
Chaos, Solitons & Fractals 45 (2012) 1246–1254
Contents lists available at SciVerse ScienceDirect

Chaos, Solitons & Fractals
Nonlinear Science, and Nonequilibrium and Complex Phenomena

journal homepage: www.elsevier .com/locate /chaos
q-Shock soliton evolution

Oktay K. Pashaev ⇑, Sengul Nalci
Department of Mathematics, Izmir Institute of Technology, Urla-Izmir 35430, Turkey
a r t i c l e i n f o

Article history:
Received 13 October 2010
Accepted 20 June 2012
Available online 9 August 2012
0960-0779/$ - see front matter � 2012 Elsevier Ltd
http://dx.doi.org/10.1016/j.chaos.2012.06.013

⇑ Corresponding author.
E-mail address: oktaypashaev@iyte.edu.tr (O.K. P
a b s t r a c t

By generating function based on Jackson’s q-exponential function and the standard expo-
nential function, we introduce a new q-analogue of Hermite and Kampe-de Feriet polyno-
mials. In contrast to q-Hermite polynomials with triple recurrence relations similar to [1],
our polynomials satisfy multiple term recurrence relations, which are derived by the
q-logarithmic function. It allows us to introduce the q-Heat equation with standard time
evolution and the q-deformed space derivative. We find solution of this equation in terms
of q-Kampe-de Feriet polynomials with arbitrary number of moving zeros, and solved the
initial value problem in operator form. By q-analog of the Cole–Hopf transformation we
obtain a new q-deformed Burgers type nonlinear equation with cubic nonlinearity. Regular
everywhere, single and multiple q-shock soliton solutions and their time evolution are
studied. A novel, self-similarity property of the q-shock solitons is found. Their evolution
shows regular character free of any singularities. The results are extended to the linear
time dependent q-Schrödinger equation and its nonlinear q-Madelung fluid type
representation.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that Burgers’ equation in one dimen-
sion can be reduced via the Cole–Hopf transformation to
the linear heat equation. It allows one to solve the initial
value problem for the Burgers equation and get exact solu-
tions in the form of shock solitons and their scattering. Re-
cently, a new q-Burgers-type nonlinear heat equation with
cubic nonlinearity and its linearization by the q-Cole–Hopf
transformation in terms of q-Heat equation was intro-
duced in [1]. Exact solutions of this equation in the form
of q-shock solitons were derived. It was found that due
to zeros of the q-exponential function, time evolution of
these shock solitons develops singularity in a finite time.
The origin of this singularity is related with q-deformation
of both, the time and the space derivatives. Thus, one ex-
pects that for the q-Heat equation with deformed space
derivative only, the time evolution could have the regular
character. In the present paper we introduce the differen-
. All rights reserved.

ashaev).
tial-q-difference Burgers type equation with cubic nonlin-
earity, which includes the standard time derivative and
the q-deformed space derivative. By using the q-Cole–Hopf
transformation, this nonlinear equation is linearized in
terms of the q-Heat equation with the q-difference space
derivative. By generating function based on Jackson’s
q-exponential function and the standard exponential func-
tion we introduce a new q-analog of Hermite and Kampe-
de Feriet polynomials, representing moving poles solution
for this q-Burgers equation. Then, we derive the operator
solution of the initial value problem (IVP) for the q-Burgers
equation in terms of the IVP for the q-Heat equation. We
construct several particular solutions in the form of regular
everywhere q-shock solitons. It turns out that the static
q-shock soliton solution of our equation shows remarkable
self-similarity property in space coordinate x, similar to
[1]. However, in contrast to [1], time evolution of our
q-shock solitons is regular for any finite time. By extending
our results to the complex domain we introduce the time
dependent Schrödinger equation with q-deformed disper-
sion and the complex wave function. As a solution of this
equation we get the set of complex q-Kampe-de Feriet
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mailto:oktaypashaev@iyte.edu.tr
http://dx.doi.org/10.1016/j.chaos.2012.06.013
http://www.sciencedirect.com/science/journal/09600779
http://www.elsevier.com/locate/chaos


O.K. Pashaev, S. Nalci / Chaos, Solitons & Fractals 45 (2012) 1246–1254 1247
polynomials. By the complex q-Cole–Hopf transformation
we obtain the complex q-Burgers–Madelung equation as
a coupled two fluid system with complex velocity function.

