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Abstract: Let R be a commutative ring and I(R) denote the multiplicative group of all invertible fractional ideals

of R , ordered by A ⩽ B if and only if B ⊆ A . If R is a Marot ring of Krull type, then R(Pi) , where {Pi}i∈I are a

collection of prime regular ideals of R , is a valuation ring and R =
∩

R(Pi) . We denote by Gi the value group of the

valuation associated with R(Pi) . We prove that there is an order homomorphism from I(R) into the cardinal direct

sum
⨿

i∈I Gi and we investigate the conditions that make this monomorphism onto for R .
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1. Introduction

Let R be a commutative ring with zero divisors. We call an element of R regular if it is not a zero-divisor.

Let Reg(R) denote the monoid of regular elements of R and Q(R) = Q denote the total ring of fractions R .

We note that Q = (Reg(R))−1R . We say that an ideal I of R is regular if I contains a regular element of

R . Let F(R) be the set of all fractional regular ideals of R . The set of all invertible fractional ideals of R is

a subgroup of F(R); this group is denoted by I(R). The principal fractional regular ideals form a subgroup

β(R) in I(R). Furthermore, Min(R) denotes the set of all prime regular ideals, which are minimal among

prime regular ideals of R . We note that every invertible fractional ideal of R is finitely generated and regular.

For a prime ideal P of R , we set R(P ) = (Reg(R)− P )−1R ⊆ Q and R[P ] = {y ∈ Q(R) : xy ∈ R, x ∈ R− P} .
We recall that a valuation is a map ν from a ring K onto a totally ordered group G and a symbol ∞ ,

such that for all x and y in K :

1. ν(xy) = ν(x) + ν(y).

2. ν(x+ y) ⩾ min{ν(x), ν(y)} .

3. ν(1) = 0 and ν(0) = ∞ .

The ring Rν = {x ∈ Q|ν(x) ⩾ 0} , together with the ideal Pν = {x ∈ Q|ν(x) > 0} , denoted (Rν , Pν), is

called a valuation pair (of K ). Rν is called a valuation ring (of K ), and G is called the value group of Rν .

We note that given a valuation pair (R,P ), R = RP and that (R,P ) is said to be discrete rank one if G is

isomorphic to the group of integers Z .
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A ring R is called a Marot ring if every regular ideal can be generated by a set of regular elements. This

property was defined by Marot [12]. Moreover, every overring of a Marot ring is Marot. Below we see a couple

of characterizations of a Marot ring.

Theorem 1.1 [6, Theorem 3.5] Let R be a ring. Then the following are equivalent:

1. R is a Marot ring.

2. Any 2-generated ideal (a, b) with b regular can be generated by a finite set of regular elements.

3. Every regular fractional ideal of R , that is, every R -submodule M of Q such that M ∩Reg(Q) ̸= ∅ , can
be generated by a set of regular elements.

In the presence of the Marot property, valuation rings share some properties of valuation domains. For

example, as in the domain case, it is not true, in general, that given a valuation pair (Rν , Pν), Pν is the unique

maximal (regular) ideal of Rν . However, if a valuation ring Rν is Marot, then we have the following.

Proposition 1.2 [6, Proposition 4.1] Let R be a Marot ring. Assume that R ̸= Q . Then the following

conditions are equivalent:

1. R is a valuation ring.

2. For each regular element x ∈ Q , either x ∈ R or x−1 ∈ R .

3. R has only one maximal regular ideal and each of its finitely generated regular ideals is principal.

Lemma 1.3 Let R be a Marot ring. Assume that R ̸= Q . Then R is a valuation ring if and only if the set of

R-submodules M of Q such that M ∩Reg(Q) ̸= ∅ is totally ordered by inclusion.

Proof Suppose that R is a valuation ring. Let A,B ∈ Q such that A ∩ Reg(Q) ̸= ∅ and B ∩ Reg(Q) ̸= ∅ .
Assume that A ⊈ B and B ⊈ A . By [8, Theorem 7.1], there are regular elements r ∈ A− B and s ∈ B − A .

