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a b s t r a c t

The amount of bottom ash formed in a pulverized coal-fired power plant was predicted by artificial
neural network modeling using one-year operating data of the plant and the properties of the coals
processed. The model output was defined as the ratio of amount of bottom ash produced to amount of
coal burned (Bottom ash/Coal burned). The input parameters were the moisture contents, ash contents
and lower heating values of the coals. The total 653 data were divided into two groups for the training
(90% of the data) and the testing (10% of the data) of the network. A three-layer, feed-forward type
network architecture with back-propagation learning was used in the modeling study. The activation
function was sigmoid function. The best prediction performance was obtained for a one hidden layer
network with 29 neurons. The learning rate and the tolerance value were 0.2 and 0.05, respectively. R2

(coefficient of determination) values between the actual (Bottom ash/Coal burned) ratios and the model
predictions were 0.988 for the training set and 0.984 for the testing set. In addition, the sensitivity
analysis indicated that the ash content of coals was the most effective parameter for the prediction of the
ratio of bottom ash to coal burned.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

For performance prediction and control of combustion
processes, generally computer modeling is applied using analytical
codes or numerical methods. These methods require laborious and
time-consuming solution procedures of multi-parameter complex
differential equations. Furthermore, in some cases, these methods
may not be applicable due to lack of information about the physical
and chemical steps. In this context, artificial neural networks
(ANNs) have the potential to be better, quicker, and more practical
alternative to these traditional methods, for modeling and pre-
dicting the behavior of combustion processes [1].

In the recent years, ANN modeling technique has been used to
predict various toxic emissions and other environmental issues
related to combustion processes [2,3], as well as combustion of coal.
Chong et al. [4] modeled the gaseous emissions emanating from the
combustion of lump coal on a chain-grate stoker-fired boiler using
ANNs; and obtained encouraging results for prediction of pollutant
emissions, as an alternative to the mathematical modeling of the
physical process. Hao et al. [5] used ANN approach combined with
x: þ90 232 750 6645.
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genetic algorithms for prediction and optimization of NOx forma-
tion for a 600 MW capacity pulverized coal burned utility boiler.
They found a close correlation between the NOx emissions and the
operating parameters of the boiler and the coal quality. NOx
emissions from a circulating fluidized bed boiler have also been
modeled using ANNs [6]. Zhou et al. [7] have reported that the ANN
technique was more convenient and direct, and could achieve
a good prediction performance compared with the other modeling
techniques such as computational fluid dynamics for the prediction
of NOx emission. Teruel et al. [8] have investigated ash deposits in
coal-fired boilers, and developed an ANNmodel for the fouling and
the cleaning in the furnace. Other than environmental emissions,
there are also applications of ANN modeling in the literature, for
estimation of combustion rate of coal [9], optimization of the
operating conditions of pulverized coal combustion [10], moni-
toring of combined heat and power plants [11,12], prediction of
hardgrove grindability index [13], gross calorific value [14], and coal
rank parameters [15].

Coal is the most widely used fuel for electricity generation in the
world, and it is expected to maintain its importance through 2035.
In 2007, coal-fired electricity generation accounted for 42% of the
world electricity supply; and in 2035, its share is predicted to
remain approximately the same [16]. In Turkey, by the year of 2010,
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Table 1
Specified properties of the coal sludge and low-rank bituminous coal by the power
plant.

Parameter Design values

Coal type Coal sludge Coal

Particle diameter 0e10 mm 0e10 mm
Moisture 16 � 4% 7 � 4%
Ash 47 � 3% 35 � 3%
Sulfur 0.3e0.4% 0.3e0.4%
LHV 3000 � 100 kcal/kg 4400 � 200 kcal/kg

Table 2
Minimum, maximum, and average values of model inputs and an output parameter.

Parameter Minimum Maximum Average

Input parameters
Moisture (%, wet basis) 9.70 16.10 12.78
Ash (%, dry basis) 30.60 45.70 40.13
LHV (kcal/kg) 2923.00 4055.00 3516.97
Output parameter
(Bottom ash/Coal burned) (kg/kg) 0.0612 0.0914 0.0806
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the production of electricity was maintained mainly from natural
gas (45.9%), coal (25.3%), and hydraulic resources (24.5%); coal
being the second most important resource of electricity [17].

