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Nanocrystalline mesoporous titania powders were synthesized by hydrolyzing titanium isopropoxide in etha-
nol-water mixtures which were ultrasonically treated without using any templates or chemicals. Titanium
isopropoxide-ethanol mixture was added dropwise to a water-ethanol mixture placed in an ultrasonic bath.
The properties of the sonochemically synthesized powder were compared with those of the powders prepared
without ultrasonic treatment along with Degussa P-25 titania powder. The phase structure, crystallite size, sur-
face area, particle size, powder density were determined and sintering behavior was analyzed in this work. The
nanotitania powder prepared during ultrasonic induced hydrolysis (TiO,-U) was determined to be formed from
a mixture of anatase and brookite phases at 25 °C. The brookite phase in nanotitania powder prepared without
ultrasonic treatment (TiO,-NoU) was detected at 70 °C. The anatase-rutile phase transformation was completed
in the 500-700 °C range for both powders. The average crystallite sizes of the powders at 25 °C were determined
as 10 and 5 nm for TiO,-NoU and TiO,-U, respectively. The surface area decreased from 238 to106 m?/g for TiO,-
NoU and from 287 to 82 m?/g for TiO,-U when the calcination temperature was increased from 200 to 500 °C.
The evolution of the N, adsorption-desorption behavior with calcination temperature and the corresponding
pore size distributions/volumes was attributed to the formation of closely packed submicron aggregates during
powder synthesis and calcination. The sintering behavior was concluded to be controlled by 7-10 nm crystallites
and the submicron aggregates. The determination of the densification behavior of titania powders prepared by
different methods with various levels of dopants may prove to be very useful for a better understanding of the
phase/pore structure evolution which is crucial for a significant number of applications.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Nanopowders/nanomaterials with novel physical, chemical, and
mechanical properties can be utilized as the main building blocks of

The emergence of nanomaterials had a great impact on several
domains of science and technology such as chemistry, electronics, bio-
technology, etc. Numerous applications based on optical, electrical, mag-
netic, catalytic, biological, or mechanical properties of nanomaterials
originate from their unique and finely tunable nanostructures which
make their synthesis one of the most promising and challenging research
and development areas.

Establishing the relations between performance of the final product
and the properties of the precursors and powders, their processing
conditions, and the production rates necessitates a delicate continuous ef-
fort. The large scale production of starting precursors and nanomaterials
with desired properties may accelerate the realization of the potential
applications especially towards the supply of novel solutions to the cu-
mulative need for sustainable clean energy and environmental pollu-
tion problems facing mankind.
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innovative solutions to the problems in energy, environment, health,
communication and related areas. The functionality of a nanomaterial
may rely on the surface area to volume ratio because the interactions
with the surrounding media strongly depend on the extent of the sur-
face area and the nature of the material surface.

Nanotitania gained considerable attention due to its potential and
current uses such as ceramics [1], hydrogen [2] and carbon monoxide
[3] gas sensors, catalytic and photocatalytic applications [4-7] including
medicine, environmental cleaning [8,9], disinfection [10,11], hydrogen
production from water [12], artificial photosynthesis [13,14] and
thin film applications for solar cells and self-cleaning/antibacterial/
hydrophilic surfaces [15].

Preparation methods and conditions have a great influence on the
properties of titania powders such as size, shape, phase/pore structure,
surface properties and phase transformations [16]. High surface area
nanoparticles have been produced via ultrasonic irradiation in which
the shock waves are capable of rupturing chemical bonds, generating
highly reactive chemical species, and increasing mass transfer with par-
ticular effects on nucleation/crystal growth during powder preparation.
The chemical effects of ultrasonic irradiation are based on acoustic
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cavitation where micro cavities in liquid medium form, grow, and col-
lapse violently in extremely short time periods. The implosive collapse
of cavities generates localized regions with high temperatures
(~5000 K) and pressures (~1000 atm) at high heating/cooling rates
(>10"°K/s) which are called hot spots [17-20]. The cavities (bubbles)
contain vapor generated from either the liquid medium or the dissolved
volatile gas/reagents. The vapor is subjected to high temperatures and
pressures on collapse of the bubbles and results in molecular fragmen-
tation with generation of highly reactive chemical species. These spe-
cies might be He, OHe and even H,0, for water. The evolution of the
bubbles causes impingements on the surfaces producing erosion at
and around the point of impact, causes the removal of particles from
the surface and disorganizes the surface thus creating local defects, dis-
locations, and vacancies at the solid-liquid interface [21].

