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In this paper, we study the well-posedness of solutions for nonlinear Schrödinger 
equations on one and two dimensional domains with boundary where the boundary 
is disturbed by an external inhomogeneous type of Dirichlet or Neumann force. We 
first prove the local existence of solutions at the energy level for quadratic and 
superquadratic sources using the Strichartz estimates on domains. Secondly, we 
obtain conditional uniqueness and local stability. Then, we prove the boundedness 
of solutions in the energy space to pass from the local theory to the global theory. 
Regarding subquadratic sources, we appeal to classical methods and Trudinger’s 
inequality to prove the uniqueness, which, combined with the existence of weak 
energy solutions, mass and energy inequalities, eventually implies the continuity of 
solutions in time.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Problem description and motivation

In this paper, we consider the following nonlinear Schrödinger equation (NLS) with an inhomogeneous 
Dirichlet or Neumann boundary condition:⎧⎪⎨

⎪⎩
Dtu + Δu + λ|u|ru = 0 in Q = (0, T ) ×M ;
u(0) = u0 in M ;
Bu = h in Σ = (0, T ) × ∂M.

(1)

In (1), M is a general bounded domain in Rd with smooth boundary Γ ≡ ∂M . We assume d ≤ 2, except 
in Theorem 1.3 below, which is true for any d ≥ 1. In the special case where M is a Riemaniann manifold, 
one replaces the Laplacian with the Laplace–Beltrami operator Δg, where g is the metric on M . In (1), 
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λ ∈ {−1, 1}, r > 0, Dt = i−1∂t, and u = u(t, x) is a complex valued function. B is either a Dirichlet 
or Neumann boundary operator, i.e., Bu = u (Dirichlet) or Bu = ∂u

∂n (Neumann), where ∂
∂n denotes the 

outward unit normal derivative. (1) is said to be focusing (resp. defocusing) if λ = 1 (resp. λ = −1).
The existence of a weak solution in the space L∞(0, T ; H1(M)) for (1) with a Dirichlet boundary condition 

has been proved in [19] (with λ = −1, r > 0) and in [4] (with λ = 1, r ≤ 2
d ). In both works, the authors 

assume that d ≥ 1 and h ∈ C3(Σ) together with the compatibility condition u0|∂M = h(0). These results 
have been extended to NLS with linear damping (iau, a > 0) and rougher boundary data (h ∈ H1(Σ) ∩
Lr+2(Σ)) for λ = −1, r > 0 in [16] and for λ = 1, r < 4

d+2 in [17]. NLS with Neumann type boundary data 
(h ∈ C1([0, T ]; L2(Γ ))) and linear damping (iau, a > 0) has recently been treated in [18] in both the focusing 
case (λ = 1, r < 4

d+2 ) and the defocusing case (λ = −1, r > 0). Ref. [18] also studies NLS with nonlinear 
damping ia|u|su, a > 0, 0 < r < s < 1 with boundary force of type h ∈ C1([0, T ]; L

2
1−s (Γ )). Moreover, 

Refs. [16–18] obtain the stabilization of solutions with respect to the behavior of the boundary force.
To the best of our knowledge, there is not yet a well established well-posedness theory for NLS with 

boundary forces on bounded domains at the H1-level in low dimensions. There are some results on special 
unbounded domains with boundary such as the half-line; for instance Refs. [8–11,20] study one-dimensional 
NLS with boundary forces on such a domain. There are also some results on related equations such as 
Ginzburg–Landau equations with boundary forces; see for example [2,6,7,15]. In high dimensions (d ≥ 3), 
well-posedness for NLS on bounded domains, even with homogeneous boundary datum h ≡ 0, has not been 
studied well yet.

It has been pointed out in [19] that the uniqueness and the regularity for (1) are non-trivial open problems. 
However, it is stated in [19] that if r < 4/(d − 2) and the evolution operator satisfies the decay property∥∥eitΔ∥∥

L(L1(M),L∞(M)) � t−d/2,

then there must be a unique solution. Although such a decay property is not known to hold on a general 
domain, similar estimates, so called Strichartz estimates, have been proved recently on manifolds with 
boundary [3] and low dimensional compact regular domains [1].

It is proved in [3] that for any Strichartz pair (p, q), the Strichartz estimate∥∥eitΔgf
∥∥
Lp(0,T ;Lq(M)) � ‖f‖

H
4
3p (M)

(2)

holds true in a compact manifold with boundary with dimension d ≥ 2.
We say (p, q) is a Strichartz pair if

2
p

+ d

q
= d

2 , (p, q, d) �= (2,∞, 2), 2 ≤ p, q ≤ ∞.

Regarding a general domain, Ref. [1] proved the following Strichartz estimate where M is a two or three 
dimensional compact regular domain.∥∥eitΔf

∥∥
Lp(0,T ;Lq(M)) � ‖f‖

H
3
2p+ε(M)

, (3)

ε > 0 being an arbitrarily small positive constant. Observe that there is a loss of 1
6p + ε derivatives in the 

estimate (3) compared to the estimate (2).
In two dimensional domains, using Sobolev imbeddings it is possible to improve (3) to the case q = ∞

[1], in which case we have ∥∥eitΔf
∥∥
Lp(0,T ;L∞(M)) � ‖f‖H1(M). (4)

The above Strichartz estimate is valid for both Neumann and Dirichlet boundary conditions.
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1.2. Main results

For the Dirichlet problem and d = 2, we consider the following class of boundary functions:

D ≡
{
h ∈ H1+ε(Σ) ∩ Lr+2(Σ) : |h|rh ∈ L1(0, T ;H 1

2+ε(Γ )
)
,

Dε
t

(
|h|rh

)
∈ L1(0, T ;H 1

2+ε(Γ )
)
, h(0) ∈ H

1
2+ε(Γ )

}
,

where ε is an arbitrarily small fixed positive real number, Dε
t is the fractional time derivative, i.e., |h|rh ∈

W ε,1(0, T ; H 1
2+ε(Γ )) and H1+ε(Σ) ≡ H1+ε(0, T ; L2(Γ )) ∩ L2(0, T ; H1+ε(Γ )). The space D can be written 

in a more compact form. Especially in low dimensions after some elimination by using the interpolation 
theory and Sobolev imbeddings on a manifold, we omit this discussion.

For the Neumann problem and d = 2, we consider the following class of boundary functions

N ≡ C1([0, T ];L2(Γ )
)
.

For d = 1, we assume M = (0, 1). In this case, the boundary is composed of two end points Γ = {0, 1}. 
Therefore, the boundary condition can be split into two functions, namely

h(t, x) =
{
h0(t), if x = 0,
h1(t), if x = 1.

For d = 2 we set XT ≡ C([0, T ]; H1(M)) ∩ Lp(0, T ; L∞(M)) where p > max{2, r + 1}. We equip XT with 
the norm

‖u‖XT
≡ sup

t∈[0,T ]

(∥∥u(t)
∥∥
H1(M) + ‖u‖Lp(0,T ;L∞(Ω))

)
.

For d = 1, we set XT ≡ C([0, T ]; H1(M)) and equip it with the norm

‖u‖XT
≡ sup

t∈[0,T ]

∥∥u(t)
∥∥
H1(M).

In both cases, XT is a Banach space.
Sometimes, we will write Xd

T for XT to emphasize the dimension. Here are our main results.

Theorem 1.1 (Global existence, conditional uniqueness). Let u0 ∈ H1(M), r > 0 if λ = −1 (defocusing), 
0 < r < 4

d+2 if λ = 1 (focusing), and one of the following conditions holds

(i) B = id (Dirichlet problem), d = 2, h ∈ D, u0|∂M ≡ h(0),
(ii) B = ∂

∂n (Neumann problem), d = 2, h ∈ N,
(iii) B = id (Dirichlet problem), d = 1, hi ∈ H1(0, T ), i = 0, 1, u0|∂M ≡ h(0),
(iv) B = ∂

∂n (Neumann problem), d = 1, hi ∈ C1([0, T ]), i = 0, 1,

then (1) has a unique solution u ∈ Xd
T .