Coal-fired power plants utilized in electricity generation
encounter several environmental problems, one of them being the
formation of ash. As a result of the combustion process, ash is
formed in two forms: the fly ash and the bottom ash. Fly ash is the
fine particles of ash in the flue gas, and bottom ash is the larger and
heavier particles depositing at the bottom of the furnaces as a thick
layer. Vast amounts of coal ash are produced worldwide as a result
of coal combustion and most of the ash is discarded mainly to
landfills, ponds, or sea. The application of the bottom ash to soil and
water may give rise to unacceptable levels of pollution [18]. Other
issues encountered related to the formation of bottom ash are the
deterioration of heat transfer and increased corrosion in furnaces
and pipes. The amount of bottom ash produced from the combus-
tion of coal is mainly influenced by the properties of coal, coal
milling, and combustion conditions.

Durgun and Genc [19] applied regressionmodels to study effects
of coal properties on the production rate of combustion solid
residue in a pulverized coal-fired power plant. They investigated
the dependency of the production rate of bottom ash on the fixed
carbon, moisture and ash contents of coals, but they could not
observe any correlations between the coal type and the amount of
bottom ash produced. They also evaluated the ratio of amount of
bottom ash produced to amount of coal burned (Bottom ash/Coal
burned) depending on the lower heating value (LHV) of coals fired,
and observed a linear relation between the (Bottom ash/Coal
burned) ratio and the LHV of coals with a coefficient of determi-
nation of 0.76. They concluded that the most important parameter
in determining the production rate of bottom ash from the power
plant they investigated was the calorific value of the coals fired.
Since ANN approach is known to be successfully applicable to
combustion systems, in this study, we aimed to investigate the ANN
prediction of (Bottom ash/Coal burned) ratio with higher coefficient
of determination and lower error than those obtained with
regression analysis using the same data (i.e., coal properties and
power plant operating data).

2. Coal properties

Tertiary subbituminous and lignite coals are the most abundant
and widespread coal deposits in Turkey [20,21]. These coal deposits
have lowcalorific values and high ash contents. The total lignite and
subbituminous coal reserve of Turkey is 8.3 billion tons [22]. Coal
produced in Turkey is mainly consumed in power plants and partly
in industrial and domestic uses.

Catalagzi pulverized coal-fired power plant (CATES) is located at
about 17 km east of Zonguldak city center,Western Black Sea cost of
Turkey. It has two units with a total electricity generating capacity
of 300MW (2� 150MW). CATES consumes about 5000e5500 tons
of coal per day. This power plant utilizes the mixture of low-rank
bituminous coal with coal sludge generated from a washing
process, as the main fuel. The operating data of the CATES for the
year 2007 and the properties of coals utilized were used in this
study as the ANN modeling data. The specified properties of the
coal sludge and low-rank bituminous coal by the power plant are
shown in Table 1. In this study, three properties of the coals fired;
moisture content, ash content, and LHV, were selected as the inputs
of the ANN model. The properties of the coals were determined
based on proximate analysis data (moisture and ash contents) and
calorific value analysis data of the coals. The proximate and calorific
value analyses of coals were performed according to ASTM D5142
[23] and ASTM D5865 [24] standards, respectively. The details of
the performed analyses and the equipments used were given
elsewhere [19,25]. The major and trace element concentrations in
feed coals of the CATES power plant were reported in [26]. The ratio
of the amount of bottom ash formed to the amount of coal burned
(Bottom ash/Coal burned) was predicted as the model output. The
minimum, maximum and average values of the input and output
parameters are given in Table 2.

3. ANN model

ANNs contain simple processing elements called neurons
organized into layers [27e29]. They are interconnected parallel
systems. ANNs resemble human brain in two respects; knowledge
is acquired by the network through a learning process, and the
interconnection strengths known as synaptic weights are used to
store the knowledge.

In this study, a feed-forward, multi-layer perceptron (MLP) type
of ANN model was used to predict the (Bottom ash/Coal burned)
ratio in a pulverized coal-fired power plant (Fig. 1). The network
architecture consists of one input layer, one hidden layer, and one
output layer. The three neurons in the input layer are associated
with the three input parameters. The information is transferred
from the input layer to the hidden layer neurons. Each neuron in
the hidden layer is connected to every neuron in the input and
output layers by the connection weights. These adaptable connec-
tion weights are used to store the knowledge within the network.
The sum of the weighted inputs is passed through an activation
function in each hidden neuron, and the outputs of the hidden
neurons are calculated;

yj ¼ f
�
netj

� ¼ f

0
@X

j

wijxi þ bj

1
A (1)

where yj is the output of the jth neuron, f the activation function,
netj the net input to the jth neuron,wij the connection weight from
the ith neuron in the previous layer to the jth neuron in the current
layer, xi the input from the ith neuron to the jth neuron, and bj is the
bias [30]. The activation function used was sigmoid function;

f
�
netj

� ¼ 1
1þ e�netj

(2)

Sigmoid function is continuous and differentiable, which will be
very important in weight adaptation during the training process. It



Fig. 1. Three-layer, feed-forward type neural network architecture for the prediction of (Bottom ash/Coal burned) ratio.

