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New Broer-Kaup type systems of hydrodynamic equations are derived from the derivative
reaction-diffusion systems arising in SL(2,R) Kaup-Newell hierarchy, represented in the
non-Madelung hydrodynamic form. A relation with the problem of chiral solitons in quan-
tum potential as a dimensional reduction of 2 +1 dimensional Chern-Simons theory for

anyons is shown. By the Hirota bilinear method, soliton solutions are constructed and
the resonant character of soliton interaction is found.
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1. Introduction

Recently, a modification of the nonlinear Schrodinger
(NLS) equation by a quantum potential has been studied
in several problems. As a low dimensional gravity model,
the Jackiw-Teitelboim model, in a special non-covariant
gauge, [1,2]. In plasma physics, as nonlinear equations gov-
erning the transmission of uni-axial waves in a cold colli-
sionless plasma subject to a transverse magnetic field [3].
The capillarity model [12], and information theory with
Fisher measure of maximal uncertainty, [8]. It was studied
recently as integrable deformation of dispersion for generic
envelope equation of nonlinear Schrodinger type [7]. Subse-
quently, the influence of this potential on anyons in 2 + 1
dimensions has been studied [4], and the Abelian Chern-Si-
mons gauge field interacting with NLS has been represented
as a planar Madelung fluid [6], where the Chern-Simons
Gauss law has the simple physical meaning of creation of
the local vorticity for the flow. For the static flow when
the velocity of the center-of-mass motion is equal to the
quantum velocity, the fluid admits an N-vortex solution. It
turns out that in this theory the Chern-Simons coupling
constant and the quantum potential strength are quantized.
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Reduction of problem to 1 + 1 dimensions leads to JNLS
and some versions of Derivative NLS in quantum potential.
Hence the chiral solitons appear as solutions of the deriva-
tive NLS with quantum potential [5]. The last one by the
Madelung transform is represented as the derivative
Reaction-Diffusion (DRD) system, arising in SL (2,R)
Kaup-Newell hierarchy, and giving rise to the resonant
soliton phenomena [7].

In the present paper by using new, the non-Madelung rep-
resentation, we formulate the problem in terms of novel
hydrodynamic systems of the Broer-Kaup type. Then by
Hirota’s bilinear method we construct chiral solitons for the
system and show the resonance character of their interaction.

2. Dimensional reduction of Chern-Simons theory

We consider the Chern-Simons gauged nonlinear
Schrédinger model (the Jackiw-Pi model) with nonlinear
quantum potential term of strength s [4]:

L= 5 ™ A0,A; + 5 (WDoy — yDoh) ~ DDy
+ SVIWIV I+ V), M

where D, =0, +ieA, (u=0,1,2). Classical equations of
motion are
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Ay

iDoy + D?y + V'yr :smlp, )
01A; — LA = %(W’v 3)
0oty — 0o = — i (UD — DY) (.k=12).  (4)

We consider dimensional reduction of this model when
all fields are independent of x; space variable, so that 9, = 0.
Then in terms of Ag = Ao + eA%, and B = A,, we obtain

i(00 + ieAo)y - (01 + ieAr2y + Vg = P11, 5)
0 0 1 1 - |l//‘ )

9oAr — D1Ag = 0, 6)

0B = %w, (7)

9B = i% (01 + ieAy)y — y(0y — ieAy)D). 8)

Here and below we skip the tilde sign for Ag. The last
two equations are compatible due to (5) and the corre-
sponding continuity equation

Ao(Yp) = 101 [p(D1 + ieAr )y — (01 — ieAr)y] 9

implies compatibility of Egs. (7) and (8). Integrating these
equations we find B in terms of density y

e [*_ ,
B:E/ Jydx. (10)

From another side, flatness of connection (6) implies
Ao = 0o, A1=01¢, and these potentials can be removed
by the gauge transformation, y =e **¥. As a result we
obtain the Schrodinger equation with self-interacting
nonlinear potential V(y), and the quantum potential

Gikd
1]

iV +RP+VP =5 P (11)

2.1. Madelung representation and RNLS

If we substitute the Madelung Ansatz ¥ = ,/pe ™ to
wave function in (11) then we get the coupled system

2
S — (015 +V'(p) + (1 —s)%m:a (12)

Bop — 1 (2pdhS) = 0. (13)

For velocity field v= —20;S it implies the hydrodynamical
system

NG
dop + 01(pv) =0, (15)

Do + VO v = 20, (V’(p)+(l -5) 6%\/ﬁ>7 (14)

which is the Madelung fluid representation of (11).