Remark 1. (i) Regarding the above theorem, the local existence of a strong H1-solution for r ≥ 1 is proved 
in Section 3.1.1 and Section 3.1.2. The uniqueness of this local solution is proved in Lemma 3.4. The uniform 
boundedness of the H1-norm is proved in Section 3.3 in order to extend this local solution globally. For 
r < 1 (even for r ≤ 2), we prove the uniqueness of a global weak H1-solution in Section 3.5. Then by 
Theorem 1.3, the existence of a strong H1-solution follows.
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(ii) We say the uniqueness is conditional if it holds only in a strict subspace of the function space 
C([0, T ]; H1(M)). The uniqueness result in the above theorem is conditional only for r > 2 and d = 2. In 
other cases such as d = 1 or r ≤ 2, d = 2, uniqueness holds in the entire space C([0, T ]; H1(M)).

Theorem 1.2 (Local stability). Let d ≤ 2, r > 1 and O 
 (u0, h) be a bounded set associated with the spaces 
given in Theorem 1.1(i)–(iv) for the Dirichlet or Neumann problem. Then, there exists T > 0 such that the 
flow (u0, h) → u is Lipschitz from O into C([0, T ]; H1(M)).

Remark 2.

(i) The proof of Theorem 1.2 is given in Section 3.2.
(ii) In order to give a sense to the boundedness of a subset of D, one can define a metric on D using a norm 

like function ‖ · ‖D : D → [0, ∞) such as

‖h‖D ≡ ‖h‖H1+ε(Σ)∩Lr+2(Σ) +
∥∥|h|rh∥∥

L1(0,T ;H
1
2+ε(Γ ))

+
∥∥|h|rh∥∥

W ε,1(0,T ;H
1
2+ε(Γ ))

+
∥∥h(0)

∥∥
H

1
2 +ε(Γ )

.

Our proof method for Theorem 1.1 is based on Strichartz estimates, which work well for r ≥ 1. Regarding 
the case r < 1 (or even r ≤ 2), we first prove that if (1) has a unique solution which is essentially bounded 
in time, then it must be continuous in time. This argument is true for any dimension d ≥ 1. More precisely, 
we have the following theorem.

Theorem 1.3 (Continuity in time). Let d ≥ 1 and u be a unique weak H1-solution of (1) in L∞(0, T ; H1(M)) ∩
W 1,∞(0, T ; [H1(M)]′). Then, u is a unique strong H1-solution of (1) in C([0, T ]; H1(M)) ∩ C1(0, T ;
[H1(M)]′).

Remark 3.

(i) Theorem 1.3 is proved in Section 3.4.
(ii) See Definition 3.1 for the precise notion of weak and strong H1-solutions for (1).

An intuitive approach for solving partial differential equations with boundary forces is homogenization 
by extending the boundary datum. For example, in [19] the authors extend the very regular (C3) boundary 
datum h to the interior as some smooth h̃ which satisfies several trace conditions involving derivatives on the 
boundary, and then subtract this extension from the main equation. We consider physically more reasonable 
(rougher) boundary data as opposed to the very regular (C3) boundary inputs considered in the previous 
literature [15,19]. This is one of the distinctive features of our paper because one cannot always find a very 
nice extension when the boundary input is taken from a rougher function space. For example, according 
to the classical trace theory one only gains 1

2 derivatives by Dirichlet extension. This is not sufficient to 
define traces such as Δh̃|Γ used in [19] if h is rough. Therefore, the homogenization method of [19] does 
not work well for our model. In order to deal with this issue, we will appeal to the dynamic extension 
method introduced in [16,17]. This is simply extending the boundary input as a solution of an associated 
linear problem which we can solve with rougher boundary conditions. In other words, we are extending the 
boundary datum in a weak sense. The linear theory required for this extension approach will be reviewed 
in Section 2.

Secondly, we prove the local existence and uniqueness of a strong H1-solution for both Dirichlet and 
Neumann problems with both focusing and defocusing power type nonlinearities by using a contraction 
mapping argument which uses the Strichartz estimate (4) in d = 2. This fixed point approach works for 
powers r ≥ 1. Regarding powers r > 2 and d = 2, uniqueness is only shown to hold in a conditional sense, 



T. Özsarı / J. Math. Anal. Appl. 424 (2015) 487–508 491
namely in the space XT . In order to extend the local solution globally in time, we prove the boundedness of 
the solutions in H1-sense. For the Dirichlet problem, this is done by controlling the trace of the directional 
derivative of the solutions. We can manage to bound solutions in H1-sense for r > 0 in the defocusing case. 
However, the focusing problem is more difficult due to the fact that energy identities involve nonlinear terms 
with a bad sign, which might eventually cause the blow-up of the solutions, even in the case of homogeneous 
boundary conditions [12]. One can utilize Gagliardo–Nirenberg and Gronwall type estimates to overcome 
this difficulty for nonlinearities with powers up to r < 4

d+2 . Unfortunately, this corresponds to r < 4
3 for 

d = 1 and r < 1 for d = 2, which are not completely included in the fixed point approach. Fortunately, we 
know that (1) has weak H1-solutions in this case [17,18]. Moreover, one can prove that there is indeed only 
one weak H1-solution by using Sobolev imbedding H1 ↪→ L∞ in d = 1 and Trudinger’s inequality in d = 2. 
Uniqueness combined with mass and energy inequalities gives the regularity and implies that the unique 
weak H1-solution is indeed a strong H1-solution.

Remark 4. In the case of homogeneous boundary conditions and arbitrarily large initial datum, weak solu-
tions globally exist for powers r < 4

d . Therefore, the gap r ∈ [ 4
d+2 , 

4
d ) remains an interesting open problem 

for the focusing NLS with non-homogeneous boundary conditions.

2. Review of linear theory

In this section, we review main regularity results for the linear dynamics.

2.1. Dirichlet problem

We consider the following linear Schrödinger equation with an inhomogeneous Dirichlet boundary con-
dition: ⎧⎨

⎩
Dtv + Δv + z = 0 in Q = (0, T ) ×M ;
v(0) = v0 in M ;
u = h in Σ = (0, T ) × ∂M.

(5)

In the Dirichlet problem, we know that there exists a unique solution v ∈ C([0, T ]; H1(M)) provided that 
z ∈ L1(0, T ; H1(M)), v0 ∈ H1(M), and h ∈ H1(Σ) with the compatibility relation

v0|∂M = h(0) ∈ H
1
2 (∂M). (6)

Moreover, solutions depend continuously on data. That is, the mapping

(v0, h, z) → v

is (Lipschitz) continuous from the subspace of elements of

H1(M) ×H1(Σ) × L1(0, T ;H1(M)
)

satisfying (6) into C([0, T ]; H1(M)). For details, see [14, Section 10.9]. We will need a little bit more 
regularity in d = 2 in order to use the Sobolev imbedding H1+ε ↪→ L∞. Indeed, it is possible to shift 
H1-regularity up by one unit [17]. Namely, there is a unique solution v ∈ C([0, T ]; H2(M)) provided that 
z ∈ L1(0, T ; H2(M)), zt ∈ L1(0, T ; H1(M)), v0 ∈ H2(M), h ∈ H2(Σ) with the compatibility relation 
v0|∂M = h(0) ∈ H

3
2 (∂M). Again the mapping from data space to solution space is continuous. Moreover, 

one can interpolate between the two cases, above and obtain a unique solution v ∈ C([0, T ]; H1+ε(M))
continuously, provided that z ∈ L1(0, T ; H1+ε(M)), Dε

tz ∈ L1(0, T ; H1(M)), v0 ∈ H1+ε(M), h ∈ H1+ε(Σ)
with the compatibility relation v0|∂M = h(0) ∈ H

1
2+ε(∂M). See for example [13,14] for interpolation.
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2.2. Neumann problem

We consider the following linear Schrödinger equation with an inhomogeneous Neumann boundary con-
dition:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dtv + Δv = 0 in Q = (0, T ) ×M ;

v(0) = v0 in M ;
∂v

∂n
= h in Σ = (0, T ) × ∂M.

