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Summary 

MicroRNAs (miRNAs) are single-stranded, small, non-coding RNAs of about 22 nucleotides 

in length, which control gene expression at the posttranscriptional level through translational 

inhibition, degradation, adenylation, or via destabilization of their target mRNAs. Although 

hundreds of miRNAs have been identified in various species, many more may still remain 

unknown. Therefore, discovery of new miRNA genes is an important step for understanding 

miRNA mediated post transcriptional regulation mechanisms. It seems that biological 

approaches to identify miRNA genes might be limited in their ability to detect rare miRNAs 

and are further limited to the tissues examined and the developmental stage of the organism 

under examination. These limitations have led to the development of sophisticated 

computational approaches attempting to identify possible miRNAs in silico. In this chapter, 

we discuss computational problems in miRNA prediction studies and review some of the 

many machine learning methods that have been tried to address the issues. 

1. Introduction 

Current attempts to distinguish miRNA genes have led to the detection of thousands of 

miRNAs in various species, but many may remain undiscovered (1). These efforts, mainly 

based on experimental methods such as directional cloning of endogenous small RNAs, are 

time consuming, expensive, and work intensive (2). Inadequacy of experimental approaches 

can be showcased by the fact that miRNAs are expressed in specific cell types, at low levels 

or only in a specific condition which complicates their experimental detection. To overcome 

these problems several computational methods have been designed and applied to miRNA 

gene detection. 

Numerous approaches for the in silico prediction of miRNAs have been created so far. These 

programs commonly regard the hairpin secondary structure of the miRNA precursor as the 



most important characteristic of a miRNA gene (3, 4). RNA secondary structure prediction 

algorithms such as RNAfold (5) are used to predict the secondary structure and 

thermodynamic stability of RNA hairpin structures. Existing bioinformatics methods for the 

prediction of miRNA usually consist of: 1) genome-wide estimation of hairpin structures, 2) 

filtering or scoring of those hairpins based on their similarity in structure and sequence to 

known miRNA hairpins, and 3) experimental confirmation of putative candidates (3). In order 

to extract possible miRNAs from a genome, either homology modeling or ab initio methods 

are used. 

2. Homology-based MicroRNA Gene Prediction 

Homology-based miRNA gene mapping methods can build on available, experimentally 

validated, miRNAs and find similar structures and sequences in related species. The idea is 

that if a miRNA is identified in one genome then its homologs can be possibly found in other 

species (6). Since conservation indicates a function, it is assumed that conserved candidates 

are more likely to be miRNAs. Although it has been shown that for non-coding RNAs 

absence of conservation does not inevitably mean lack of function (7), searching for 

homologs especially in newly annotated genomes may be a beneficial approach. Software 

facilitating mapping of known miRNAs to homologous genomes take both sequence 

similarity and miRNA secondary structure information into account. The theory is based on 

derivation of mature miRNAs from hairpin structure formed by folding its pre-miRNA. The 

approach taken by one of the most recent developments, MapMi (8), first scans the miRNA 

sequences against the target genome and then creates potential pre-miRNAs from them. In the 

end, the results are scored, ranked and displayed. The scoring function considers both the 

quality of the sequence match (match, mismatch, perfect match) and the predicted structure of 

hairpins (8). The best candidate is chosen according to the calculated score and candidates are 

https://www.researchgate.net/publication/51768656_Lost_in_folding_space_Comparing_four_variants_of_the_thermodynamic_model_for_RNA_secondary_structure_prediction?el=1_x_8&enrichId=rgreq-a754ec7488e1667e3915f2d1d3437f0b-XXX&enrichSource=Y292ZXJQYWdlOzI1ODg1NjMxNztBUzoxMTk1NzMxMTg0NTk5MDRAMTQwNTUxOTg2MTQ1OA==
https://www.researchgate.net/publication/24392990_In_silico_miRNA_prediction_in_metazoan_genomes_Balancing_between_sensitivity_and_specificity?el=1_x_8&enrichId=rgreq-a754ec7488e1667e3915f2d1d3437f0b-XXX&enrichSource=Y292ZXJQYWdlOzI1ODg1NjMxNztBUzoxMTk1NzMxMTg0NTk5MDRAMTQwNTUxOTg2MTQ1OA==


further filtered based on a score-threshold which is either user-defined or selected from 

suggested thresholds (8). All candidates above threshold are displayed with their related 

scores and other relevant information. The web version of MapMi provides more detailed 

analysis including the generation and display of maximum likelihood phylogenetic trees, 

multiple sequence alignments and RNA Structural logos (8). 