First we consider the under-critical case, when the
strength of the quantum potential s < 1. Then introducing
rescaled the time and the phase t=tV/1-5s, S= \/%s for
new wave function ¥ = ,/pe S we get
e ey Vg
18()'}’+81‘P+1—7$‘P=0. (16)

In the over-critical case when s> 1, we can’t reduce
(11)-(16). However, if we introduce pair of real functions

eM(x,t) = \/ﬁe;, e (x,t) = \/ﬁe*E (17)

instead of one complex wave function, then we get the
time reversal pair of reaction-diffusion equations

866(” + a%e(ﬂ -3 ‘j e =0, (18)

e =0, (19)

— 0ge'”) + 7€) — S

where f=tvs—1, S = 25, p=eMel), V=V(ete))

If interaction between material particles is the delta
function pair form then potential V(p)=gp?/2 and Eq.
(11) becomes

Gakd
17 y. (20)

We called this equation the resonant nonlinear Schro-
dinger equation (RNLS). It appears in the study of low-
dimensional gravity model on a line, the Jackiw-Teitelboim
model [1,2]. In plasma physics, it governs the transmission
of uni-axial waves in a cold collisionless plasma subject to
a transverse magnetic field [3]. As an integrable capillarity
model in [12]. It was studied recently as an integrable defor-
mation of dispersion for generic envelope equation of non-
linear Schrodinger type [7].

For under-critical case s <1 it reduces to the standard
NLS Eq. (16), and is integrable model. In the case s = 0 it de-
scribes dispersionless limit of NLS which has been studied
intensively as descriptive of shock waves in nonlinear op-
tics. However for the over-critical case s > 1 it can not be re-
duced to NLS equation, but to the couple of cubic reaction-
diffusion Eqs. (18), (19). This system is integrable as SL (2,R)
connection from the second flow of AKNS hierarchy, and ad-
mits infinite set of integrals of motions. Moreover in the last
case new resonance phenomena for envelope solitons take
place [1], which are absent for NLS. In the next section we
will discuss another reduction of Chern-Simons theory
with dynamical field B, and show that in this case resonant
versions of the JNLS and DNLS equations appear.

i00W + PV + g| PP =5

3. Dynamical BF theory

To do the gauge field component B in Section 2 to be
dynamical, following [11] we introduce the corresponding
kinetic term so that

L = KB(6A1 — D1Ao) + 000B:1 B + = (I(3o + ieAo)y

2

— (0o — ieAg)) — (01 — ieAy ) (0 + ieAr)y

+ SO ]+ V(). (21)
Then equations of motion are
. ) o ) Al
i(0o + ieAo)Y + (01 +1eA) Yy + V'Y =5 v v, (22)
0oA1 — 01Ap = 2—}580813, (23)

e

01B = Ep7 (24)
0B =~ ], (25)
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where the particle and the momentum density are

p =l I = (D0n +ieA — v(on —ieA)i]
=j+2eAp (26)

and j = —i[yd1y — y1y). Eq. (22) implies the conservation

law

dop + 1] = 0. (27)

This conservation law is the compatibility condition for the
system (24),(25) and allows us to write

000hB = [40op ~ (1= )], (28)

where « is an arbitrary real constant. Substituting (28) to
(23) and combining terms under the same derivatives we
have

80<A] —%cxp) -0 (Ao —%(1 —oc)]) =0. (29)
The system (22)-(25) is invariant under the local U(1)
gauge transformations

b W = e Ay A= Ayt O (30)
Then solving (29) we have

20e 20e

A==z op+did, Ao=—7 (1 -0+ 31)

and for the gauge invariant field ¥ = e’ ®*y it gives
. .20e? .20e? 2 ,
l(@o —H?(l - oc)]) ¥+ (81 -H?ocp) Y+Vy

AU
=S v, 32
i (32)

where | =j+%ap?, j=—i[P¥, - P¥), p=TY. Fi-

nally we have
2
iV, + P +izﬁ [(2a+ D|YP¥, + (20— 1)!1/2?4

|lP|XX

+49—oc(oc )P+ V'Y |'f’|

P, (33)

where partial differentiation notations are evident. The
remaining gauge transformation for this equation is just
the global U (1) transformation: ¥ — e“¥, /. = const.