Ultrasonic irradiation can be applied during or after precipitation
of titanium salt/alkoxide precursors in water or ethanol-water mix-
tures. Investigations on the application of ultrasonic treatment after
precursor mixing have shown that secondary phase formation and
crystallite size of the powders were dependent on the ethanol-
water ratio and duration of ultrasonic irradiation [22-24]. It was
reported that the brookite phase formation ceased and the nature of
the precipitates were no longer amorphous with decreasing etha-
nol-water ratio. The prolonged ultrasonic irradiation time was also
observed to reduce the crystallite size of titania powders in the
above studies.

The addition of precursor (titanium isopropoxide—TIP or titanium
tetrachloride—TTC) into water or ethanol-water mixture by injection
was also investigated [25]. The temperature of the mixture reached
100 °C when ultrasonic treatment was terminated. The final phases
of the powders were determined as being amorphous, anatase, rutile,
anatase-rutile or brookite-anatase mixture depending on the precur-
sor composition. The N, sorption isotherms displayed H2 and H3 hys-
teresis loops indicating that the powders were mesoporous. The
largest surface area (290 m?/g) was obtained from the powder
which was recovered from the supernatant of hydrolyzed TIP after
centrifugation. The phase structure was reported to depend on pre-
cursor composition (TIP/TTC) and reaction temperature. These find-
ings were further explained to be due to the formation of a larger
number of seed nuclei in the gel when the precursor was pure TIP.

The dropwise addition of titanium butoxide into water under ultra-
sonic irradiation caused the formation of micro/mesoporous titania
powders [26]. Ultrasonic irradiation led to the formation of a crystalline
powder (anatase and brookite mixture), while the powder without ul-
trasonic treatment was amorphous. The surface area and pore diameter
of the powder prepared under ultrasonic irradiation after heat treat-
ment at 100 °C were 264 m?/g and 4.3 nm respectively.

The dropwise addition of undiluted or ethanol diluted titanium
alkoxide into water or ethanol-water mixtures under ultrasonic irra-
diation was investigated [27,28]. It was reported that the application
of ultrasonic irradiation facilitated the generation of the secondary
phase (brookite) and increase in ethanol to water ratio induced a de-
crease in the peak intensities of the crystalline phases in the XRD pat-
terns. The precipitates were amorphous when the ratio was 10.

The surface area was the largest (97 m?/g) when TIP was directly
added to water while ultrasonic irradiation was applied [23]. It was
reported by Mason and Lorimer (2002) that maximum ultrasound ef-
fect was obtained when the aqueous precipitation solution had a
composition of 50 wt.% ethanol at 25 °C [21].

The addition of chemical species such as triblock copolymers [27],
acetic acid [28] and amines [29,30] was investigated to adjust the
pore/phase structure of the powders. However, an additional step, ex-
traction by nitric acid was required to remove amines. The use of
acetic acid was related with the emergence of secondary phases and
the prepared powder was not crystalline at 100 °C in this investiga-
tion [28] in contrast to the observations reported in other investiga-
tions [23,26,27,30]. The effect of ultrasonic irradiation was not

found as significant in terms of crystallite size and surface area. The
surface equivalent particle size and surface area of pure anatase tita-
nia were 23 nm and 67 m?/g at 400 °C.

This article intends to investigate the progress of nanotitania
structure prepared by ultrasonic induced hydrolysis with increasing
temperature in terms of phase structure and crystallite size, surface
area, pore size and particle size distribution, powder density and den-
sification behavior. The properties of these mesoporous nanocrystal-
line titania powders were compared with titania powder prepared
without ultrasonic treatment and Degussa P-25. The dilatometric
densification curves of these powders were further determined and
analyzed which may generate valuable information on the mi-
crostructure evolution upon heat treatment of these promising
nanomaterials.

