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� Pollutants can have detrimental effects on living organisms. They can cause toxicity, damaging
cells, tissues and organs because of their high concentrations or activities. Plants provide a useful
system for screening and monitoring environmental pollutants. Among pollutants, aluminum is
considered as a primary growth limiting factor for plants resulting in decreased plant growth and
development. Although considered to be a non-essential and highly toxic metal ion for growth and
development, aluminum (Al) is easily absorbed by plants. Urticaceae family members have high
nutrient requirements demonstrated by leaves containing high levels of calcium (Ca), iron (Fe), mag-
nesium (Mg), and nitrogen (N). Urtica pilulifera is one of the important traditional medicinal
plants in Turkey. In this study, U. pilulifera was used as a bioindicator to investigate the possible
differences in the absorption and accumulation of mineral nutrients at different levels of the Al
exposure and examine the mineral nutrition composition of U. pilulifera under Al stress. Also,
some growth parameters (leaf-stem fresh and dry weights, root dry weights, stem lengths and leaf
surface area) were investigated. U. pilulifera seedlings were grown for two months in growth-room
conditions and watered with spiked Hoagland solution, which contained 0, 100, and 200 μM
aluminium chloride (AlCl3). It was observed that macro- and micro-nutritional status of roots and
leaves was altered by Al exposure. The concentrations of some macro- and micronutrients were re-
duced while concentrations of others were increased by excess of Al. Some macro- and micronutrients
were increased at low level of Al whereas reductions were observed at high level of Al, and vice versa.
The patterns were dependent on the macro- or micronutrient and the plant part.
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INTRODUCTION

Aluminum (Al) is the most abundant metal in the earth’s crust and one
of the most important components of the soil (7%). Also it is soluble as a
trivalent ionic form is highly active in acid soil (pH < 5.0) and is considered as
a primary growth limiting factor for plants resulting in decrease plant growth
and development (Thornton et al., 1986; Kochian, 1995; Matsumoto, 2000).
Among the common effects of Al are: decrease in total leaf number and size,
a decrease in shoot biomass, inhibition of root elongation, and chlorosis and
necrosis of leaves, leading to decreased photosynthetic activity (Thornton
et al., 1986; Kochian, 1995; Jones and Kochian, 1995). Aluminum also causes
ultrastructural and cellular changes in leaves, as cell division and elongation
are inhibited, and reduces stomatal aperture (Rengel, 1992; Kochian, 1995;
Delhaize and Ryan, 1995).

Aluminum does not exert any known function in plant metabolism (Foy,
1984; MacDonald and Martin, 1988). Among the ongoing research focused
on Al toxicity are those affecting a large number of cellular processes. Al can
inhibit the uptake of potassium (K+) (Liu and Luan, 2001), calcium (Ca2+)
(Huang et al., 1992), and magnesium (Mg2+) (Keltjens, 1995), and interacts
with both microtubules and actin filaments leading to deleterious effects
on cytoskeletal dynamics (Blancaflor et al., 1998; Sivaguru et al., 1999, 2000;
Silva et al., 2000). Aluminum modifies composition, physical properties, and
structure of the cell wall and plasma membrane (Wagatsuma et al., 1995;
Zhang et al., 1997; Ishikawa and Wagatsuma, 1998) and affects phosphate
and/or nucleotide metabolism (Matsumoto and Morimura, 1980; Wallace
and Anderson, 1984). Aluminum interference with the signal transduction
pathway could also play a role in Al toxicity (Jones and Kochian, 1995;
Jones et al., 1998; Ramos-Diaz et al., 2007). Al may cause oxidative stress,
which could be involved in Al inhibition of root growth (Yamamoto et al.,
2002). It also induces the secretion of organic acids from roots (Delhaize
and Ryan, 1995; Ma et al., 2001) and long term exposure to Al and inhibition
of root growth generally leads to nutrient deficiencies mainly of Ca, Mg, and
phosphorus (P) by interfering with the uptake, transport, and utilization of
nutrients (Kidd and Proctor, 2000; Scholl et al., 2005). Al induces deficiency
of nutrients by adversely affecting the root system causing inhibition of
root elongation and restricting absorption of mineral elements and water
(Slaski, 1994) leading to mineral deficiencies in shoots and leaves (Foy,
1988). Although regarded as a toxic element, Al frequently stimulates growth
at low concentrations (Foy, 1984; Kinraide, 1993).