2. q-Hermite polynomials

We define a q-analog of Hermite polynomials by the
generating function as a product of Jackson’s q-exponential
function [2] and the standard exponential function

e�t2
eqð½2�qtxÞ ¼

X1
N¼0

HNðx; qÞ tN

½N�q!
; ð1Þ

where Jackson’s q-exponential function is defined by

eqðxÞ ¼
X1
n¼0

xn

½n�q!
;

[n]q! = [1]q[2]q � � � [n]q and q-number [3],

½n�q ¼
qn � 1
q� 1

:

From the defining identity (1) for the q-Hermite polynomi-
als it is not difficult to derive an explicit sum formula

HNðx; qÞ ¼
X½N=2�

k¼0

ð�1Þkð½2�qxÞN�2k½N�q!

k!½N � 2k�q!
: ð2Þ

This explicit sum makes it transparent in which way our
polynomials HN(x;q), q-extend the HN(x) and how they
are different from the known ones in literature. Moreover,
the generating function (1) and polynomials (2) are dis-
tinct also from the ones derived in our paper [1]. By q-dif-
ferentiating the generating function (1) with respect to x
we derive the two-terms recurrence relation

DxHNðx; qÞ ¼ ½2�q½N�qHN�1ðx; qÞ; ð3Þ

where the q-derivative is defined as [3]

Dxf ðxÞ ¼ f ðqxÞ � f ðxÞ
ðq� 1Þx : ð4Þ

While by standard differentiating of (1) with respect to t
and using the next evident equality

t
d
dt

eqð½2�qxtÞ ¼ x
d
dx

eqð½2�qxtÞ ¼
X1
n¼0

n
ð½2�qxtÞn

½n�q!

we obtain another two-term recurrence relation

x
d
dx
� N

� �
HNðx; qÞ ¼ 2½N�q½N � 1�qHN�2ðx; qÞ: ð5Þ

Now by taking standard derivative of (1) with respect to t
and using definition of the q-logarithmic function [9]

Lnqð1þ zÞ ¼
X1
N¼1

ð�1ÞN�1zN

½N� ;

where q > 1,0 < jzj < q and the property

d
dz

Ln eq
az

1� q

� �
¼ Lnqð1� azÞ
ðq� 1Þz

we derive the N-term recurrence relation formula
HNþ1ðx; qÞ ¼
½N þ 1�q
N þ 1

(
½2�qxHNðx; qÞ � 2½N�qHN�1ðx; qÞ

�ðq� 1Þ½2�q½N�qx2HN�1ðx; qÞ

þ½2�q½N�q!
XN�2

k¼0

ð1� q2ÞN�kxN�kþ1Hkðx; qÞ
½k�q!½N � kþ 1�q

)
ð6Þ

or

HNþ1 ¼
½N þ 1�!
N þ 1

�2
HN�1

½N � 1�!þ
XN

k¼0

Hkð1� qÞN�kð½2�xÞNþ1�k

½k�!½N þ 1� k�

 !

¼ ½N þ 1�
N þ 1

�2½N�HN�1 þ ½N�!
XN

k¼0

Hkð1� qÞN�kð½2�xÞNþ1�k

½k�!½N þ 1� k�

 !
;

where N = 1,2, . . . . Here we emphasis that this N-term
recurrence relations can not be reduced to the typical
three-term recurrence relations for Hermite and q-Hermite
polynomials. This is why starting from N = 4, our q-Her-
mite polynomials become different.