2. Materials and methods
2.1. Synthesis

Nanocrystalline titania powders were prepared by hydrolyzing ti-
tanium isopropoxide (TIP) in ethanol-water mixture with and with-
out the application of ultrasonic irradiation, which were labeled as
TiO,-U and TiO,-NoU, respectively. The schematic flowchart of the
TiO,-U powder processing is shown in Fig. 1. The TIP-ethanol mixture
(1.00 mol/L) was stirred for 30 min initially. Ethanol-water mixture
(1:1 by volume) was subjected to ultrasonic irradiation (Ultrasonic
Cleaner, 37 kHz, Elmasonic 80S), while TIP-ethanol mixture was
added dropwise by using a peristaltic pump (10 mL/min). A typical
experiment was completed in 20 min and the temperature of the ul-
trasonic bath did not exceed 40 °C. The TiO,-NoU powder was pre-
pared by following the same procedure without applying ultrasonic
irradiation during hydrolysis. Bluish white precipitates were formed
instantaneously and recovered by centrifugation (8000 rpm for
30 min) at the end of precipitation. The precipitates were dried at
70 °C for 12 h and heat treated at different temperatures (100-
800 °C) with a heating rate of 10 °C/min and a soaking time of 2 h

Titanium
Stirred for isopropoxide+
30 min ——P Ethanol

(1.00 mol/L)

Ultrasonic H,O + Ethanol
Irradiation ——f (1:1 by volume)
37 kHz
v
Precipitation
v
8000 rpm Centrifugation
for 30 min
A 4 70°C for 12 h
Characterization Drying —
Heating Rate: 10°C/min
A Soaking Time: 2 h

Heat Treatment

<
100-800 °C

Fig. 1. Flowchart of nanocrystalline titania preparation under ultrasonic irradiation.
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Fig. 2. The variation of zeta potentials of nanotitania (TiO,-U) heat treated at 425 °C
(0J) and Degussa P-25 (¢) with pH.

at the peak temperature. Degussa P-25, commercial titania powder
was also characterized similarly.

2.2. Characterization methods

The particle size distributions and isoelectric (IEP) points of the
powders were determined by using ZetaSizer (3000 HS,, Malvern).
Dilute suspensions were prepared by adding about 0.5 mg of powder
into a UV cuvette in about 2-3 mL of ultrapure water. The dispersion
was subjected to ultrasonic treatment for 30 min before measure-
ment. The pH was adjusted by adding dilute nitric acid and ammonia
solution for the zeta potential measurements. The IEP measurements
were repeated three times and the standard deviations were indicat-
ed in the related figure. The BET surface area of the powders and the
BJH desorption curves were determined by N, sorption by using
Micromeritics ASAP 2000. The samples were degassed at a tempera-
ture which was 50 °C below powder heat treatment temperature.
An adsorption data in the relative pressure (P/P,) range of 0.05-0.3
was used to determine the surface area by BET (Brunauer-Emmett—
Teller) method. Desorption data was used to determine the pore
size distribution by BJH (Barret-Joyner-Halender) method by assum-
ing a cylindrical pore model. These sorption characterizations were
carried out only once on each sample since they were approximately
one day long runs. He pycnometer was used to determine the density
of the powders at room temperature. The density measurements
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were repeated three times and the average density was calculated.
The XRD patterns were obtained by Philips Expert Pro XRD using
CuK, radiation in the 20-60° 26 range and only one pattern for
each sample was obtained. The average crystallite size (ACS) of the
powders was calculated by using Scherrer equation from the full-
width half-maximum of the peak of each phase after correcting for
the instrumental broadening by using the X'PERT PLUS program
(version 1.0, 23.04.1999). Due to the overlap of anatase (110) peak
with brookite (120) and (111) peaks, the ACS of the samples was calcu-
lated from the second strongest anatase peak (200) located at 26 of
~48°. The ACS of rutile was calculated from the (110) peak which is lo-
cated at 26 of ~27°. Anatase, brookite, and rutile phase contents of the
powders were determined by using the following equations:

100k, ]
o7 ATA
WA = T T I + Kyl (1)
1001
o — R
R = T T+ Rl @)
w100 Ksly a)

Kaln + I + kgl

where wa, wg, and wy are weight percents of anatase, brookite, and ru-
tile phases in the sample, I4, I, and I are integrated peak intensities of
the strongest anatase (101), brookite (211), and rutile (110) peaks. The
coefficients k4 and kg are obtained from previous work as 0.886 and
2.721[26,27,31].