3.1. Reductions of general RDNLS

The behavior of Eq. (33) depends on value of parameter
s. If we replace ¥ = e®~™ then we have couple of equations

2
Re— (Sw+2R\Sy) +2%4ocRxe2R =0,

20e? 464
K4

sﬁs§+(1fs)<Rxx+R2)+—2s R (e —2)eR+V =0

determining the Madelung fluid representation

20e?
e+ (pv+K—§2ap2) =0, (34)
Dy 20 2002\’ ,
Vet VU =2 [(1 =) \/ﬁxx @ Pvtia a(@-2)p*+V'| . (35)

For s<1 for redefined variables tv1—-s=F,

S/VT—s=S, ¥ =ekiS, we have

oo 208 s =
v+ Wxx+lm[(2a+l)|‘l’| P+ Qo—1)¥ lpx]
0264 =477 VI o~
g g e =0 (36)

Similar to the Chern-Simons 2 + 1 dimensional case [4]
we have effective result of the quantum potential in the
rescaling of the statistical parametr k¥* — k?v/1 —s, but in
contrast no quantization of this parameter now appears.
Transformation between wave functions has nonlinear
form

~ \ VI-s
P(x,t) =¥ (%) (x,tV1=5). (37)

For s > 1 it is impossible to reduce the system to the Schro-
dinger type form. However for redefined parameters

tvVs—1=¢f S/v/s—1=S5 and two real functions
Ef =efS E =eRS we get
+ + 20e? -t +2
FE 4B 5 |t DEEE; + 20— DEE;
9284 b2 %4 s
“das oM DEEVE - TqE =0 (38)

3.2. Gauge transformation
We notice that in the gauge potential representation
(31), the gauge function ¢ = $*) depends on o:

20e 20e

A :—ap+01¢ Ao =7 (1 — )] + 0o (39)

Comparison with the case a=0
20e

=010, A= —J +900” (40)
gives relations
0190 — ) = 2% 0p. a0(9® ) = -2y (a1)

Compatibility of this system is ensured by the continu-
ity Eq. (27). Then corresponding gauge transformed wave
functions ¥ and ¥@

Y = e R ) _ e O (42)
are related by
P _ e o) y(0) (43)

Integrating (41) and substituting to (43) we have gauge
transformation between Eq. (33) and the same equation
with o =0:

2 X
P = exp <,,‘ ZKH—S o / pdx’) pO, (44)

From this relation we can connect two samples of Eq.
(33) with different constants o and 8
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.20e? X
P = exp (—17(05 - [3)/ pdx ) p®, (45)
Indeed one can check easily from

POp@ — i) W), P (3 + ivap) P

# (8 + ivop) PP (46)
that p® = pt#, () = JA) and
(81 +ivop) P = n [ oal (O +ivpp) PP, (47)

(D0 +iv(1 — o)) P = e DL 0¥ (g0 4 iv(1 - )W (48)

where v = 2¢
The gauge transformation (45) for the Madelung repre-
sentation implies
X
) / pdx +2mn, R® =R¥. (49)
For s < 1 it gives U(1) gauge transformation for (36) in the
form

fi/(oc) _ ,P —1—0( /ff pdx 2"" (50)

The last multiplier can be absorbed by the global phase
transformation on Y.

For s > 1 the above U(1) gauge transformation give rise
to the local SO(1,1) scale transformation (the Weyl trans-
formation) for Eq. (38)

v X 210
EE® _ Ei(ﬁ)eiﬁ(ifﬁ)f P‘Meim_ (51)

4. Integrable DRD systems

It was shown above that the one dimensional problem
of anyons in quantum potential with a specific form of
the three-body interaction, can be reduced to the general
resonant DNLS equation.
4.1. General resonant DNLS

This equation

iV, 4 W +i\7[(2<x+ PP + (20— 1) P2,

- 1 3 ||
2 _— —_— 4 = XX
+4v (oc 2) (oc 2>|¥’| Y=s 7] 14 (52)

is integrable for any values of parameter o.
4.2. The resonant case

For special case s> 1, by the Madelung transformation

¥ =efS and introduction of two new real functions
E'= R+S , E~ = ef=5 we get the general DRD system
4 " 20e? P 42
FE +EXX$KZ\/T71{(20(+1)E EEf + (20— 1)E EX}
0264 ] 3 + -2+

where 0 is the statistical parameter.
This system has particular reductions.

