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By generating function based on Jackson’s g-exponential function and the standard expo-
nential function, we introduce a new g-analogue of Hermite and Kampe-de Feriet polyno-
mials. In contrast to q-Hermite polynomials with triple recurrence relations similar to [1],
our polynomials satisfy multiple term recurrence relations, which are derived by the
g-logarithmic function. It allows us to introduce the q-Heat equation with standard time
evolution and the q-deformed space derivative. We find solution of this equation in terms
of g-Kampe-de Feriet polynomials with arbitrary number of moving zeros, and solved the
initial value problem in operator form. By g-analog of the Cole-Hopf transformation we
obtain a new gq-deformed Burgers type nonlinear equation with cubic nonlinearity. Regular
everywhere, single and multiple g-shock soliton solutions and their time evolution are
studied. A novel, self-similarity property of the q-shock solitons is found. Their evolution
shows regular character free of any singularities. The results are extended to the linear
time dependent q-Schrodinger equation and its nonlinear q-Madelung fluid type

representation.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that Burgers’ equation in one dimen-
sion can be reduced via the Cole-Hopf transformation to
the linear heat equation. It allows one to solve the initial
value problem for the Burgers equation and get exact solu-
tions in the form of shock solitons and their scattering. Re-
cently, a new q-Burgers-type nonlinear heat equation with
cubic nonlinearity and its linearization by the q-Cole-Hopf
transformation in terms of q-Heat equation was intro-
duced in [1]. Exact solutions of this equation in the form
of g-shock solitons were derived. It was found that due
to zeros of the g-exponential function, time evolution of
these shock solitons develops singularity in a finite time.
The origin of this singularity is related with q-deformation
of both, the time and the space derivatives. Thus, one ex-
pects that for the g-Heat equation with deformed space
derivative only, the time evolution could have the regular
character. In the present paper we introduce the differen-
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tial-g-difference Burgers type equation with cubic nonlin-
earity, which includes the standard time derivative and
the gq-deformed space derivative. By using the q-Cole-Hopf
transformation, this nonlinear equation is linearized in
terms of the g-Heat equation with the g-difference space
derivative. By generating function based on Jackson’s
g-exponential function and the standard exponential func-
tion we introduce a new g-analog of Hermite and Kampe-
de Feriet polynomials, representing moving poles solution
for this g-Burgers equation. Then, we derive the operator
solution of the initial value problem (IVP) for the q-Burgers
equation in terms of the IVP for the q-Heat equation. We
construct several particular solutions in the form of regular
everywhere q-shock solitons. It turns out that the static
g-shock soliton solution of our equation shows remarkable
self-similarity property in space coordinate x, similar to
[1]. However, in contrast to [1], time evolution of our
g-shock solitons is regular for any finite time. By extending
our results to the complex domain we introduce the time
dependent Schrodinger equation with q-deformed disper-
sion and the complex wave function. As a solution of this
equation we get the set of complex q-Kampe-de Feriet
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polynomials. By the complex g-Cole-Hopf transformation
we obtain the complex q-Burgers—-Madelung equation as
a coupled two fluid system with complex velocity function.

2. q-Hermite polynomials

We define a g-analog of Hermite polynomials by the
generating function as a product of Jackson’s g-exponential
function [2] and the standard exponential function

00 N
e "eg([2],tx) = 3 Hy(x;q) # (1)
N=0 q’

where Jackson’s g-exponential function is defined by
9= 3Ty
[n]q! = [1]q[2]q et
_q-1
[n], = -1
From the defining identity (1) for the q-Hermite polynomi-
als it is not difficult to derive an explicit sum formula
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[n]q and g-number [3],

Hn(x;q) =

k=0
This explicit sum makes it transparent in which way our
polynomials Hp(x;q), q-extend the Hp(x) and how they
are different from the known ones in literature. Moreover,
the generating function (1) and polynomials (2) are dis-
tinct also from the ones derived in our paper [1]. By g-dif-
ferentiating the generating function (1) with respect to x
we derive the two-terms recurrence relation

