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a b s t r a c t

In this study, as an alternative to the formerly presented investigations, Newton-type numerical
algorithms are proposed to find location and shape of an air void inside of a tendon duct and to
identify gathered metallic bars in a concrete column. The simulated structures are illuminated by four
acoustic sources at a fixed frequency such that the scattered field is measured in a near-field region at
128 points. According to the nature of physical problems, the Dirichlet boundary condition is employed
to model air-filled cavities and transmission conditions are assumed for metallic objects. Additionally,
conductive boundary conditions are suggested for a more realistic representation of the inhomogeneities
for the rusty metallic skin of the duct. Potential approaches are used to derive boundary integral
equations. The proper treatment of the ill-conditioned equations is established via Tikhonov regulariza-
tion. Applicability of the proposed inversion algorithms is tested with realistic parameters for different
scenarios using noisy scattered field data and accurate numerical results are presented at 10 kHz for the
unknown physical properties of the duct's skin.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Post-tensioned tendon ducts are commonly used in the rein-
forcement of the buildings, bridges, stadiums, solid anchors, etc.,
although they may contain inhomogeneities due to grouting
defects, deterioration, overload and aging. These complications
can affect the stability of the complete structure. Therefore, non-
destructive inspection of ducts plays a critical role in the quality
assurance of constructions.

In this study, we investigate applications such that scattered
field around the duct can be collected on a closed measurement
line e.g. tests of ducts before their installations to the construc-
tions or bridges which include external post-tensioned cables, see
Bore et al. [1]. In this context, we consider to identify an air-filled
cavity in a post-tensioned tendon and a structural deformation of
metallic bars inside of a concrete duct with Newton-type iterative
methods. Such methods provide accurate reconstructions of
obstacles at a fixed frequency in a resonance region i.e. the
operating wavelength and the diameters of the searched objects
are of comparable size. Some initial results of reduced model
problems, e.g. for a single buried scatterer and a given conductivity

function, were recently presented by the authors in [2]. Within
this framework, we extend and improve the applicability of our
algorithms in the current paper for more complicated scenarios
with the realistic parameters for the unknown conductivity func-
tion in the reconstructions.

Numerical modeling of elastic waves and validations of theo-
retical results with the experimental ones are widely studied in
the literature due to the importance of non-destructive testing of
concrete structures. Among these, acoustic tomography techniques
based on the calculation of wave traveling time are frequently
employed in practice [3–12]. For the numerical investigation of
elastic waves Elastodynamic Finite Integration Technique (EFIT) can
be used [13,14] which depends on the adaptation of Weiland's [15]
Finite Integration Technique. EFIT is employed for reinforced con-
crete structures which contain a metallic duct filled with mortar
and Elastodynamic Fourier Transform Synthetic Aperture Focusing
Technique (EL-FT-SAFT) is applied to image a concrete specimen
[16]. SAFT consists of the collection of echo signals over a specific
aperture to obtain a reconstruction by performing time shifting and
superposition of adjacent signals [17,18]. In this direction, Schickert
et al. applied SAFT for the reconstruction of ducts in concrete [19].
Furthermore, Langenberg et al. proposed a second inversion
method using Born approximation and acoustic waves in 2006 [20].

Recently, Bozza et al. [21] developed no-sampling linear
sampling method (nLSM) for electromagnetic fields in order to
reconstruct cracks inside a slab, and Agarwal et al. [22] applied
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Multiple Signal Classification to detect reinforcement bars and
empty ducts in circular columns.

In this study, a boundary integral equation method based on
potential approach is proposed not only for the identification of a
void in a duct which contains separate steel bars but also for the
problem whose aim is to determine geometrical properties of an
arbitrarily shaped metallic structure in a concrete cylinder having
a corrosion on its metallic skin. The fields which appear after the
interaction of the time-harmonic acoustic plane wave with the
scatterers are expressed by boundary integrals containing density
(source) functions. To find the density functions we derive a
system of boundary integral equations via boundary conditions
and jump relations. Density functions and related integral repre-
sentations allow us to calculate the scattered and the total fields in
each region. Then we employ iterative reconstruction algorithms
introduced in [24,23] which were tested for shape reconstructions
of objects in free-space [24–26] and for the ones buried in
bounded domains [27,28].