Urticaceae family members are very common and widespread species
found in the margins of arable fields, gardens and countryside throughout
Europe, Asia, and Northern Africa (Firbank et al., 2002). Members of this
family have high nutrient requirements demonstrated by leaves containing
high levels of Ca, Mg, nitrogen (N) (Grime et al., 1988; Wilman and Riley,
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1993) and iron (Fe) (Salisbury, 1962). Urticaceae family member species
have been used as medicinal plants for years all over the world (Kavalali
et al., 2003) and leaves of Urtica are nutritious and rich in micronutrients
(Emmelin and Feldberg, 1949; Wagner et al., 1994). Urtica pilulifera
(Roman nettle) is one of the most important traditional drugs in Turkey
(Baser et al., 1986). The whole plant shows antiasthmatic, antidandruff,
astringent, depurative, diuretic, expectorant, purgative, galactogogue,
haemostatic, and hypoglycemic effects, and is a stimulatory tonic used
for medicinal purposes. It was especially used as a remedy for diabetes
mellitus, eczema, rheumatism, hemorrhoids, hyperthyroidism, bronchitis,
and cancer (Baytop, 1999; Kavalali et al., 2003).

Higher plants provide a useful system for screening and monitoring
environmental pollutants (Grant, 1994; Yasar et al., 2010). In this study,
U. pilulifera was used as a bioindicator to investigate the effects of different
levels of the Al exposure and examine the difference on mineral nutrition
uptake and accumulation of U. pilulifera.

MATERIALS AND METHODS

Growing Seeds

The U. pilulifera seeds were surface-sterilized by immersion in ethyl alco-
hol (50%) for 1 minute followed by deionized water for 5 minutes. They were
then transferred into small vessels containing sterilized compost for germi-
nation. During the germination period (2 weeks), the seeds were moistened
with deionized water. When the shoot lengths of the young plantlets reached
3–4 cm, they were transferred into standard plastic pots containing sterilized
compost and maintained under growth-room conditions. The plants were
grown under fluorescent tubes give an irradiance in 5000 μmol m−2 s−1.
(day/night-16/8 respectively), and a temperature of 23 ± 2◦C and relative
humidity 45–50%. Each of the experimental groups of eight replicates was
watered with Hoagland nutrient solution (Hoagland and Arnon, 1950) at
two-day intervals for the 2 months during which the stress treatments were
applied.

Application of Al

While control plants were watered only with Hoagland solutions, the ex-
perimental groups were watered with spiked Hoagland solutions [prepared
as 100 and 200 μM aluminum chloride (AlCl3)]. Each treatment was watered
with 40 ml of solution at two-day intervals. The soil pH was adjusted to 4 for
Al treatments using 0.2% (v/v) sulfuric acid (H2SO4).



472 I. Dogan et al.

Analytic Techniques

Seedlings were harvested at the end of the two-month experiment pe-
riod. Some growth parameters such as stem length, fresh and dry weight
of leaves and stems, and leaf area, were measured at the end of the study.
However, root fresh weights were not measured because of some problems
in removing soil particles on the fresh roots. Plant leaves and roots were
isolated and oven-dried at 80◦C for 24 h, milled in micro-hammer cutter
and fed through a 1.5-mm sieve. Samples were weighed as 0.5 g and trans-
ferred into Teflon vessels and then 8 ml of 65% (v/v) nitric acid (HNO3)
(Merck, Darmstadt, Germany) was added. Samples were mineralized in a
Berghof MWS-2 microwave oven (Berghof, Eningen, Germany) as follows:
in 145◦C for 5 min, in 165◦C for 5 min and in 175◦C for 20 min. After
cooling, the samples were filtered by Whatman filters (GE Healthcare, Fair-
field, CT, USA), and made up to 50 ml with ultra pure water in volumetric
flasks and then stored in sterile falcon tubes. Standard solutions were pre-
pared by using multi element stock solutions-1000 mg kg−1 DW and mineral
element [Al, Ca, Fe, K, Mg, manganese (Mn), sodium (Na), P, sulfur (S)
and zinc (Zn)] measurements were done by Inductively Coupled Plasma
Optical Emission Spectroscopy (ICP-OES) (PerkinElmer-Optima 7000 DV,
PerkinElmer, Grayson, GA, USA).