When q ? 1 this multiple term recurrence relation for
q-Hermite polynomials reduces to the three-term recur-
rence relation for the standard Hermite polynomials

HNþ1ðxÞ ¼ 2xHNðxÞ � 2NHN�1ðxÞ:

Substituting (3) into N-term recurrence relation formula
we get the operator representation

HNþ1ðx; qÞ ¼
½N þ 1�q
N þ 1

½2�qx� 2
½2�q
þ ðq� 1Þx2

 !
Dx

 

þ
XN

l¼2

ð1� q2Þlxlþ1

½2�l�1
q ½lþ 1�q

Dl
x

!
HNðx; qÞ ð7Þ

By the recursion, starting from n = 0 and H0(x;q) = 1 we
have the next operator representation for our q-Hermite
polynomials

HNþ1ðx; qÞ ¼
YN
k¼0

½kþ 1�q
kþ 1

½2�qx� 2
½2�q
þ ðq� 1Þx2

 !
Dx

 

þ
XN

k¼2

ð1� q2Þkxkþ1

½2�k�1
q ½kþ 1�q

Dk
x

!
� 1: ð8Þ

We notice that in contrast to known operator representa-
tions for Hermite and q-Hermite polynomials with only
first order q-derivative [1], now we have the product,
including higher order derivatives up to order N.

In the limit q ? 1 case this product formula is reduced
to the known one

HNðxÞ ¼ 2x� d
dx

� �N

� 1

Here again we like to stress that the generating function
and the form of our new q-Hermite polynomials are differ-
ent from the known ones in the literature, [4–7], including
our paper [1]. Moreover, instead of three-term recurrence
relation we have multiple term recurrence relation, which
shows that our q-Hermite polynomials are distinct from
the known ones for orthogonal polynomial sets [8]. Com-
parison of above polynomials with ones obtained in [1],
shows similarity up to N = 3 only. Starting from N = 4 they
become different.
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The first few q-Hermite polynomials are

H0ðx; qÞ ¼ 1;
H1ðx; qÞ ¼ ½2�qx;

H2ðx; qÞ ¼ ½2�2qx2 � ½2�q;
H3ðx; qÞ ¼ ½2�3qx3 � ½3�q!½2�qx;

H4ðx; qÞ ¼ ½2�4qx4 � ½4�q½3�q½2�
2
qx2 þ 1

2
½4�q!;

H5ðx; qÞ ¼ ½2�5qx5 � ½5�q½4�q½2�
3
qx3 þ 1

2
½5�q!½2�qx:
2.1. q-Difference equation

By applying Dx to both sides of (3) and using recurrence
formula (5) we get mixed q-difference-differential equa-
tion for our q-Hermite polynomials

2D2
x HNðx; qÞ � ½2�2qx

d
dx

HNðx; qÞ þ ½2�2qNHNðx; qÞ ¼ 0: ð9Þ

This form is different from [1] and in q ? 1 limit it reduces
to the second order linear differential equation for the
standard Hermite polynomials

d2

dx2 HNðxÞ � 2x
d
dx

HNðxÞ þ 2NHNðxÞ ¼ 0:
3. q-Kampe-de Feriet polynomials

We define the q-Kampe-de Feriet polynomials as

HNðx; mt; qÞ ¼ ð�mtÞ
N
2 HN

x
½2�q

ffiffiffiffiffiffiffiffiffi
�mt
p ; q

 !
; ð10Þ

so that from the N-term recurrence relation for q-Hermite
polynomials we obtain N-term recurrence relation formula
for q-Kampe-de Feriet polynomials

HNþ1ðx; mt; qÞ ¼
½N þ 1�q
N þ 1

xHNðx; mt; qÞ þ 2mt½N�qHN�1ðx; mt; qÞ
h

� 1
½2�q
ðq� 1Þ½N�qx2HN�1ðx; mt; qÞ

þ½N�q!
XN�2

k¼0

ð1� q2ÞN�kxN�kþ1Hkðx; mt; qÞ
½k�q!½N � kþ 1�q½2�

N�k
q

#

This can also be written in the operator form as

HNþ1ðx; mt; qÞ ¼
½N þ 1�q
N þ 1

xþ ð2mt þ 1� q
½2�q

x2ÞDx

"

