
Assuring Dependability of Software Reuse:
An Industrial Standard

Fevzi Belli(&)

Faculty of Computer Science, Electrical Engineering and Mathematics,
University of Paderborn, Paderborn, Germany

belli@upb.de

Abstract. Whereas a software component may be perfectly suited to one
application, it may prove to cause severe faults in other applications. The pre-
standard IEC/PAS 62814 (Dependability of Software Products Containing
Reusable Components – Guidance for Functionality and Tests), which has
recently been released, addresses the functionality, testing, and dependability of
software components to be reused and products that contain software to be used
in more than one application; that is, reused by the same or by another devel-
opment organization, regardless of whether it belongs to the same or another
legal entity than the one that has developed this software. This paper introduces
into this pre-standard and give hints how to use it. The author, who chaired its
realization that started in 2006, briefly summarizes the difficult process to bring
the industrial partners with controversial interests to a consensus.

Keywords: Software reuse � Dependability � Test � Industrial standardization

1 Introduction

Software reuse is the process of creating software systems from existing software rather
than building software systems from scratch. The vision of software reuse is as old as
software itself – it was introduced already in 1968, in the year as the term “Software
Engineering” was coined during the constitutional NATO conference in Germany [9].

Many efforts to reuse software have succeeded; there is an increasingly over-
whelming number of success stories available in literature. Almost all major companies
and institutions that deal with information & communication technology practice
software reuse and report about their success, e.g., Nippon Electronic Company, GTE
Corporation, Raytheon, DEC, HP, NASA, and many more [6, 7, 10].

Nevertheless, the promises of decreased cost and increased dependability, and thus
decreased risks, are not always realized. The frightening news about recent disasters
definitely caused by careless soft-ware reuse are still being warningly associated with
and attributed to all software reuse. The failure of Therac-25 system, in which a
software component was carried over from a previous version of an X-ray system,
caused the machine to malfunction, resulting in the loss of several lives in a terrible
way; patients were actually burned [4].

In the Ariane project, failure of a reused software component caused the loss of a
rocket costing around half a billion dollars [5].

© Springer-Verlag Berlin Heidelberg 2014
J. Cordeiro and M. van Sinderen (Eds.): ICSOFT 2013, CCIS 457, pp. 1–12, 2014.
DOI: 10.1007/978-3-662-44920-2_5

A
u

th
o

r
P

ro
o

f

These recent disasters as a consequence of bad reuse on the one side and success
stories as a consequence of good reuse on the other side are the key factors in deciding
whether or not to enhance and sustain continued provision of reuse from a lucrative
business perspective.

To sum up, before reusing a software component, the context and domain it was
built for should be carefully compared with the context and domain it is intended to be
built in, including the hardware and physical and organizational aspects [8]. Figure 1
depicts the elements of the reuse process which is the subject of this paper. It is evident
that reusability is not a single feature of a components but a “bundle” of features
(Fig. 2).

Standardization is the most efficient means to bring research, industrial, commer-
cial, and consuming parties with different roles, but participating on the same objects
and ethic objectives, e.g., to protect environment, to save resources, etc. Standardiza-
tion helps with understanding and unifying the quality notion, also for reusing previ-
ously used products. Standardization helps also prevent legal problems that arise
because reuse will be already practiced tentatively and insecurely.

This paper is on standardization of software reuse concerning its quality, test cri-
teria etc., depending on the purpose of the software that will be reused.

The publicly available specification (PAS) IEC/PAS 62814/Ed. 1: Dependability of
Software Products Containing Reusable Components – Guidance for Functionality
and Tests is a pre-standard and addresses the functionality, testing, and dependability of

Fig. 1. Elements of the reuse process.

2 F. Belli

A
u

th
o

r
P

ro
o

f

software components to be reused and products that contain software to be used in
more than one application; that is, reused by the same or by another development
organization, regardless of whether it belongs to the same or another legal entity than
the one that has developed this software. IEC is the acronym of “International Elect-
rotechnical Commission” that is the world’s leading organization that prepares and
publishes International Standards for all electrical, electronic and related technologies.