(2]4[N],Hn-1(x; ), 3)
where the g-derivative is defined as [3]
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While by standard differentiating of (1) with respect to t
and using the next evident equality

DXHN(X; q) =

Dif (x) = (4)

d = ([2],x0)"
o0 < x g - Sa

we obtain another two-term recurrence relation
d
(%~ N Hutx:a) = 21NN~ 1, Hy ). (5)

Now by taking standard derivative of (1) with respect to t
and using definition of the g-logarithmic function [9]
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where g > 1,0 < |z| < g and the property
Lng(1 — az)
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we derive the N-term recurrence relation formula
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where N=1,2,.... Here we emphasis that this N-term

recurrence relations can not be reduced to the typical
three-term recurrence relations for Hermite and q-Hermite
polynomials. This is why starting from N =4, our q-Her-
mite polynomials become different.

When g — 1 this multiple term recurrence relation for
g-Hermite polynomials reduces to the three-term recur-
rence relation for the standard Hermite polynomials

HN+1 (X) = 2XHN(X) — 2NHn_1 (X)

Substituting (3) into N-term recurrence relation formula
we get the operator representation

N+1], 2 )
N1 <[2] —<m+(q—1)X>Dx

N |
+Z x +1

= [l+1]

Hy.q (X?, Q)

>HN(X§ q) (7)

By the recursion, starting from n=0 and Hg(x;q)=1 we
have the next operator representation for our gq-Hermite
polynomials

N ok+1
q

k=0
N 1- 2kxk+1 .
+Z%D’x 1. 8)

We notice that in contrast to known operator representa-
tions for Hermite and g-Hermite polynomials with only
first order g-derivative [1], now we have the product,
including higher order derivatives up to order N.

In the limit ¢ — 1 case this product formula is reduced
to the known one

Hy(x) = <2x —dix)N -1

Here again we like to stress that the generating function
and the form of our new q-Hermite polynomials are differ-
ent from the known ones in the literature, [4-7], including
our paper [1]. Moreover, instead of three-term recurrence
relation we have multiple term recurrence relation, which
shows that our q-Hermite polynomials are distinct from
the known ones for orthogonal polynomial sets [8]. Com-
parison of above polynomials with ones obtained in [1],
shows similarity up to N = 3 only. Starting from N = 4 they
become different.
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The first few q-Hermite polynomials are

Ho(x;q) =1,

Hi(x;q) = [2] 4,

Ha(x;q) = [2]3%° — 2],

Hs(x;q) = [23%° — [3],!2],

Ha(x;q) = [2]gx* — [4],[3],[2]3%° +2[4]

= [213%° — [5],4], [2];%° +§[5]q![2}q><

2.1. g-Difference equation

By applying D, to both sides of (3) and using recurrence
formula (5) we get mixed g-difference-differential equa-
tion for our g-Hermite polynomials

d
2D{Hy(x:q) ~ [21gx 1 Hn(x:q) + [2iNHy(x:0) =0. (9)
This form is different from [1] and in g — 1 limit it reduces
to the second order linear differential equation for the
standard Hermite polynomials

d2

d
e Hy () + 2NHy(x) = 0.

Hn(x) — 2)(a

3. q-Kampe-de Feriet polynomials

We define the q-Kampe-de Feriet polynomials as

N X
Hy(x,vt;q) = (=Vvt)*Hn | o4 | (10)
[2],v—vt
so that from the N-term recurrence relation for g-Hermite
polynomials we obtain N-term recurrence relation formula
for g-Kampe-de Feriet polynomials

N+ 1],
Hyoa(x.VE: ) = 5 [xHN(x,vt;q)+2vt[N]qHN,1(x, VE; q)
1
*ﬁ(q — 1)[N],X*Hn_1(x, vt; q)
q
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This can also be written in the operator form as

N +1],
N+1
xl+1

Zz [l]q

By the recursion, starting from n =0 and Ho(x,vt;q) =1 we
have the next operator representation for the g-Kampe-de
Feriet polynomials