þ
XN

l¼2

ð1� q2Þlxlþ1

½2�lq½l�q
Dl

x

#
HNðx; mt; qÞ ð11Þ

By the recursion, starting from n = 0 and H0(x,mt;q) = 1 we
have the next operator representation for the q-Kampe-de
Feriet polynomials

HNþ1ðx; mt; qÞ ¼
YN
k¼0

½kþ 1�q
kþ 1

xþ 2mt þ 1� q
½2�q

x2

 !
Dx

"

þ
XN

k¼2

ð1� q2Þkxkþ1

½2�kq½k�q
Dk

x

#
� 1 ð12Þ
In q ? 1 case it gives the Galilean bust form

HNðx; mtÞ ¼ xþ 2mt
d
dx

� �N

� 1:

For the first few q-Kampe-de Feriet polynomials we get

H0ðx; mt; qÞ ¼ 1;

H1ðx; mt; qÞ ¼ x;

H2ðx; mt; qÞ ¼ x2 þ ½2�qmt;

H3ðx; mt; qÞ ¼ x3 þ ½2�q½3�qmtx;

H4ðx; mt; qÞ ¼ x4 þ ½3�q½4�qmtx2 þ
½4�q!

2
m2t2;

H5ðx; mt; qÞ ¼ x5 þ ½4�q½5�qmtx3 þ
½5�q!

2
m2t2x:

When q ? 1 these polynomials reduce to the standard
Kampe-de Feriet polynomials. As we commented in previ-
ous section, our new q-Kampe-de Feriet polynomials and
corresponding representations are different from known
ones, including our paper [1].

4. q-Heat equation

Now we introduce the q-Heat equation

@t � mD2
x

� �
/ðx; tÞ ¼ 0 ð13Þ

with partial q-derivative with respect to x and with partial
standard derivative in time t. In contrast with this equa-
tion, in our paper [1] we worked with different q-Heat
equation, where both, the time and the space derivatives
are q-derivatives.

By separation of variables one can easily see that

/kðx; tÞ ¼ emk2teqðkxÞ

is a particular plane wave solution of (13). By expanding
this in terms of parameter k

/kðx; tÞ ¼ emk2teqðkxÞ ¼
X1
N¼0

HNðx; mt; qÞ kN

½N�q!
ð14Þ

we get the set of q-Kampe-de Feriet polynomial solutions
for the q-Heat Eq. (13). From the defining identity (14) it
is not difficult to derive an explicit sum formula for these
polynomials

HNðx; mt; qÞ ¼
X½N=2�

k¼0

ðmtÞkxN�2k½N�q!

k!½N � 2k�q!
: ð15Þ
4.1. Operator representation
Proposition 1

e
� 1
½2�2q

D2
x
eqð½2�qxtÞ ¼ e�t2

eqð½2�qxtÞ: ð16Þ
Proof 1. By q-differentiating the q-exponential function
with respect to x
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Dn
x eqð½2�qxtÞ ¼ ð½2�tÞneqð½2�qxtÞ; ð17Þ

and combining then to the sum

X1
n¼0

an

n!
D2n

x eqð½2�qxtÞ ¼
X1
n¼0

ð½2�qtÞ2nan

n!
eqð½2�qxtÞ; ð18Þ

we have relation

eaD2
x eqð½2�qxtÞ ¼ eað½2�qtÞ2 eqð½2�qxtÞ: ð19Þ

By choosing a ¼ �1=½2�2q we get the result (16). h
Proposition 2

HNðx; qÞ ¼ ½2�Nq e
� 1
½2�2q

D2
x
xN : ð20Þ
Proof 2. The right hand side of (16) is the generating func-
tion for the q-Hermite polynomials (1). Hence, equating
the coefficients of tn on both sides gives the result. h
Corollary 1. If function f(x) is expandable to the formal
power series f ðxÞ ¼

