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A study on visualization of heat flow in three channels with laminar fully developed mixed convection heat
transfer is performed. The first channel is filled with completely pure fluid; the second one is completely
filled with fluid saturated porous medium. A porous layer exists in the half of the third channel while another
half is filled with pure fluid. The velocity, temperature and heat transport fields are obtained both by using
analytical and numerical methods. Analytical expression for heat transport field is obtained and presented.
The heatline patterns are plotted for different values of Gr/Re, thermal conductivity ratio, Peclet and Darcy
numbers. It is found that the path of heat flow in the channel strongly depends on Peclet number. For low
Peclet numbers (i.e., Pe=0.01), the path of heat flow is independent of Gr/Re and Darcy numbers. However,
for high Peclet numbers (i.e., Pe=5), the ratio of Gr/Re, Darcy number and thermal conductivity ratio influ-
ence heatline patterns, considerably. For the channels with high Peclet number (i.e., Pe=5), a downward
heat flow is observed when a reverse flow exits.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Isotherms and streamlines are widely used in convective heat
transfer studies in order to describe heat and fluid flow in a domain.
However, understanding heat flow direction is not easy by using iso-
therms and streamlines. That is why, heatline technique was pro-
posed by Kimura and Bejan [1] to observe path of heat flow. The
heatline visualization technique can be employed to observe not
only path of heat flow but also intensity of heat flux at any location
of domain for a convection and/or conduction steady or unsteady
heat/mass transfer problems. Costa [2] reviewed studies on heatline
visualization technique and summarized its application. Mobedi et
al. [3,4] used the heatline technique to observe heat transport in the
entire domain of a square cavity with thick horizontal walls. Mobedi
et al. [5] also divided heatfunction equation into the diffusion and
convection heatfunctions by using superposition rule. Varol et al. [6]
used heatline patterns to study natural convection heat transfer of
cold water near 4 °C in a thick bottom walled cavity filled with a po-
rous medium. Kaluri et al. [7] performed a numerical study on heat
distribution and thermal mixing for steady laminar natural convec-
tive flow within fluid-saturated porous square cavities by using
heatline technique. Basak et al. and Kaluri et al. [8–10] performed sev-
eral studies on heat transport field for various domains under differ-
ent boundary conditions. Waheed [11] studied the problem of the
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natural laminar convection in square enclosures filled with fluid-
saturated porous medium by using the heatfunction formulation ap-
proach. The above literature review reveals that most of the studies
on visualization of heat flow were performed on the closed spaces
such as closed cavities rather than channels and ducts. Probably, the
first study on observation of heat transport path in a channel was per-
formed by Morega and Bejan [12].

Several studies on fully developed mixed convection in channels
with clear fluid or completely fluid saturated porous medium were
reported in literature. The energy and fluid motion equations of
fully developed mixed convection flow are different than the forced
convection fully developed flow since the velocity is changed with
temperature in the channel. In a channel with fixed inlet mass flow,
flow reversal may appear due to buoyancy effect. The buoyancy effect
near the hot wall increases the fluid velocity in that region, and thus, a
downward flow occurs from the open top of the channel [13]. A re-
versed flow situation occurs if the magnitude of the buoyancy param-
eter Gr/Re exceeds a certain threshold value [14]. Parang and Keyhani
[15] studied fully developed buoyancy-assisted mixed convection in a
vertical annulus by using Brinkman-Extended Darcy model. Chang
and Chang [16] numerically analyzed the developing mixed convec-
tion in a vertical tube partially filled with porous medium.

The aim of present study is to visualize heatline patterns in vertical
plate channel with fully developed mixed convection heat transfer for
three cases of a) completely filled with pure fluid, b) completely filled
with fluid saturated porous medium and c) partially filled with fluid
saturated porous medium. The heatfunction is determined both ana-
lytically and numerically. Analytical expressions are obtained for the
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Nomenclature

b spacing between walls (m)
Cp specific heat, J kg−1 K−1

g acceleration due to gravity (m s−2)
Grc Grashof number for the channel with clear fluid
Grp Grashof number for channel with porous medium
h heatfunction, W m−1

H dimensionless heatfunction
J heat flux vector, W m−2

k thermal conductivity, W m−1 K−1

K permeability (m2), thermal conductivity ratio(kf/keff)
M relative viscosity, μ/μeff
p pressure (Pa)
P dimensionless pressure
Pe Peclet number
Re Reynolds number
S shape parameter,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M=Da

p
T temperature (°C)
u, v axial and transverse velocity, (m s−1)
U, V dimensionless axial and transverse velocity
x, y axial and transverse coordinate, (m)
X, Y dimensionless axial and transverse coordinate

Greek symbols
β coefficient of thermal expansion
θ dimensionless temperature
Γ pressure gradient along channel
μ dynamic viscosity of the fluid (kg m−1 s−1)
μeff effective dynamic viscosity (kg m−1 s−1)
ν kinematic viscosity of the fluid (m2 s−1)
ρ density (kg m−3)