The TGA curves of the powders were obtained by heating to a
maximum temperature of 1000 °C under N, atmosphere at a heating
rate of 10 °C/min. The densification behavior of the powder compacts
isostatically pressed at 210 MPa was determined by using a dilatom-
eter (Linseis, L76/150B) with a heating rate of 5 or 10 °C/min up to
1200 °C. TGA and dilatometric measurements were conducted only
once on each sample reported in this work.

3. Results and discussion

The variation of the zeta potentials of the powders with pH is
shown in Fig. 2. The IEP of the nanotitania powder (TiO,-U) and
Degussa P-25 powder was about 5. Due to the relatively low zeta
potential values which are 5.1 and —16.1 mV at pH values of 4 and
6, the TiO,-U powder was considered colloidally unstable in this
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Fig. 3. The XRD patterns of TiO,-NoU heat treated at (a) 25, (b) 70, (c) 100, (d) 250, (e) 300, (f) 400, (g) 500, (h) 600, (k) 700 and (1) 800 °C.
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Fig. 4. The XRD patterns of TiO,-U heat treated at (a) 25, (b) 70, (c) 150, (d) 250, (e) 300, (f) 400, (g) 500, (h) 600, (k) 700 and (1) 800 °C.

range. Higher zeta potentials as 23 and —30 mV at pH levels of 2.9
and 8.1 were determined.

The effects of ultrasonic irradiation and heat treatment tempera-
ture on the ACS and phase contents of the powders were determined
from their XRD patterns based on the standard XRD patterns of
anatase, brookite, and rutile phases (JCPDS 84-1286, 29-1360, and
88-1175, respectively). Although only broad anatase peaks were
detected in the XRD pattern of TiO,-NoU-25, the brookite peak
(~30.8° of 26) became detectable in the 70-400 °C range (Fig. 3).
The rutile phase formation started at above 500 °C and was complet-
ed at ~800 °C. The brookite and anatase peaks became sharper in the
ultrasonically treated powders compared to their counter parts in the
untreated powders as can be seen in Figs. 3 and 4. The brookite phase
completely transformed into anatase in the 400-500 °C temperature
range. The anatase to rutile phase transformation started at lower
than 600 °C and was completed at temperatures in between 700
and 800 °C range for TiO,-U.

The weight percentages of the crystalline phases were determined
as outlined previously and further plotted as a function of tempera-
ture in Fig. 5. The TiO,-NoU powder consists of only anatase phase
(~100 wt.%) in the room temperature to 70 °C range. The brookite
phase (10-13 wt.%) which forms at ~70 °C, completely transformed
to anatase in the 400-500 °C range. It was observed that the applica-
tion of ultrasonic irradiation favors the formation of the brookite
phase (60 wt.% of anatase and 40 wt.% of brookite for TiO,-U-25).
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However, the amount of the brookite phase decreased to 25 wt.% at
70 °C. The TiO,-U powder contained 9 wt.% brookite phase at 400 °C
and pure anatase was obtained by heating to 500 °C. The anatase to
rutile phase transformation occurred above 500 °C and was complet-
ed at 800 °C for both powders.

Particle coarsening in the powders during phase transformation
was detected via analyzing the increase in the ACS of the anatase
phase determined by using Scherrer equation and surface area equiv-
alent particle size (SAEPS) (Fig. 6). The ACS of TiO,-NoU-25 which
was two times larger than the TiO,-U-25, did not change significantly
(~10 nm) in the 70-400 °C range. It increased significantly in the
500-800 °C temperature range where also anatase-rutile transforma-
tion occurred. The increases in ACS for TiO,-U powder were observed
to occur at two separate temperature ranges of 25-200 and 400-
600 °C. The ACS of TiO,-U powder was almost constant during
phase transformations at temperatures of 250-400 °C (brookite to
anatase) and 600-700 °C (anatase to rutile). A significant increase in
crystallite size was observed in the 400-800 °C range for both pow-
ders. The SAEPS was calculated from BET surface areas by assuming
that the particles are non-porous spherical particles and was quite
comparable with the XRD data driven ACS in the 200-500 °C range
as seen in Fig. 5. The crystallite size of Degussa P-25 powder was cal-
culated as 17 nm based on the strongest (110) anatase peak).