P1
N¼0aNxN then we have the next q-Her-

mite series expansion

e
� 1
½2�2q

D2
x
f ðxÞ ¼

X1
N¼0

aN
HNðx; qÞ
½2�Nq

: ð21Þ
5. Evolution operator

Following similar calculations as in Proposition 1 we
have the next relation

emtD2
x eqðkxÞ ¼ emtk2

eqðkxÞ: ð22Þ

The right hand side of this expression is the plane wave
type solution of the q-Heat Eq. (13). Expanding both sides
in power series in k and equating the coefficients of kN on
both sides, we get q-Kampe de Feriet polynomial solutions
of this equation

HNðx; mt; qÞ ¼ emtD2
x xN ð23Þ

as solution of the I.V.P. with /(x,0) = xN.
Consider an arbitrary, expandable to the power series

function f ðxÞ ¼
P1

n¼0anxn, then the formal series

f ðx; tÞ ¼ emtD2
x f ðxÞ ¼

X1
n¼0

anemtD2
x xn ð24Þ

¼
X1
n¼0

anHNðx; mt; qÞ; ð25Þ

represents a time dependent solution of the q-Heat Eq. (13)
The domain of convergency for this series is determined by
asymptotic properties of our q-Kampe-de Feriet polynomi-
als for n ?1 and requires additional study.

According to this we have the evolution operator for the
q-Heat equation as

UðtÞ ¼ emtD2
x : ð26Þ
It allows us to solve the initial value problem

@

@t
� mD2

x

� �
/ðx; tÞ ¼ 0; ð27Þ

/ðx;0Þ ¼ f ðxÞ; ð28Þ

in the form

/ðx; tÞ ¼ emtD2
x /ðx;0Þ ¼ emtD2

x f ðxÞ; ð29Þ

where we imply the base q > 1 so that eq(x) is an entire
function.

6. q-Burgers’ type equation

By using the q-Cole–Hopf transformation [1]

uðx; tÞ ¼ �2m
Dx/ðx; tÞ
/ðx; tÞ ; ð30Þ

where /(x, t) is a solution of the q-Heat Eq. (13), we find
then that u(x, t) satisfies the q-Burgers’ type evolution
equation with cubic nonlinearity

@

@t
uðx; tÞ � mD2

x uðx; tÞ ¼ 1
2

1�Mx
q

� �
uðx; tÞDxuðx; tÞ

h i
� 1

2
½Dxðuðqx; tÞuðx; tÞÞ� þ 1

4m
½uðq2x; tÞ

� uðx; qtÞ�uðqx; tÞuðx; tÞ;

where Mx
q is the dilatation operator Mx

qf ðxÞ ¼ f ðqxÞ.
In contrast to q-Burgers equation from [1], including the

space and the time q-derivatives, now we have nonlinear
q-space derivative equation with standard time evolution.

When q ? 1 this equation reduces to Burgers’ Equation

ut þ uux ¼ muxx ð31Þ
6.1. I.V.P. for q-Burgers’ type equation

Substituting the operator solution (29) and (30) we find
operator solution for the q-Burgers type equation in the
form

uðx; tÞ ¼ �2m
emtD2

x Dxf ðxÞ
emtD2

x f ðxÞ
: ð32Þ

This solution corresponds to the initial function

uðx;0Þ ¼ �2m
Dxf ðxÞ

f ðxÞ : ð33Þ

Thus, for arbitrary initial value u(x,0) = F(x) for the q-Bur-
gers equation we need to solve the initial value problem
for the q-Heat Eq. (13) with initial function f(x) satisfying
the first order q-difference equation