2. Problem statement

Let us consider D0 �R2 be a bounded medium closured by a
smooth curve Γ0. D1 denotes a bounded medium with a smooth
boundary ∂D1 connected to an interior boundary Γ0 and arbitrary
number of curves ΓC1 ;ΓC2 ;…;ΓCn , which are indicated by dark
colored domains DCn in Fig. 1, such that ∂D1 ¼Γ0 [ Γ1 [ ΓC1⋯ [
ΓCn and Γ0 \ Γ1 \ ΓC1⋯ \ ΓCn ¼∅. The unbounded domain D2 is
connected through Γ1 to the domain D1. We shall denote the unit
normal by ν1 to the boundary Γ1 which is directed into exterior of
D1, and unit normals by ν0 to the boundary Γ0 and by νCn to the
boundary ΓCn which are directed into exterior of D0 and DCn ,
respectively.

In the depicted geometry, we assume cylinders are illuminated
by a time harmonic acoustic plane wave ui ¼ eiðk2x�d�ωtÞ, where
d¼ ð cos ϕ0; sin ϕ0Þ is the propagation direction with the angle
ϕ0, k2 is the wave number of the exterior domain, and ω¼ 2πf 0 is
the frequency and t is the time. However, time factor e� iωt is
omitted throughout the paper for the sake of the simplicity of the
formulations.

In this configuration, total fields uj satisfies the homogeneous
Helmholtz equations

Δujþk2j uj ¼ 0 in Dj; ð2:1Þ

with the wave number kj, in the corresponding domain Dj where
j¼ f0;1;2g3fC1;C2;…;Cng.

We pose conductive boundary conditions [29,30]

u2 ¼ u1 and
∂u2

∂ν1
�∂u1

∂ν1
¼ λu2 on Γ1; ð2:2Þ

with λ being a complex valued conductivity smooth function and
transmission conditions

u1 ¼ uj and
∂u1

∂νj
¼ ∂uj

∂νj
on Γj; ð2:3Þ

where j¼ fC1;C2;…;Cng. Depending on the problem type, the
Dirichlet or transmission boundary conditions

u1 ¼ 0 or
u1 ¼ u0
∂u1

∂ν0
¼ ∂u0

∂ν0
on Γ0;

8<
: ð2:4Þ

are defined on the boundary of the buried object which is to be
reconstructed.

The scattered field us ¼ u2�ui appears due to interaction of the
incident wave with the objects and satisfies the Sommerfeld
radiation condition at infinity

lim
r-1

ffiffiffi
r

p ∂us

∂r
� ik2us

� �
¼ 0; r¼ x :jj ð2:5Þ

In the numerical solution we employ layer potentials to represent
the fields and then to derive system of integral equations via
boundary conditions and jump relations [32–34]. In order to define
layer potentials, let Γj and Γℓ be closed curves and f be a given
integrable function. Then the single-layer operator Sjℓ;m : CðΓjÞ-
CðΓℓÞ

ðSjℓ;mf ÞðxÞ≔2
Z
Γj

Φmðx; yÞ f ðyÞ dsðyÞ; xAΓℓ

and its normal derivative K 0
jℓ;m≔ð∂=∂νℓÞSjℓ;m are defined for j;ℓ;

m¼ f0;1;2;Cng. Here, Φmðx; yÞ is the fundamental solution to the
two-dimensional Helmholtz equation, in the domain Dm in terms of
Hankel function Hð1Þ

0 of the first kind and zero order

Φmðx; yÞ≔
i
4
Hð1Þ

0 ðkmjx�yjÞ; xay: ð2:6Þ

We assume boundary curves are parametrized as Γj ¼ frjðtÞeðtÞ : tA
½0;2πÞg; j¼ f0;1g, where eðtÞ ¼ ð cos t; sin tÞ is the unit circle.