Set x = rs−1 ∈ Reg(Q). By Proposition 1.2, either x ∈ R or x−1 ∈ R . This implies that s ∈ rR ⊆ A or

r ∈ sR ⊆ B , which is a contradiction. Conversely, let x ∈ Reg(Q), so x = rs−1 for some regular elements

r, s ∈ R . We observe that rR and sR are R -submodules that contain a regular element of Q , hence either

sR ⊆ rR or rR ⊆ sR . Thus, we have x ∈ R or x−1 ∈ R . By Proposition 1.2, R is a valuation ring. 2

A commutative ring R is said to be additively regular if for each z ∈ Q , there exists a u ∈ R such that

z + u is a regular element in Q , or, equivalently, for each a ∈ R and each regular element b ∈ R , there exists

a u ∈ R such that a+ ub is regular in R [5, Lemma 7]. The class of additively regular rings is an example of

Marot rings [6, Theorem 3.6].

Consider the following conditions on a commutative ring R :

1. There exists a family {(Vα, Pα) : α ∈ I} of valuation pairs, where Vα s are overrings of R with the

property that R =
∩
{Vα : α ∈ I} .

2. For each regular element q ∈ Reg(Q), q is a nonunit in only finitely many Vα s, and each Pα is a regular

ideal of Vα .
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3. For each pair (Vα, Pα), Vα is a localization of R at a prime ideal L such that L = Pα ∩R .

4. Each pair {(Vα, Pα) : α ∈ I} is rank one discrete.

A ring R is called a Krull ring if it satisfies conditions 1–4 and a ring of Krull type if it satisfies conditions

1–3. For a valuation pair (V, P ), let v be the corresponding valuation. Then the prime ideal L , in condition

3 above, is called the center of v . We also note that condition 2 also means that for each regular element

r ∈ Reg(R), r is a unit in Vα for all except finitely many α ∈ I .

Proposition 1.4 [7, Proposition] Let R be a Marot ring, ν a discrete rank one valuation on Q , and Pν the

ideal generated by {x ∈ Reg(R)|ν(x) > 0} . Then we have the following hold.

i. Pν is a prime regular ideal of R .

ii. R(Pν) is a discrete rank one valuation ring with the unique prime regular ideal PνR(Pν) .

Let Γ be the set of valuations on Q . For each ν ∈ Γ, let Pν be the ideal generated by {x ∈ Reg(R)|ν(x) >
0} . By Proposition 1.4, if R is a Marot Krull ring, then R =

∩
ν∈Γ R(Pν) , and every x ∈ Reg(Q), ν(x) = 0

almost for all ν ∈ Γ; that is, x is a unit in almost all R(Pν) (see [7] for details). In fact, we can write

R =
∩

ν∈Γ R[Pν ] for a Marot Krull ring R [8, Theorem 7.6].

Theorem 1.5 [8, Theorem 8.10] Let R be a Marot Krull ring. Then R =
∩

P R(P ) , where P ∈ Min(R) .

Let P be a nonempty set of pairwise incomparable prime ideals of R . We say that a ring R is of P -finite

character if every regular element of R is contained in at most finitely many prime ideals P ∈ P . Furthermore,

if R is of P -finite character, and if every prime regular ideal of R is contained in at most one prime ideal

P ∈ P , then R is called an hP -local ring. We note that a Krull ring is of hP -local for the choice P = Min(R).

If R is a Dedekind domain, then I(R) is the set of all nonzero fractional ideals of R , and the class

group I(R)/β(R) is a measure of unique factorization of elements of R . If the class group is trivial, then

R is a unique factorization domain, and hence a principal ideal domain. If R is a Dedekind domain with

maximal ideals {Mi}i∈I , then for a nonzero fractional ideal A , we have A = M
ei1
1 . . .M

ein
n , and the mapping

A → (ei1 , . . . ein) is an order isomorphism from I(R) onto the cardinal sum
⨿

i∈I Zi , where Zi
∼= Z for each i .