The N, adsorption-desorption isotherms of both TiO,-U and TiO,-
NoU powders heat treated at different temperatures (200-500 °C)

(b)

Temperature (°C)

Fig. 5. The variation of the wt.% of the crystalline phases present in (a) TiO2-NoU and (b) TiO2-U powders with respect to temperature.

100 A~

80
S
=1
Z 6014
2 —&— Anatase
= 1
A —&— Brookite
= 401 .
- —A— Rutile \
48
S

20 }

0 Aok ‘._:_I\l—o—u\ﬁu
0 200 400 600 800

Temperature (°C)



0.C. Duvarci, M. Ciftcioglu / Powder Technology 228 (2012) 231-240

~
=]
~

w2

100 100 &
- o 2
g OACS o 2
= >
kS ®SAEPS é
[77)] &
2 A Z
= =&
S 10 ofg o9 - L10 B =
@ M=l é s
& &
o =
%) =
o0 &
g 2
2 )
< (<]
w2

1 ] E-

0 200 400 600 800 1000 ®

Temperature (°C)

235

(b)

wn

100 | 3 100 £
- g
g ©ACS PR 8
by B
] * SAEPS @
7 s »
2 =z
=] ==
= | 'y 10 =
g0 00 ¢ )
z * g
&) ° =4
) =
°n &
g =
P [}
= &
wn

1 ! 1 N

0 200 400 600 800 1000 ®

Temperature (°C)

Fig. 6. The effect of temperature on average crystallite size (ACS) and surface equivalent particle size (SAEPS) of (a) TiO,-NoU and of (b) TiO,-U powders.

exhibit type IV isotherms with H3 hysteresis loops [32,33]. The loca-
tions and the forms of the hysteresis loops indicated high adsorption
energy and mesoporous structure with slit shaped pores in the range
of 2-50 nm (Figs. 7 and 8) according to BDDT (Brunauer, Deming,
Deming and Teller) classification. However, the Degussa P-25 powder
had type Il adsorption isotherm which is characteristic of non-porous
or macroporous structures with high adsorption energy (Fig. 9).
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The hysteresis loop of TiO,-NoU-200 was located in the relative
pressure range of 0.5-1 and gradually shifted to 0.6-1 relative pres-
sure range when it was heat treated at 400 °C. The pore volumes of
TiO,-NoU powders (~0.36 m>/g) did not change significantly, but
broader pore size distributions and a monotonic decrease in the BET
surface areas were determined by increasing the heat treatment tem-
perature up to 400 °C (Table 1 and Fig. 10a). The average pore size
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Fig. 7. (a) The N»-sorption isotherms and (b) BJH desorption pore size distributions of TiO,-NoU titania powders heated at 200 (L), 300 (¢), 400 (A), and 500 °C (x).
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Fig. 9. (a) The Ny-sorption isotherms and (b) BJH desorption pore size distribution of Degussa P-25 ([).

The pore/phase structure properties, surface areas and He pycnometer densities of the powders.