(7)

In the Neumann problem, we have recently proved in [18] that v ∈ C([0, T ]; H1(M)) continuously pro-
vided that h ∈ C1([0, T ]; L2(Γ )) and v0 ∈ H1(M). Actually, this result can be achieved even with 
h ∈ C1([0, T ]; H− 1

2 (Γ )). One can shift this regularity result up and get v ∈ C([0, T ]; H3(M)) continuously 
by choosing h ∈ C1([0, T ]; H 3

2 (Γ )), v0 ∈ H3(M). Then by interpolation one gets v ∈ C([0, T ]; H1+ε(M))
continuously provided that h ∈ C1([0, T ]; H− 1

2+ε(Γ )), v0 ∈ H1+ε(M). This boundary regularity is a fortiori 
satisfied by our assumption of h ∈ C1([0, T ]; L2(Γ )) = N.

3. Nonlinear theory

3.1. Quadratic and superquadratic sources

Let r ≥ 1 and suppose one of the conditions (i) to (iv) in Theorem 1.1 is satisfied. Let us define v as the 
unique solution of the linear dynamics (5) or (7) for the Dirichlet or the Neumann problem, respectively. 
For d = 2, the initial datum v0 in (5) and (7) is chosen from the space H1+ε(M). For the Dirichlet problem, 
it is chosen in such a way that v0|Γ = h(0). Similarly, for the Neumann problem we can choose v0 in such 
a way that ∂v0

∂n = h(0). Existence of such v0 follows by the Sobolev trace theory. In the case d = 1, there is 
no harm to take v0 = u0 ∈ H1(M).

Now, (1) is reduced to solving

⎧⎪⎨
⎪⎩

Dtw + Δw + fv,z(w) = 0 in Q = (0, T ) ×M ;

w(0) = u0 − v0 in M ;

Bw = 0 in Σ = (0, T ) × ∂M

(8)

where fv,z(w) ≡ λ|w + v|r(w + v) − z where we take z ≡ γ−
0 (|h|rh) for the Dirichlet problem and z ≡ 0 for 

the Neumann problem. Here, γ−
0 is the bounded right inverse of the trace operator. This particular choice 

of z makes f vanish on the boundary for the Dirichlet problem. This is needed in order to utilize Strichartz 
estimates.

Throughout the paper, we adapt to the following weak and strong notions of H1-solutions.

Definition 3.1. u = v +w is said to be a weak H1-solution of the Dirichlet (resp. Neumann) problem (1) on 
[0, T ) if w ∈ L∞(0, T ; H1

0 (M)) ∩W 1,∞(0, T ; H−1(M)) (resp. w ∈ L∞(0, T ; H1(M)) ∩W 1,∞(0, T ; H1(M)′)), 
Dtw + Δw + fv,z(w) = 0 in H−1(M) (resp. H1(M)′) for a.a. t ∈ [0, T ), w(0) = u0 − v0.

Similarly, u = v + w is said to be a strong H1-solution of the Dirichlet (resp. Neumann) problem (1)
on [0, T ) if w ∈ C([0, T ); H1

0 (M)) ∩ C1((0, T ); H−1(M)) (resp. C([0, T ); H1(M)) ∩ C1((0, T ); H1(M)′)), 
Dtw + Δw + fv,z(w) = 0 in H−1(M) (resp. H1(M)′) for all t ∈ [0, T ), w(0) = u0 − v0.
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Remark 5. By Duhamel’s formula, it follows that u is a weak (resp. strong) H1-solution of (1) on [0, T ) if 
u ∈ L∞(0, T ; H1(M)) (resp. u ∈ C([0, T ); H1(M))) and

u(t) = v(t) + e−itΔ(u0 − v0) − i

t∫
0

e−i(t−s)Δfz(u)ds for a.a. (resp. for all) t ∈ [0, T ).

In order to obtain local solutions we will use the fixed point method. Now, we define the mapping Ψ by

[
Ψ(u)

]
(t) ≡ v(t) + e−itΔ(u0 − v0) − i

t∫
0

e−i(t−s)Δfz(u)ds (9)

where fz(u) = |u|ru − z = fz,v(w). We want to show that Ψ is a contraction on a complete subspace of XT

for sufficiently small T , from which it will follow that it has a fixed point, i.e., a local solution. In order to 
achieve this, we will need Lemma 3.2 and Lemma 3.3 below.

Lemma 3.2. Let u ∈ XT and p > r + 1. Then,

(i)
∫ T

0 ‖|u|ru‖H1(M)dt ≤ CT‖u‖r+1
XT

if d = 1.
(ii)

∫ T

0 ‖|u|ru‖H1(M)dt ≤ (T
p−r−1

p + (r + 1)T
p−r
p )‖u‖r+1

XT
if d = 2.

Proof. Let us first observe that for a.e. t ≥ 0, we have

∥∥|u|ru∥∥
H1(M) = ‖u‖r+1

L2r+2(M) +
∥∥∥∥r + 2

2 |u|r∇u + r

2 |u|
r−2u2∇ū

∥∥∥∥
L2(M)

≤ ‖u‖r+1
L∞(M) + (r + 1)‖u‖rL∞(M)‖∇u‖L2(M). (10)

If we integrate (10) over [0, T ], we get

T∫
0

∥∥|u|ru∥∥
H1(M)dt ≤

T∫
0

(
‖u‖r+1

L∞(M) + (r + 1)‖u‖rL∞(M)‖∇u‖L2(M)
)
dt

=
T∫

0

‖u‖r+1
L∞(M)dt + (r + 1)

T∫
0

‖u‖rL∞(M)‖∇u‖L2(M)dt ≤ CT‖u‖r+1
XT

. (11)

In d = 1, we use the Sobolev imbedding H1 ↪→ L∞ to bound the right hand side of (11) by CT‖u‖r+1
XT

. This 
proves (i).

In d = 2, we use Hölder’s inequality to get

T∫
0

‖u‖r+1
L∞(M)dt ≤

( T∫
0

‖u‖pL∞(M)dt

) r+1
p
( T∫

0

dt

) p−r−1
p

≤ T
p−r−1

p ‖u‖r+1
XT

(12)

and

T∫
0

‖u‖rL∞(M)‖∇u‖L2(M)dt ≤ ‖u‖C([0,T ];H1(M))

( T∫
0

‖u‖pL∞(M)dt

) r
p
( T∫

0

dt

) p−r
p

≤ T
p−r
p ‖u‖r+1

X . (13)

T
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By (12)–(13), it follows that

T∫
0

∥∥|u|ru∥∥
H1(M)dt ≤

=:Cr,p,T︷ ︸︸ ︷(
T

p−r−1
p + (r + 1)T

p−r
p
)
‖u‖r+1

XT
. (14)

This is (ii). �
Lemma 3.3. Let r ≥ 1 and u1, u2 ∈ H1 ∩ L∞, then

∥∥|u1|ru1 − |u2|ru2
∥∥2
H1(M)

≤ C‖u1 − u2‖2
H1(M)

(
‖u1‖L∞(M) + ‖u2‖L∞(M)