Even though the scope of the paper does not cover detailed
investigations of direct scattering problems with certain numerical
methods a few items about our forward solver are remarked in the
following. The aim of direct problem here is to find scattered field
such that the total fields satisfy the homogeneous Helmholtz
equations (2.1) in the corresponding background medium and
the related boundary conditions (2.2)–(2.4) under the Sommerfeld
radiation condition (2.5). In our numerical solution, fields are
represented by combined single- and double-layer potentials and
these integral representations are substituted into the boundary
conditions to obtain a system of equations whose unknowns are
the density (source) functions defined on the curves. Afterwards,
scattered field data is calculated on a measurement circle through
density functions. As an advantage of the method, an exponential
convergence is obtained as it was exhibited in the several
publications, see [32,27,30]. We refer to the paper [27] for a more
detailed presentation of forward solver and for the ideas on the
test cases for the accuracy.

In this paper, we study two different geometries which lead us
to two types of inverse problems.

IP 1: It is assumed that the domain D1 with a conductive
boundary Γ1 contains a sound-soft object Γ0, and N additional
different penetrable objects with smooth boundaries, ΓCn

n¼ 1;2…;N. The aim of the inverse problem is to find location
and shape of the small sound-soft object from the knowledge of
the scattered near field for known shapes Γ1;ΓCn and wave
numbers k1; k2; kCn .

IP 2: We consider a single penetrable object having transmis-
sion conditions on its boundary Γ0 is buried in D1 with a

Γ

λ

Γ

Fig. 1. Geometry of the model problem.
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conductive boundary Γ1. The inverse problem here is to find the
shape of Γ0 from the knowledge of the scattered field for known
shape Γ1 and wave numbers k0; k1; k2.

3. Inversion methods

3.1. Location reconstruction algorithm for IP1

Locations of the sound-soft buried objects are found by a
simple testing algorithm which depends on the finding minimum
value of the residue ξ

ξ¼
Jus�us

ða;bÞ J
Jus J

; ða; bÞAD1; ð3:1Þ

where us is the scattered field for the problem geometry under
investigation and us

ða;bÞ are the scattered fields obtained by placing
an initially guessed cylinder at different locations inside of Γ1. In a
more elaborate way, the domain D1 is discretized uniformly by a
two-dimensional cartesian grid and direct scattering problems are
solved for an initial guess whose center coincides with grid point
(a,b).

On the other hand, one can use a Newton iterative type
algorithm presented in [27] as an alternative approach for the
location reconstructions if a priori information exists on the
approximate location and size of the unknown buried object.

3.2. Shape reconstruction algorithms

For the inverse problems, we represent the fields in terms of
single layer potentials, see [32–35]

usðxÞ ¼
Z
Γ1

Φ2ðx; yÞφ1ðyÞ dsðyÞ in D2; ð3:2Þ

u1ðxÞ ¼
Z
Γ1

Φ1ðx; yÞψ1ðyÞ dsðyÞþ
Z
Γ0

Φ1ðx; yÞφ0ðyÞ dsðyÞ

þ ∑
N

n ¼ 1

Z
ΓCn

ΦCn ðx; yÞφCn
ðyÞ dsðyÞ in D1; ð3:3Þ

u0ðxÞ ¼
Z
Γ0

Φ0ðx; yÞψ0ðyÞ dsðyÞ in D0; ð3:4Þ

uCn ðxÞ ¼
Z
ΓCn

ΦCn ðx; yÞψCn
ðyÞ dsðyÞ in DCn : ð3:5Þ

Note that as an immediate consequence of the IP1 configura-
tion states that the field u0 expressed in (3.4) vanishes due to the
Dirichlet condition on Γ0, and for IP2 the integral representation of
u1 in (3.3) reduces to the following expression:

u1ðxÞ ¼
Z
Γ1

Φ1ðx; yÞψ1ðyÞ dsðyÞ

þ
Z
Γ0

Φ1ðx; yÞφ0ðyÞ dsðyÞ in D0; ð3:6Þ

such that the fields uCn given in (3.5) vanish.
We apply two step algorithms in the solution of IP1 and IP2.