T. Bekat et al. / Energy 45 (2012) 882e887884
produces a nonlinear response in the interval of [0, 1], and it is
frequently preferred in nonlinear mapping. The output parameter
is associated with one output neuron. The output neuron performs
the same operation as the hidden layer neurons.

Data were normalized before the training to match the range of
the hidden layer’s activation function (i.e., 0e1 for the sigmoid
activation function) using,

xnormalized ¼
�
xoriginal � xminimum

�
ðxmaximum � xminimumÞ (3)

The network output was rescaled to the original range to
interpret the results obtained from the model.

The learning of the ANN model is accomplished by the training
process. The training data set is used for the training procedure. In
this study, back-propagation algorithm was applied to train
networks. Information is processed in the forward direction to
determine the output value of the each neuron in the output layer,
and then the following error between the desired output and the
model prediction is computed;

E ¼
X
k

X
n
ðdnk � ynkÞ2 (4)

where E is the error, k is an index over the system output, n is an
index over the input patterns, d is a component of the desired or
target output vector D, and y is a component of the network output
vector Y. This error is then propagated in the backward direction to
update the connectionweights using gradient decentmethod along
with the chain rule of derivatives;

wnew
ij ¼ wold

ij � d
vE
vwij

(5)

where d is the learning rate which controls the rate of change in the
connectionweights. The training of the model is carried on until an
acceptable error tolerance value is reached. The error tolerance
determines how accurate the neural network prediction must be to
be regarded as correct. After the training, the performance of the
model was tested using the testing data set.

4. Results and discussion

4.1. Analysis of the accuracy of ANN model

The total 653 data obtained from CATES plant were randomized
and divided into two sub-sets (Data Group I) as the training set (90%
of the data) and the testing set (10% of the data). The performance
criteria were selected as coefficient of determination (R2, Square of
the Pearson product moment correlation coefficient R), root mean
square error (RMSE), and mean absolute error (MAE);

R ¼

P
i
ðdi � dÞðyi � yÞ

NffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
ðdi � dÞ2

N

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
ðyi � yÞ2

N

vuut
(6)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
i

ðdi � yiÞ2
s

(7)

MAE ¼ 1
N

X
i

jdi � yij (8)

The effects of model parameters (i.e., learning rate, number of
neurons in the hidden layer, and tolerance value) were investi-
gated, and the performance of the model was optimized.

In order to decide the optimum neuron number in the hidden
layer and the learning rate, different networks were tested by
varying the neuron number from 5 to 35 at two different learning
rates (d ¼ 0.2 and 0.5). The tolerance value was kept constant at 0.1.
RMSE was calculated for each network. Minimum RMSE was
obtained for learning rate of 0.2 and 29 neurons in the hidden layer
(Fig. 2). The performance of the network did not change signifi-
cantly for the higher number of neurons in the hidden layer.

The effects of tolerance value on the model performance were
investigated using 29 hidden neurons and learning rate of 0.2. Two
different tolerance values (0.05 and 0.1) were tested. Calculated
performance criteria for these values are given in Table 3. Consid-
ering RMSE, MAE and R2 for both training and testing sets, the best
results were obtained for the tolerance of 0.05. However, the
training time was considerably longer for this tolerance. Scatter
plots of predicted (Bottom ash/Coal burned) ratios against actual
values are shown in Figs. 3 and 4 for the training and testing data
sets, respectively. The predicted and actual (Bottom ash/Coal
burned) ratios were in good agreement. The deviations from the
diagonal were random and not systematic. The coefficient of
determination was obtained as 0.988 for the training set and as
0.984 for the testing set. The generalization capability of the
network was also acceptable since there were not significant
differences between the values of performance criteria for the
training and testing sets for a given tolerance (Table 3).
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Fig. 3. Cross plot of predicted and actual (Bottom ash/Coal burned) ratios for the
training set of data group I.
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Fig. 4. Cross plot of predicted and actual (Bottom ash/Coal burned) ratios for the testing
set of data group I.
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To determine the effects of data sub-sets used in training and
testing on the prediction performance of the network, data were
rearranged andnewtraining and testing sets (DataGroup II) formed.
Themodel performancewas evaluated again. The percentages of the
total data used in training (90%) and testing (10%) for Data Group II
were the same as before. The lowest RMSE value was obtained for 6
neurons in the hidden layer when previously optimized model
parameters (learning rate of 0.2 and tolerance value of 0.05) were
used. RMSE,MAE and R2 values are given inTable 4 for Data Group II.
R2 value was calculated as 0.981 for the training set and as 0.976 for
the testing set. The cross plots of predicted and actual (Bottom ash/
Coal burned) ratios for the training (Fig. 5) and testing (Fig. 6) sets fall
close to diagonal line,which indicate a good predictionperformance
of the network. The comparable results were obtained for the
performance indicators RMSE, MAE and R2 with Data Group I and
Data Group II (Tables 3 and 4).