Sample Average crystallite size Anatase content Brookite content Rutile content Density BET Average pore size® Pore volume?
(nm) (%wa) (%ws) (%wr) (g/cm?) (m*/g) (nm) (cm?/g)
TiO,-NoU-25 9.9 100 - - - - - -
TiO,-NoU-70 9.7 100 - - - - - -
TiO,-NoU-100 9.3 97 3 - - - - -
TiO,-NoU-200 - - - - - 238 5.5 0.327
TiO,-NoU-300 10.2 87 13 - - 209 7.2 0.378
TiO,-NoU-400 10.9 90 10 - - 170 8.2 0.352
TiO,-NoU-500 14 100 - - - 106 5.7 0.153
TiO,-NoU-600 54 95 - 5 - - - -
TiO,-NoU-700 78 88 - 12 - - - -
TiO,-NoU-800 292° 4 - 96 - - - -
Ti0,-U-25 49 60 40 - - - - -
TiO,-U-70 7.3 75 25 - 3.19 - - -
Ti0,-U-150 8.2 92 8 - - - - -
TiO,-U-100 8 86 14 - - - - -
Ti0,-U-200 - - - - 3.27 287 4.2 0.336
TiO,-U-250 8.1 91 9 - - - - -
Ti0,-U-300 94 91 9 - 3.57 201 4 0.246
TiO,-U-400 103 91 9 - 3.57 159 59 0.297
TiO,-U-500 184 100 - 0 3.68 82 54 0.117
Ti0,-U-600 48 50 50 4.06 - - -
TiO,-U-700 55° 5 - 95 4.00 - - -
TiO,-U-800 81° - - 100 4.13 - - -
Degussa P-25 17 13 - 97 - 66 5 0.09
2 From BJH desorption data.
b Calculated from X-ray peak of rutile located at 27.2° of 26.
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Fig. 10. The variation of BET surface area () and pore size based on BJH desorption (¢) with temperature of (a) TiO,-NoU and (b) TiO,-U powders.
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became larger (5.5 to 8.2 nm) in the 200-400 °C range due to the for-
mation of larger aggregates while the BJH pore volume did not
change significantly (0.327 to 0.357 cm?®/g) for TiO,-NoU powder.
The average pore size, pore volume and surface area decreased to
5.7 nm, 0.153 cm>/g and 106 m?/g, respectively, at 500 °C due to the
formation of densely packed aggregates.
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The variation of the hysteresis loop form and location for TiO,-U
powder with temperature have shown a two-step progress: the
shift to a higher relative pressure range (P/P,~0.4-1 to 0.5-1) by in-
creasing calcination temperature from 200 to 300/400 °C and a fur-
ther narrowing of the relative pressure range (P/P,~0.5-1 to 0.5-
0.8) at 500 °C (Fig. 8). Similarly, the pore size distribution became
narrower by heating up to 300 °C and became wider by further heat
treatment. The BET surface area (from 287 to 80 m?/g) and the BJH
pore volume (from 0.334 to 0.117 cm®/g) decreased significantly by
increasing the heat treatment temperature from 200 to 500 °C where-
as the average pore size didn't change significantly (~4-5.4 nm) for
TiO,-U powder (Table 1 and Fig. 10b). The first step may be dominat-
ed by the formation of anatase phase and crystal growth which elim-
inated inter-particle pores in the 200-400 °C range. The second step
may be related to the reduction of smaller pores preferentially and
the presence of larger pores due to the formation of closely packed
aggregates while heating from 400 to 500 °C [34,35].

The pore/phase structure properties, surface areas and He pyc-
nometer densities of the powders are further tabulated in Table 1.
The variation of the powder densities with heat treatment tempera-
ture is given in Fig. 11. The densities of the powders were determined
to be above 4.00 g/cm? for heat treatment temperatures above 600 °C
which became comparable with the density of rutile in agreement
with the XRD results. The powder density is almost constant in the
300-500 °C range (in the 3.57-3.68 g/cm?) which is close to the
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Fig. 12. (a) TGA curves of Degussa P-25, TiO,-NoU and TiO,-U under N2 atmosphere (b) FTIR curves of TiO,-NoU and TiO,-U powders which were dried at 25 °C.
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Fig. 13. The particle size distribution of (a) TiO,-U as precipitated, (b) TiO,-U-425, and (c) Degussa P-25 by DLS measurement.
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Table 2
The average particle size of TiO,-U and Degussa P-25 by volume and by number.

Sample Particle size by Particle size by Polydispersity SAEPS
volume (nm) number (nm)  index (nm)
TiO,-U as precipitated 545 (18%) 549 (83%) 0.062 -
1536 (82%) 1545 (17%)
Ti0,-U-425 25 (8%) 25 (98%) 0.475 9.7
309 (92%) 109 (2%)
Degussa P-25 72 (8%) 98 (100%) - 22
259 (92%)

anatase phase density. The density increases with heat treatment
temperature initially with a subsequent decrease in the 70-225 °C
range which may be attributed to the brookite phase transformation
to anatase and the rearrangements in the amorphous phase present
in the powders. The powder density was 4.13 g/cm> at 800 °C after
the completion of anatase to rutile phase transformation (in the
500-800 °C range).