The aim of the first step in both algorithms is the reconstruction of
the density φ1 from the solution of an ill-posed data equation via
Tikhonov regularization such that

αφ1þSn11;2S11;2φ1 ¼ Sn11;2u
s; ð3:7Þ

αis a positive parameter and Sn11;2 is the adjoint operator of S11;2.
(i) Shape reconstruction for IP 1: The second step for the solution

of IP1 is finding the rest of unknown densities ψ1;φ0;φCn
from

regularized solution of the following system of equations:

S11;1ψ1þS01;1φ0þ ∑
N

n ¼ 1
SCn1;1φCn

¼ 2uijΓ1
þS11;2φ1 ð3:8Þ

K 0þ
11;1ψ1þK 0

01;1φ0þ ∑
N

n ¼ 1
K 0
Cn1;1φCn

¼ 2
∂ui

∂ν1

�����
Γ1

�2λuijΓ1
þðK 0�

11;2�λS11;2Þφ1 ð3:9Þ

S1Cn ;1ψ1þS0Cn ;1φ0þSCnCn ;1φCn
�SCnCn ;CnψCn

þ ∑
N

p ¼ 1
pa n

ðSCpCn ;1φCp
�SCpCn ;CnψCp

Þ ¼ 0 ð3:10Þ

K 0
1Cn ;1ψ1þK 0

0Cn ;1φ0þK 0�
CnCn ;1φCn

�K 0þ
CnCn ;Cn

ψCn

þ ∑
N

p ¼ 1
pa n

ðK 0
CpCn ;1φCp

�K 0
CpCn ;Cn

ψCp
Þ ¼ 0 ð3:11Þ

which can be obtained by using conductive boundary conditions
(2.2) on Γ1 and transmission conditions (2.3) on ΓCn . Here, for the
brevity of the notation, we defined the operators

K 07
jℓ;m ¼ K 0

jℓ;m7 I: ð3:12Þ

Once the density functions are obtained, then the total field u1,
and its derivative on an initially guessed boundary Γ0, can be
calculated. Afterwards, a sufficiently small 2π-periodic function
q : ½0;2πÞ-R

u1þðgrad u1 � eÞq¼ 0 on Γ0; ð3:13Þ

can be found by evaluating a first-order Taylor expansion in the
sense of least squares. Then the update step is performed via
Γupd

0 ¼ fðr0þqÞeg, see [24,27].
(ii) Shape reconstruction for IP 2: In the second step of IP2, we

seek for updates not only for the initially guessed shape but also
for the density functions. To do this, we consider the following
nonlinear operator equation:

AΓ0
χ ¼ b ð3:14Þ

where

AΓ0
¼

S11;1 0 S01;1
K 0þ
11;1 0 K 0

01;1

S10;1 �S00;0 S00;1
K 0
10;1 �K 0þ

00;2 K 0�
00;0

0
BBBB@

1
CCCCA;

and

χ ¼ ðψ1;ψ0;φ0Þ> ;

b¼ 2ui
Γ1
;2

∂ui

∂ν1

�����
Γ1

�2λuijΓ1
;0;0

0
@

1
A

>

:

After the linearization we solve the equation

AΓ0
ζþA0

Γ0 ;χq¼ b�AΓ0
χ ð3:15Þ

and update the densities as well as the shape, i.e. χ ¼ χþζ,
r0 ¼ r0þq. Here, A0

Γ0 ;χ denotes the Fréchet derivative of the
operator AΓ0

[23,31].
The ill-posed behavior of Eq. (3.15) is treated by Tikhonov

regularization. For the proper numerical calculations of the singular
parts of the operators we refer to [32].
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4. Applications and results

In this section we describe the connection between investi-
gated model problems and practical applications, and present the
numerical results for the proposed reconstruction algorithms.