The fact described in the previous paragraph about Dedekind domains is well known. In [2], the authors

dropped both the Noetherian and the one-dimensional assumptions and considered I(R) when R is a Prüfer

domain of P -finite character for the choice P , the set of all maximal ideals of R . It turns out that an analogous

fact is true. If R is a Prüfer domain of P -finite character with the same choice for P , then there is an order

monomorphism from I(R) into the cardinal direct sum
⨿

i∈I Gi , where Gi is a value group [2, Theorem 2(3)],

and it is onto if R is an hP -local Prüfer domain, where P is the set of all maximal ideals of R [2, Theorem

5]. In this paper, we prove that if R is a Marot Krull ring, then there is also an order homomorphism from

I(R) into the cardinal direct sum
⨿

i∈I Gi , where Gi is a value group. Moreover, we investigate when this

homomorphism restricts to an isomorphism from β(R) onto the cardinal direct sum
⨿

i∈I Gi , where Gi is

a value group, for an additively regular Krull ring R . Furthermore, we generalize these results to additively

regular rings of Krull type.
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This paper is organized as follows. In Section 2, we prove that I(R) maps into the cardinal direct

sum
⨿

i∈I Gi , where Gi is a value group, when R is a Marot Krull ring. In Section 3 it is shown that the

“Density Theorem” holds for elements in R . Furthermore, we prove that a stronger version of the “Density

Theorem” for regular elements holds when R is, in addition, additively regular. In Section 4 we generalize our

results in the previous section for an additively regular ring of Krull type R , and we investigate when there is

a monomorphism from I(R) onto the cardinal sum
⨿

i∈I Gi , where Gi is a value group.

2. Embedding I(R) into
⨿

i∈I Gi

The group I(R) of all invertible ideals is partially ordered under the order A ⩽ B if and only if B ⊆ A . Before

we prove the generalization of [2, Proposition 1] for the integrally closed rings with zero divisors, we define a

useful tool.

A ∗− operation on R is a mapping F → F ∗ of F(R) into F(R) such that for each q ∈ Reg(Q) and all

A,B ∈ F(R):

i. (qA)∗ = qA∗ .

ii. A ⊆ A∗ ; if A ⊆ B , then A∗ ⊆ B∗ .

iii. (A∗)∗ = A∗ .

Let R =
∩

i∈I Vi , where {Vi}i∈I is a collection of valuation overrings of R and F is a fractional regular

ideal of R . Then it is a routine check to see that the mapping F →
∩

i∈I FVi is a ∗ − operation on R .

Lemma 2.1 If F → F ∗ is a ∗−operation on a commutative ring R , and if A is an invertible fractional ideal

of R , then for each B ∈ F(R) , (AB)∗ = AB∗ . In particular, A∗ = (AR)∗ = AR∗ = A .

Proof The proof is similar to the analogous lemma in the domain case [4, Lemma 32.17]. 2

Proposition 2.2 Let R be a Marot ring with {Vi}i∈I a collection of valuation overrings of R such that

R =
∩

i∈I Vi . Denote by vi the valuation associated with Vi , and by Gi the corresponding value group. Let

A = (α1, α2, . . . , αn) be an invertible fractional ideal of R . Then the mapping

Φ : I(R) →
∏
i∈I

Gi

defined by

Φ(A) = (vi(A))i∈I = (min{vi(αj)}1⩽j⩽n)i∈I

is an order-preserving monomorphism from I(R) into
∏

i∈I Gi .

Proof It follows from the definition of a valuation that Φ is a well-defined map. Next we claim that Φ is a

one-to-one order-preserving group homomorphism.

Let A = (α1, α2, . . . , αn) and B = (β1, β2, . . . , βm) be invertible fractional ideals of R . Since Vi is a

Marot valuation ring, every finitely generated regular ideal is principal. Thus, we have vi(A) = vi(αj(i)), where
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AVi = αj(i)Vi for vi(αj(i)) = min{vi(α1), vi(α2), . . . , vi(αn)} , and vi(B) = vi(βk(i)), where BVi = βk(i)Vi for

vi(βk(i)) = min{vi(β1), vi(β2), . . . , vi(βm)} .

We have that B ⩽ A if and only if A ⊆ B , if and only if AVi ⊆ BVi , if and only if vi(αj(i)) ⩾ vi(βk(i)),

if and only if vi(A) ⩾ vi(B) for all i . Therefore, Φ is order-preserving, showing that Φ(AB) = Φ(A) + Φ(B);

that is, Φ is a group homomorphism similar to the analogous proposition in the domain case.