Although homology modeling can gather information from already successfully established 

miRNAs of a related organism's genome, it is also limited since completely novel miRNAs 

cannot be determined in this way. First attempts in this approach have mainly relied on 

identifying close homologs of published pre-miRs i.e. let-7 (9). This method might seem as 

straightforward as aligning sequences through NCBI BlastN (10), but it can only reproduce 

results and cannot find new miRNA genes. Since many miRNAs are species specific, they 

will always be missed by this method and therefore other strategies need to be used in tandem. 

Additionally, miRNA genes evolve very rapidly which further limits the applicability of 

homology-based methods (11). A powerful approach developed for genome-wide screening 

of phylogenetically well conserved pre-miRNAs between closely related species is cross-

species sequence conservation based on computationally intensive multiple genome 

alignments. However, it also suffers lower sensitivity especially for more divergent 

evolutionary distances (12, 13). Moreover, identifying pre-miRNAs that differ significantly or 

undergo rapid evolution at the sequence level while keeping their characteristic evolutionary 

conserved hairpin structures, may also pose problems (2). Another important issue is that non-

conserved pre-miRNAs with genus-specific patterns are likely to escape detection (2).  

There are various homology-based miRNA gene prediction software such as MirScan (14), 

miROrtho (15), miRNAminer (16), and ProMiR II (17). Also, some of these software use 

machine learning approaches such as ProMir (18), which uses hidden Markov models, and 

MirFinder (19). MirFinder is designed for genome-wide, pair-wise sequences from two 



chosen species and includes two key steps: 1) genome wide searching of hairpin candidates, 

2) elimination of the non-robust structures based on 18 features analyzed by support vector 

machine (SVM) classification (19). The tool was tested on chicken/human, and Drosophila 

melanogaster/D. pseudoobscura pair-wise genome alignments. The results showed that the 

proposed method can be used for genome wide pre-miRNA predictions (19).  

3. Ab Initio-based MicroRNA Gene Prediction 

While homology-based methods mainly use comparative genomics, ab initio miRNA gene 

prediction needs no information other than the primary sequence for the prediction of 

miRNAs (albeit ab inito methods require negative and positive datasets; which is 

conceptually similar to homology-based approaches). Nonetheless, ab initio methods may 

enable the identification of new miRNAs which have no close homologs (20). The main 

difficulty of ab initio methods is choosing proper parameters that allow determining a given 

sequence to be a miRNA based on its properties. For instance, hairpin structure and minimum 

free energy are widely used features (21) of miRNAs in prediction tools such as miPred (2). If 

the chosen parameters do not provide good specificity, it would not be very informative and 

might increase the potential to produce false positive results. This would lead to a decrease in 

the accuracy of the miRNA prediction method and make validating the results of predictions 

in the wet-lab much more elaborate, time consuming and expensive. The main problem is 

that, although precursor miRNAs should possess an evolutionarily conserved hairpin structure 

which is critical for the early stages of the mature miRNA biogenesis, the hairpin shape is not 

unique to miRNAs and is found in many other non-coding RNAs (22). For instance, all 

translational RNAs contain multiple hairpins. It has been estimated that there are millions of 

hairpin like structures in the human genome and to differentiate the millions of hairpins from 

the few true miRNAs is the grant challenge (23).  



There are many programs using ab initio methods with machine learning approaches 

including Triplet-SVM (24), MiRenSVM (22), miPred (SVM) (2), MiPred (Random Forest) 

(25) and MiRPara (SVM) (26). 

4. Machine Learning and MicroRNA Gene Prediction 

Next to defining proper features that allow differentiation between true and false miRNAs the 

selection of training data for machine learning algorithms is crucial for prediction success. 

Therefore, we will shortly comment on training and test data used in machine learning for 

miRNA prediction. 

4.1. Learning and Test Data 

4.1.1. Positive Data 

Usually positive data for miRNA gene predictions are obtained from miRBase (27). However, 

there are some entries in miRBase which are suggested as miRNAs but are not fulfilling the 

necessary properties to be classified as miRNAs such as having more than one loop. It was 

shown that reference set of positive controls taken from miRBase, requires additional 

improvement to create a high-confidence set proper for use as positive controls (28). We 

recently elaborated on this and found that prediction accuracy can be improved upon filtering 

of unlikely miRNAs from miRBase (29). Except for these minor problems, in miRNA gene 

prediction studies, it is usually uncomplicated to select positive examples (e.g., using the 

known miRNAs), while it is challenging to create negative samples (6). 

4.1.2. Negative Data 

The collection of an appropriate negative dataset is vital for many machine learning 

algorithms to produce a well-trained classifier. If the sequences are too artificial, then there is 

a high probability that the machine learning method will not be trained adequately to 



differentiate between true miRNAs and non-miRNA sequences (26). On the other hand, if the 

negative dataset is very similar to the positive dataset, the machine learning approach will be 

incapable of distinguishing between these two datasets (26). 