The present paper gives an introduction into the PAS, which has been released in
December 2012. The author chaired its realization that started in 2006 62814, and will
give hint how to use it.

Next section clarifies terminology and discusses notions used in the practice.
Section 3 introduces one of the most notable aspects of the PAS, that is, Reusability- &
Dependability-Driven Software Development Technique. Recommended methods of
validation, revalidation, and reliability of software reuse are summarizes in Sect. 4.
Section 5 sketches the structure of the PAS, and explains and discusses its scope,
objectives, and usage. Concluding remarks and future work are included in Sect. 6.

2 Notions and Practices of Reuse

Not each “copy and paste” action, which programmers do daily when they construct
their programs, forms a software reuse that PAS 62814 has in mind. Also calling an
internal or external function and even a remote-procedure call is not necessarily a reuse
this PAS would regulate. All these examples suggest that the context and domain of the

Fig. 2. Reusability characteristics.

AQ1

Assuring Dependability of Software Reuse: An Industrial Standard 3

A
u

th
o

r
P

ro
o

f

called software does not change. Therefore, there is no need for them to consider this
PAS and, for example, perform pre-store and pre-use activities that are described in
PAS 62814 in detail.

2.1 What Reuse Really Is

Using a service in a service-oriented (SO) landscape or in “Common Object Request
Broker Architecture (CORBA)” is of more interest to this PAS because the context and
domain of the software that delivers a service might change. Indeed, SO and CORBA
are typical reuse constellations concerning constructing, offering, selecting, and vali-
dating services repeatedly. A service has to be registered and “published” before it will
be offered. Infrastructural services are offered to realize a broker, etc. (Fig. 3) [1].

2.2 Where Reuse Will Be Practiced

Examples given above clarify that software reuse is not limited to the source or object
code; it has, moreover, to consider all of the information that is related to the product
generating processes, including also requirements, analysis, design, documents, and
test cases apart from the code. Examples of well-known, widely accepted practices of
software reuse are (Fig. 4) [11]:

• Component-based development (CBD): Building systems by integrating compo-
nents that conform to system’s specification.

• COTS integration: CBD using commercial components.
• Service-oriented systems: Building systems by linking shared services.
• Program generators: Embedding knowledge of a particular type of application to

produce component(s) in that domain.

Fig. 3. Typical reuse by service-oriented architecture.

4 F. Belli

A
u

th
o

r
P

ro
o

f

• Application product lines: Generalization of an application around a common
architecture so that it can be used to produce different applications in different
domains for different customers.

• Object-oriented programming: Implementing applications using “objects” that
consist of data structures, methods (algorithms) and their interactions and computer
programs

• Aspect-oriented software development: Weaving shared components into an
application at different places when the program is compiled, if separation of
concerns is feasible.

2.3 Software Reuse Has Many Faces

There is a great variety of reusing software, from ad hoc, unplanned to systematic.
Following list attempts to structure this variety.

1. Accidental (ad hoc or opportunistic) reuse denotes reuse without strategy, typically
reusing software components not designed for reuse.

2. Systematic (planned) reuse requires developing software components intended for
reuse and/or building new applications from those reusable components, following
a formal plan of product line.

3. Adaptive reuse uses previously developed software that is modified only for por-
tability, e.g., a new application on a different operating system.

4. Black-box reuse uses unmodified software components, incorporating existing
software components into a new application without modification.

Fig. 4. Approaches to the reuse.

Assuring Dependability of Software Reuse: An Industrial Standard 5

A
u

th
o

r
P

ro
o

f

5. White-box reuse modifies and integrates software (function) blocks into new
applications.

6. Vertical reuse uses components in the same domain.
7. Horizontal reuse uses components in different domains.
8. Internal (in-house) reuse uses components developed within the company, or

government unit.
9. External reuse uses components of another company, or government unit.