)2r
+ C‖u1 − u2‖2

L∞(M)
(
‖u1‖L∞(M) + ‖u2‖L∞(M)

)2r−2(‖u1‖H1(M) + ‖u2‖H1(M)
)2 (15)

Proof. Let’s set g(t) ≡ tu1 + (1 − t)u2, 0 ≤ t ≤ 1. Then

∥∥|u1|ru1 − |u2|ru2
∥∥2
H1

0 (M) =
∫
M

∣∣∇(
|u1|ru1 − |u2|ru2

)∣∣2dx

=
∫
M

∣∣∇(∣∣g(1)
∣∣rg(1) −

∣∣g(0)
∣∣rg(0)

)∣∣2dx =
∫
M

∣∣∣∣∣∇
1∫

0

d

dt

(∣∣g(t)∣∣rg(t))dt
∣∣∣∣∣
2

dx

=
∫
M

∣∣∣∣∣∇
( 1∫

0

(
r + 2

2
∣∣g(t)∣∣rg′(t) + r

2
∣∣g(t)∣∣r−2(

g(t)
)2
ḡ′(t)

)
dt

)∣∣∣∣∣
2

dx. (16)

We observe the following simple inequalities,
∣∣∇∣∣g(t)∣∣r∣∣ = r

∣∣Re
∣∣g(t)∣∣r−2

ḡ(t)∇g(t)
∣∣ ≤ r

∣∣g(t)∣∣r−1∣∣∇g(t)
∣∣, (17)∣∣g(t)∣∣r =

∣∣tu1 + (1 − t)u2
∣∣r ≤

(
t|u1| + (1 − t)|u2|

)r ≤
(
|u1| + |u2|

)r
, (18)∣∣∇g(t)

∣∣ =
∣∣t∇u1 + (1 − t)∇u2

∣∣ ≤ |∇u1| + |∇u2|, (19)

and
1∫

0

∣∣g(t)∣∣rdt ≤ (
|u1| + |u2|

)r
. (20)

Using (17)–(20), we first have

∣∣∣∣∣
1∫

0

∇
(∣∣g(t)∣∣rg′(t))dt

∣∣∣∣∣ =

∣∣∣∣∣
1∫

0

(
∇(u1 − u2)

∣∣g(t)∣∣r + (u1 − u2)∇
∣∣g(t)∣∣r)dt

∣∣∣∣∣
≤ |∇u1 −∇u2|

(
|u1| + |u2|

)r + r|u1 − u2|
(
|u1| + |u2|

)r−1(|∇u1| + |∇u2|
)
. (21)

Secondly,
∣∣∣∣∣

1∫
∇
(∣∣g(t)∣∣r−2(

g(t)
)2
ḡ′(t)

)
dt

∣∣∣∣∣ =

∣∣∣∣∣
1∫ (
∇(ū1 − ū2)

∣∣g(t)∣∣r−2(
g(t)

)2 + (ū1 − ū2)∇
(∣∣g(t)∣∣r−2(

g(t)
)2))

dt

∣∣∣∣∣

0 0
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≤ |∇u1 −∇u2|
(
|u1| + |u2|

)r
+ C|u1 − u2|

(
|u1| + |u2|

)r−1(|∇u1| + |∇u2|
)
. (22)

Hence,
∥∥|u1|ru1 − |u2|ru2

∥∥2
H1

0 (M)

≤ C

∫
M

∣∣|∇u1 −∇u2|
(
|u1| + |u2|

)r + |u1 − u2|
(
|u1| + |u2|

)r−1(|∇u1| + |∇u2|
)∣∣2dx

≤ C

∫
M

|∇u1 −∇u2|2
(
|u1| + |u2|

)2r
dx + C

∫
M

|u1 − u2|2
(
|u1| + |u2|

)2r−2(|∇u1| + |∇u2|
)2
dx

≤ C‖u1 − u2‖2
H1

0 (M)
(
‖u1‖L∞(M) + ‖u2‖L∞(M)

)2r
+ C‖u1 − u2‖2

L∞(M)
(
‖u1‖L∞(M) + ‖u2‖L∞(M)

)2r−2(‖u1‖H1(M) + ‖u2‖H1(M)
)2
. � (23)

3.1.1. One dimensional domains
Now, given u ∈ XT = C([0, T ]; H1(M)), we have

∥∥Ψ(u)
∥∥
H1(M) =

∥∥∥∥∥v(t) − i

t∫
0

e−i(t−s)Δfz(u)ds

∥∥∥∥∥
H1(M)

ds

≤ ‖v‖H1(M) +
T∫

0

∥∥e−i(t−s)Δfz(u)
∥∥
H1(M)ds

= ‖v‖H1(M) +
T∫

0

∥∥fz(u)
∥∥
H1(M)ds = ‖v‖H1(M) +

T∫
0

∥∥|u|ru− z
∥∥
H1(M)ds

≤ ‖v‖H1(M) +
T∫

0

∥∥|u|ru∥∥
H1(M)ds +

T∫
0

‖z‖H1(M)ds

≤ ‖v‖C([0,T ];H1(M)) + CT‖u‖r+1
XT

+ ‖z‖L1(0,T ;H1(M)). (24)

In the above estimates, we have used the conservation of the Schrödinger flow, the Sobolev imbedding 
H1(M) ↪→ L∞(M) in one-dimensional spaces, and Lemma 3.2. By the estimate (24), it follows that Ψ
maps XT into XT .

Now, given u1, u2 ∈ XT , by Lemma 3.3, we have

∥∥Ψ(u1) − Ψ(u2)
∥∥
H1(M) =

∥∥∥∥∥
t∫

0

e−i(t−s)Δ(
|u1|ru1 − |u2|ru2

)
ds

∥∥∥∥∥
H1(M)

≤
T∫

0

∥∥e−i(t−s)Δ(
|u1|ru1 − |u2|ru2

)∥∥
H1(M)ds =

T∫
0

∥∥|u1|ru1 − |u2|ru2
∥∥
H1(M)ds

≤ CT‖u1 − u2‖XT

(
‖u1‖rXT

+ ‖u2‖rXT

)
. (25)

Let A ≡ ‖v‖XT
+ ‖z‖L1(0,T ;H1(Ω)). Let also R > 0 and T > 0 be such that A + CTRr+1 < R; for 

example, after setting R = 2A, we can pick T small enough such that CTAr < 2−r−1. With these particular 
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parameters, we see that Ψ is a contractive mapping on Cl(BR(0; XT )), which is a closed and therefore 
complete subspace of XT . By the contraction mapping theorem, we conclude that Ψ has a unique fixed 
point in Cl(BR(0; XT )).

Note that no Strichartz estimate is needed in the one dimensional case to prove that Ψ is a contraction.

3.1.2. Two dimensional domains
Again, we start with the H1 estimate of Ψ(u).

∥∥Ψ(u)
∥∥
H1(M) =

∥∥∥∥∥v(t) + e−itΔ(u0 − v0) − i

t∫
0

e−i(t−s)Δfz(u)ds

∥∥∥∥∥
H1(M)

≤
∥∥v(t)∥∥

H1(M) +
∥∥e−itΔ(u0 − v0)

∥∥
H1(M) +

T∫
0

∥∥e−i(t−s)Δfz(u)
∥∥
H1(M)ds

≤ ‖v‖C([0,T ];H1(M)) + ‖u0 − v0‖H1(M) +
T∫

0

∥∥|u|ru− z
∥∥
H1(M)ds

≤ ‖v‖C([0,T ];H1(M)) + ‖u0 − v0‖H1(M) + ‖z‖L1(0,T ;H1(Ω)) +
T∫

0

∥∥|u|ru∥∥
H1(M)ds

≤ ‖v‖C([0,T ];H1(M)) + ‖u0 − v0‖H1(M) + ‖z‖L1(0,T ;H1(Ω)) + Cr,p,T ‖u‖r+1
XT

. (26)

In the above estimate, the second inequality follows by the conservation of the Schrödinger flow, and the 
last inequality follows by Lemma 3.2. Now, we estimate the Lp(0, T ; L∞(M)) norm of Ψ(u).