Subscripts
c cold wall, clear fluid
eff effective
f fluid
i interface
p porous
h hot wall
av average
ref reference value
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dimensionless temperature, velocity and heatfunction. For the nu-
merical approach, a second order elliptic partial differential equa-
tion is derived and appropriate boundary conditions are defined.
Then, the equation is solved numerically to determine dimension-
less heatfunction in entire domain. Based on the obtained results,
heatline patterns for the channels with different values of Gr/Re,
Pe and Da numbers are plotted and discussed. Literature survey
showed that the visualization of heat flow for fully developed
mixed convection in a vertical parallel plate has not been reported
in literature and the present work is an original study.
2. The analyzed vertical parallel plate channels

Three vertical parallel plate channels, analyzed in this study, are
shown in Fig. 1. One of the channels is filled with a clear fluid (Fig. 1a),
the second one completely contains fluid saturated porous medium
(Fig. 1b) and the third one is partially filled with fluid saturated porous
medium (Fig. 1c). The fluid flowing through the channel is assumed to
be Newtonian and incompressible, while the flow is laminar, fully devel-
oped and steady. The walls of the channel are maintained at constant
temperature of Th and Tc. The channel has a rectangular cross-section
with width of b. It is assumed that the plates are infinitely long in depth
direction; fluid flows in x direction while y is perpendicular to the flow
direction. Thefluid properties are assumed to be constant except the den-
sity in buoyancy term of the momentum equation. Viscous dissipation
and radiation heat transfer are neglected and gravity acts in−x direction.

3. Mathematical formulations

The governing equations for heat and fluid flow in the channel and
their analytical solutions are presented in this section, separately.

3.1. Channel with fully pure fluid flow

The continuity, momentum and energy equations for a fully devel-
oped mixed convection heat transfer in a vertical channel shown in
Fig. 1(a) under the Boussinesq's approximation can be written as:

du
dx

¼ 0 ð1Þ

μ f
d2u
dy2

− dp
dx

þ ρgβ T−Tavð Þ ¼ 0 ð2Þ

d2T
dy2

¼ 0 ð3Þ

A detailed discussion on the choice of the reference fluid temper-
ature for fully-developed mixed convection in a vertical channel was
done by Barletta and Zanchini [17]. They proposed the average wall
temperatures as the reference fluid temperature for fully developed
mixed-convection problems in the channels. Hence, the momentum
and energy equations can be non-dimensionalized as:

d2U
dY2 þ Grc

Re
θ−Γ ¼ 0 ð4Þ

d2θ
dY2 ¼ 0 ð5Þ

where Reynolds and Grashof numbers and Γare defined as:

Re ¼ u0 b=ν;Grc ¼ gβ Th−Tcð Þb3=ν2
; Γ ¼ dP=dX ð6Þ

where u0 is inlet velocity to the channel. The following parameters
are used to make the momentum and energy equations non-
dimensionalized:

X ¼ x=b; Y ¼ y=b; U ¼ u=u0; θ ¼ T−Tav=Th−Tc; P ¼ pb=uoμ f : ð7Þ

The dimensionless boundary conditions for momentum and ener-
gy equations (Eqs. (4) and (5)) are

On the left side; Y ¼ 0 U 0ð Þ ¼ 0; θ 0ð Þ ¼ −0:5 ð8Þ

On the right side; Y ¼ 1 U 1ð Þ ¼ 0; θ 1ð Þ ¼ 0:5: ð9Þ

The analytical solution of Eq. (5) with the boundary conditions
expressed in Eqs. (8) and (9) is

θ ¼ Y−0:5: ð10Þ



Fig. 1. Schematic view of the studied channels.
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The analytical solution of motion equation (Eq. (4)) can be obtained
by using the boundary conditions expressed in Eqs. (8) and (9):

U ¼ −Grc
Re

Y3

6
þ Γ þ Grc

2Re

� �
Y2

2
− Grc

12Re
þ Γ
2

� �
Y ð11Þ

where Γ parameter still needs to be evaluated. To obtain a value for Γ, an
additional equation is required. The conservation ofmass in the channel
can be expressed as:

∫
1

0

U Yð ÞdY ¼ 1: ð12Þ

The integration of Eq. (11) using Eq. (12) yields Γ value as:

Γ ¼ −12: ð13Þ

3.2. Channel with saturated fluid porous medium

The governing equations for laminar, mixed convection fully de-
veloped flow under the assumptions explained in the previous sec-
tion are:

du
dx

¼ 0 ð14Þ

μeff
d2u
dy2

−
μ f

K
uþ ρgβ T−Tavð Þ−∂p

∂x ¼ 0 ð15Þ

d2T
dy2

¼ 0: ð16Þ

As seen, Brinkman–Darcy equation is used to describemotion of fluid
in the channel. Eqs. (14), (15) and (16) are needed to be solved to obtain
the velocity and temperature distributions in the channel completely
filledwith fluid saturated porousmedium. By introducing dimensionless
parameters given in Eq. (7), these equations can be non-dimensionalized
as follows:

d2U
dY2 −

M
Da

U þM
Grp
Re

θ−MΓ ¼ 0 ð17Þ
d2θ
dY2 ¼ 0 ð18Þ

where Grp=gβK(Th−Tc)b/ν2 which is the Darcy modified Grashof
number. The dimensionless boundary conditions for motion of fluid
and energy equations are identical with Eqs. (8) and (9). The analytical
solution of heat transfer equation (Eq. (18)) is:

θ ¼ Y−0:5: ð19Þ

The analytical solution of motion equation (Eq. (17)) can be obtained
by using the boundary conditions expressed in Eqs. (8) and (9):

U ¼ C1Y þ C2 sinh S Y−1ð Þð Þ þ C3 sinh SYð Þ þ C4 ð20Þ

where C1, C2, C3 and C4 are constants given in Appendix A, and
S ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

M=Da
p

. To obtain an expression for Γ, the conservation of mass
can be used and therefore Γ value is found as:

Γ ¼
ffiffiffiffiffi
M

p

Da −
ffiffiffiffiffi
M

p
þ 2

ffiffiffiffiffiffi
Da

p
tanh S

2

� �� � : ð21Þ

3.3. Channel with partially fluid saturated porous medium

The continuity, motion and heat transfer equations, for the left half
part of the channel in which clear fluid flowing is given by Eqs. (1),
(2) and (3). The dimensionless forms of these equations are expressed
by Eqs. (4) and (5). The dimensionless forms of motion and heat trans-
fer equations for the right half part of the channel filledwith porousme-
dium are given by Eqs. (17) and (18). The dimensionless boundary
conditions for the left half of the channel can be expressed as;

On the left side; Y ¼ 0 U 0ð Þ ¼ 0; θ 0ð Þ ¼ −0:5 ð22Þ

At interface; Y ¼ 0:5 U 0:5ð Þ ¼ Ui; θ 0:5ð Þ ¼ θi ð23Þ

and the dimensionless boundary conditions for porous medium layer
section can be given as;

At interface; Y ¼ 0:5 U 0:5ð Þ ¼ Ui; θ 0:5ð Þ ¼ θi ð24Þ

On the right side; Y ¼ 1 U 1ð Þ ¼ 0; θ 1ð Þ ¼ 0:5 ð25Þ
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where Ui and θi are the dimensionless velocity and temperature at the
interface. The analytical solutions of the heat transfer and momentum
equations for the left half part with clear fluid section using the bound-
ary conditions given by Eqs. (22) and (23) are obtained as follows;

θc ¼ 2θi þ 1ð ÞY−1=2 ð26Þ

Uc ¼ C5Y þ 2UiY þ C6Y
2−C7Y

3 þ Γ −Y
4
þ Y2

2

 !
ð27Þ

where C5, C6 and C7 are constants and their values are presented in
Appendix A. Similarly, the temperature and velocity profile equation
for fluid saturated porous region can be obtained as:

θp ¼ 2θi−Y 2θi−1ð Þ−1=2 ð28Þ

Up ¼ C8 sinh S−SYð Þ−C9 sinh S Y−1=2ð Þð Þ−C10Y þ C11 ð29Þ

where C8, C9 and C10 and C11 are constants and their values are given in
Appendix A. Up and Uc show the velocity of fluid in clear fluid and po-
rous regions. By using condition of continuous shear stress and heat
flux at the interface, Ui and θiwhich are interface velocity and tempera-
ture can be found as:

Ui ¼
C12 sinh S=2ð Þð Þ2 þ C13 sinh S=2ð Þ−C14 cosh Sð Þ−1ð Þ

C15 sinh Sð Þ þ C16 sinh S=2ð Þð Þ2 þ C17 sinh S=2ð Þ ð30Þ

θi ¼ − K−1
2 K þ 1ð Þ ð31Þ

where Γ parameter still is needed to be evaluated and K is thermal con-
ductivity ratio (K=kf/keff). The conservation of mass in the channel can
be expressed as:

∫
0:5

0

Uc Yð ÞdY þ ∫
1

0:5

Up Yð ÞdY ¼ 1 ð32Þ

The integration of Eq. (32) yields Γ value as:

Γ ¼ C18 sinh S=2ð Þð Þ2 þ C19 sinh S=2ð Þ þ C20ðS=2Þ−6MSGrp
Re

C21 cosh S=2ð Þ þ C22 sinh S=2ð Þð Þ2 þ C23 sinh s=2ð Þ−12MS
ð33Þ

where C18, C19, C20, C21, C22 and C23 are constants and they are defined
in Appendix A.

4. Heatfunction equations

4.1. Mathematical definition of heatfunction

Heatfunction and heatlines are used to visualize the path of heat
flow. For a two-dimensional, incompressible and steady flow without
viscous dissipation or heat generation, the heat flux vector in x and y
directions can be expressed as:

Jx ¼ ρuCp T−Tref

� �
−k

∂T
∂x ð34Þ

Jy ¼ ρuCp T−Tref

� �
−k

∂T
∂y ð35Þ

where Tref is the reference temperature. In Cartesian coordinates, the
heat flux vector can be written as:

J
→¼ Jx i

→
þ Jy j

→
: ð36Þ
By assuming h as a continuous scalar function, the heatfunction in
differential form can be defined as;