2.4 Software Reuse Has also Many Facets

The above discussion has identified practical and relevant kinds of reuse. A general
taxonomy of software reuse is included in Table 1, which uses the following six aspects
for a thorough, exemplary classification [2, 3]. Numbers in parentheses refer to the
numbering used in the listing in Sect. 2.3.

• Reuse assets and entities can be product-oriented and, thus, concrete, such as
components; they can also be ideal, such as concepts, ideas, algorithms, etc.

• Domain scope refers to application area (6 and 7).
• Development scope refers to origin of the component (8 and 9).
• Additional work required prior to reuse is referred to by modification (3, 4, and 5).
• Whether and which kind of work is to be done in performing reuse is a managerial

aspect (1 and 2).
• Reuse approach is compositional if existing components are reused (such as the

UnixTM shell); generative reuse requires application or code generators (such as
Refine and Meta tool).

• Direct reuse approach requires no “glue code” that intermediates between the
reusable component and the receiving system, indirect reuse necessitates an inter-
mediate entity (Fig. 5).

Note that Table 1 shows the summary of the classification. It is possible to add
further issues, for example, the issue of “Information to Reuse.” It means that reused-
based software development can be required for the complete specification of the
reusable component.

Table 1. Summary of reuse classification.

Reuse asset Reuse entity Domain
scope

Development
scope

Modification Management Approach

Ideas, concepts Architectures Vertical Internal Adaptive Accidental Compositional

Artefacts,
components

Requirements Horizontal External Black box Systematic Generative

Procedures,
skills

Designs White box Indirect

Specifications Direct

Source code

Object code

Test cases

6 F. Belli

A
u

th
o

r
P

ro
o

f

3 Software Development Driven by Reusability
and Dependability Aspects

Architecture is the key to software reuse. The architecture of a system commits its
structure to combine the elements it is comprised of and their features, and relations
among those elements.

Typical structures are hierarchical, centralized (star form), or decentralized (net-
work form); relations are defined as consists-of or neighbored. Architectural elements
can be event, state, or service-oriented.

It is important for reuse that the software architecture should allow a precise design
and specification of interfaces and their dependability-critical features so that it enables
evaluation, selection, acquisition, and integration of reusable components into the
receiving system.

While planning substantial reuse of their software components, software engineers
are often overly optimistic concerning how much reusable functionality can be
achieved. Reuse is not a ultimate saver of costs, schedule, or dependability. Even
COTS deployment often satisfies only less than 40 % of the functionality of an
industrial application.

Also important is the addressing of the critical non-functional requirements, that is,
dependability and quality, which certainly result in schedule and cost impacts, and,
caused by poor dependability and reliability, maybe invoke severe safety and security
risks.

Note that if the functional and interface requirements are not fulfilled, glue code and
wrappers are to be planned, specified, designed, implemented, and carefully tested.

Dependability methodologies include application aspects and the organization of
the reuse. Pre-store and pre-use characteristics should be met and the cases build-for
reuse or build-by-reuse should be distinguished.

Another point covers validation and reliability aspects of the software. Also the
assumptions and rules to improve software dependability are described and the hard-
ware/software interaction is taken into account.

“Software-by-reuse” is the use of existing applications or their components to build
new applications.

Fig. 5. Integration of reusable components.

Assuring Dependability of Software Reuse: An Industrial Standard 7

A
u

th
o

r
P

ro
o

f

It is widely accepted and convenient to consider software reusability from the
following viewpoints.

• Build-for-reuse enables planned production of reusable components.
• Build-by-reuse attempts planned production of systems using reusable components.

Both of these viewpoints focus on characteristics of reusability that are to be checked
before storing the component and before reusing it in a new product.

Figure 7 depicts the coupling and orchestration of build-for and build-by aspects of
reuse.

Following recommendations do not address only internal reuse; they can easily be
adopted also for external reuse.