∥∥Ψ(u)
∥∥
Lp(0,T ;L∞(M)) =

∥∥∥∥∥v(t) + e−i(t−s)Δ(u0 − v0) + i

t∫
0

e−i(t−s)Δfz(u)ds

∥∥∥∥∥
Lp(0,T ;L∞(M))

≤ ‖v‖Lp(0,T ;L∞(M)) +
∥∥e−itΔ(u0 − v0)

∥∥
Lp(0,T ;L∞(M))

+
T∫

0

∥∥e−i(t−s)Δfz(u)
∥∥
Lp(0,T ;L∞(M))ds

≤ C‖v‖Lp(0,T ;H1+ε(M)) + C‖u0 − v0‖H1(M) + C

T∫
0

∥∥|u|ru− z
∥∥
H1(M)ds

≤ C‖v‖C([0,T ];H1+ε(M)) + C‖u0 − v0‖H1(M) + C‖z‖L1(0,T ;H1(Ω))

+ C

T∫
0

∥∥|u|ru∥∥
H1(M)ds

≤ C‖v‖C([0,T ];H1+ε(M)) + C‖u0 − v0‖H1(M) + C‖z‖L1(0,T ;H1(Ω))

+ Cr,p,T ‖u‖r+1
XT

. (27)

In (27), the second inequality follows by the Strichartz estimate (3), and the last inequality follows by (14).
Now, we want to get a contractive estimate for Ψ , as we did in the one dimensional case. We start with 

the H1 estimate of the difference between images of two elements u1, u2 ∈ XT .
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∥∥Ψ(u1) − Ψ(u2)
∥∥
H1(M) =

∥∥∥∥∥
t∫

0

e−i(t−s)Δ(
|u1|ru1 − |u2|ru2

)
ds

∥∥∥∥∥
H1(M)

≤
T∫

0

∥∥e−i(t−s)Δ(
|u1|ru1 − |u2|ru2

)∥∥
H1(M)ds

=
T∫

0

∥∥|u1|ru1 − |u2|ru2
∥∥
H1(M)ds. (28)

By using Lemma 3.3 and the general Hölder’s inequality, we obtain

∥∥Ψ(u1) − Ψ(u2)
∥∥
H1(M)

≤ C

T∫
0

‖u1 − u2‖H1
0 (M)

(
‖u1‖L∞(M) + ‖u2‖L∞(M)

)r
dt

+ C

T∫
0

‖u1 − u2‖L∞(M)
(
‖u1‖L∞(M) + ‖u2‖L∞(M)

)r−1(‖u1‖H1(M) + ‖u2‖H1(M)
)
dt

≤ CT
p−r
p ‖u1 − u2‖XT

(
‖u1‖rXT

+ ‖u2‖rXT

)
. (29)

Secondly, we estimate the Lp(0, T ; L∞(M)) norm of the difference of two elements Ψ(u1) and Ψ(u2) where 
u1, u2 ∈ XT .

∥∥Ψ(u1) − Ψ(u2)
∥∥
Lp(0,T ;L∞(M)) =

∥∥∥∥∥
t∫

0

e−i(t−s)Δ(
|u1|ru1 − |u2|ru2

)
ds

∥∥∥∥∥
Lp(0,T ;L∞(M))

≤
T∫

0

∥∥e−i(t−s)Δ(
|u1|ru1 − |u2|ru2

)∥∥
Lp(0,T ;L∞(M))ds

≤ C

T∫
0

∥∥|u1|ru1 − |u2|ru2
∥∥
H1(M)ds (30)

where the last inequality follows by the Strichartz estimate (3). We estimate the last term in (30) as in (29)
and get

∥∥Ψ(u1) − Ψ(u2)
∥∥
Lp(0,T ;L∞(M)) ≤ CT

p−r
p ‖u1 − u2‖XT

(
‖u1‖rXT

+ ‖u2‖rXT

)
. (31)

Let A ≡ ‖v‖C([0,T ];H1(M)) +C‖u0−v0‖H1(M) +C‖z‖L1(0,T ;H1(Ω)). Let also R > 0 and T > 0 be such that 
A + (T

p−r−1
p + (r + 1)T

p−r
p )Rr+1 < R; for example choose R = 2A and T small enough. Choosing T even 

smaller, we see that Ψ becomes a contractive mapping on Cl(BR(0; XT )), which is a closed and therefore 
complete subspace of XT . Therefore, it has a unique fixed point in Cl(BR(0; XT )).

Remark 6. Note that local solutions constructed by Strichartz estimates were unique in the subspace 
B(0, R; XT ). This does not immediately give uniqueness in XT . However, we can utilize the fact that 
they are L∞ in space to prove uniqueness in XT , as in the following lemma.
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Lemma 3.4. Local solutions in XT are unique.

Proof. Let u1 and u2 be two solutions of (1) in XT , and set w ≡ u1 − u2. Then w satisfies the following 
initial boundary value problem.

⎧⎪⎨
⎪⎩

Dtw + Δw + λ
(
|u1|ru1 − |u2|ru2

)
= 0 in Q = (0, T ) ×M ;

w(0) = 0 in M ;

Bw = 0 in Σ = (0, T ) × ∂M.

(32)

Multiplying (32) by w, integrating over M and taking the imaginary parts, one gets

1
2
d

dt
‖w‖2

L2(M) = λIm
∫
M

(
|u1|ru1 − |u2|ru2

)
wdx

≤ C

∫
M

|u1 − u2|
(
|u1|r + |u2|r

)
|w|dx ≤ C

(
‖u1‖rL∞(M) + ‖u2‖rL∞(M)

)
‖w‖2

L2(M). (33)

Upon integration in time and using Hölder’s inequality, we get

‖w‖
2p

p−r

L2(M) ≤ C
(
‖u1‖Lp(0,T ;L∞(M)) + ‖u2‖Lp(0,T ;L∞(M))

) rp
p−r

T∫
0

‖w‖
2p

p−r

L2(M)ds,

which implies that w ≡ 0. �
3.2. Local stability

Proof of Theorem 1.2. Let’s consider the case (i) of Theorem 1.1. Other cases are proved similarly or more 
easily and omitted here. Let u1, u2 be two solutions with initial–boundary data (u0

1, h1) and (u0
2, h2), respec-

tively. Since we know that the linear problem has stability, it is enough to prove that ‖u1−u2‖C([0,T ];H1(M))
is controlled by the differences between initial data and also between solutions of associated linear problems. 
Indeed,

‖u1 − u2‖C([0,T ];H1(M)) ≤ ‖u1 − u2‖XT
≤ C‖v1 − v2‖C([0,T ];H1+ε(M))

+ C
∥∥u0

1 − u0
2
∥∥
H1(M) + CT

p−r
p ‖u1 − u2‖XT

(
‖u1‖rXT

+ ‖u2‖rXT

)
. (34)

Choosing R, which depends on u0 and h (i.e., on the bounded set O), as in the proof of the local existence, 
and T accordingly small enough, we obtain

‖u1 − u2‖C([0,T ];H1(M)) ≤ C‖v1 − v2‖C([0,T ];H1+ε(M)) + C
∥∥u0

1 − u0
2
∥∥
H1(M).