Jx ¼ ρuCp T−Tref

� �
−k

∂T
∂x ¼ ∂h

∂y ð37Þ

Jy ¼ ρvCp T−Tref

� �
−k

∂T
∂y ¼ −∂h

∂x : ð38Þ

For mixed convection fully developed flow;

v ¼ 0;
∂T
∂x ¼ 0: ð39Þ

Therefore, for fully developed mixed convection flow, Eqs. (37)
and (38) take the following form:

jx ¼ ρuCp T−Tref

� �
¼ ∂h

∂y ð40Þ

jy ¼ −k
∂T
∂y ¼ −∂h

∂x : ð41Þ

The Eqs. (40) and (41) can be written in the dimensionless form
by using dimensionless parameters defined by Eq. (7) as;

∂H
∂Y ¼ PeU θþ 1=2ð Þ ð42Þ

∂H
∂X ¼ ∂θ

∂Y ð43Þ

where Tref is accepted as Tc, and H and Pe are dimensionless
heatfunction and Peclet number:

Pe ¼ ρcpu0 b
k

ð44Þ

H ¼ h
k Th−Tcð Þ : ð45Þ

4.2. Analytical expression for heatfunction in the channel with complete-
ly clear fluid

Thermal conductivity plays an important role on definition of di-
mensionless heatfunction. There is no doubt that for the channel with
completely clearfluid, k is the thermal conductivity offluid (kf) and con-
sequently Hf=h/(kf(Th−Tc)) andPef=ρcpub/kf. Hf and Pef are dimen-
sionless heatfunction and Peclet number for the clear fluid channel.
Another important point in determination of heatfunction is the refer-
ence value for heatfunction. In this study, the value of heatfunction at
the origin is assumed zero, Hf(0,0)=0. The following equations can
be written based on taking integral from Eqs. (42) and (43):

Hf X;Yð Þ ¼ ∫PeU θþ 1=2ð ÞdY þ C24 Xð Þ ð46Þ

Hf X;Yð Þ ¼ X þ C25 Yð Þ: ð47Þ

The heatfunction should be valid for the whole of domain. The
value of C25(0) can be found by applying Eq. (47) for the origin:

Hf 0;0ð Þ ¼ C25 0ð Þ ¼ 0 ð48Þ

Eqs. (46) and (47) are also valid for Y=0 surface, then

Hf X;0ð Þ ¼ C24 Xð Þ þ C26 ð49Þ
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Hf X;0ð Þ ¼ X þ C25 0ð Þ: ð50Þ

From the above equations, C24(X) can be found as:

C24 Xð Þ ¼ X þ C26: ð51Þ

Therefore, the heatfunction can be expressed as:

Hf X;Yð Þ ¼ ∫PeU θþ 1=2ð ÞdY þ X þ C26: ð52Þ

The heatfunction equation for channel with fully clear fluid can be
obtained as:

Hf X;Yð Þ ¼ Xþ Pe −Grc
Re

Y5

30
þ Γ

8
þ Grc
16Re

� �
Y4 þ − Γ

6
− Grc

36Re

� �
Y3

 !
:

ð53Þ

The value of C26 and integral constant are zero since H 0;0ð Þ ¼ 0.

4.3. Analytical expression for heatfunction in channel with completely
porous medium

Eqs. (42) and (43) are valid for dimensionless heatfunction in a
channel with completely porous medium. However, the effective
thermal conductivity of porous medium should be used for the defini-
tion of dimensionless heatfunction and Peclet numbers and conse-
quently,Hp=h/(keff(Th−Tc)) and Pep=ρcpub/keff. Similar procedure
to obtain Eq. (53) can be performed, and the heatfunction equation
for the channel filled with fluid saturated porous medium can be
obtained as:

HP X;Yð Þ ¼ Xþ PeðC1

3
Y3− 1

S2ðC3sinh SYð Þ−SðC2Y cosh S Y−1ð Þð Þ

þC3Y cosh SYð ÞÞ þ C2 sinh S Y−1ð Þð ÞÞ þ C4
Y2

2
þ C2 sinh Sð ÞÞ

ð54Þ

where C1,C2,C3andC4 are constants and the related equations are
given in Appendix A.

4.4. Analytical expression for heatfunction in channel with partially filled
porous medium

The dimensionless heatfunction for the clear fluid region can be
found from the following equation:

∂Hf

∂Y ¼ Pef U θþ 1=2ð Þ ð55Þ

∂Hf

∂X ¼ ∂θ
∂Y ¼ 2θi þ 1ð Þ: ð56Þ

Heatfunction differential equation for the porous medium region
can also be found from the following equations:

∂Hp

∂Y ¼ PepU θþ 1=2ð Þ ð57Þ

∂Hp

∂X ¼ ∂θ
∂Y ¼ 1−2θið Þ: ð58Þ

The comparison between the definitions of dimensionless
heatfunction for clear fluid and porous medium filled regions (i.e., Hf=
h/(kf(Th−Tc)) and Hp=h/(keff(Th−Tc))) shows that the definitions of
Hf andHp are not the same on the solid–fluid interface and a discontinuity
exits. A point on the interface has two dimensionless heatfunction values
due to different definitions ofHf andHp. Finding a relation betweenHf and
Hp may be a solution for this difficulty.