4 Validation, Revalidation, and Reliability of Software Reuse

Software reuse involves redesign, reimplementation, and re-testing. Redesign arises if
the existing functionality does not fulfil the requirements of the new task because it
requires reworking to realize the new function, and, prior to this, necessitates reverse
engineering to understand its current functionality.

The design change leads to reimplementation. Exhaustive re-testing (as a kind of
regression testing) is necessary to validate the functionality of the reused software in the
new domain to determine whether or not redesign and reimplementation are needed.

Following undesirable events/situations, mostly caused by managerial misjudg-
ment, negatively influence the dependability of software reuse:

• Failing to select the right component, or to favor the wrong selection criteria;
• Failing to justify and adjust the need for and/or extent of the modification of the

selected component to fulfill operational or application requirements;
• Failing to justify and adjust the need for and/or extent of the maintenance of the

selected component during operational stage.

To avoid such events/situations, redesign, re-implementation, and re-testing activities
can be clustered in following groups:

• Redesign

– Architectural design modification: Detection of architectural design part(s) to be
modified, realization of the modification, re-validation of the entire architectural
design;

– Detailed redesign: Detection of design part(s) to be modified, realization of the
modification, re-validation of the entire design;

– Reverse engineering: Detection of the part(s) to be modified, which are not
familiar to developers; understanding, modification, re-validation of the entire
component;

– Re-documentation: Detection of the part(s) to be modified, modification, re-
validation of the entire document;

– Re-implementation requires re-coding, code review, and unit testing (IEC
62628).

8 F. Belli

A
u

th
o

r
P

ro
o

f

• Re-testing activities can be clustered in following groups:

– Test re-planning
– Test procedures to be altered
– Re-integration testing
– Re-release and re-acceptance testing
– Test drivers/simulators to be altered
– Test reports to be rewritten

Fundamental facts influence dependability, especially reliability when using commer-
cially available components, e.g., COTS components for software development.

• Very often no source code is available, thus there is no way to correct a detected
fault.

• This is a great restriction that prohibits application of the most widely used reli-
ability models that require perfect correction of detected faults (“reliability growth
models”; see, for example, AIAA R-013-1992, IEEE 1633-2008).

• If source code is available: Note that COTS software is no longer COTS after its
source code is modified to correct a fault detected because the COTS supplier no
longer maintains the documentation and source code (just as electronics equipment
warranties are no longer valid after a seal is broken).

• Furthermore, the modifications can violate the original software design. From then
on, modified COTS software is to be handled as an accidental reuse.

5 Structure of IEC/PAS 62814 and How to Use It

The international PAS 62814 introduces the concept of assuring reused components
and their usage within new products. It provides information and criteria about the tests
and analysis required for products containing such reused parts. The objective is to
support the engineering requirements for functionality and tests of reusable software
components and composite systems containing such components in evaluating and
assuring reuse dependability (Figs. 6, 7).

Focus is on the dependability of software reuse and, thus, this document comple-
ments IEC 62309:2005-02 (Dependability of products containing reused parts –

requirements for functionality and test), which exclusively considers hardware reuse.
In addition to this previous, hardware-related IEC standard, the present PAS also
crosses further, appropriate software-related standards to be applied in the development
and qualification of software components that are intended to be reused and products
that reuse existing components. In other words, this present standard encompasses the
features of software components for reuse, their integration into the receiving system,
and related tests. Their performance and qualification and the qualification of the
receiving system is subject to existing standards, for example ISO/IEC 25000 and IEC
61508-3. The process framework of ISO/IEC 12207 on systems and software engi-
neering and ISO/IEC 25000 on system aspects of dependability on software engi-
neering apply to this present document.

AQ2

Assuring Dependability of Software Reuse: An Industrial Standard 9

A
u

th
o

r
P

ro
o

f

Fig. 6. Recommended framework of reuse.