The TGA curve of the titania powders (dried at room temperature)
and Degussa P-25 are given in Fig. 12a. Degussa P-25 powder lost
about 3 wt.% of its original weight in the 25-1000 °C range, which
was attributed to the removal of physically adsorbed water from
powder surface. Total weight loss of TiO,-NoU and TiO,-U powders
up to 1000 °C was 23 and 17.5 wt.%, respectively. The weight loss in
the 25-80°C range was about 5wt% for both titania powders
which was attributed to the removal of physically/chemically
adsorbed water and ethanol. The weight loss of TiO,-NoU was about
5wt.% higher than TiO,-U powder with further heating to 200 °C
and this behavior may be related to the presence of Ti(OH),4 and its
transformation to TiO, upon further heating which was confirmed
by FTIR spectrum (Fig. 12b). The broad peak located at 3340 cm ™~ ! in-
dicated the presence of surface hydroxyls (Ti(OH)4). The adsorbed
water was detected by the peak located at 1620 cm ™ !. The intensities
of the defined peaks for TiO,-NoU were higher than TiO,-U which
was consistent with the presence of a higher level of Ti(OH), in
TiO,-NoU.

The particle size distributions and the average particle sizes of
TiO,-U and Degussa P-25 powders are given in Fig. 13 and Table 2.
The particle size of Degussa P-25 by dynamic light scattering (DLS)
was almost five times higher than the SAEPS. Although DLS operates
on the assumption of the presence of homogenous and non-
absorbing spherical particles in dilute suspensions, this assumption
may be violated due to non-spherical shape and porous powders.
The as-precipitated particles (TiO,-U) were partially crystalline and
contained hydroxyl groups, chemically adsorbed water and ethanol
based on the findings of XRD, TGA and FTIR analyses. They may

800 | 1000 ' 12p0

—
=)

Z
v S
P el

% Shrinkage
o

N
-20 N~ o
Degussa P-25 5C/min
25 £ = =ITi02-NoU 5C/min
— —|Ti02-U 5C/mi
-30

Temperature (°C)

0.C. Duvarci, M. Ciftcioglu / Powder Technology 228 (2012) 231-240

have larger surface area than TiO,-U-200 (287 m?/g) and were large-
ly agglomerated. The most of TiO,-U as precipitated particles was
about 550 nm (83% of particles) in size by number. The particle size
of Ti0,-U-425 (146 m?/g) was about 25nm (97.8 and 2.2% of
nanoparticles were 25 and 109 nm in size by number, respectively)
due to the removal of adsorbed chemicals and progress of crystalline
phases during heat treatment.

The polydispersity index (PDI) values of the measurements are
given in Table 2. The PDI value is related with the dispersivity and
varies between 0 and 1. The more monodisperse the particles are,
the lower the PDI value. TiO,-U as precipitated powder contained
500 nm and 1.5 um particles in size which correspond to amorphous
aggregates formed in the precipitation medium and their larger ag-
glomerates. The PDI value of particle size measurement for TiO,-U-
425 powder was 0.475 which represents a broader particle size distri-
bution. This may be due to the formation of a relatively large amount
of smaller particles (25 nm in size which is closer to the 10 nm crys-
tallite size) during the removal of hydroxyl groups and the formation
of crystalline phases and aggregates upon heat treatment.

The powder compacts had a densification behavior which was
formed of two stages, which are given in Fig. 14a and b. There was
no significant shrinkage (~2%) present in TiO,-NoU and TiO,-U pow-
der compacts up to 200 °C and 400 °C for Degussa P-25 powder com-
pacts regardless of heating rate. The first stage in the 500-850 °C
range may most likely be controlled by the 7-10 nm crystallites in
the structure and account for 18% of the total 26% shrinkage at
1200 °C with a heating rate of 10 °C/min. The second stage starting
from 850 °C may be due to the sintering of densified submicron orig-
inal aggregates of the powder primary crystallites. The densification
of TiO,-NoU and TiO,-U powders still was not completed by 1200 °C.