It remains to show that Φ is one-to-one. If F is any nonzero fractional regular ideal of R , the mapping

F →
∩

i∈I FVi is a ∗ − operation on R . Let A,B ∈ F(R). Suppose that Φ(A) = Φ(B). Then vi(A) = vi(B)

for each i ∈ I , so that AVi = BVi for each i ∈ I . It follows that
∩

i∈I AVi =
∩

i∈I BVi . Since A is invert-

ible, by Lemma 2.1, we have A∗ = (AR)∗ = AR∗ = A . Similarly, B∗ = B . Therefore, A =
∩

i∈I AVi and

B =
∩

i∈I BVi , and hence Φ is one-to-one. 2

We specialize Proposition 2.2 to Marot rings of Krull type and determine when the embedding defined

in Proposition 2.2 maps into the cardinal sum of Gi s.

Theorem 2.3 Let R be a Marot ring of Krull type. Denote by vi the valuation associated with the valuation

ring R(Pi) , where Pi is the center of vi , that is, Pi = Mi ∩R , where Mi is the corresponding maximal regular

ideal Mi of vi , for each i ∈ I and by Gi the associated value group. Let Φ be the mapping defined in Proposition

2.2. Then:

1. The mapping Φ is an order-preserving monomorphism from I(R) into
∏

i∈I Gi , the cardinal product of

the Gi s.

2. Φ maps I(R) into
⨿

i∈I Gi , the cardinal direct sum of the Gi s.

Proof

1. It immediately follows from Proposition 2.2 that Φ is an order-preserving monomorphism from I(R) into∏
i∈I Gi .

2. Since R is a ring of Krull type, each of its regular elements is contained in at most finitely many Pi s.

Thus, Φ(A) is finitely nonzero, or, in other words, Φ(A) ∈
⨿

i∈I Gi . Since each invertible fractional ideal

of R can be written as AB−1 for some invertible ideals A and B , the image of Φ is contained in
⨿

i∈I Gi

for every invertible fractional ideal A of R .

2

We finish this section with a result that will be important for us in the following sections, but before

stating that we prove a helpful proposition.

Proposition 2.4 Let R be a Marot ring and P, P1, . . . , Pn a collection of prime regular ideals such that P ⊈ Pi

for any i . Then Reg(P ) ⊈
∪n

i=1 Pi .

Proof We have that P ⊈ Pi for any i , and hence, by [1, Proposition 1.11], P ⊈
∪n

i=1 Pi . Since R is a Marot

ring and P is a regular ideal, P is generated by a set of regular elements. Thus, there exists at least one regular

generator of P that cannot be contained in
∪n

i=1 Pi . Therefore, Reg(P ) ⊈
∪n

i=1 Pi . 2
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Lemma 2.5 Let R be a Marot ring of Krull type. Denote vi the valuation associated with the valuation

ring R(Pi) , where Pi is the center of vi , for each i , and by Gi the associated value group. Suppose each

nonzero prime regular ideal of R is contained in at most one Pi . Then for every finite collection of centers

P, P1, P2, . . . , Pn of R , with corresponding valuations v, v1, . . . , vn , and given some nonnegative value g of v ,

there is a regular element r ∈ R such that v(r) > g and vi(r) = 0 , 1 ⩽ i ⩽ n .

Proof Let b ∈ Q such that v(b) = g . By [8, Theorem 7.7] and [8, Theorem 7.9], we can choose b to be

a regular element. Thus, b =
s

l
, where s, l ∈ Reg(R). Hence, v(s) ⩾ v(b) = g . Suppose that there is a

minimal prime regular ideal L in P . Since R is a Marot ring, L is generated by a set of regular elements. By

assumption, L ⊈
∪

i ̸=1 Pi . By Proposition 2.4, we can choose a regular element c of L such that c ∈ L−
∪n

i=1 Pi .