Now, the result follows by the continuous dependence on data for the linear problem. �
3.3. Control of the H1-norm

The passage from a local solution to a global one can be achieved if one has a uniform H1-bound in 
time. It is well known that solutions of the nonlinear Schrödinger equation with homogeneous Dirichlet or 
Neumann boundary conditions have L2 and H1 conservation laws. Unfortunately, these conservation laws are 
no longer valid in the case of inhomogeneous boundary conditions. One can see this with a straightforward 
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calculation. For example, suppose u is a smooth solution of (1) for a moment. Then, multiplying (1) with 
ū in a formal sense, integrating over M and taking the imaginary parts, one can see that the mass changes 
with respect to the law

1
2
d

dt
‖u‖2

L2(M) = Im
∫

∂M

∂u

∂n
ūdΓ. (35)

Similarly, multiplying (1) with ūt, integrating over M and taking the real parts, one gets

1
2
d

dt

(
‖∇u‖2

L2(M) −
2λ

r + 2‖u‖
r+2
Lr+2(M)

)
= Re

∫
∂M

∂u

∂n
ūtdΓ. (36)

For the Neumann problem, one may alternatively write (36) as

1
2
d

dt

(
‖∇u‖2

L2(M) −
2λ

r + 2‖u‖
r+2
Lr+2(M)

)
= d

dt

(
Re

∫
∂M

hūdΓ

)
− Re

∫
∂M

htūdΓ. (37)

It is apparent from the identities (35)–(37) that in order to control the H1 norm, one needs to bound 
the trace of the directional derivative and the solution in appropriate spaces for Dirichlet and Neumann 
problems, respectively. See for example [16] for the treatment of the defocusing problem with Dirichlet force, 
[17] for the focusing problem with Dirichlet force and [18] for both focusing and defocusing problems with 
Neumann force. The situation is relatively easier for the Neumann problem since one can use Sobolev trace 
inequalities. The Dirichlet problem is more delicate and requires a special multiplier.

In order to use the multiplier method directly on a partial differential equation, one needs sufficient 
regularity of the solution. The classical approach is first constructing approximate solutions and obtaining 
uniform estimates on those solutions. Finally, a passage to the limit gives information about the original 
solution. For example, one may use the monotone operator theory [16,17] or perturbed Galerkin’s approach 
[18] to obtain sufficiently smooth approximate solutions for (1).

Recall that perturbed Galerkin approximations with smooth data (u0N , hN ) (which converge to (u0, h)
in the spaces given in Theorem 1.1) for (1) are defined by uN ≡ vN + wN , where vN solves the linear 
problem (5) (Dirichlet) or (7) (Neumann) and wN ≡

∑N
n=1 d

N
n (t)ϕn is a Galerkin approximation for the 

homogenized nonlinear problem (8). The time dependent coefficients dNn are extracted from the N × N

system of first order ordinary differential equations:{
iḋNn + λnd

N
n + fN

n (t) = 0, n ≤ N ;

dNn (0) = αN
n ,

(38)

where fN
n = (fvN ,zN (wN ), ϕn)L2(M), αN

n = (v0N − u0N , ϕn)L2(M), (ϕn)∞n=1 are the eigenfunctions of the 
Laplacian (with homogeneous Dirichlet or Neumann boundary conditions) associated with the eigenval-
ues λn.

Observe that approximate solutions satisfy mass and energy identities (35)–(37). These will be sufficient 
to treat Neumann type forces, but for Dirichlet types force we will need the following lemma.

Lemma 3.5. Let q ∈ [C1(Ω)]n be a real vector field with the property q|Γ = n, and let Q(x) be the d × d

matrix with entries Qij = ∂qi
∂xj

. Then, the following identity holds true.

d

dt
Im

∫
uN (q · ∇ūN )dx = Im

∫
hN h̄NtdΓ + 2Re

∫
(Q∇uN ) · ∇ūNdx
M Γ M
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+ ‖∇AhN‖2
L2(Γ ) − ‖∇uN · n‖2

L2(Γ ) + Re
∫
M

(
∇(divq) · ∇uN

)
ūNdx

− Re
∫
Γ

(∇uN · n)h̄NdivqdΓ − 2λ
r + 2

∫
Γ

|hN |r+2dΓ − λr

r + 2

∫
M

(divq)|uN |r+2dx.

(39)

Proof. The proof is classical and we use the special multiplier q ·∇ūN . We start with the following identity.

d

dt
Im

∫
M

uN (q · ∇ūN )dx = Im
∫
M

uNt(q · ∇ūN )dx + Im
∫
M

uN (q · ∇ūNt)dx. (40)

Using the divergence theorem and q|Γ = n, one gets

Im
∫
M

uNq · ∇ūNtdx = Im
∫
Γ

hN h̄NtdΓ − Im
∫
M

(q · ∇uN )ūNtdx− Im
∫
M

div(q)uN ūNtdx. (41)

Using (38), the linear equation and the divergence theorem,

−Im
∫
M

div(q)uN ūNtdx =
∫
M

div(q)∇uN · ∇ūNdx + Re
∫
M

(
∇
(
div(q)

)
· ∇uN

)
ūNdx

− λ

∫
M

|uN |r+2div(q)dx− Re
∫
Γ

(∇uN · n)h̄Ndiv(q)dΓ. (42)

Using (38) and the linear equation again,

−Im
∫
M

(q · ∇uN )ūNtdx = −Re
∫
M

ΔuN (q · ∇ūN )dx− λRe
∫
M

|uN |ruNq · ∇ūNdx (43)

where

−Re
∫
M

ΔuN (q · ∇ūN )dx = Re
∫
M

∇uN · ∇(q · ∇ūN )dx− ‖∇uN · n‖2
L2(Γ )

= Re
∫
M

(Q∇uN ) · ∇ūNdx + 1
2

∫
M

q · ∇
(
|∇uN |2

)
dx− ‖∇uN · n‖2

L2(Γ )

= Re
∫
M

(Q∇uN ) · ∇ūNdx− 1
2

∫
M

div(q)∇uN · ∇ūNdx

+ 1
2‖∇uN‖2

L2(Γ ) − ‖∇uN · n‖2
L2(Γ ). (44)

−λRe
∫
M

|uN |ruN (hN · ∇ūN )dx = − 2λ
r + 2

∫
Γ

|hN |r+2(q · n)dΓ + 2λ
r + 2

∫
M

div(q)|uN |r+2dx. (45)

Observe that the tangential component of ∇wN on Γ is zero since wN ≡ 0 on ∂M . Moreover, ∇wN =
∂wN

∂n n. Hence,

∇uN ·A = ∇wN ·A + ∇vN ·A = ∇vN ·A (46)
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where A is the unit tangential vector. Using (46), we obtain

|∇uN |2 = |∇uN · n|2 + |∇uN ·A|2 = |∇uN · n|2 + |∇AhN |2. (47)

Now (39) follows by (40)–(45) and (47). �
3.3.1. Dirichlet problem with defocusing source

We set

EN ≡ ‖uN‖2
H1(M) + 2

r + 2‖uN‖r+2
Lr+2(M)

and

HN ≡
t∫

0

(
‖hN‖2

L2(Γ ) + ‖hNt‖2
L2(Γ ) + ‖∇AhN |2L2(Γ ) + ‖hN‖r+2

Lr+2(Γ )
)
ds.

(35) and (36) imply

EN ≤ C + ε

t∫
0

‖∇uN · n‖2
L2(Γ )ds, (48)

with ε > 0 being a sufficiently small fixed parameter whose value can be fixed to an even smaller number 
in further calculations.

Remark 7. In (48) and in what follows, C = C(M, r, ‖u0N‖H1(M), HN , T, ε) is a generic constant depending 
on the fixed parameters.