The progress of microstructure development, sintering stages, and
phase transformations of the powder compacts with respect to tem-
perature can be differentiated by evaluation of the first derivatives
of the shrinkage curves (Fig. 15a and b). The peak temperatures
were ~30 °C higher upon increasing the heating rate from 5 to
10 °C/min. There was no shrinkage at temperatures up to 400 °C for
powder compacts of Degussa P-25compacts. Increasing the heating
rate from 5 to 10 °C/min lowers the peak temperatures of sintering
stages for anatase (C) and rutile (E) as seen Fig. 15a and b. The
TiO,-NoU powder compacts had a slightly higher total shrinkage at
1200 °C although the peak densification temperatures were the
same. The removal of hydroxides was observed at 200 °C for TiO,-
NoU and TiO,-U while brookite to anatase phase transformation
was in progress (A). The phase transformation of brookite to anatase
was not detected from the first derivatives of the shrinkage curves in
the 300-500 °C range (B) due to the low content of brookite (13 and
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Fig. 14. The shrinkage curves of Degussa P-25, TiO,-NoU and TiO,-U at a heating rate of (a) 5 °C/min and (b) 10 °C/min.



0.C. Duvarci, M. Ciftcioglu / Powder Technology 228 (2012) 231-240 239

(a) 100 300 500 700 900 1100
0

e
14
=
2
3]
<
=<
=
E
&7
<
-39 Degussa P-25 5C/min
=== TiO2-NoU 5C/min
= = TiO2-U 5C/min
-5

Temperature (°C)

(b) 100 300 500 700 900 1100
0 ) L Ly

-1+
[
=z
3]
«
=~
=
E
&7
<z
31 Degussa P-25 10C/min
- - - = TiO2 NoU 10C/min
— — Ti02-U 10C/min
5

Temperature (°C)

Fig. 15. The first derivative of the shrinkage curves of Degussa P-25, TiO,-NoU and TiO,-U at a heating rate of (a) 5 °C/min and (b) 10 °C/min. (A: the removal of hydroxides; B: the
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due to the formation of pores between submicron sized densified aggregates).

9 wt.% for TiO,-NoU and TiO,-U, respectively). The intense and signif-
icantly broad peak observed for Degussa P-25 located at 650-700 °C
was attributed to the sintering of anatase (C). The rate of anatase to
rutile phase transformation for Degussa P-25 with ~13 wt.% rutile,
was not as significant as for both TiO,-NoU and TiO,-U powder com-
pacts (D). The peaks located at 900 °C for Degussa P-25, TiO,-NoU and
TiO,-U were attributed to the sintering of rutile phase and submicron
sized densified aggregates (E). The shrinkage of TiO,-NoU and TiO,-U
powder compacts was still in progress above 1000 °C which was at-
tributed to further sintering due to the formation of pores between
submicron sized densified aggregates (F).

4. Conclusions

Nanocrystalline titania powders were prepared by hydrolysis of ti-
tanium isopropoxide with or without ultrasonic irradiation at room
temperature. The application of ultrasonic irradiation during hydroly-
sis favors the formation of brookite phase, smaller crystallites, higher
surface area/pore volume, and narrower pore size distribution. Pure
anatase phase was obtained after heat treatment at 500 °C. The ana-
tase to rutile phase transformation started in the 500-550 °C range
and was completed at 800 °C for both TiO,-NoU and TiO,-U powders.
The TiO,-NoU and TiO,-U powders displayed mesoporous structure
and indicated the presence of slit shaped pores with high adsorption
energy. Commercial Degussa P-25 powder on the other hand was de-
termined to have a macroporous structure. The pore size distribution
became wider and the pore volume was reduced by heat treatment
which may be related to the collapse of small pores and the formation
of larger crystallites hence a coarser pore structure. The presence of
Ti(OH)4 was confirmed by FTIR analyses and its transformation to
TiO, upon heating to 200 °C was detected by TGA analyses. The TGA
total weight loss of TiO,-NoU was about 5 wt.% higher than TiO,-U
powder. The DLS particle size analysis revealed the presence of 25
and 109 nm nanoparticles (about 97.8 and 2.2% by number respec-
tively) in the TiO,-U-425 powder. The dilatometric shrinkage curve
of nanotitania has shown a two stage sintering behavior where the
former stage may be controlled by small crystallites (7-10 nm) in
the 500-850 °C range and the latter by aggregates with sizes in sub-
micron range. The phase structure evolution in the powder compacts
during sintering was analyzed by the first derivatives of the shrinkage
curves which may prove to be very useful for titania based nano ma-
terial characterization.
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