To model non-destructive testing scenarios of tendon ducts, we
consider the domains D1 and D2, which are depicted in Fig. 1, as
concrete-type structures such that acoustic waves travel with a
speed of c1 ¼ 3500 m=s and c2 ¼ 3000 m=s, respectively. The wave
speed in metal considered as cm ¼ 5000 m=s. Physically speaking,
air behaves highly reflective to acoustic waves and metallic regions
permit penetration of acoustic fields. Therefore, using the Dirichlet
boundary condition for an air-filled object and transmission
conditions for the metallic wires and concrete seems reasonable.
Furthermore, a conductivity function is considered on the bound-
ary of the exterior cylinder Γ1 to model the irregular penetration
of acoustic fields to the interior domain of the duct.

In the numerical simulations, exterior cylinder Γ1 is chosen as a
circular cylinder with a radius r0 ¼ 19 cm, whereas buried object
Γ0 is considered to be one of the following arbitrarily shaped star-
like parametrized curves in the form of rfa;b;cgðtÞð cos t; sin tÞ
where

raðtÞ ¼ 7:5� 10�3ð3:5� sin tþ0:5 sin 2tþ cos 3tÞ;

rbðtÞ ¼ b0
0:5þ0:4 cos tþ0:1 sin 2t

1þ0:7 cos t
; b0 ¼ 0:05;1f g;

rcðtÞ ¼ 0:02ð6� sin 2tþ cos 3tÞ and tAð0;2π�:

It is assumed that objects are insonificated by an acoustic plane
wave at a fixed frequency f 0 ¼ 10 kHz in four different angles
ϕ0 ¼ f0;90;180;270g. The noisy scattered near field is calculated
on a measurement circle Ωm with a radius of rm ¼ 25 cm at 128
equidistant collocation points in each illumination case separately.
The contributions of all different scattered fields are taken into
account in the construction of a single matrix equation system
step of the inversion algorithms. The system of equations is solved
via the Nyström method, see [32].

In order to obtain a synthetic noisy field ~us, random errors are
added pointwise to the exact field data us as follows:

~us ¼ usþηδ
Jus J
JδJ

; ð4:1Þ

where δA ; fRe δ; Im δgA ð0;1Þ denotes a random variable.
To have a noise level of 3% or SNR� 34 dB the parameter η is chosen
as η¼0.03. All reconstructions are obtained with noisy data under the
assumption of lack of information on the rusty skin of the cylindrical
duct. This means that λ¼0 on Γ1 is considered for the solution
of inverse problems although the scattered fields are calculated
for conductivity functions λ¼ λ1 or λ¼ λ2 such that λ1ðtÞ ¼ 0:5
ð sin tþ i cos tÞ; λ2ðtÞ ¼ sin 4ðt=2Þþ i sin 3ðtÞ for tAð0;2π�. The rea-
son for this assumption lies in the difficulty of guessing the variation
of a conductivity function on the boundary of the exterior cylinder in
the realistic situations. With this additional perturbation on the
scattered field, one can consider the noise level is higher than 3%.

One of the critical points in the Newton-type reconstruction
algorithms is the selection of a criteriumwhen to stop the iterative
steps. To do this, we check the difference of the obtained shape
update parameters q in successive iterations. The update function
q is expressed in terms of mth degree of trigonometric polyno-
mials

qðtÞ ¼ ∑
M

m ¼ 0
ðam cos mtþbm sin mtÞ; ð4:2Þ

for tA ð0;2π� and Eqs. (3.13) and (3.15) are evaluated in the sense
of least squares. In this direction, the expression

ϵ¼ ∑
M

m ¼ 0

jaðiÞm �aði�1Þ
m j

Mþ1
þ ∑

M

m ¼ 1

jbðiÞm �bði�1Þ
m j

M
ð4:3Þ

is employed to make a decision on the running iterations. Here, ϵ
is a stopping criterium and i represents the iteration number. We
terminate iterations for ϵo10�4, in IP1 and in IP2.