Dx þ
1

2m
FðxÞ

� �
f ðxÞ ¼ 0: ð34Þ
7. q-Shock soliton solution

As a particular solution of the q-Heat equation we
choose first
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Fig. 1. q-shock evolution for m = 1, k1 = 1, k2 = �1, t = �2 at range
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Fig. 2. q-shock evolution for m = 1, k1 = 1, k2 = �1, t = 0 at range (�50,50).
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/ðx; tÞ ¼ ek2teqðkxÞ; ð35Þ

then we find solution of the q-Burgers equation as a
constant

uðx; tÞ ¼ �2mk: ð36Þ

We notice that for this solution of the q-Heat equation, we
have an infinite set of zeros, and the space position of zeros
is fixed during time evolution at points xn = �qn+1/(q � 1)k,
n = 0,1, . . . .

For the linear superposition

/ðx; tÞ ¼ ek2
1teqðk1xÞ þ ek2

2teqðk2xÞ; ð37Þ

we have the q-shock soliton solution

uðx; tÞ ¼ �2m
k1ek2

1teqðk1xÞ þ k2ek2
2teqðk2xÞ

ek2
1teqðk1xÞ þ ek2

2teqðk2xÞ
: ð38Þ

This expression is the q-analog of the Burgers shock soliton
and for q ? 1 it reduces to the last one. However, in con-
trast to the standard Burgers case, due to zeroes of the q-
exponential function, this expression admits singularities
coming from x and determined in terms of parameters k1

and k2.To have regular solution we can follow the similar
approach as discussed in [1]. Then for k2 = �k1 we have
the stationary shock soliton

uðx; tÞ ¼ �2mk1
eqðk1xÞ � eqð�k1xÞ
eqðk1xÞ þ eqð�k1xÞ

¼ �2mk1
sinhqðk1xÞ
coshqðk1xÞ � �2mk1tanhqðk1xÞ: ð39Þ

Since this shock soliton is time independent, as we can ex-
pect it coincides with the stationary one obtained in [1].
The function has no singularities on the real axis x and
the q-shock soliton is regular everywhere. However time
evolution of shock solitons in [1] produce singularity at a
finite time. In contrast to this, here we like to show exis-
tence of a shock soliton, which is regular in x and continues
to be regular at any time. For this we consider solution of
q-Heat Eq. (13) in the form

/ðx; tÞ ¼ 10þ ek2
1teqðk1xÞ þ ek2

2teqðk2xÞ;

then for k1 = 1 and k2 = �1 we get the q-shock soliton

uðx; tÞ ¼ �2m
eqðxÞ � eqð�xÞ

10e�t þ eqðxÞ þ eqð�xÞ :

Due to absence of zeros for e�t and the above discussion, it
is easy to see that our q-shock is regular for any time t. The
solution describes creation of the shock soliton, so that at
t ? �1, u(x, t) ? 0, and for t ?1, u(x, t) ? � 2mtanhqx.
In Figs. 1–3 we plot the regular q-shock soliton for k1 = 1
and k2 = �1 at different times t = �2,0,5 with base q = 10.

In Figs. 4–6 we plot the regular q-shock soliton evolu-
tion for k1 = 1 and k2 = �1 at different ranges of x and with
q = 10. It is remarkable fact that the structure of our q-
shock soliton shows self-similar property in the space
coordinate x. Indeed at the range of parameter
�50 < x < 50, Fig. 4, and �5000 < x < 5000, Fig. 6, the shape
of shocks looks almost the same.

For the set of arbitrary numbers k1, . . . ,kN
/ðx; tÞ ¼
XN

n¼1

ek2
nteqðknxÞ; ð40Þ

we have multi-shock solution in the form

uðx; tÞ ¼ �2m
PN

n¼1knek2
nteqðknxÞPN

n¼1ek2
nteqðknxÞ

: ð41Þ

In general this solution admits several singularities. To
have a regular multi-shock solution we take the even num-
ber of terms N = 2k with opposite wave numbers. When
N = 4 and k1 = 1, k2 = �1,k3 = 2, k4 = �2 we have q-multi-
shock soliton solution,
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Fig. 3. q-shock evolution for m = 1, k1 = 1, k2 = �1, t = 5 at range (�50,50).