NORMATIVE PART
1 Scope
2 Normative references
3 Terms and definitions and abbreviations
4 Dependability of software reuse methodol-

ogy– reusability-driven software development
5 Software reuse dependability methodology

applications
6 Software reuse assurance
7 Warranty and documentation

INFORMATIVE PART- ANNEXES
A General remarks on software reuse
B Qualification and integration of reusable

software components
C Testing and integration of reusable software

components – Issues for industrial best prac-
tice

D Example of software pre-use
E Influence of reused software to hardware

components and products

Fig. 7. Structure of IEC/PAS 62814.

10 F. Belli

A
u

th
o

r
P

ro
o

f

The purpose of IEC/PAS 62814 is to ensure through analysis and tests that the
functionality, dependability and eco-friendliness of a new product containing reused
software components is comparable to a product with only new components. This
would justify the manufacturer providing the next customer with a warranty for the
functionality and dependability of a product with reused components. As each set of
hardware/software has a unique relationship and is governed by its operational sce-
nario, the dependability determination has to consider the underlying operational
background. Dependability also influences safety. Therefore, wherever it seems nec-
essary, safety aspects have to be considered the way IEC 60300-1 addresses safety
issues. This PAS can also be applied in producing product-specific standards by
technical committees responsible for an application sector.

This paper could give only a brief introduction to the major aspects of IEC/PAS
62814. Due to lack of space nothing could be said about the informal part that com-
prehensively explains the methods and techniques for systematic reuse and its vali-
dation to assure dependability, and includes numerous examples from the practice and
for the practice.

6 Concluding Remarks, Future Work

The most common form of reuse is using software developed for one-use in a new
application, which is, accidental reuse. One of the major objectives of the present PAS
62814 is to warn the managers that this kind of unplanned reuse can be a potential
minefield because it can cause the inheritance of all the problems of the pre-existing
software in the reaping of only a few of its benefits. Many managers, while planning for
software reuse, forget that both the reused component and composite system are to be
tested in the new domain. Experience reports say that reusable software can cost 60 %
more than one-use software, whereby a good portion of additional costs goes to testing.

This paper gave a brief introduction into IEC/PAS 62814 and which is a pre-
standard, that is, it is not yet a standard. Further work and much energy are necessary to
complete the work and produce a standard.

References

1. Belli, F., Linschulte, M.: Event-driven modeling and testing of real-time web services.
J. Serv. Orient. Comput. Appl. 4(1), 3–15. Springer, Heidelberg (2010)

2. Frakes, W. B., Terry, C.: Software reuse: metrics and models. ACM Comput. Surv. 28(2),
415–435 (1996). http://dl.acm.org/ft_gateway.cfm?id=234531&type=pdf&CFID=
65178775&CFTOKEN=89447410

3. Frakes, W.B., Kang, K.: Software reuse research: status and future. IEEE Trans. Softw. Eng.
31(7), 529–536 (2005). http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1492369

4. Leveson, N.: Medical devices: the Therac-25. In: Appendix A in Safeware: System Safety and
Computers, pp. 1–49, Addison-Wesley, Boston (1995). http://citeseerx.ist.psu.edu/viewdoc/
download;jsessionid=84A18B532CF53C4AEA6F64AA6038BFEF?doi=10.1.1.39.704&rep=
rep1&type=pdf

Assuring Dependability of Software Reuse: An Industrial Standard 11

A
u

th
o

r
P

ro
o

f

http://dl.acm.org/ft_gateway.cfm?id=234531&type=pdf&CFID=65178775&CFTOKEN=89447410
http://dl.acm.org/ft_gateway.cfm?id=234531&type=pdf&CFID=65178775&CFTOKEN=89447410
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1492369
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=84A18B532CF53C4AEA6F64AA6038BFEF?doi=10.1.1.39.704&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=84A18B532CF53C4AEA6F64AA6038BFEF?doi=10.1.1.39.704&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=84A18B532CF53C4AEA6F64AA6038BFEF?doi=10.1.1.39.704&rep=rep1&type=pdf