Now, using (39), we have

t∫
0

‖∇uN · n‖2
L2(Γ )ds ≤ C + CEN + C

t∫
0

ENds. (49)

Combining (48) and (49), we get

EN ≤ C + ε

t∫
0

ENds. (50)

Applying Gronwall’s inequality to (50), we get

EN ≤ CeεT . (51)

3.3.2. Dirichlet problem with focusing source
We set BN =

∫ t

0 ‖∇uN · n‖2
L2(Γ )ds, and DN ≡ sup[0,t]{‖uN‖2

H1(M)}. By (35) and (36), the following 
estimates follow.

‖uN‖2
L2(M) ≤ ‖u0N‖2

L2(M) + 2
√
HNBN (52)
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and

‖∇uN‖2
L2(M) ≤ ‖∇u0N‖2

L2(M) + 1
ε
HN + εBN + C‖uN‖r+2

Lr+2(M) ≤ C + εBN + C‖uN‖r+2
Lr+2(M). (53)

By the Gagliardo–Nirenberg inequality:

‖uN‖r+2
Lr+2(M) ≤ C‖∇uN‖θ(r+2)

L2(M)‖uN‖(1−θ)(r+2)
L2(M) + C‖uN‖L2(M) (54)

where 1
r+2 = 1

2 − θ
d . Under our assumption 0 < r < 4

d+2 , we have θ(r + 2) = dr
2 < 2 and (1 − θ)(r + 2) =

r + 2 − dr
2 = 2r+4−dr

2 . Note that also 1/(1 − dr
4 ) = 4

4−dr and μ := 2r+4−dr
2

4
4−dr = 4r

4−dr + 2 < 4. Therefore, 
by Young’s inequality, the right hand side of (54) is bounded by

ε‖∇uN‖2
L2(M) + C‖uN‖μL2(M) + ε

2‖uN‖4
L2(M) + C ≤ ε‖uN‖2

H1(M) + ε‖uN‖4
L2(M) + C. (55)

Using (39), we have

BN ≤ C + CDN + C

t∫
0

DNds + C

t∫
0

‖uN‖r+2
Lr+2(M)ds. (56)

By (52) and (55),

BN ≤ C + CDN + C

t∫
0

DNds + ε

t∫
0

BNds. (57)

By Gronwall’s inequality,

BN ≤ C + CDN + C

t∫
0

DNds.

On the other hand,

DN ≤ CN + 2εBN + C‖uN‖r+2
r+2.

Again by using (52) and (55),

DN ≤ C + ε

t∫
0

DNds. (58)

Now, the boundedness of DN follows by Gronwall’s inequality and we have DN ≤ CeεT .

3.3.3. Neumann problem with defocusing source
Let us set

HN ≡ sup
(
‖hN‖2

L2(Γ ) + ‖hNt‖2
L2(Γ )

)
ds.
[0,t]
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Now, we use (35) and the Sobolev trace inequality to get the inequality

‖uN‖2
L2(M) ≤ C + ε

t∫
0

‖uN‖2
H1(M)ds. (59)

Similarly, by (37), we obtain

‖∇uN‖2
L2(M) + 2

r + 2‖uN‖r+2
Lr+2(M) ≤ C + ε‖uN‖2

H1(M) + ε

t∫
0

‖uN‖2
H1(M)ds. (60)

Combining (59) and (60), we obtain

EN ≤ C + ε

t∫
0

ENds. (61)

Again by Gronwall’s inequality, we deduce that

EN ≤ CeεT .

3.3.4. Neumann problem with focusing source
From (35), we compute

‖uN‖4
L2(M) ≤ C + C‖uN‖2

H1(M). (62)

Now, combining (59) and (60),

‖uN‖2
H1(M) ≤ C + ε

t∫
0

‖uN‖2
H1(M)ds + C‖uN‖r+2

Lr+2(M). (63)

Using (62) and (55), we have

‖uN‖2
H1(M) ≤ C + ε

t∫
0

‖uN‖2
H1(M)ds. (64)

Applying Gronwall’s inequality to (64), we obtain the desired boundedness:

‖uN‖2
H1(M) ≤ CeεT . (65)

3.3.5. Passage to the limit
By the classical compactness method, there exists a weak H1-solution u of (1) such that a subsequence 

of uN (still denoted uN ) converges to u weakly in H1; see [16–18] for more details. We will need two 
convergence properties of uN ’s in the next section. For the Dirichlet problem, ∂uN

∂n ⇀ ∂u
∂n in L2(Σ) and for 

the Neumann problem uN ⇀ u in L2(Σ).

Remark 8.

(i) Uniform boundedness of u follows by the weak lower semicontinuity of the H1-norm. By the uniform 
boundedness of the H1 norm we can extend local solutions to any arbitrary time interval [0, T ].
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(ii) Observe that for the Dirichlet problem we in particular obtain ∂u∂n ∈ L2(Σ). Formally speaking, this is 
1
2 derivatives better than the classical trace theory would suggest. Some authors call this gain of the 
regularity the hidden regularity.

3.4. Continuity of a unique and essentially bounded solution

In this section, we use similar arguments to [5, Theorem 3.3.9] to pass from a weak H1-solution to a 
strong H1-solution. We combine uniqueness results with H1-energy inequalities and the fact that the weak 
H1-solution belongs to the function space L∞(0, T ; H1(M)) ∩W 1,∞(0, T ; H−1(M)) to prove the continuity 
of solutions in time, and therefore the existence of a unique strong H1-solution follows. We prove the 
following lemma which is true for any dimension.

In order prove Theorem 1.3, we first prove the following convergence properties.

Lemma 3.6. Let uN be as in Section 3.3.5. Then, for the Dirichlet problem

lim
N→∞

t∫
0

〈
∂uN

∂n
, hN + ihNt

〉
Γ

ds =
t∫

0

〈
∂u

∂n
, h + iht

〉
Γ

ds (66)

and for the Neumann problem

lim
N→∞

t∫
0

〈hN + ihNt, uN 〉Γ ds =
t∫

0

〈h + iht, u〉Γ ds (67)

and

lim
N→∞

〈hN , iuN 〉Γ = 〈h, iu〉Γ . (68)

Remark 9. In the above lemma, 〈· , ·〉Γ denotes the L2 inner product on Γ .

Proof of Lemma 3.6. Let’s first consider the Dirichlet problem. Then,

∣∣∣∣∣
t∫

0

〈
∂uN

∂n
, hN + ihNt

〉
Γ

ds−
t∫

0

〈
∂u

∂n
, h + iht

〉
Γ

ds

∣∣∣∣∣
=

∣∣∣∣∣
t∫

0

〈
∂uN

∂n
, hN + ihNt − h− iht

〉
Γ

ds +
t∫

0

〈
∂uN

∂n
− ∂u

∂n
, h + iht

〉
Γ

ds

∣∣∣∣∣
≤

∥∥∥∥∂uN

∂n

∥∥∥∥
L2(Σ)

‖hN + ihNt − h− iht‖L2(Σ) +

∣∣∣∣∣
t∫

0

〈
∂uN

∂n
− ∂u

∂n
, h + iht

〉
Γ

ds

∣∣∣∣∣. (69)

Now, by boundedness of ‖∂uN

∂n ‖L2(Σ), convergence of hN to h in L2(Σ), and weak convergence of ∂uN

∂n to 
∂u
∂n in L2(Σ), passing to the limit in (69), we obtain (66).

For the Neumann problem, we similarly check the following difference,

∣∣∣∣∣
t∫
〈hN + ihNt, uN 〉Γ ds−

t∫
〈h + iht, u〉Γ ds

∣∣∣∣∣

0 0
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=

∣∣∣∣∣
t∫

0

〈hN + ihNt − h− iht, uN 〉Γ ds +
t∫

0

〈h + iht, uN − u〉Γ ds
∣∣∣∣∣

≤ ‖hN + ihNt − h− iht‖L2(Σ)‖uN‖L2(Σ) +

∣∣∣∣∣
t∫

0

〈h + iht, uN − u〉Γ ds
∣∣∣∣∣. (70)

Now, by Sobolev trace inequality ‖uN‖L2(Γ ) ≤ C‖uN‖H1(M), boundedness of ‖uN‖H1(M), strong conver-
gence of hN to h in L2(Σ), and weak convergence of uN to u in L2(Σ), we obtain (67).