Fig. 4. q-shock evolution for k1 = 1, k2 = �1, at range (�50,50).

Fig. 5. q-shock evolution for k1 = 1, k2 = �1, at range (�500,500).

Fig. 6. q-shock evolution for k1 = 1, k2 = �1, at range (�5000,5000).
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uðx; tÞ ¼ �2m
sinhqðxÞ þ 2e3tsinhqð2xÞ
coshqðxÞ þ e3tcoshqð2xÞ : ð42Þ

In Figs. 7–9 we plot N = 4 case with values of the wave
numbers k1 = 1, k2 = �1, k3 = 2, k4 = �2 at t = �10, 0, 7
and with q = 10. This multi-shock soliton is regular every-
where in x for arbitrary time t. Similar to the one q-shock
case, this result takes place due to absence of zeros for
the standard exponential function ek2t .

In Figs. 10–12 we plot this regular multi q-shock soliton
evolution at different ranges of x. It is remarkable that the
structure of this regular multi q-shock soliton shows also
the self-similar property in the space coordinate x. Indeed
at the range of parameter �50 < x < 50, Fig. 10, and
�5000 < x < 5000, Fig. 12, structure of this multi q-shocks
looks almost the same.
8. The q-Schrödinger equation

The above consideration can be extended to the time
dependent Schödinger equation with q-deformed disper-
sion. We consider the standard time-dependent q-Schö-
dinger equation

@

@t
� i�h

2m
D2

x

� �
wðx; tÞ ¼ 0 ð43Þ

where w(x, t) is a complex wave function.
One can easily see that

wðx; tÞ ¼ e�
i
�h

p2

2mteq
i
�h

px
� �

is the plane wave solution of (43). By expanding this in
terms of momentum p
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Fig. 7. q-multi shock evolution for k1 = 1, k2 = �1, k3 = 2, k4 = �2, t = �10
and at range (�50, 50).
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Fig. 8. q-multi shock evolution for k1 = 1, k2 = �1, k3 = 2, k4 = �2, t = 0 and
at range (�50,50).
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Fig. 9. q-multi shock evolution for k1 = 1, k2 = �1, k3 = 2, k4 = �2, t = 7 and
at range (�50,50).

Fig. 10. q-multi shock evolution for k1 = 1, k2 = �1, k3 = 2, k4 = �2 at range
(�50,50).
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wðx; tÞ ¼ e�
i
�h

p2

2mteq
i
�h

px
� �

¼
X1
N¼0

i
�h

� �N pN

½N�q!
HðsÞN ðx; it; qÞ

we get the set of complex q-Kampe-de Feriet polynomial
solutions of (43) as

HðsÞN ðx; it; qÞ ¼
X½N=2�

k¼0

iht
2m

� �k½N�q!xN�2k

½N � 2k�qk!
:

We introduce complex version of the q-Cole–Hopf trans-
formation, which plays role of the Madelung representation,
uðx; tÞ ¼ � i�h
m

Dxwðx; tÞ
wðx; tÞ :

Then, the complex velocity function u(x, t) satisfies the
complex q-Burgers–Madelung type equation

i�h
@

@t
uðx; tÞ þ �h2

2m
D2

x uðx; tÞ ¼ i�h
2

uðx; tÞ½1�Mx
q�Dxuðx; tÞ

� ih
2
½Dxðuðqx; tÞuðx; tÞÞ�

þm
2
½uðq2x; tÞ � uðx; tÞ�uðqx; tÞuðx; tÞ:

If we separate u = u1 + i u2 into real and imaginary parts,
then we get two fluid model representation, where u1 is
the Madelung–London–Landau classical velocity, and u2

is the ‘‘quantum velocity’’.