Statistical Calculations

The standard error values of the means were calculated to compare the
site categories. Statistical analysis was performed using a one way analysis of
variance (ANOVA) (for P < 0.05). Based on the ANOVA results, a Tukey
test for mean comparison was performed, for a 95% confidence level to test
for significant differences among treatments.

RESULTS AND DISCUSSION

The growth and uptake and accumulation of macro- and micronutri-
ents are altered extensively in plants grown with Al. Interactions of Al with
other macro- and micronutrients have been suggested as factors affecting
inhibitory effects of Al (Foy, 1974). It is generally known that plants grown
with Al at low pH exhibit a variety of nutrient-deficiency symptoms, with a
consequent decrease in biomass. In the present study, the effect of increas-
ing Al ion activity on shoot, stem, and root growth is shown in the Table 1.
There is a reduction in both leaf and root fresh and dry weights, with in-
creasing reduction observed at higher levels of Al (Table 1). There is an
increase in stem fresh weight at low concentration of Al and then following a
slight decrease at high concentration of Al, but stem dry weights increased at
both concentrations of Al, with increasing stem biomass observed at higher
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TABLE 1 Some growth parameters of U. Pilulifera in different Al levels (0, 100, and 200 μM) in two
months of growing period. All units of measure are per pot. According to the results of variance analysis
and Tukey’s test, the mean difference is significant at 0.05 levels

Control Al 100 μM Al 200 μM

Stem length (cm) 25.58 ± 0.88∗ 33.68 ± 0.8∗ 37.52 ± 0.64∗
Leaf fresh weight (g) 4.78 ± 0.14∗ 4.06 ± 0.19∗ 3.46 ± 0.31∗
Leaf dry weight (g) 1.04 ± 0.03∗ 0.98 ± 0.04 0.88 ± 0.03∗
Stem fresh weight (g) 3.66 ± 0.16∗ 4.65 ± 0.2 4.6 ± 0.46
Stem dry weight (g) 1.33 ± 0.08∗ 1.43 ± 0.07∗ 1.51 ± 0.14
Root dry weight (g) 1.94 ± 0.07∗ 1.92 ± 0.12 1.68 ± 0.18
Leaf area (cm2) 39.26 ± 0.42∗ 51.15 ± 1.3∗ 55.05 ± 1.51∗

∗Variance analysis and Tukey test are indicated (∗P < 0.05 significant).