Since R is a Marot ring, R[L] = R(L) , and hence locally at L , R(L) is a rank one valuation, and therefore

has an Archimedean value group by [3, Proposition 2.1, page 61]. Since v′(c) > 0, where v′ is the valuation

corresponding to L , there exists a positive integer t such that v′(ct) = t.v′(c) > v′(s). This implies that

ctR[P ] = ctR(P ) ⊊ sR(P ) , and hence that v(ct) > v(s) ⩾ v(b) = g . But c /∈ Pi , 1 ⩽ i ⩽ n . This implies that

ct /∈ Pi , 1 ⩽ i ⩽ n . Hence, vi(c
t) = t.vi(c) = 0 for 1 ⩽ i ⩽ n . Thus, ct meets the requirements of the claim,

that is, takes r = ct.

Suppose now that there is no minimal prime regular ideal contained in P . Let I be the intersection of

prime regular ideals of R(P ) . By Lemma 1.3, it follows that prime regular ideals of R(P ) are totally ordered

by inclusion, and so I is a prime ideal. We note that I cannot be regular since otherwise I would become a

minimal prime regular ideal. Thus, s cannot be contained in I , and hence there must be a prime regular ideal

contained in P , say L , such that s /∈ L . As in the first case, L ⊈
∪n

i=1 Pi , and so, by Proposition 2.4, we can

choose a regular element d of L such that d ∈ L−
∪n

i=1 Pi . By choice of L , we have v(d) > g and vi(d) = 0,

1 ≤ i ≤ n . 2

3. Density and strong density theorems for Krull rings

One of our goals in this section is to prove that, for a Krull ring, the “Density Theorem” holds for its elements.

In addition, it is shown that the “Density Theorem” holds for regular elements in a Krull ring that is additively

regular. Furthermore, for the latter class of rings, we prove that the “Strong Density Theorem” holds for finitely

generated regular ideals.

Proposition 3.1 Let R be a Marot Krull ring with {Pi}i∈I ∈ Min(R) . Denote by vi the valuation associated

with the valuation ring R(Pi) , and by Gi the associated value group. Then the “Density Theorem” holds for

elements in R ; that is, for every finite collection of minimal prime regular ideals P1, P2, . . . , Pn of R , and every

choice of nonnegative elements gi ∈ Gi , there is an element r ∈ R such that vi(r) = gi for 1 ≤ i ≤ n .

Proof

Let g1, g2, . . . , gn be nonnegative elements of G1, G2, . . . , Gn respectively. By Lemma 2.5 we can choose,

for each i , a regular element ri ∈ R such that vi(ri) > gi and vj(ri) = 0 for all j ̸= i . Let t1, t2, . . . , tn ∈ R

be such that vi(ti) = gi, 1 ≤ i ≤ n , and set

si = ti(r1 · · · ri−1 · ri+1 · · · rn).
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Then for 1 ≤ i ≤ n , we get

vi(si) = vi(ti) + vj(r1) + . . .+ vi(ri−1) + vi(ri+1) + . . .+ vi(rn) = gi,

since vi(rj) = 0 for j ̸= i . On the other hand, for j ̸= i , we have that

vj(si) = vj(ti) + vj(r1) + . . .+ vj(ri−1) + vj(ri−1) + . . .+ vj(rn)

= vj(ti) + vj(rj) ≥ vj(rj) > gj .

Finally, if we set s = s1+ . . .+sn , then for 1 ≤ i ≤ n , it follows that vi(s) = vi(si) = gi , since vi(sj) > gi

for j ̸= i . 2

The element s constructed in the proof of Proposition 3.1 is not necessarily regular. If R is an additively

regular Krull ring, it follows from the next result that the element s can be chosen to be regular. We recall

that an additively regular ring is Marot.

Proposition 3.2 Let R be an additively regular Krull ring with {Pi}i∈I ∈ Min(R) . Denote vi the valuation

associated with the valuation ring R(Pi) , and by Gi the associated value group. Then the “Density Theorem”

holds for regular elements in R ; that is, for every finite collection of minimal prime regular ideals P1, P2, . . . , Pn

of R , and every choice of nonnegative elements gi ∈ Gi , there is a regular element r ∈ R such that vi(r) = gi

for 1 ≤ i ≤ n .