Fig. 11. q-multi shock evolution for k1 = 1, k2 = �1, k3 = 2, k4 = �2 at range
(�500,500).

Fig. 12. q-multi shock evolution for k1 = 1, k2 = �1, k3 = 2, k4 = �2 at range
(�5000,5000).
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Fig. 13. q-modulated q-shock evolution for k1 = �k2 = sin (2p log10x), t = 5
at range (�50,50).
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For the real part we have

��h
@

@t
u2ðx; tÞ þ

�h2

2m
D2

x u1ðx; tÞ ¼
m
2
½ðu1ðq2x; tÞ � u1ðx; tÞÞ

� ðu1ðx; tÞu1ðqx; tÞ � u2ðx; tÞu2ðqx; tÞÞ

� ðu2ðq2x; tÞ � u2ðx; tÞÞðu1ðx; tÞu2ðqx; tÞ
þ u2ðx; tÞu1ðqx; tÞÞ�

� �h
2
½u1ðx; tÞ 1�Mx

q

h i
Dxu2ðx; tÞ

þ u2ðx; tÞ 1�Mx
q

h i
Dxu1ðx; tÞ�

þ �h
2

Dx½u2ðqx; tÞu1ðx; tÞ

þ u1ðqx; tÞu2ðx; tÞ�; ð44Þ

and for the imaginary part
�h
@

@t
u1ðx; tÞ þ

�h2

2m
D2

x u2ðx; tÞ ¼
m
2
½ðu1ðq2x; tÞ

� u1ðx; tÞÞðu1ðx; tÞu2ðqx; tÞ
þ u2ðx; tÞu1ðqx; tÞÞ þ ðu2ðq2x; tÞ
� u2ðx; tÞÞðu1ðx; tÞu1ðqx; tÞ
� u2ðx; tÞu2ðqx; tÞÞ�

þ �h
2
½u1ðx; tÞ½1�Mx

q�Dxu1ðx; tÞ

� u2ðx; tÞ½1�Mx
q�Dxu2ðx; tÞ�

� �h
2

Dx½u1ðqx; tÞu1ðx; tÞ

� u2ðqx; tÞu2ðx; tÞ�: ð45Þ

When q ? 1, the real part reduces to the continuity
equation

�ðu2Þt þ
�h

2m
ðu1Þxx ¼ ðu1u2Þx;

and the imaginary part reduces to the Quantum Hamilton–
Jacobi equation

ðu1Þt þ
�h

2m
ðu2Þxx ¼ �

1
2

u2
1 � u2

2

� �
x:

For u1 � v and u2 ¼ � �h
2m ðln qÞx where q = jwj2, the continu-

ity equation is

qt þ ðqvÞx ¼ 0;

and the Euler equation with the quantum potential pres-
sure term is

v t þ vvx ¼
�h2

2m2

ð ffiffiffiffiqp Þxxffiffiffiffiqp
 !

x

:



1254 O.K. Pashaev, S. Nalci / Chaos, Solitons & Fractals 45 (2012) 1246–1254
Thus the two fluid system (44), (45) is the q-analogue of
the coupled q-quantum Hamilton–Jacobi equation and
the q-continuity equation.

Following similar procedure as in first part of this paper,
we can construct particular solutions of our q-Schrödinger
equation in the form of complex shock solitons. This ques-
tion is under investigation now.

In conclusion we like to mention that all solutions pre-
sented above, can be extended to the case when arbitrary
constants in space variables are the q-periodic functions
of x. In this case our q-shock solitons possess an oscillating
microstructure. As an illustration of this type of solution in
Fig. 13 we show one q-shock soliton from Fig. 3, modulated
by q-periodic function k(x) = sin(2plog10x). This figure
should be considered as q-modulated version of Fig. 3.

Finally, recently we constructed q-version of the heat
equation with the golden ratio basis and with Fibonacci
derivatives [10]. The Burgers version of this equation and
corresponding shock solitons are in progress.
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