Hyor (X, VE: ) = [x+(2vt+] 9%)\p,

2],

D, |Hy(x, vt; q) (11)

Hys1(x,v8q) = H l]q X+ <2vt+ 1[27} qX2>Dx
k=0 q
N ) xk+1 :| 1 12
122: 2k, 12

In g — 1 case it gives the Galilean bust form

d N
Hy(x,vt) = <x+2vta> -1

For the first few g-Kampe-de Feriet polynomials we get

Ho(x,vt;q) =1,

Hi(x,vt;q) =X,

Ha(x,vt;q) = X* + 2], V¢,

Hs(x,vt;q) = X* + [2],[3], vEx,

Ha(x, vE; q) = X+ [3], 4], 768 + @vw,
[5],!

Hs(x,vt;q) = X* + [4],[5],vtX* + %vztzx.

When q — 1 these polynomials reduce to the standard
Kampe-de Feriet polynomials. As we commented in previ-
ous section, our new g-Kampe-de Feriet polynomials and
corresponding representations are different from known
ones, including our paper [1].

4. q-Heat equation

Now we introduce the q-Heat equation
(at —vD§)¢>(x, =0 (13)

with partial q-derivative with respect to x and with partial
standard derivative in time t. In contrast with this equa-
tion, in our paper [1] we worked with different q-Heat
equation, where both, the time and the space derivatives
are g-derivatives.

By separation of variables one can easily see that

B(x, ) = et (kx)

is a particular plane wave solution of (13). By expanding
this in terms of parameter k

du(x, 1) = ety (kx) = f:H (X, VE;q) o [N] (14)
N=0 q°

we get the set of g-Kampe-de Feriet polynomial solutions
for the q-Heat Eq. (13). From the defining identity (14) it
is not difficult to derive an explicit sum formula for these
polynomials

N2 vty xN-2KN] |

HN(X7 Vt§q) = k'[N—Zk}q' (15)
4.1. Operator representation
Proposition 1
a0t .
e i "eq([2) xt) = e " eq([2],x0). (16)

Proof 1. By g-differentiating the g-exponential function
with respect to x
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Dyeq([2],xt) = ([2]t)"eq([2]4x1), (17)
and combining then to the sum

i%nf"eq ([2],xt) = i @ ]" eq([2],xt), (18)
n=0 n=0 :

we have relation
e ey ([2],xt) = et ey (2], xt). (19)

By choosing a = —1/[2]2 we get the result (16). O

Proposition 2
1.n2

0y 9N, BN
Hy(x;q) = [2)e P3 %", (20)

Proof 2. The right hand side of (16) is the generating func-
tion for the g-Hermite polynomials (1). Hence, equating
the coefficients of t" on both sides gives the result. O

Corollary 1. If function f(x) is expandable to the formal
power series f(x) = > 5 _oanx" then we have the next q-Her-
mite series expansion

% ZaNHN x:q) 1)
N=0 z]q

5. Evolution operator

Following similar calculations as in Proposition 1 we
have the next relation

D2

e"Die, (kx) = " e, (kx). (22)

The right hand side of this expression is the plane wave
type solution of the q-Heat Eq. (13). Expanding both sides
in power series in k and equating the coefficients of k" on
both sides, we get q-Kampe de Feriet polynomial solutions
of this equation

Hy(x, vt;q) = e"PixV (23)

as solution of the L.V.P. with ¢(x,0) = x".
Consider an arbitrary, expandable to the power series
function f(x) = >~ ,a.x", then the formal series

fx,t) = e"Pif(x) Za e"Dixn (24)

M?Z

anHn (X, vt; q), (25)

Il
o

n

represents a time dependent solution of the g-Heat Eq. (13)
The domain of convergency for this series is determined by
asymptotic properties of our q-Kampe-de Feriet polynomi-
als for n — oo and requires additional study.