1. DRD-I (o= 3/2)
—E/ +E —2v(E'E E*), =0, (54)
+E +E, +2v(EEE), =0. (55)

2. DRD-II (o= 1/2)
—Ef +E,, —2vE'EEf =0, (56)
+E +E, +2VE'EE; =0. (57)
3. DRD-III (o= —1/2)
—E/ +E, +2vE"E, — 2V2(E'E")’E* =0, (58)
+E; +E,—2VE%E; —2v}(E'E")°E =0. (59)
4. JRD (o= 0)

:FEf+ij—v[EX*E’—E*E;}Ei—%}(E*E )?E* =0. (60)

5. Resonant hydrodynamic systems
To find hydrodynamic form of the above equations we

introduce velocity variables according to the Cole-Hopf
transformation

v =(InE%),, v =(InE"), (61)
and density
p=EE". (62)

Then by identity
Py =PV +pv, (63)

we can rewrite the DRD system in a closed form for only
one of the couples of hydrodynamic variables (p, ¢*) or

(p, 7).
5.1. Hydrodynamic form for DRD-I

For DRD-I case it gives the new hydrodynamic system
vl = v+ () = 2v(p+ prt)|

Pe+ Py = 2007 = 3vp%],. (64)

5.2. Hydrodynamic form for DRD-II

For DRD-II case first we get the coupled heat equation
with transport

—Ef +E}, —2vpE; =0
Pe+ Py = (2p(INE"), —vp?),. (65)

Then the hydrodynamic form for this system is
Vi = {v,j +(v")? - 2vp1ﬁ]x,

Pe+ P = 2pV7 = vp?],. (66)

5.3. Hydrodynamic form for DRD-III

For DRD-III case it gives the new hydrodynamic system
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v = v+ (0" +2v(p - pv) —2?p? |
P+ P = 2pV" +vp%, (67)

5.4. Hydrodynamic form for JRD
For JRD case it gives the new hydrodynamic system

v = v+ 7 = v2pr —p) -390

pt + pxx = [2py+]x' (68)

In all above cases for ~ we have the system with replaced
t— —t,v—o —v.

5.5. Generic case

For the generic case of arbitrary o firstly we have the
system

—Ef +E}, — V[2pE; + (200 — 1)p,E"]

—vz(oc—%> (a—%)sz*:O,

pe = 2p(INE"), — p, — 2vap?],. (69)
It gives the new hydrodynamic system
v = [vx* +(v")? =v2pvT +(2u—1)p,) — 1> (oc—%) (u—%)pz] )

Pe+ P =[20V" = 2vap?),. (70)

6. RNLS and Broer-Kaup system

The RNLS for s > 1 can be transformed to the reaction-
diffusion system

Rf =R}, +2WR'RR", (71)
—R, =Ry +2WR'R'R". (72)

By substitution ¢" = (InE"),, p = E'E™, it can be transformed
to the the hydrodynamic form as the Broer-Kaup system,
[9], [10],

v = (v +(v")), +2vp,,

Pet P = (2pV7), (73)
If v~ = (InE7),, p=EE", then we have

— v = (0, + (V7)) +20p,,

=Pt P = (zpvi)x' (74)

7. Relation with Broer-Kaup system

Given E*(x,t), E-(x,t) satisfying general DRD system
(53), then real functions

Rt — E+e—(a¢+%)vaE*E’

R = {E; + (oc - %) vE*E’E*} e [EE (75)

or
R = {—E; + <oc - %) vE*E’E*} e[ X”’,
R = E*e(ot%)vfxE*E’ (76)

satisfy the reaction-diffusion (RD) system

Rf =R}, +2WR'RR", (77)
~R; =R, +2VR'R'R". (78)

From this fact we can get next result.
If v} and pg satisfy (70) then v}, and pg determined by

vi =i - (2+5)voe. (79)

1
pu = (0a)— pevi + (23 ) vk (80)

is solution of the Broer-Kaup system (73). For v; and pg
satisfying the analog of system (70),

v = v + (o +%)va + {ln (vg + (oc - %))vaL, (81)

1
pu = pevi + (2= ) vo? (82)

is solution of (74).
Similar way we can get result.
If v} and pg satisfy (70) then v}, and pg determined by

vh = vf - (ac+%) Vpg + {ln (—UE + <o€ _%>>va:| ,(83)
1
PR = —PeVf + (oz - §> vpi (84)

is solution of the Broer-Kaup system (73). For vy and pg
satisfying the analog of system (70),

1
Vp = U + (oc —s-j) VPE, (85)
N 1
pu = (el + pevi + (1) vo? (86)
is solution of (74).
8. Backlund transformation
When p =0, both systems (70) and (73) reduce to the
Burgers equation. Then the above Miura type transforma-
tions reduce to the auto-Bdcklund transformations
vi =vi+(Invg),, vgp=vp+(Invg), (87)

for the Burgers and anti-Burgers equations correspon-
dingly.

