋ, ẍ,σ4,0n,0n,
...
xd)

∂σ4

=
∂[M ( ¨̂J

−1
ασ4 + 2 ˙̂J

−1
α2σ4 + Ĵ−1α3σ4)]

∂σ4

(A.9)

∂Q(x, ẋ, ẍ, e,σ5,0n,
...
xd)

∂σ5

=
∂[M (2 ˙̂J

−1
ασ5 + Ĵ−1α2σ5 − Ĵ−1αΓσ5)]

∂σ5

−∂[MΓ2σ5]

∂σ5

+ In (A.10)

∂Q(x, ẋ, ẍ, e, r,σ6,
...
xd)

∂σ6

=
∂[M (Ĵ−1ασ6 + Γσ6)]

∂σ6

+
1

2

∂[Ṁσ6]

∂σ6

. (A.11)

Defining v1 , x − c1(x − xd), v2 , ẋ − c2(ẋ − ẋd), v3 , ẍ − c3(ẍ − ẍd), v4 ,

e− c4(e−0), v5 , r− c5(r−0), v6 , s− c6(s−0) where ci ∈ (0n, 1)∀i = 1, 2, ..., 6,

and the following upper bounds can be written for (A.6)–(A.11)∥∥∥∥∂Q(σ1, ẋd, ẍd,0n,0n,0n,
...
xd)

∂σ1

|σ1=v1

∥∥∥∥ ≤ ρ1(x) (A.12)∥∥∥∥∂Q(x,σ2, ẍd,0n,0n,0n,
...
xd)

∂σ2

|σ2=v2

∥∥∥∥ ≤ ρ2(x, ẋ) (A.13)∥∥∥∥∂Q(x, ẋ,σ3,0n,0n,0n,
...
xd)

∂σ3

|σ3=v3

∥∥∥∥ ≤ ρ3(x, ẋ, ẍ) (A.14)∥∥∥∥∂Q(x, ẋ, ẍ,σ4,0n,0n,
...
xd)

∂σ4

|σ4=v4

∥∥∥∥ ≤ ρ4(x, ẋ, ẍ) (A.15)∥∥∥∥∂Q(x, ẋ, ẍ, e,σ5,0n,
...
xd)

∂σ5

|σ5=v5

∥∥∥∥ ≤ ρ5(x, ẋ) (A.16)∥∥∥∥∂Q(x, ẋ, ẍ, e, r,σ6,
...
xd)

∂σ6

|σ6=v6

∥∥∥∥ ≤ ρ6(x, ẋ) (A.17)

where ρi(·) ∀i = 1, 2, ..., 6 are positive non–decreasing functions of x(t), ẋ(t) and ẍ(t).

After substituting (A.12)-(A.17) into (A.5), the following expression can be obtained∥∥∥Q̃∥∥∥ ≤ ρ1(‖e‖) ‖e‖+ ρ2(‖e‖ , ‖r‖) ‖ė‖+ ρ3(‖e‖ , ‖r‖ , ‖s‖) ‖ë‖

+ ρ4(‖e‖ , ‖r‖ , ‖s‖) ‖e‖+ ρ5(‖e‖ , ‖r‖) ‖r‖+ ρ6(‖e‖ , ‖r‖) ‖s‖(A.18)
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where (5.2) and (5.6) were utilized. The right–hand side of (A.18) can be rewritten in a

compact form as in (5.12).

A.2. Proof of Non–negativeness of P (t)

In this appendix, the sufficient condition of (5.21) will be obtained. Substituting

(5.6) into (5.26), and then integrating η(t) in time, the following expression is obtained∫ t

0

η(σ)dσ =

∫ t

0

rT (σ)Γ(Qd(σ)− βSgn(r(σ)))dσ +

∫ t

0

drT (σ)

dσ
Qd(σ)dσ

−
∫ t

0

drT (σ)

dσ
βSgn(r(σ))dσ (A.19)

where the symmetry of Γ was utilized. After evaluating second and third integrals on the

right–hand side of (A.19) by parts, the following expression can be obtained∫ t

0

η(σ)dσ =

∫ t

0

rT (σ)Γ(Qd(σ)− βSgn(r(σ)))dσ + rT (σ)Qd(σ)|t0

−
∫ t

0

rT (σ)
dQd(σ)

dσ
dσ −

n∑
i=1

βi |ri(σ)| |t0

=

∫ t

0

rT (σ)Γ[Qd(σ)− βSgn(r(σ))− Γ−1
dQd(σ)

dσ
]dσ

+rT (t)Qd(t)− rT (0)Qd(0)−
n∑

i=1

βi(|ri(t)| − |ri(0)|). (A.20)

The right–hand side of (A.20) can be upper bounded as follows∫ t

0

η(σ)dσ ≤
∫ t

0

n∑
i=1

Γi |ri(σ)| [Qdi(σ)− βi +
1

Γi

∣∣∣∣dQdi(σ)

dσ

∣∣∣∣]dσ
+

n∑
i=1

|ri(t)| (|Qdi(t)| − βi) + ζP . (A.21)

If the entries of the gain matrix β are chosen to satisfy (5.21), then the following expres-

sion can be obtained ∫ t

0

η(σ)dσ ≤ ζP (A.22)

and hence, it is clear from (5.25) that P (t) ≥ 0.
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