One of the criteria for a small RNA sequence to be classified as a miRNA is that, it should be 

recognized and processed by the enzyme Dicer. While defining a negative dataset, this 

criterion should be used efficiently so that selected negative controls are not recognized by 

Dicer (28). The negative dataset sequences should be composed of transcripts that are 

expressed in the same cellular location as true miRNAs but are not recognized by Dicer. Since 

this is a very complicated way to generate negative samples, instead of this, in most of the 

algorithms random genomic sequences or exonic sequences are used (24, 28). These 

sequences are very weak negative controls because there is no confirmation that, these 

transcribed small RNAs would not be recognized by Dicer and other components of miRNA 

biogenesis pathway (i.e. Drosha, RISC) and processed into functional mature miRNAs (28). 

On the contrary, there is evidence that miRNAs can stem from any region of a genome (see 

other chapters in this volume) so that the assumption hairpins from exons are good negative 

data is quite dangerous. 

A well-known negative dataset for miRNA gene prediction consists of 8494 pseudo hairpins 

from human RefSeq genes (30) which have been selected such that they do not undergo any 

alternative splicing events (2). 

4.2. Algorithms for Machine Learning 

Machine learning is used in many bioinformatics applications and studies (Figure 1). The 

quickly increasing amount of data, created by modern molecular biology techniques, has 

caused the need for accurate classification and prediction algorithms since handling it with 

traditional methods is not feasible anymore (31). There are numerous biological fields where 



machine learning methods are applied for knowledge extraction from data such as genomics, 

system biology, evolution, microarray, proteomics (32). 

Machine learning algorithms are different from the rule-based miRNA prediction algorithms 

since the rules to decide whether a given sequence is a miRNA, are not manually created, 

instead these rules are fit, trained, or learned from examples (32). Usually machine learning-

based methods start with the learning process of sequence, structure or thermodynamic 

characteristics of miRNAs. Next, a classifier is formed to decide whether unknown sequences 

are true miRNAs based on the information gained through positive and negative data sets. 

Normally, the parameters are a set of numerical features defining a candidate miRNAs such as 

minimum free energy of folding and the results would be true or false indicating whether the 

candidate is a miRNA or not.  

However, there are two main weaknesses with the existing machine learning based miRNAs 

gene identification methods. The first one is the imbalance between positive and negative 

examples. Since the exact number of real miRNAs in any genome is unknown, it is supposed 

that there are few miRNA precursors in a genome (22) so that any arbitrarily selected hairpin 

extracted from the genome is unlikely to be a pre-miRNA. Also, the number of positive 

examples is significantly smaller than that of generated negative examples (note caution in 

4.1.2). For instance, one of the commonly used negative dataset for miRNA prediction 

algorithms consists of approximately 9000 pseudo hairpins while the number of human 

miRNAs that can be obtained from miRBase is less than 1500 (2). The imbalance problem 

between positive and negative datasets can significantly reduce the performance of current 

machine learning approaches (22). The other problem is that most of the current machine 

learning based algorithms make assumptions such as length of the stem, loop size and 

minimum free energy (MFE) of the data. Thus, sequences outside of these predetermined 



borders are not considered as a true miRNA and cannot be predicted by those methods, which 

may reduce the prediction performance and accuracy (22). 

To our knowledge, there is no published study that uses unsupervised machine learning 

approaches for miRNA gene prediction. On the other hand, there are many studies using 

supervised machine learning algorithms such as support vector machine (SVM), neural 

networks (NN), hidden Markov models (HMM), and Naive Bayes (NB) (for more details on 

these algorithms see Chapter 7 in this volume).  

4.2.1. Supervised MicroRNA Gene Prediction Approaches (Classification) 

Machine learning for miRNA gene prediction is almost exclusively based on supervised 

learning in which an algorithm is trained to learn; approximating a function that maps input 

data to required outputs (33). Usually, the inputs are a set of parameters designating a 

candidate (e.g., mfe, number of dinucleotides, length of stem, etc.) and the output would be 

miRNA or non-miRNA. While the anticipated output is unknown, the machine is trained by 

input. The main idea of the process is that the machine learner should be capable of 

simplifying from these examples (input data; positive and negative examples) and properly 

classify candidates (6). The most important factor influencing the accuracy of the results is the 

choice of features since parameterization of the examples into features is not performed 

automatically (6, 22). To test the accuracy and precision of the machine learning process, a 

system called cross-validation is used. Cross-validation is important to prevent Type III errors 

(as put by Mosteller: “correctly rejecting the null hypothesis for the wrong reason" (34)), 

particularly in situations where further samples are dangerous or expensive to obtain. One 

round of cross-validation includes dividing a sample of data into corresponding subsets, 

performing the analysis on one subset (the training or learning set), and validating the analysis 

on the test set (Figure 2). The example sets can be divided in defined percentages (e.g. 70% of 

samples included in learning set, remaining 30% included in testing set. See Figure 2) but the 



essential point is that these datasets must not have shared examples. After cross-validation the 

best model is selected and applied to perform predictions. 