9. Classical Bousinesque systems

If in (73) we change variables
p' = +2vp, (88)

then we get the classical Bousinesque system
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vf = () +p), (89)
Pl = (U +2p707), (90)
Similar way in (74) by variable change

P =, +2vp, (91)
we get

0 = (V) +D ) (92)
P = (Vu+207 V), (93)

10. Bilinear form and solitons

By substitution E*=g*/f* to (69) we have bilinear
representation

(?DﬁDi)(gi ) =0, (94)
Dy(f*-f) +%Dx(g+ 8)=0, (95)
Di(f*-f7) +og'g =0, (96)

where o =1 (DRD-II case), or o = —1 (DRD-III case). We
note that only in these two cases the Hirota substitution
has simple bilinear form. Then for solution of the hydrody-
namics systems (66) and (67) we have

v* = (InEY), =§%f%, (97)
g - (1t
p=EE = (lnf7>x. (98)

Bilinearization for arbitrary « can be derived by the gauge
transformation, so that

E+:+1,, Ei:%~ (99)
T S T

It implies next substitution for Eq. (70)

v*:(lnE*)ng—{f(%+a)%f<%foc)]é, (100)

p=EE = <1n]{—+> (101)

10.1. One soliton solution

For one soliton solution we have

gr=el, fr=14elieltn, (102)

ki
(ki+k7)
larity of this solution we choose conditions k; > 0 and
ki <0, then —v < k < 2, where k=k; +k;, #=k; —kj,
—kxg =17 + 1,9 + ¢7,. Then velocity is positive 7 > 0,
so that our dissipaton is chiral. For the density we have
soliton solution

where eti = F » NE =kix+ k)t + 1, For regu-

k2
V2 K coshk(x — ot — xo) + 7

where 2x, = x{ + X;, and for velocity field

p=EE = (103)

ki — kyetnenitn

vt 104
1+efnen*n (104)
the kink solution
P P P
vi=-5-5 tanh2 (x — vt — o). (105)

10.2. Integrals of motion

The particle number, momentum and energy integrals
are given respectively

00 ] + |
N_'mpdx_—;lnF N (106)
P:—/ py*dx:zlvln(f*f’)x (107)
E-— f/ (04 = vt — vpPutldx, (108)
Then substituting for one soliton solution we find
1 vk |k _ vlk|
N751n2—|k|’ va, =5 (109)

The mass of soliton M = |k|/(v?) in terms of particle num-
ber becomes M =1 tanh, and for the momentum and the
energy we have non-relativistic free particle form
P=Mpv, E=M2"

For the process of fusion or fission of two solitons then
the next conditions should be valid

N=N;+Ny, P=P+P,, E=E +E. (110)

Using (109) after some algebraic manipulations we get the
resonance condition

|01 = 02| = |ka| + [K2], (111)

where 7, =k, —k;, ke=k, +k;, a=1,2.
10.3. Two soliton solution

For two soliton solution we have
gt = el e ol I 4 ockelli S (112)
2
FE=14 Y ebieli I 4 et s, (113)
ij=1

where 1t = k'x + (kii)zt + 1755, k" = (k," + k;”) and

G 1k (6 k)

5 G =t———~> (114)
2 (ks ) (1)

of =+ =+ 7
2 142 2
(ki) (ksr)

ki — k) (ky — k)
/F:( 1 +_22_(+1_ +_22) klik;, (115)
4(kyy kyy ko kyy )
= k.i + —k ki
e = F——, el =——1 o el =—1  (116)
2(](,-,» ) Z(k;f) 2(l<;7>

By regularity we have ki <0, k; > 0 in the Case 1, and
k{7 = 0, k; <0 in the Case 2. Then solving the resonance
condition (111) we find that for every solution of this
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Fig. 1. 3D plot of typical soliton resonant state with one soliton
resonance.

20

-40 -20 0 20 40
Fig. 2. Contour plot of four soliton resonances.

algebraic equation, the coefficient g vanishes or becomes
infinite. In both cases two soliton solution reduces to the
one soliton solution. Hence the solution describes a colli-
sion of two solitons propagating in the same direction

and at some value of parameters creating the resonance
states (see Figs. 1 and 2).

11. Conclusions

The problem of chiral solitons in quantum potential, as
a reduction of 2+ 1 dimensional Chern-Simons theory,
was formulated in terms of family of integrable derivative
NLS equations by the Madelung fluid representation. By
using new, non-Madelung fluid representation we con-
structed integrable family of hydrodynamical systems of
the Kaup-Broer type. By bilinear method we found reso-
nance character of corresponding chiral soliton mutual
interaction.
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