Hp ¼ h
kf Th−Tcð Þ

1
K
¼ H

f
K ð59Þ

By substituting Eq. (59) into Eqs. (57) and (58), the following equa-
tions can be obtained for the porous medium region in the channel.

∂Hf

∂Y ¼ Pef U θþ 1=2ð Þ ð60Þ

∂Hf

∂X ¼ 1
K
∂θ
∂Y ¼ 1

K
1−2θið Þ ð61Þ

As seen, Eqs. (60) and (61), the heatfunction for porous region is de-
fined based on the fluid thermal conductivity. By the other words, the
fluid thermal conductivity is used to define dimensionless heatfunction
in the entire channel, and no discontinuity of dimensionless heatfunction
is faced at the interface. Similar method, used to find Eq. (53), can be
employed to determine dimensionless heatfunction for the clear and po-
rous medium regions. Dimensionless heatfunction for the left half of the
channel can be obtained as:

Hf ¼ 2θi þ 1ð ÞX

þ
ð 2θi þ 1ð ÞPeY3 40C5−10Γ þ 80Ui þ 30C6Y þ 15ΓY−24C7Y

2
� �

120
:

ð62Þ

The dimensionless heatfunction for right half of the channel
region is:

Hf ¼ 1−2θið ÞX=K þ C112θiPeY−C27Y
2 þ C28Y

3−C29 sinh S 1−Yð Þð Þ
þC30 sinh S Y−1=2ð Þð Þ−C31 cosh S 1−Yð Þð Þ−C32 cosh S Y−1=2ð Þð Þ
−C33Y cosh S 1−Yð Þð Þ−C34Y cosh S Y−1=2ð Þð Þ þ C35−C36:

ð63Þ

4.5. Elliptic PDE for heatfunction

In this section, an elliptic partial differential equation for dimen-
sionless heatfunction is derived. Taking derivatives with respect to y
and x from Eqs. (40) and (41) leads to:

ρCp
∂
∂y u T−Tref

� �� �
¼ ∂2h

∂y2
ð64Þ

−k
∂2T
∂x∂y ¼ −∂2h

∂x2
ð65Þ

For mixed convection fully developed flow, ∂
∂y

∂T
∂x

� �
¼ 0. The sum-

mation of Eqs. (64) and (65) yields partial differential heatfunction
equation:

∂2h
∂x2

þ ∂2h
∂y2

¼ ρCp
∂
∂y u T−Tref

� �� �
: ð66Þ

The above heatfunction equation, which is an elliptical partial
differential equation, can be written in dimensionless form.
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∂2H
∂X2 þ ∂2H

∂Y2 ¼ Pe
∂
∂y U θþ 1

2

� �� �
ð67Þ

where Tref is accepted as Tc. The solution of Eq. (67) yields the distri-
bution of heatfunction in the channel. The boundary conditions for
heatfunction equation can be written by using Eqs. (42) and (43).

For Y ¼ 0 H X;0ð Þ ¼ ∫
X

X¼0

∂θ
∂Y j

Y¼0

dX ð68Þ

For Y ¼ 1 H X;1ð Þ ¼ ∫
X

X¼0

∂θ
∂Y j

Y¼1

dX ð69Þ

For X ¼ 0 H 0; Yð Þ ¼ ∫
Y

Y¼0

PeU θþ 1=2ð ÞdY ð70Þ

For X ¼ X0 H X0;Yð Þ ¼ ∫
Y

Y¼0

PeU θþ 1=2ð ÞdY ð71Þ

where X0is the ratio of b/L. The above differential equation is valid for
completely clear fluid channel or completely porous medium filled
channel. For the channel partially filled with porous medium, θ, H
and Pe are replaced with θcHf, Pef for the left half of the channel, and
the same parameters are replaced with θp, Hp and Pep for the right
half of the channel. Then, KHf can be written instead of Hp. The
value of Hf at the interface can be calculated by the following relation:

For Y ¼ 0:5 H X;0:5ð Þ ¼ ∫
X

X¼0

∂θf
∂Y j

Y¼0:5

dX: ð72Þ

4.6. Relation between dimensionless heat transfer rate and dimensionless
heatfunction

The heat received by cold wall (left wall) of a channel with unit
height can be calculated by the following relation:

j y¼0 ¼ Th−Tcð Þ
R

¼ ∫
x¼l

x¼0

h x;0ð Þdx
					 ð73Þ

where j is heat flux to the left wall and R is thermal resistance which
is b/k. By substituting dimensionless parameters defined by Eq. (7),
the dimensionless heat transfer rate from right to the left wall for a
channel with dimensionless height of 2 will be obtained as:

j Y¼0 ¼ H 2;0ð Þ ¼ 2:j ð74Þ

Hence, for both channels with completely clear fluid and completely
porous medium, the maximum value of dimensionless heatfunction at
the left wall should be 2. For partially porous medium filled channel,
the situation is different. Heat transfer rate received by the left wall de-
pends on thermal conductivity ratio and porous layer thickness and it
can be calculated from the following relation:

j y¼0 ¼ Th−Tcð Þ
∑R

¼ ∫
x¼l

x¼0

h x;0ð Þdx
					 ð75Þ
where∑R is thermal resistance between the hot and cold walls and it
can be defined as:

∑R ¼ lp
kp

þ lf
kf

ð76Þ

where kp and kf are effective thermal conductivity of the porous andfluid
thermal conductivity, lp and lf are the thickness of porous layer and
section with pure fluid flow. Since the dimensionless heatfunction is de-
fined according to the fluid thermal conductivity, the dimensionless
heatfunction at the left wall can be determined by following relation:

j Y¼0 ¼ 2
∑R′

¼ Hf 2;0ð Þ
				 ð77Þ

where R′is normalized thermal resistance according to the fluid thermal
conductivity. For the present problem, the value of R′can be calculated
from the following relation:

∑R′ ¼ 0:5K þ 0:5: ð78Þ

5. Result and discussion

Both numerical and analytical results (the velocity profile, tempera-
ture and heatfunction distribution) were found and compared for all
presented results. The numerical and analytical results are identical
when 101×101 number of nodes is used in the numerical approach.
Furthermore, the velocity profiles are also compared with the profiles
reported in the literature. For instance, the velocity profiles of the pre-
sent work and the profiles reported by Aung and Worku [14] for the
channels with clear fluid and by Degan and Vasseur [18] for the chan-
nels filled with fluid saturated porous medium are compared and
good agreement between the results is observed.

5.1. Heatline patterns in the channel with pure fluid flow

Fig. 2 shows the velocity profile, temperature distribution and
heatline patterns in a channel with two values of Grc/Re of 1 and
400, and three Peclet numbers of 0.01, 1 and 5. The velocity profile
and temperature distribution are shown in the first column while
the heatline patterns are in the second, the third and fourth columns
for three Peclet numbers of 0.01, 1 and 5, respectively. The velocity
profile, temperature distribution and heatline patterns for the chan-
nel with Grc/Re=1 are shown in the first column of Fig. 2(a). Forced
convection is dominant and velocity profile is almost parabolic and a
linear temperature variation exits in the channel. The heatline pat-
terns in the channel with Peclet number of 0.01 are not affected
from fluid flow and heat path is almost horizontal. By increasing
Peclet number from 0.01 to 1, the heatline patterns are considerably
changed and the convection heat transfer becomes stronger. For
Pe=1, the heatlines are not horizontal and the effect of vertical con-
vection transport can be observed. The convection heat transport in
vertical direction is improved for the channel with Pe=5. Heat takes
a long distance in vertical direction to be transferred from the right to
left wall. It should be mentioned that the maximum heatfunction
value at the left wall, showing the dimensionless heat transfer from
the right to left wall, is Hmax=2 for three Peclet numbers, as expected.
Fig. 2(b) shows the velocity profile, temperature distribution, and
heatline patterns in a channel with Grc/Re=400 for the same Peclet
numbers of Fig. 2(a). The increase of Grc/Re ratio, increases mass flow
in upward direction and that is why a reverse flow occurs in the chan-
nel. The comparison of Fig. 2(a) and (b) shows that the change of veloc-
ity profile in the channel does not affect heatline distribution in the
channel for Pe=0.01 since the conduction heat transfer from the
right to left wall is the dominant mode of heat transport between two
plates and heat moves horizontally from the right to left wall. For
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Fig. 2. Velocity and temperature profiles (the first column) and heatline patterns for Pe=0.01, 1 and 5 (the second, third and fourth columns), respectively in the channel with a
clear fluid, a) Grc/Re=1, b) Grc/Re=400.
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Pe=1, the effects of the convection mode of heat transport and the
effect of reverse flows on heatline patterns can be observed. Heat is sep-
arated from the right wall and goes in upward direction due to the
strong convection. After a distance, the direction of heat transport is
changed and heat flows in downward direction due to the reverse
flow and finally it is received by the left wall. Further distortion of
heatline patterns can be observed in the channel with Pe=5. In the
channels with high value of Peclet number (i.e., Pe=5), for which con-
vective heat transport is dominant, heatline patterns are highly affected
from fluid flow. It should be mentioned that for the clear fluid channel
with Grc/Re=400, the dimensionless heat transfer rate is 2 since a lin-
ear temperature distribution across the channel exists.

5.2. Heatline patterns in the channel filled with fluid saturated porous media

Fig. 3 shows the velocity profile, temperature distribution and
heatline patterns in a porous medium filled channel with Da=10−4

and two values of Grp/Re as 0.01 and 5. It shows the heatline patterns
for three Peclet numbers of 0.01, 1 and 5. Similar to Fig. 2(a), for
low values of Grp/Re=0.01, forced convection is dominant and a
symmetrical velocity profile is observed in the channel. For the low
values of Peclet number (i.e. Pe=0.01), the conduction mode of
heat transfer from the right to left wall is dominant and heat flows
horizontally. By increasing Peclet number from 0.01 to 1.0, the con-
vection in vertical direction affects heatline patterns and heat sepa-
rated from the right wall takes a vertical distance to be received by
the left wall. The effect of vertical flow on heatline patterns is clearly
observed in the channel with Pe=5 in which a strong convective
transport exists. Fig. 3(b) shows that by increasing Grp/Re from 0.01
to 5, a reverse flow occurs in the channel. This reversal flow does
not affect heatline patterns for the channel with Pe=0.01 due to
strong heat conduction from the right to left wall. However, the
heatline distribution in the channel with Pe=5 is highly influenced
from the reverse flow due to the encountering effect of convection
heat transport in vertical direction.