According to this we have the evolution operator for the
g-Heat equation as

U(t) = e"0:. (26)

It allows us to solve the initial value problem

(% - vD2>¢( t)=0, (27)
$(x,0) = f(x), (28)
in the form

B(x,0) = €"% p(x,0) = e"Pf (x), (29)

where we imply the base g>1 so that e,(x) is an entire
function.

6. q-Burgers’ type equation

By using the q-Cole-Hopf transformation [1]
Dyop(x,1)

d(x.t)
where ¢(x,t) is a solution of the q-Heat Eq. (13), we find

then that u(x,t) satisfies the q-Burgers’ type evolution
equation with cubic nonlinearity

u(x,t) =-2v (30)

%u()@ t) — vD2u(x, t) = % [(1 - M;)u(x, £)Dyeu(x, t)]

1 1
— 5 Dx(u(gx, ux, 0)] + - [u(@x,0)

— u(x,qt)u(gx, HHu(x, £),

where My is the dilatation operator Mf (x) = f(gx).

In contrast to g-Burgers equation from [1 ] including the
space and the time g-derivatives, now we have nonlinear
g-space derivative equation with standard time evolution.

When g — 1 this equation reduces to Burgers’ Equation

Up + Ully = Viygy (31)
6.1. LV.P. for q-Burgers’ type equation
Substituting the operator solution (29) and (30) we find

operator solution for the q-Burgers type equation in the
form

vtD2

u(x,t) = —2y & D). (32)
EV[DXf(X)

This solution corresponds to the initial function

u(x,0) = —2y 2 ¥ (33)

fx)

Thus, for arbitrary initial value u(x,0) = F(x) for the q-Bur-
gers equation we need to solve the initial value problem
for the g-Heat Eq. (13) with initial function f{x) satisfying
the first order g-difference equation

<DX + % F(x)) f(x)=0. (34)

7. q-Shock soliton solution

As a particular solution of the g-Heat equation we
choose first
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$(x.t) = el (kx), (35)

then we find solution of the g-Burgers equation as a
constant

u(x, t) = —-2vk. (36)

We notice that for this solution of the g-Heat equation, we
have an infinite set of zeros, and the space position of zeros
is fixed during time evolution at points x,, = —q™/(qg — 1)k,
n=0,1,....

For the linear superposition

B(x, 1) = ekite, (ki) + ekley (kyx), (37)
we have the g-shock soliton solution

kyekite, (kiX) + koeketeg (koX)

U(X, t) =-2v 2t 2t
ekitey (k1x) + efateq (kax)

(38)

This expression is the q-analog of the Burgers shock soliton
and for ¢ — 1 it reduces to the last one. However, in con-
trast to the standard Burgers case, due to zeroes of the g-
exponential function, this expression admits singularities
coming from x and determined in terms of parameters k;
and k,.To have regular solution we can follow the similar
approach as discussed in [1]. Then for k, = —k; we have
the stationary shock soliton

eq(ki1x) — eq(—kix)
eq(k1x) + eq(—kix)
sinhg (kqx)
! cosh, (ki)

u(x,t)

72\)’(1

=-2vk = —2vkytanhg (ki x). (39)
Since this shock soliton is time independent, as we can ex-
pect it coincides with the stationary one obtained in [1].
The function has no singularities on the real axis x and
the g-shock soliton is regular everywhere. However time
evolution of shock solitons in [1] produce singularity at a
finite time. In contrast to this, here we like to show exis-
tence of a shock soliton, which is regular in x and continues
to be regular at any time. For this we consider solution of
q-Heat Eq. (13) in the form

p(x,t) =10+ e"%‘eq(kﬁc) + e"gfeq(kzx)

then for k; =1 and k, = —1 we get the q-shock soliton

eq(X) — €g(=X)

U = 2V e (x) + e (<X

Due to absence of zeros for e * and the above discussion, it
is easy to see that our g-shock is regular for any time t. The
solution describes creation of the shock soliton, so that at
t - — oo, u(x,t) - 0, and for t — oo, u(x,t) - — 2vtanhgx.
In Figs. 1-3 we plot the regular g-shock soliton for k; = 1
and k; = —1 at different times t = —2,0,5 with base g = 10.