Similarly, regarding (68), we write
∣∣〈hN , iuN 〉Γ − 〈h, iu〉Γ

∣∣ =
∣∣〈hN − h, iuN 〉Γ + 〈h, iuN − iu〉Γ

∣∣
≤ ‖hN − h‖L2(Γ )‖uN‖L2(Γ ) +

∣∣〈h, iuN − iu〉Γ
∣∣. (71)

Now, by the same arguments used for (67), we obtain (68). �
Proof of Theorem 1.3. First, we observe that passing to the limit in (35), we have ‖uN‖L2(M) → ‖u‖L2(M)
uniformly on [0, T ], which implies that uN → u in C([0, T ]; L2(M)). Now, using this, uniform boundedness 
of uN in H1(M), and Gagliardo–Nirenberg estimate, we obtain that uN → u in C([0, T ]; Lr+2(M)).

Now, for the Dirichlet problem we define

ED
(
u(t)

)
= ‖u‖2

H1(M) −
2λ

r + 2‖u‖
r+2
Lr+2(M) − 2Im

t∫
0

〈
∂u

∂n
, h + iht

〉
Γ

ds (72)

whenever it makes sense.
Similarly, for the Neumann problem we define

EN
(
u(t)

)
= ‖u‖2

H1(M) −
2λ

r + 2‖u‖
r+2
Lr+2(M) − 2Im〈h, iu〉Γ

∣∣t
0 − 2Im

t∫
0

〈h + iht, u〉Γ ds. (73)

Let uN be a perturbed Galerkin approximation, then

ED(uN )
(
or for the Neumann problem EN(uN )

)
= ‖u0N‖2

H1(M) −
2λ

r + 2‖u0N‖r+2
Lr+2(M). (74)

Using Lemma 3.6, we pass to lim inf in (74) and get

ED
(
u(t)

)
≤ ‖u0‖2

H1(M) −
2λ

r + 2‖u0‖r+2
Lr+2(M) ≡ E(u0)

for the Dirichlet problem. Similarly,

EN
(
u(t)

)
≤ ‖u0‖2

H1(M) −
2λ

r + 2‖u0‖r+2
Lr+2(M) ≡ E(u0)

for the Neumann problem.
Now, referring to Dirichlet problem, let σ, τ ∈ [0, T ], σ < τ and let v be a solution with v(0) = u(σ) and 

Bv = h(t + σ). Then by uniqueness v(t − σ) = u(t) and

ED
(
v(τ − σ)

)
= E

(
u(τ)

)
− 2Im

τ∫ 〈
∂u

∂n
, h + iht

〉
Γ

ds ≤ E
(
v(0)

)
= E

(
u(σ)

)
.

σ
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Similarly, let w be a solution with w(0) = u(τ) and Bw = h(t + τ). Then by uniqueness, w(t − τ) = u(t). 
Moreover, it is not difficult to see that the Schrödinger equation is time reversible and all the results that 
we have proved, are valid for negative times, too. Therefore,

ED
(
w(σ − τ)

)
= E

(
u(σ)

)
− 2Im

σ∫
τ

〈
∂u

∂n
, h + iht

〉
Γ

ds ≤ E
(
w(0)

)
= E

(
u(τ)

)
.

It follows that

E
(
u(τ)

)
− E

(
u(σ)

)
= 2Im

τ∫
σ

〈
∂u

∂n
, h + iht

〉
Γ

ds,

which implies E(u(t)) is continuous. The Neumann problem is treated in the same way, and we again get 
the continuity of t �→ E(u(t)). On the other hand, u ∈ C0, 12 ([0, T ]; L2(M)), see e.g., [5, Lemma 3.3.6]
which implies that t �→ ‖u(t)‖r+2

Lr+2(M) is continuous on [0, T ], see e.g., [5, Lemma 3.3.7]. It follows that 
t �→ ‖u(t)‖H1(M) is continuous on [0, T ]. Therefore, u ∈ C([0, T ]; H1(M)) ∩ C1([0, T ]; (H1(M))′). �
3.5. Subquadratic nonlinearities (r < 1)

Note that the fixed point method used in conjunction with Strichartz estimates works only for r ≥ 1. 
However, we know that weak H1-solutions exist for the defocusing problem for r > 0 [16,19], and for 
the focusing problem for r < 4

d+2 [17]. In the focusing case, for one and two dimensional domains, these 
correspond to r < 4

3 and r < 1, respectively. We can deal with the case r < 1 using classical methods. 
In one dimension, we can use Sobolev’s imbedding L∞(M) ↪→ H1(M), and in dimension two, we can use 
Trudinger’s inequality to prove uniqueness of weak H1-solutions. Then, continuity in time and hence the 
existence of strong solutions follows by Theorem 1.3.

3.5.1. Uniqueness in one dimension
As in the proof of Lemma 3.4, we let u1 and u2 be two solutions, and set w ≡ u1 − u2. Then, again

1
2
d

dt
‖w‖2

L2(M) ≤
∫
M

∣∣|u1|ru1 − |u2|ru2
∣∣|w|dx

≤ C

∫
M

|u1 − u2|
(
|u1|r + |u2|r

)
|w|dx ≤ C

(
‖u1‖rL∞(M) + ‖u2‖rL∞(M)

)
‖w‖2

L2(M). (75)

Using (75) and w(0) = 0, we conclude that w ≡ 0.

3.5.2. Uniqueness in two dimension
We again set w ≡ u1 − u2. We also set q ≡ |u1| + |u2|. (33) is still valid for d = 2, from which we have

1
2
d

dt
‖w‖2

L2(M) ≤ C

∫
M

∣∣|u1|r + |u2|r
∣∣|w|2dx ≤ C

∫
M

qr|w|2dx

= C

∫
M

qr|w|δ|w|2−δdx ≤ C

(∫
M

(
qr|w|δ

) 2
δ dx

) δ
2
(∫

M

|w|2dx
) 2−δ

2

≤ C‖w‖2−δ
L2(M)‖w‖

δ
L4(M)

(∫
q

4r
δ dx

) δ
4

. (76)

M
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Trudinger’s inequality implies that for d = 2, given q ∈ H1(M), there are constants α, β > 0 such that ∫
M

eαq
2
dx ≤ β where α and β depend on ‖q‖H1(M).

(∫
M

q
4r
δ dx

) δ
4

≤
(
vol(M)

δ(2−r)
8

)(∫
M

q
8
δ dx

) δr
8

≤
(

4
αδ

) r
2 (

vol(M)
δ(2−r)

8
)(∫

M

eαq
2− 4

δ dx

) δr
8

≤ Cδ−
r
2 . (77)

Using (76), (77), and the imbedding L4(M) ↪→ H1(M), we conclude that

d

dt
‖w‖2

L2(M) ≤ Cδ−
r
2 ‖w‖2−δ

L2(M).

Integrating this over a finite interval [0, t], we get ‖w‖L2(M) ≤ (Cδ1− r
2T ) 2

δ . Letting δ → 0, we obtain the 
desired result.

Remark 10. The argument above, which uses Trudinger’s inequality, also works for r ≤ 2, where the case 
r = 2 has a trick! Indeed, for r = 2, one first proves the desired result for some small time t0 > 0 by 
choosing t0 small enough so that Cδ1− 2

2 t0 = Ct0 < 1. Then, repetition of the same argument gives the 
uniqueness on the entire time interval [0, T ].
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