Fig. 4 compares the velocity and heatline patterns in the channel
with clear fluid (Grc/Re=1) and the channel completely filled with
saturated fluid porous medium (Grp/Re=0.01, Da=10−4) when
Pe=5. The velocity profile of the channel with completely porous
medium is flattened due to the obstacles in the porous medium. The

image of Fig.�2
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Fig. 3. Velocity and temperature profiles (the first column) and heatline patterns for Pe=0.01, 1 and 5 (the second, third and fourth columns), respectively in the channel filled with
saturated porous medium, a) Grp/Re=0.01, b) Grp/Re=5.

Fig. 4. Comparison of heatline for clear fluid (Grc/Re=1) and completely porous medium channel (Grp/Re=0.01, Da=10−4) when Pe=5.

1260 H. Celik, M. Mobedi / International Communications in Heat and Mass Transfer 39 (2012) 1253–1264



1261H. Celik, M. Mobedi / International Communications in Heat and Mass Transfer 39 (2012) 1253–1264
temperature variation for both channels is identical, and temperature
linearly changes from right to the left wall. Fig. 4(b) compares the
heatline patterns of the both channels. As seen, there is a difference
in heatline patterns due to small changes in the velocity profiles.
This figure shows that for high values of Peclet number, how the
small changes in velocity profile can affect heatline patterns.

5.3. Heatline patterns in the channel partially filled with porous medium

Fig. 5 shows the velocity profile, temperature distribution and
heatline patterns for channels partially filled with porous medium.
The thickness of the porous layer is 0.5 while the channel thickness is
1. The right half of the channel is filled with porous medium while the
pure fluid flows in the left half of the channel. Fig. 5(a) shows the veloc-
ity profile, temperature distribution and heatline patterns for the chan-
nel with Grc/Re=1, Da=10−4 and K=0.05 which refers to high
effective thermal conductivity of porous medium compared to that of
clear fluid. As seen from this figure, the left half of the channel, filled
with high conductive porous medium, is hot (θ=0.5) and temperature
is almost uniform. The dimensionless temperature linearly changes
Pe=0.01 

(a) 

 Pe=0.01

(b) 

Fig. 5. Velocity and temperature profiles (the first column) and heatline patterns for Pe=0.0
filled with saturated porous medium, Grc/Re=1, Da=10−4 a) K=0.05, b) K=100.
from 0.5 to −0.5 in the right half of the channel. The value Grc/Re=1
refers to the strong forced convection heat transfer in the channel. The
value of Darcy is low (i.e.Da=10−4) and a parabolic velocity profile oc-
curs in the left half of the channel where the fluid can flow easily. The
fluid flow in the right half of the channel is weak compared to left
side due to the low value of Darcy number. For Pe=0.01, the conduc-
tion mode of heat transfer from the right to left wall is dominant and
that is why heatflows horizontally from the hot to coldwall. By increas-
ing Peclet number from 0.01 to 1, the direction of heat flow in the right
half region is not changed. The convection strength in vertical direction
is weak while the conduction heat transport from the right wall to the
interface is strong. That is why, heat flows horizontally in the right
half of the channel. In the left half of the channel, the effect of convec-
tion heat transfer in vertical direction is considerably higher than the
conduction heat transfer in horizontal direction. Thepath of heat transfer
is changed in the left region of the channel. Heatflows upward due to the
strong convection effect while it flows toward the cold wall and finally it
is received by the rightwall. By increasing Peclet number from 1 to 5, the
heat path does not change in the left half of the channel due to the strong
conduction mode of heat transfer from the right wall toward the
Pe=1 Pe=5 

Pe=1 Pe=5 

1, 1 and 5 (the second, third and fourth columns), respectively in the channel partially
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interface. However, in the left half region, heat takes a longer distance in
vertical direction due to the strong convection heat transfer in vertical di-
rection. The maximum value of dimensionless heatfunction at the left
wall is 3.81 indicating that by inserting of high conductive porous layer
heat transfer rate from the right to left increases.