The choice of the degree of polynomials in Eq. (4.2) can be
considered as an additional regularization parameter. We note that
regularization parameters α in (3.7), β for the equation system
(3.14)–(3.17), γ for Eq. (3.15) and m in (4.2) are chosen by trial and
error as a typical procedure which is applied in [23–28]. However,
it is important to emphasize that the selection of the mentioned
parameters do not affect the quality of the reconstructions if
αA ½10�5–10�7�, β¼ 10�5 and M¼ ½4;5� for IP1 and αA
½10�2–10�3�, γ ¼ 10�7 and M ¼ ½2;3� for IP2 are chosen, see
Table 1.

4.1. Numerical results for IP1

The motivation for the investigation of this case is based on the
analogy between the mathematical statement of IP1 and the
identification problem for a small air gap in a tendon duct. Here,
the size of the air conclusion is considered comparable with the
size of an steel bar inside of the duct. In this scenario, circular
cylindrical shaped metal wires C1;C2;…;C6 with a radius of
rm ¼ 3 cm have to be taken into account in the problem geometry.
We note that locations of these wires are given. To find the
location of the air gap, the reconstruction algorithm, which is
described in Section 3.1, is applied. We consider a regular square
grid 10� 10 cm on the physical domain D1, such that the distance
between two adjacent grid points is 1:25 cm. Afterwards, center
coordinates of the circular cylinder having radius r0 ¼ 2 cm are
located at grid points and the remaining steps of the proposed
algorithm are employed. We observed E2.263% error in the
reconstructed coordinates for the first two experiments, although
the exact location is obtained for the last test case of IP1.
Furthermore, the convergence of the reconstructed locations is
checked with a finer mesh whose distance between grid points is
0:125 cm and in such case E1.789% error is observed. In this
context, Fig. 2 illustrates the convergence behavior of the method
for a fine mesh where the first 10 values of minðξÞ provide a good
accuracy.

From now on we investigate the performance of the shape
reconstruction algorithms for the found locations in different cases
where the resultant shapes are indicated with red curves in all
figures.

In the first experiment we consider, the shape of buried air-
filled cavity can be represented by a star-like parametrization with
a radius function ra, and the conductivity function on Γ1 is chosen
as λ1. To obtain the reconstruction in Fig. 3, we use α¼ 10�5;

β¼ 10�5;M¼ 5 in i¼33 iterations.

Table 1
Parameters used in the experiments.

Fig. no λ Γ0 Simulation parameters

i α β γ M

3 λ1 ra 33 10�5 10�5 – 5
4 λ2 ra 10 10�7 10�5 – 4
5 λ1 rb 6 10�5 10�5 – 5
6a λ1 rc 12 10�3 – 10�3 3
6b λ2 rb 17 10�2 – 10�3 2
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As a second test, we check the quality of the reconstructions by
changing the function from λ1 to λ2 on Γ1 and keeping the rest of
the simulation parameters the same as initial experiment. In this
case, α¼ 10�7;β¼ 10�5;M ¼ 4 are chosen for the regularizations
and the shape, presented with red curve in Fig. 4, is found for i¼10
iterations.

Afterwards, Γ0 is considered with a radius function rb for
b0 ¼ 0:05 and buried at a different location which is more closer

to the metallic wires as compared to the previous two experi-
ments. The function λ¼ λ1 is used and the same regularization
parameters are chosen as in the first experiment. The reconstruc-
tion given in Fig. 5 is obtained for i¼6 iterations.

The numerical results of this section show that the proposed
inversion algorithms for the solution of IP1 provide sufficiently
stable results for different types of air voids located at different
locations under noisy data. Furthermore, it should be added that
the norm and the variation of the function λ is an important
argument on the quality of the reconstructions.