levels of Al (Table 1). At the same time, enhancement of stem lengths and
leaf areas at both low and high concentrations of Al have been observed
but the degree of enhancements have been slowed at high concentration of
Al when compared with low concentration of Al (Table 1). Al toxicity is an
important growth-limiting factor for plants. Al interferes with a wide range
of physical and cellular processes. Potentially, Al toxicity could result from
complex Al interactions with apoplastic, plasma membrane, and symplastic
targets. Aluminum ions are taken up by plants through the root system and
are predominantly accumulated in the epidermis and in the outer cortex
(Wagatsuma et al., 1987; Delhaize et al., 1993). The endodermis possibly acts
as a barrier, and transport to the shoot and leaves is generally small. This is
consistent with the results of the present study. The data shows that much
of Al ions are held by the root system and only a small fraction is transferred
from root to shoot. At first, exposure to Al causes stunting of the primary
root and inhibition of lateral root formation. Affected roots are stubby and
inefficient in absorbing both nutrients and water (Rengel, 1992) due to inhi-
bition of cell elongation and cell division (Ryan et al., 1993; Kochian, 1995),
disruption of calcium and potassium utilization (Jones et al., 1998; Plieth
et al., 1999), decrease root respiration (Yamamoto et al., 2001), callose de-
position in plasma membrane and plasmodesmata (Sivaguru et al., 2000),
and the deposition of polysaccharides in cell walls by increasing synthesis of
hemicellulose, cellulose, and pectin. These carbohydrates may help to trap
Al in the apoplast, but may further disrupt cell elongation (Tabuchi and Mat-
sumoto, 2001; Teraoka et al., 2002). Damaged root systems can explore only
a limited volume of soil and are incapable of absorbing nutrients and water
(Wright, 1989). Water deficiency causes the closure of stomata (Epstein and
Grant, 1973; Quick et al., 1992), which decreases both transpiration and
photosynthesis in many plants (Zelitch, 1971; Fatemy et al., 1985). It also af-
fects many other metabolic pathways, mineral uptake, membrane structure,
stomatal structural changes and conductance, and carbon dioxide (CO2)
uptake (Davies and Zhang, 1991; Tardieu and Davies, 1993; Davies, 1995).
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The common responses of root and shoot to Al are a decrease in root and
shoot biomass, with increasing decrease observed at higher levels of Al. This
is also observed in the present study. Stem length and biomass increased as
compared to the control (Table 1). An increase in area of leaves was also
observed in 60-day Al treated (100 and 200 μM) U. pilulifera although there
was a decrease in leaf fresh and dry weights (Table 1). Plant cells respond to
stress factors in different ways depending on their tissue type. In the present
study, although there was an increase in the leaf area, structural cell degen-
eration was observed at palisade and spongy parenchyma after Al exposure.
This cell degeneration was severe at both 100 and 200 μM AlCl3. As a result
of this, reduced lamina thickness was observed. In conjunction, reduced
lamina thickness explains the reduced leaf biomass. Decreased chlorophyll
was monitored as an indicator of Al toxicity (Zhang et al., 2008). According
to Barnabas et al., 2000, Al affects photosynthesis by lowering the chloro-
phyll content and reducing electron flow. In addition, Al-stress-induced loss
in chlorophyll has been reported in many plant species like wheat, lemma,
sage, sorghum, rice, lentil, potato, and tobacco (Ohki, 1986; Gardner and Al-
Hamdani, 1997; Severi, 1997; Kuo and Kao, 2003; Tabaldi et al., 2007; Zhang
et al., 2008; Azmat and Hasan, 2008). Decline in chlorophyll (Chl) a/b ratio
was observed in Oryza sativa grown in the presence of excess Al (Sarkunan
et al., 1984). Both concentrations of Al (100 and 200 μM) caused significant
increase in leaf area whereas stem biomass was also increased. The results
revealed that the anatomical changes in leaf and stem were because of inef-
ficient nutrient and water uptake and consequently reduced photosynthetic
activity. It is believed that U. pilulifera tried to compensate the reduced pho-
tosynthetic activity by increasing the leaf area and strengthening the stem.
Overall, although symptoms of Al toxicity are also manifested in the shoots,
these are usually regarded as a consequence of injuries to the root system.

Table 2 shows Al concentrations in roots and leaves of U. pilulifera grown
in different Al levels. Aluminum concentration in U. pilulifera increased
dramatically with Al levels. There was a large difference in Al concentrations
among the roots and leaves of U. pilulifera. The concentration of Al was
increased significantly in roots and did not differ at 100 μM Al treatments but
increased at 200 μM Al treatments in leaves by the presence of Al (Table 2).
The differences between the roots and leaves of U. pilulifera were very high
for 100 μM and 200 μM Al treatments. For example, Al concentration in
roots of 100 μM and 200 μM Al treatments were about 1643 and 731 fold
higher, respectively, than that in leaves. The data shows that Al itself mainly
accumulated in the roots and only small amounts of Al were transported
into the leaves.

In U. pilulifera seedlings grown under different Al levels, the concen-
trations of some macro- and micronutrients were examined in leaves and
roots at 60-day of Al exposure. It is clear from the results that macro- and mi-
cronutrient composition in roots and shoots was altered by Al exposure. The
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TABLE 2 Concentrations of Ca, Fe, K, Mg, Mn, Na, P, S, and Zn (mg kg−1 dw) in leaf and root samples
of U. pilulifera grown in different Al (0, 100, and 200 μM) levels for two months. According to the
results of variance analysis and tukey test, the mean difference is significant at 0.05 levels

Control Al 100 μM Al 200 μM

Al (mg kg−1) Leaf 0.00 ± 0.00 0.00 ± 0.00 11.31 ± 0.22∗
Root 0.00 ± 0.00 1643.3 ± 45.1∗ 8276.67 ± 64.7∗