Proof

Let us use the same notation as in the proof of Proposition 3.1. R is additively regular and Reg(R)

is multiplicatively closed, so we have that s′ = s + ur1 · r2 · . . . · rn ∈ Reg(R) for some u ∈ R . Since

vi(ri) > gi, vi(u) ⩾ vi(rj) = 0, it follows that vi(u) + vi(r1) + vi(r2) + . . . + vi(ri) + . . . + vi(rn) > gi . Thus,

vi(s
′) = min{vi(s), vi(u) + vi(r1) + vi(r2) + . . .+ vi(rn)} = gi , for 1 ⩽ i ⩽ n . 2

Theorem 3.3 Let R be an additively regular Krull ring with {Pi}i∈I ∈ Min(R) . Denote by vi the valuation

associated with the valuation ring R(Pi) , and by Gi the associated value group. Then the “Strong Density

Theorem” holds for finitely generated regular ideals of R ; that is, for every finite collection of minimal prime

regular ideals P1, P2, . . . , Pn of R , and every choice of nonnegative elements gi ∈ Gi , there is a finitely generated

regular ideal A of R such that vi(A) = gi for 1 ⩽ i ⩽ n , and vj(A) = 0 for all other minimal prime regular

ideals Pj for R . Moreover, the ideal A can be chosen to be 2-generated.

Proof By Proposition 3.2, the Density Theorem holds for regular elements in R , so we can find a regular

element r ∈ R such that vi(r) = gi for 1 ≤ i ≤ n . Since R is a Krull ring, it is of P -finite character for the

choice P = Min(R). Therefore, there are at most finitely many minimal prime regular ideals Q1, Q2 . . . , Qt

with corresponding valuations w1, . . . , wt at which r is positive. By the Density Theorem again, we can find a

regular element s ∈ R such that vi(s) = gi , for 1 ⩽ i ⩽ n , and wj(s) = 0, for 1 ⩽ j ⩽ t . Then the ideal (r, s)

has desired properties. 2

As a consequence of Theorem 3.3, we get a result for rings whose finitely generated regular ideals are

principal. Furthermore, such rings are Prüfer; that is, every finitely generated regular ideal is invertible. We

thus note that for such a ring S , I(S) = β(S). Next we get the following result concerning when each finitely

generated regular ideal of an additively regular Krull ring R is principal and, hence, R has a trivial class group.
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Corollary 3.4 Let R be an additively regular Krull ring with {Pi}i∈I ∈ Min(R) . Denote by vi the valuation

associated with the valuation ring R(Pi) , and by Gi the associated value group. The following are equivalent:

1. Each finitely generated regular ideal of R is principal.

2. The “Strong Density Theorem” holds for regular elements of R ; that is, for every finite collection of

minimal prime regular ideals P1, P2, . . . , Pn of R , and every choice of nonnegative elements gi ∈ Gi ,

there is a regular element a of R such that vi(a) = gi for 1 ⩽ i ⩽ n , and vj(a) = 0 for all other minimal

prime regular ideals Pj for R .

3. The mapping Φ defined in Proposition 2.2 restricts to an isomorphism from the group β(R) onto the

cardinal direct sum
⨿

i∈I Gi .

Proof

(2) ⇒ (1) : Let A be a finitely generated regular ideal of R . Since R is of P -finite character for

P = Min(R), A is contained in at most finitely many minimal prime regular ideals of R . Hence, (2) implies

that there is a regular element a ∈ Reg(R) such that vi(a) = vi(A) for every regular minimal ideal Pi of R .

So, A = Ra ; that is, A is principal.

(1) ⇒ (3) : Since every finitely generated regular ideal of R is principal, I(R) = β(R), and hence it

follows from Theorem 3.3 that Φ maps β(R) onto
⨿

i∈I Gi .

(3) ⇒ (2) : It follows immediately from the definitions. 2

4. Density and strong density theorems for rings of Krull type

Let R be an additively regular ring of Krull type. In this section we study “Density” and “Strong Density”

theorems for R . Moreover, we prove that the mapping Φ defined in Proposition 2.2 becomes an isomorphism

on I(R) under a certain condition.

We need the following definition. Two valuation rings V and W with the same total ring of fractions Q

are said to be independent if and only if V and W generate Q . Since any overring of a Marot valuation ring is

a valuation ring [8, Corollary 7.8], this is equivalent to saying that there does not exist a valuation ring U ⊆ Q

such that V ⊆ U and W ⊆ U .