The coefficients of determination obtained in this study with
ANN modeling approach for testing sets of Data Group I
(R2 ¼ 0.984) and Data Group II (R2 ¼ 0.976) were higher than the
value reported in the literature (R2 ¼ 0.76) for the regression
analysis using the same data [19]. With a limited number of
experimental results (Total of 12 cases were divided into two
groups for training (11 cases) and testing (one case)), Zhou et al. [7]
have modeled the level of unburned carbon in fly ash (i.e., carbon
burnout characteristics) of a 600 MW pulverized coal-fired boiler
using ANN technique. The relative error between the experimental
measurement and the model prediction was 4.8%. We calculated
the average relative errors for testing sets of Data Group I and Data
Group II as 0.629% (maximum relative error ¼ 2.592%) and 0.803%
(maximum relative error ¼ 1.932%), respectively.

4.2. Sensitivity analysis

The influence of input parameters on the (Bottom ash/Coal
burned) ratio was investigated by sensitivity analysis. In this anal-
ysis, first the networkwas trained and the connectionweights were
fixed. Then, one at a time each input parameter was varied around
its mean value while the other inputs were kept constant at their
Table 3
Performance of the ANN model for two different tolerance values (learning
rate ¼ 0.2; number of hidden neurons ¼ 29).

Tolerance Training set Testing set

MAE RMSE R2 MAE RMSE R2

0.05 0.000424 0.000520 0.988 0.000511 0.000618 0.984
0.1 0.000702 0.000923 0.946 0.000606 0.000782 0.948
mean values, and the change in the output parameter was calcu-
lated. The sensitivity factor for the input a is given by,

Sa ¼
PP

p¼1
Po

i¼1

�
yip � yip

�2
s2a

(9)

where yipis the ith output obtained with the fixed weights for the
pth pattern, o is the number of network outputs, P is the number of
patterns, and s2a is the variance of the input perturbation [30].

The sensitivity factors for input parameters are given in Fig. 7.
These factors were calculated for the best network architecture
obtained for Data Group I (i.e., 29 neurons in the hidden layer,
learning rate of 0.2, and tolerance value of 0.05). As can be seen in
this figure, ash content has the highest sensitivity factor thus is the
most effective parameter on the prediction of the model output
(Bottom ash/Coal burned) ratio. The effects of the other input
parameters are considerably lower compared to ash content, and
the moisture content being the least effective on the formation of
bottom ash. Previously, the correlation between the ash content of
the coal and the bottom ash produced could not be obtained by
regression analysis in the study of Durgun and Genc [19]. In
contrast, a higher R2 value between the (Bottom ash/Coal burned)
Table 4
Performance of the ANN model for data group II (learning rate ¼ 0.2; number of
hidden neurons ¼ 6; Tolerance ¼ 0.05).

Data set MAE RMSE R2

Training 0.000613 0.000709 0.981
Testing 0.004375 0.005328 0.976
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Fig. 5. Cross plot of predicted and actual (Bottom ash/Coal burned) ratios for the
training set of data group II.
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Fig. 6. Cross plot of predicted and actual (Bottom ash/Coal burned) ratios for the testing
set of data group II.
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Fig. 7. Sensitivity coefficients of the input parameters for the prediction of (Bottom ash/
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ratio and LHV (R2 ¼ 0.76) was reported. However, in this study, it
was shown that the formation of bottom ashwasmainly dependent
on the ash content of the source coals, among the parameters
investigated using ANN modeling approach.

5. Conclusions

A multi-layer, feed-forward ANN model was used for the
prediction of (Bottom ash/Coal burned) ratio from the coal
properties (i.e., moisture content, ash content, and LHV) and plant
operating data with a high coefficient of determination and small
error.

Two different data sets were tested, and it was found that the
performance of the ANN model developed was independent from
the data set used in training and testing. The R2 values obtained
(>0.97) were higher compared to the values reported in the liter-
ature using regression analysis (0.76).

The effect of each input parameter was determined by sensi-
tivity analysis. Ash content of the coals was found to be the most
important parameter on the formation of bottom ash.

ANN modeling technique was successfully applied for the
prediction of (Bottom ash/Coal burned) ratio in a pulverized coal-
fired power plant.
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