4.2. Numerical results for IP2

In this section, it is assumed that tendons are gathered inside of
the duct due to overload, aging, etc., which is illustrated in Fig. 2 of
Schickert's study [7]. Therefore, the shape of multi-wire metal
structure is approximated by a single arbitrarily shaped metallic
bar. Our aim is to find the location and shape of this buried
metallic structure. Since such type of testing gives an idea on the
irregular decomposition of the metallic wires, it can be employed
for the inspection of the ducts. This practical application can be
modeled by the IP2 according to our formulation. Here, the
geometry of problem consists of an object Γ0, so that transmission
conditions are satisfied on its boundary, and it is buried in a
cylinder Γ1 having conductive boundary conditions.

In the solution of IP2, radius of the initially guessed circular
cylinder is chosen to be large enough, r0 ¼ 17 cm in order to
eliminate the usage of any kind of location reconstruction
algorithm.

For the first example, the radius function for Γ0 is assumed to
be rc with λ¼ λ1 and α¼ 10�3; γ ¼ 10�3;M ¼ 3 are chosen. The
inversion algorithm run for i¼12 iterations and provides the result
in Fig. 6a. In the last experiment we change the buried metallic
structure shape and represent with rb for b0 ¼ 1 where λ¼ λ2. The
regularization parameters α¼ 10�2; γ ¼ 10�3;M ¼ 2 are chosen.
For i¼17 the reconstructed shape is illustrated in Fig. 6b.

In order to summarize all parameters in a compact form and to
observe the parameter space in a more clear way we introduce
Table 1.

5. Conclusion

In this paper, two different inverse problems whose aims are
identifications of buried objects in bounded regions are investi-
gated in order to model selected non-destructive testing scenarios

ξ

Fig. 2. Reconstructed locations for Γ0 ¼ raðtÞð cos t; sin tÞ, λ¼ λ1 and a grid resolu-
tion 0:125 cm.

Fig. 3. Identification of an air void in a tendon duct. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)

Fig. 4. Identification of an air void in a tendon duct. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)

Fig. 5. Identification of an air void in a tendon duct. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)
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of concrete structures. The proposed numerical reconstruction
algorithms are performed on a standard type of personal computer
and satisfactory results are obtained in a few minutes. The most
time consuming part of the computations is the application of
location reconstruction algorithm on finer grids. However, this
procedure consists of solution of uncoupled direct scattering
problems for each grid points, which can be carried out in parallel
computations.

In the current study, we show results of numerical experiments
for new problem geometries such that the reconstructions which
were presented in [2,27,28] support the verification of the pro-
posed algorithms. It is observed that the localization of the
unknown buried objects are succeeded with an acceptable accu-
racy for different types of objects and conductivity functions.

The selected parameters for the regularizations express the
scope of arbitrarily chosen variables can change in a small scale
and in some cases they can be chosen the same for different types
of buried objects. Furthermore, Tikhonov parameters for the IP2
are chosen stronger and the degrees of polynomials are smaller as
compared to IP1. The number of illuminations plays a critical role
on the quality of the reconstructions and the stability of the results
especially in IP2, therefore we need to use four different angles of
incidence. On the other hand, it is still possible to find reasonable
reconstructions with two illuminations for the IP1.

The boundary integral equation formulations of the inverse
problems are valid also for arbitrarily shaped objects although we
consider in the numerical experiments the exterior cylinder and
interior metal wires are circular cylinders. However, as it is
mentioned in the mathematical statement of the problems that
the boundary of the buried object should not be connected with
the other boundaries.

As it is noted, we assume that initial processing steps are done
and scattered acoustic field on a measurement circle is prepared in
this study. For the verifications of simulations with experiments
additional effects have to be considered, e.g. polarization, mode
conversions, etc.

As a future work we plan to extend our algorithms for buried
multi-scatterers. Moreover, reconstruction algorithms can be
improved for the cases when there is a lack of information on
the size of the buried object. Additionally, we consider the usage of
multi-frequency insonifications and the verifications of simula-
tions with real data experiments.
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