Theorem 4.1 Let R be an additively regular ring of Krull type. Denote by vi the valuation associated with

the valuation ring R(Pi) where Pi is the center of vi for each i and by Gi the associated value group. Then

the following are equivalent:

(1) The valuation rings {R(Pi)}i∈I are pairwise independent.

(2) Each nonzero prime regular ideal of R is contained in at most one Pi .

(3) The “Density Theorem” holds for regular elements in R ; that is, for every finite collection of centers

P1, . . . , Pn of R(P1), . . . , R(Pn) respectively, and every choice of nonnegative elements gi ∈ Gi , there is a

regular element d ∈ R such that vi(d) = gi for 1 ⩽ i ⩽ n .
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Proof (1) ⇒ (2) If (2) fails, then R has a nonzero prime regular ideal P contained in 2 distinct P1 and

P2 , which are centers of R(P1) and R(P2) , respectively, so that the valuation ring R(P ) contains the valuation

rings R(P1) and R(P2) . Thus, R(P1) and R(P2) cannot be pairwise independent.

(2) ⇒ (3) Let g1, g2, . . . , gn be nonnegative elements of G1, G2, . . . , Gn respectively. By Lemma 2.5,

we can choose, for each i , a regular element ri ∈ R such that vi(ri) > gi and vj(ri) = 0 for all j ̸= i . Let

t1, t2, . . . , tn ∈ R be such that vi(ri) = gi, 1 ≤ i ≤ n , and set

si = ti(r1 · . . . · ri−1.ri+1 · . . . · rn).

Then for 1 ≤ i ≤ n , we get

vi(si) = vi(ti) + vj(r1) + . . .+ vi(ri−1) + vi(ri+1) + . . .+ vi(rn) = gi,

since vj(rj) = 0 for j ̸= i . On the other hand, for j ̸= i , we have that

vj(si) = vj(ti) + vj(r1) + . . .+ vj(ri−1) + vj(ri−1) + . . .+ vj(rn)

= vj(ti) + vj(rj) ≥ vj(rj) > gj .

Finally, set s = s1 + . . . + sn and s′ = s + ur1 · r2 · . . . · rn ∈ Reg(R) for some u ∈ R . Since

vi(ri) > gi, vi(u) ⩾ vi(rj) = 0, it follows that vi(u) + vi(r1) + vi(r2) + . . . + vi(ri) + . . . + vi(rn) > gi . Thus,

vi(s) = min{vi(s), vi(u) + vi(r1) + vi(r2) + . . .+ vi(rn)} = gi , for 1 ⩽ i ⩽ n .

(3) ⇒ (1) Let P1 and P2 be centers of R(P1) and R(P2) , respectively, and let γ be a regular element of

Q(R). If v1(γ) ⩾ 0 or v2(γ) ⩾ 0, then γ ∈ R(P1) or γ ∈ R(P2) . So, suppose that v1(γ) < 0 and v2(γ) < 0.

By (3) there exists a regular element r ∈ R such that v1(r) = −v1(γ) and v2(γ) = 0. Then we can write

γ = (γr)r−1 . Since v1(γr) = v1(γ) + v1(r) = 0, γr ∈ R(P1) . Also, v2(r
−1) = −v2(r) = 0 implies that

r−1 ∈ R(P2) . 2

Theorem 4.2 Let R be an additively regular ring of Krull type. Denote by vi the valuation associated with

the valuation ring R(Pi) , where Pi is the center of vi for each i and by Gi the associated value group. Then

the following are equivalent:

(1) Each nonzero prime regular ideal of R is contained in at most one Pi .

(2) The “Strong Density Theorem” holds for finitely generated regular ideals of R ; that is, for every finite

collection of P1, . . . , Pn , and every choice of nonnegative elements gi ∈ Gi , there is a finitely generated

regular ideal A of R such that vi(A) = gi for 1 ≤ i ≤ n , and vj(A) = 0 for all other Pj . Moreover, the

finitely generated regular ideal A can be chosen to be 2-generated.