The velocity profile, temperature distribution and heatflowpatterns
in the channel with Grc/Re=1, Da=10−4 and K=100 are shown in
Fig. 5(b). The heatline patterns are plotted for three different Peclet
numbers of 0.01, 1 and 5. As seen from thefirst column, a linear temper-
ature distribution is observed in the right half of the channel while tem-
perature is uniform in the left half (i.e., θ=−0.5) due to the high
thermal conductivity of pure fluid compared to the effective thermal
conductivity of porous medium region. The velocity is small in the
right half of the channel while a parabolic velocity profile is observed
in the left half. For low Peclet number of 0.01, the heatflow is horizontal
from the hot to cold wall. For Pe=1, in the right half of the channel, the
conduction heat transport in horizontal direction from the right wall to
interface is weak and it is comparable with convective heat transport
in the vertical direction. That is why; heat separated from the right
wall moves vertically due to the convective heat transport and then
it moves toward the interface. In the left half of the channel, the
 Pe=0.01 

(a)
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(b)

Fig. 6. Velocity and temperature profiles (the first column) and heatline patterns for Pe=0.0
saturated porous medium, Grc/Re=2000, Da=10−4, a) K=0.05 b) K=100.
convection heat transport in vertical direction (i.e., thermal energy
transported in vertical direction) is comparable with the conduction
heat transport in horizontal direction since the fluid thermal conductiv-
ity is high. Hence, heat moves vertically when it moves toward the
left wall. By increasing Peclet number from 1 to 5, the same heat
transport paths are valid. However, the heatlines become more verti-
cal due to the stronger convection heat transport in vertical direction.
The maximum dimensionless heatfunction at the left wall that is 0.04
showing insertion of porous layer with low thermal conductivity reduces
heat transfer between the walls.

Fig. 6(a) shows the velocity profile, temperature distribution and
heatline patterns in the channel with Grc/Re=2000 and Da=10−4

when K=0.05. Similar to Fig. 5, the heatline patterns are plotted for
Peclet numbers of 0.01,1 and 5. As seen from the first column of
Fig. 6(a), the temperature in the right half of the channel is uniform
as θ=0.5 due to high effective thermal conductivity of porous medi-
um. Consequently, the interface temperature is θ=0.5 and a linear
temperature change is observed in the left half of the channel. The ve-
locity is small in the left region due to low value of Darcy number and
a reverse flow occurs in the left half of the channel due to high buoy-
ancy effect. The second column of Fig. 6(a) shows heatline patterns in
Pe=1 Pe=5 
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the channel when Pe=0.01. As expected, heat is transported hori-
zontally from the hot to the cold wall for Pe=0.01. For Pe=1,
heat transfers horizontally in the right half and it moves upward
in the left half of the channel due to the strong convective heat
transport. Then, it attains a maximum point. After this point, heat
moves downward due to the reverse flow that occurs in the region
close to the cold wall. By increasing Peclet number from 1 to 5, the
effect of convection heat transfer in vertical direction increases and
heat moves a long distance in the vertical direction in the left half of
the channel.

The parameters of Fig. 6(b) are the same with the parameters of
Fig. 6(a), except thermal conductivity ratio which is 0.01 refers to
low thermal conductivity of the right half compared to the left one.
As seen from the first column of Fig. 6(b), the temperature linearly
changes in the right half of the channel and it is uniform in the left
half as θ=−0.5. No buoyancy effect exists in the left half of the chan-
nel since both the left wall and interface are at θ=−0.5. A parabolic
velocity profile occurs in this region due to the fixed inlet mass flow
rate. For Pe=0.01, as expected, the heat transport is horizontal. For
Pe=1, in the right region, the convection heat transport in vertical
direction is higher than conduction heat transport in horizontal direc-
tion. It should be reminded that in the right half of the channel, the
conduction heat transfer from the right wall to the interface is weak
due to the low effective thermal conductivity of porous medium.
That is why; heat moves a distance in vertical direction when it
goes toward the interface. After passing of heat from the interface,
in the left half of the channel, heat moves more horizontally due to
high conduction heat transfer form the interface to the left wall. The
same comments are valid for the channel with Pe=5, however the
effect of upward flow on heatline patterns increases as seen from
the fourth column of Fig. 6(b).
6. Conclusion

Analytical and numerical studies are performed to observe
heatline patterns in a vertical channel with mixed convection. Analyt-
ical expressions for determination of velocity, temperature and
heatfunction are presented for three channels of a) filled with clear
fluid, b) filled with fluid saturated porous medium and c) partially
filled with fluid saturated porous medium. It is observed that the
use of heatfunction concept can explain the competition between
the horizontal conduction heat transport and vertical convection
mode of heat transfer in the channel. Based on the obtained results
the following remarks can be concluded:

– The path of heat in the channel is highly affected from Peclet num-
ber. For low Peclet number, heat transfer is horizontal; however
heat takes a distance in vertical direction for high Peclet number.

– For the channel with high Peclet number, heatline patterns are
highly influenced from the velocity profile since convection heat
transfer is strong. If a reverse flow occurs in the channel, the
heat direction is also changed and heat flows downward.

– For the channel with partially porous medium, comments on the
heatline patterns become more difficult since the thermal conduc-
tivity ratio should also be taken into account. When the effective
thermal conductivity of porous medium is considerably higher
than fluid thermal conductivity, heat flows horizontally in the po-
rous medium region.

– For the channel with partially porous medium and high Gr/Re
value, a reverse flow occurs in the channel. The path of heat is
also changed accordingly for high Peclet number.

– The use of heatfunction for analyzing heat and fluid flow problems
also shows the dimensionless heat transfer rate through the chan-
nel. Thus, the increase or decrease of heat transfer through the
channel can be predicted.
The present study may be performed for mixed convection in an
inclined channel to observe the path of heat flow by changing the in-
clination angle.
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