5. Lions, J.L.: Ariane 5 Flight 501 Failure (1996). http://www.ima.umn.edu/*arnold/disasters/
ariane5rep.html

6. Mathur, A.P.: Foundations of software Testing. Addison-Wesley Professional, Boston
(2008)

7. Mohagheghi, P., Ict, S., Conradi, R.: An empirical investigation of software reuse benefits in
a large telecom product. ACM Trans. Softw. Eng. Methodol. 17(3), 13:1–13:31 (2008).
http://dl.acm.org/ft_gateway.cfm?id=1363104&type=pdf&CFID=82907429&CFTOKEN=
24134248

8. Mohammad, M., Alagar, V.: A component-based development process for trustworthy
systems. J. Softw. Maint. Evol. Res. Pract. (2010) (Wiley InterScience, Published online),
doi:10.1002/smr.472. http://onlinelibrary.wiley.com/doi/10.1002/smr.472/pdf

9. Naur, P., Randell, B. (eds.): Software Engineering, Report on a Conference Sponsored by
the NATO Science Committee, Garmisch, Germany (1968). http://homepages.cs.ncl.ac.uk/
brian.randell/NATO/nato1968.PDF

10. Orrego, A., Mundy, G.: SRAE: An integrated framework for aiding in the verification and
validation of legacy artifacts in NASA flight control systems. In: Proceedings of the 31st
Annual Intertnational Computer Software and Applications Conference. IEEE Computer.
Press, New York (2007)

11. Sommerville, I.: Software Engineering. Addison Wesley Longman, Boston (2007)

12 F. Belli

A
u

th
o

r
P

ro
o

f

http://www.ima.umn.edu/~arnold/disasters/ariane5rep.html
http://www.ima.umn.edu/~arnold/disasters/ariane5rep.html
http://dl.acm.org/ft_gateway.cfm?id=1363104&type=pdf&CFID=82907429&CFTOKEN=24134248
http://dl.acm.org/ft_gateway.cfm?id=1363104&type=pdf&CFID=82907429&CFTOKEN=24134248
http://dx.doi.org/10.1002/smr.472
http://onlinelibrary.wiley.com/doi/10.1002/smr.472/pdf
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

Author Query Form

Book ID : 330392_1_En
Chapter No.: 5

123
the language of science

Please ensure you fill out your response to the queries raised below
and return this form along with your corrections

Dear Author
During the process of typesetting your chapter, the following queries have
arisen. Please check your typeset proof carefully against the queries listed below
and mark the necessary changes either directly on the proof/online grid or in the
`Author's response' area provided below

Query Refs. Details Required Author's Response

AQ1 Please check and confirm that citation of Section 0 have been changed as
Section 3.

AQ2 Please check and confirm the inserted citation of Fig. 6 is correct. If not,
please suggest an alternate citation.

A
u

th
o

r
P

ro
o

f

MARKED PROOF

Please correct and return this set

Instruction to printer

Leave unchanged under matter to remain

through single character, rule or underline

New matter followed by

or

or

or

or

or

or

or

or

or

and/or

and/or

e.g.

e.g.

under character

over character

new character

new characters

through all characters to be deleted

through letter or

through characters

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

Encircle matter to be changed

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

linking characters

through character or

where required

between characters or

words affected

through character or

where required

or

indicated in the margin

Delete

Substitute character or

substitute part of one or

more word(s)
Change to italics

Change to capitals

Change to small capitals

Change to bold type

Change to bold italic

Change to lower case

Change italic to upright type

Change bold to non-bold type

Insert ‘superior’ character

Insert ‘inferior’ character

Insert full stop

Insert comma

Insert single quotation marks

Insert double quotation marks

Insert hyphen

Start new paragraph

No new paragraph

Transpose

Close up

Insert or substitute space

between characters or words

Reduce space between
characters or words

Insert in text the matter

Textual mark Marginal mark

Please use the proof correction marks shown below for all alterations and corrections. If you

in dark ink and are made well within the page margins.

wish to return your proof by fax you should ensure that all amendments are written clearly

	_330392_1_En_5_Chapter_Author-1