One of the initial works in the field by Sewer et al. (2005) assembled 40 different sequence 

and structural parameters to label a candidate as pre-miRNA. The SVM classifier model was 

trained using 178 known human pre-miRNAs as positive examples and 5395 random 

sequences obtained from tRNA, rRNA, and mRNA genes as negative examples (in reality, 

there is no guarantee that these RNAs would not contain any functional miRNAs, see Section 

4.1.2). As a result of huge difference between the number of positive and negative samples, 

their results have high specificity (91%) and low sensitivity (71%) for their dataset.  

ProMiR was introduced in 2005 as an algorithm that uses a Hidden Markov Model and 

simultaneously takes into account structure and sequences of pre-miRNAs (Nam et. al. 2005). 

A machine learning approach was used with positive examples from known human miRNAs 

and negative examples obtained arbitrarily from the human genome. The predicted pre-

miRNAs are further assessed according to their minimum free energy and searched to find out 

whether they are conserved among vertebrates. ProMiR II includes additional features than 

ProMiR such as addition of knowledge about miRNA gene clustering, G/C ratio conservation, 

and entropy of candidate sequences (Nam et. at. 2006). 

MatureBayes is a probabilistic algorithm developed by Gkirtzou et. al., which uses a Naive 

Bayes classifier to characterize potential mature miRNAs (35). Similar to previous 

approaches, it also performs classification based on sequence and secondary structure 

information of miRNA precursors.  

4.2.2. One-class Classification  

The major challenge of classification is appointing a new object to one of a set of classes 

which are defined in advance. This classification process is performed by using the learned 



rules based on a number of examples. Differing from other classification approaches, in one-

class classification it is supposed that only information of one of the classes, also known as 

the target class, is accessible. Hence, since there is no information apart from the examples of 

the target class, the distinction between the two classes has to be assessed from data of only 

the real class (36). 

Defining the negative class is the most difficult challenge to overcome in developing 

machine-learning algorithms for miRNA identification. Therefore, machine-learning 

approaches have been proposed for identifying miRNAs without the requirement of a 

negative class. Yousef and colleagues performed a study using one-class machine learning 

approach for miRNA gene prediction by using only positive data to construct the classifier 

(37). Although one-class method is less complex to implement which makes it easier to 

handle, the two-class procedures generally seem to be superior. Moreover, there are additional 

problems due to some characteristic properties of miRNAs; e.g. pre-miRNAs must fold in a 

hairpin structure but not all the hairpins in the genome are miRNA sequences (38). 

5. Conclusion 

The biggest challenge for miRNA gene prediction is that most eukaryotic genomes include 

vast numbers of inverted repeats (IR) so the transcripts of these IRs can form strong hairpins 

(6). Without considering phylogenetic conservation it has been shown that about ≈11 million 

hairpins can be found in the human genome (1). These hairpins can have various origins and 

take part in numerous processes one of which might be miRNA mediated posttranscriptional 

regulation (6). Since not all hairpins are miRNAs, identifying the hairpins which would 

become functional miRNAs is a very difficult task. Moreover, the big number of possible 

hairpins makes reducing the false positive rate and increasing the accuracy of the prediction a 

difficult task. 



Machine learning approaches have become popular for miRNA gene prediction studies. Since 

there are known miRNAs either experimentally validated or discovered through 

bioinformatics tools, positive datasets which is a necessity for machine learning methods, are 

available for miRNA precursors. Moreover, there are also some rules defining a sequence as a 

miRNA (e.g. recognition and being processed by miRNA biogenesis pathway enzymes such 

as Dicer and Drosha) so the sequences that do not pass this criteria can be used as negative 

datasets. However, it is important to keep in mind that the quality of these datasets will affect 

the sensitivity and specificity of the designed programs (see Section 4.1). Still, in order to 

overcome the difficult issue of creating appropriate negative datasets one-class classification 

method can be applied to the miRNA gene prediction problem. The abundance of machine 

learning methods employed for miRNA gene prediction shows that these approaches are 

deemed to be suitable to deal with this problem. 
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Figure Captions 

 

Figure 1. Fields in biology where machine learning methods are applied (The number of 

publications (y-axis) is calculated by searching PubMed with machine learning approach and 

the field name as key words). 
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Figure 2. General work-flow of machine learning algorithms for miRNA gene prediction. 
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