Proof (1) ⇒ (2) By Theorem 4.1, the “Density Theorem holds for regular elements in R , so we can find a

regular element r ∈ R such that vi(r) = gi for 1 ⩽ i ⩽ n . Since R is of Krull type, it is of finite character,

and therefore there are at most finitely many centers M1, . . . ,Mt with corresponding valuations w1, . . . , wt at

which r is positive. By the “Density Theorem, we can find a regular element s ∈ R such that vi(s) = gi , for

1 ⩽ i ⩽ n , and wj(s) = 0, for 1 ⩽ j ⩽ t . Then the ideal (r, s) has the desired properties.
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(2) ⇒ (1) Suppose that (1) fails; then there are prime regular ideals P1 and P2 , centers of R(P1) and

R(P2) , respectively, containing P , where P is a nonzero prime regular ideal of R . We choose regular elements

a1 ∈ P1 −P and a2 ∈ P2 −P , and a regular element b ∈ P . Thus, we have v1(a1) < v1(b) and v2(a2) < v2(b).

If there is a finitely generated regular ideal A of R such that v1(b) = v1(A), then AR(P1) = bR(P1) ⊆ PR(P1) ,

which implies that A ⊆ AR(P1) ∩R ⊆ PR(P ) ∩R = P , so AR(P2) ⊆ PR(P2) ⊊ a2R(P2) . Thus, v2(A) > v2(a2),

which contradicts (2). Therefore, (1) holds. 2

If R is an additively regular ring of Krull type, then Φ (defined in Proposition 2.2) is a monomorphism

from the group of I(R) of invertible fractional ideals of R into the cardinal direct sum
⨿

i∈I Gi , where Gi s

are the value groups. This monomorphism could become onto if and only if each nonzero prime regular ideal of

R is contained in at most one Pi and the 2-generated regular ideal A , found in Theorem 4.2, is invertible. In

fact, the following result shows that A is invertible.

Proposition 4.3 Let R be an additively regular ring of Krull type. Denote by vi the valuation associated with

the valuation ring R(Pi) , where Pi is the center of vi for each i and by Gi the associated value group. The

2-generated regular ideal A , found in Theorem 4.2, is invertible.

Proof The ring R is of finite character, and there are at most finitely many centers P1, . . . , Pn with corre-

sponding valuations vi , 1 ⩽ i ⩽ n , at which A is positive. By Theorem 4.1, we can choose a regular element

x ∈ R such that vi(x) = vi(A) for all i . Let Q1, . . . , Qt with corresponding valuations wj , 1 ⩽ j ⩽ t , be the

set of centers, other than Pi , at which wj(x) is positive. By Theorem 4.1, we can choose a regular element

y ∈ R such that vi(y) = 0, 1 ≤ i ⩽ n , and wj(y) = wj(x), 1 ⩽ j ⩽ t . Let M1, . . . ,Ml with the corresponding

valuations uk , 1 ⩽ k ⩽ l , be the set of centers, other than Pi and Qj , at which uk(y) is positive. Again by The-

orem 4.1, there exists a regular element z ∈ R such that vi(z) = 0, 1 ⩽ i ⩽ n , uk(z) = 0, and wj(z) = wj(x),

1 ⩽ j ⩽ t . We claim that (x−1y, x−1z) is the inverse of A in R . Consider the ideal B = A(x−1y, x−1z).

We observe that, locally at each center P with the corresponding valuation vP , vP (B(P )) = 0, implying that

B(P ) = R(P ) , and hence B = A(x−1y, x−1z) = R . 2

Corollary 4.4 Let R be an additively regular ring of Krull type. Denote by vi the valuation associated with

the valuation ring R(Pi) , where Pi is the center of vi for each i and by Gi the associated value group. Let

Φ be the mapping defined in Proposition 2.2. Then Φ is a monomorphism from the group I(R) of invertible

fractional ideals of R onto the cardinal direct sum
⨿

i∈I Gi , where Gi s are the value groups, if and only if each

nonzero prime regular ideal of R is contained in at most one Pi .

Proof By Theorem 2.3, the mapping Φ embeds I(R) into
⨿

i∈I Gi , and by Theorem 4.2, Φ maps onto if

and only if each nonzero prime regular ideal of R is contained in at most one Pi . 2
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