In Figs. 4-6 we plot the regular g-shock soliton evolu-
tion for k; =1 and k, = —1 at different ranges of x and with
q=10. It is remarkable fact that the structure of our g-
shock soliton shows self-similar property in the space
coordinate x. Indeed at the range of parameter
—50 < x <50, Fig. 4, and —5000 < x < 5000, Fig. 6, the shape
of shocks looks almost the same.

For the set of arbitrary numbers ky,..., ky

L

Fig. 1. g-shock evolution for v=1, ky=1, ky=-1, t=-2 at range
(-50,50).

L

Fig. 2. g-shock evolution for v=1, k; =1, k; = —1, t = 0 at range (—50,50).

P(x,t) = XN:e"ﬁfeq(k,,x), (40)
n=1

we have multi-shock solution in the form

PO knekﬁ[eq(knx)
1€kt (KnX)

In general this solution admits several singularities. To
have a regular multi-shock solution we take the even num-
ber of terms N =2k with opposite wave numbers. When
N=4 and k=1, ky=-1,k3 =2, ks=—2 we have q-multi-
shock soliton solution,

u(x,t) =-2v (41)
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20 40

L

Fig. 3. g-shock evolution for v=1, k; =1, k; = -1, t = 5 at range (—50,50).

Fig. 4. q-shock evolution for k; = 1, k, = —1, at range (—50,50).

sinhy(x) + 2e3sinhy(2x) (42)
coshy(x) + e3tcoshy (2x)

u(x,t) =-2v

In Figs. 7-9 we plot N =4 case with values of the wave
numbers k=1, ky=-1, k3=2, ky=-2 at t=-10, 0, 7
and with g = 10. This multi-shock soliton is regular every-
where in x for arbitrary time t. Similar to the one g-shock
case, this result takes place due to absence of zeros for
the standard exponential function e¥.

In Figs. 10-12 we plot this regular multi g-shock soliton
evolution at different ranges of x. It is remarkable that the
structure of this regular multi g-shock soliton shows also
the self-similar property in the space coordinate x. Indeed
at the range of parameter —50<x<50, Fig. 10, and
—5000 < x < 5000, Fig. 12, structure of this multi q-shocks
looks almost the same.

==

o< W
—
=

D
o
5
:,%

S
)

/
G

!
)
d

i

Fig. 5. g-shock evolution for k; =1, k, = —1, at range (—500,500).

Fig. 6. q-shock evolution for k; =1, k, = —1, at range (—5000,5000).

8. The q-Schrodinger equation

The above consideration can be extended to the time
dependent Schodinger equation with g-deformed disper-
sion. We consider the standard time-dependent g-Scho-

dinger equation

(%-%Dﬁ)lp(& t)=0 (43)

where /(x,t) is a complex wave function.
One can easily see that

2 (i
Y(x,t) =emme; nPX

is the plane wave solution of (43). By expanding this in
terms of momentum p
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out[zﬂznnlnnnlnnn...I...I..

2t

4L

Fig. 7. q-multi shock evolution for k; =1, k; = -1, k3=2, kg= -2, t=—-10
and at range (—50, 50).

Out[39]=“"“"““"“"“

4L

Fig. 8. q-multi shock evolution for ky =1, k, = —1,k3=2,ks=—-2,t=0and
at range (—50,50).

. N
pix ) = etiate, (1px) =3 AT
’ “\h 2 \h) Wm0

we get the set of complex q-Kampe-de Feriet polynomial
solutions of (43) as

IN/2] (m—‘)k[N] 1xN-2k
H;\?(X, it;q) = AVIIVEL I

; [N — 2Kk] k!
We introduce complex version of the q-Cole-Hopf trans-
formation, which plays role of the Madelung representation,

Out[31]:“"“"“"""'I--

4L

Fig. 9. q-multi shock evolution for k; =1, ky = —1,k3 =2, ks = -2, t=7 and
at range (—50,50).

Fig. 10. g-multi shock evolution for k; =1, k, = -1, k3 = 2, k4 = —2 at range
(-50,50).

_ih Dyy(x,1)

t) =
D=
Then, the complex velocity function u(x,t) satisfies the
complex q-Burgers—-Madelung type equation

L0 W o ih .
lhau(x, t) + ﬂDxu(x, t)= ju(x, H)[1 — MIDsu(x, t)

1D, utgx tuce, o)

+ % [u(g?x, t) — u(x, t)]u(gx, Hu(x, t).

If we separate u = u; +i u, into real and imaginary parts,
then we get two fluid model representation, where u; is
the Madelung-London-Landau classical velocity, and u,
is the “quantum velocity”.
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2

il h%m x.t) + zh—muﬁu2 (X, 1) = g (U (P, ©)
s — g (%, 6)) (11 (%, O (G, )
+ Uy (%, )us (gx, 1)) + (U2(q°x, t)
— Uy (X, £))(u1 (X, H)ur (gX, )
— Uy (X, t)ux(gx, 1))]
Out[43]= + g [ug (x,0)[1 — MZ]Dxlh (x,t)

—Up(x,£)[1 — MIDyliz (%, 1)]

h
- EDX[LH (qX, t)lh (X7 t)

— Uz (gx, t)ua (X, T)]. (45)
When q — 1, the real part reduces to the continuity
equation
. ) ) h
Fig. 11. q-multi shock evolution for k; = 1, k, = —1, k3 = 2, ks = —2 at range —(uz), + m (U1), = (U1U2),,

(~500,500).
and the imaginary part reduces to the Quantum Hamilton-
Jacobi equation

h 1
(u1)t + ﬂ (uz)xx = _i (U% - u%)x'
For u; = vand u; = — 5 (In p), where p = |y/|?, the continu-
ity equation is
pe+ (V) =0,

and the Euler equation with the quantum potential pres-
sure term is

W wm)
2m? .\ /p x'

vt—H/z/x:(

Fig. 12. g-multi shock evolution for ky = 1, k = —1, k3 = 2, k4 = —2 at range
(—5000,5000).

For the real part we have

o n
—h&uz(x, t) +m

D2y (%, 1) = 5 [ (@X, ) — s (x,))
x (U1 (%, E)ur (gx, £) — Uz (x, £)u2 (gX, £))
— (a(qPx, £) — ua(X, £)) (1 (%, )z (X, )
+ Uz (x, H)up (gx, t))]

- g [t (x, £) [1 - Mﬂ Dtz (%, £)

U (x, 1) [1 - M;} Dyt (%, )]

+ gDX [ua(gx, t)uy (x,t)

+ U (qX7 t)u2 (Xa t)]a (44)

-2t

Fig. 13. g-modulated g-shock evolution for k; = —k, = sin (27 logox), t = 5
and for the imaginary part at range (—50,50).
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Thus the two fluid system (44), (45) is the g-analogue of

the coupled g-quantum Hamilton-Jacobi equation and
the g-continuity equation.

Following similar procedure as in first part of this paper,
we can construct particular solutions of our q-Schrédinger
equation in the form of complex shock solitons. This ques-
tion is under investigation now.

In conclusion we like to mention that all solutions pre-
sented above, can be extended to the case when arbitrary
constants in space variables are the g-periodic functions
of x. In this case our g-shock solitons possess an oscillating
microstructure. As an illustration of this type of solution in
Fig. 13 we show one g-shock soliton from Fig. 3, modulated
by q-periodic function k(x)=sin(2wlogpx). This figure
should be considered as g-modulated version of Fig. 3.

Finally, recently we constructed g-version of the heat
equation with the golden ratio basis and with Fibonacci
derivatives [10]. The Burgers version of this equation and
corresponding shock solitons are in progress.
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