Ca (mg kg−1) Leaf 12415.0 ± 104.6∗ 8171.25 ± 99.15∗ 5258.0 ± 25.3∗
Root 2491.3 ± 94.8∗ 4769.67 ± 50.78∗ 5201.67 ± 28.07∗

Fe (mg kg−1) Leaf 123.59 ± 3.98∗ 99.03 ± 0.97∗ 124.98 ± 1.05∗
Root 1610.0 ± 38.41∗ 2028.63 ± 34.28∗ 1204.67 ± 59.44∗

K (mg kg−1) Leaf 15222.25 ± 149.24∗ 11830.0 ± 116.06∗ 8478.25 ± 110.1∗
Root 4365.0 ± 73.04∗ 3194.0 ± 34.7∗ 2589.3 ± 35.4∗

Mg (mg kg−1) Leaf 5436.25 ± 176.64∗ 6384.5 ± 135.09∗ 4564.75 ± 13.4∗
Root 2159.3 ± 11.53∗ 1998.67 ± 53.34∗ 2313.0 ± 80.23∗

Mn (mg kg−1) Leaf 20.25 ± 0.71∗ 53.27 ± 0.87∗ 81.84 ± 1.24∗
Root 21.58 ± 0.38∗ 68.11 ± 0.31∗ 84.48 ± 0.92∗

Na (mg kg−1) Leaf 922.88 ± 15.2∗ 2356.8 ± 38.24∗ 1992.5 ± 35.57∗
Root 2519.3 ± 21.15∗ 1914.0 ± 7.69∗ 1596.0 ± 25.33∗

P (mg kg−1) Leaf 3253.25 ± 36.8 3435.0 ± 15.34∗ 3177.0 ± 52.28
Root 2917.0 ± 82.29 4313.0 ± 20.74 3540.67 ± 16.02∗

S (mg kg−1) Leaf 9313.5 ± 110.25 10434.0 ± 282.8 9087.0 ± 43.65∗
Root 4611.67 ± 185.7 7860.67 ± 143.9 10246.67 ± 32.35∗

Zn (mg kg−1) Leaf 28.42 ± 0.36∗ 35.5 ± 0.93∗ 23.01 ± 0.49∗
Root 26.4 ± 0.9∗ 32.85 ± 0.52∗ 66.6 ± 1.78∗

∗Variance analysis and Tukey test are indicated (∗P < 0.05 significant).

macro- and micronutrient concentrations in U. pilulifera plant tissues are
shown in Table 2. There existed significant differences in the accumulation
of some macro- and micronutrients in both roots and leaves of U. pilulifera
seedlings under Al stress. The concentrations of several macro- and micronu-
trients were reduced by the presence of Al. Root concentration of K and Na
and leaf concentration K and Ca was reduced by the Al treatment, with the
greatest reduction observed at higher levels of Al (Table 2). Contents of
Ca, Mn, S, and Zn in roots and Mn and Na in leaves were increased in the
presence of Al, with the greatest increase observed at higher levels of Al
(Table 2). For root concentration of P and Fe and leaf concentration of Zn
and Mg, a slight increase at 100 μM Al was found relative to the control,
and showed marked decrease with increasing Al level (100 μM-200 μM)
(Table 2). No significant difference in root concentration of Mg and in leaf
concentration of P, S, and Fe were found between any Al treatment and the
control (Table 2).

In our study, concentration of K in leaves and roots was reduced at both
levels of Al. It was demonstrated that Al may block channels conducting
influx of K+ in guard cells (Schroeder, 1988) and also corresponding chan-
nels in wheat roots (Gassmann and Schroeder, 1994) and by blocking K+

channel, turgor-driven cell elongation would be interfered (Liu and Luan,
2001). Aluminum may enhance transport of K+ from cells by channels in
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plants (Hedrich and Neher, 1987; Tester, 1990). Aluminum stimulates the
efflux of both malate and K+ from root apices of other wheat cultivars
(Delhaize et al., 1993; Ryan et al., 1995). By binding of Al to the root mem-
brane, an increase in K+ efflux is possible (Wagatsuma et al., 1987). Given
information shows consistency with the present results.

Concentration of Ca was increased in roots but decreased in leaves at
both levels of Al in U. pilulifera seedlings. An Al-induced increase in Ca was
found in root protoplasts of wheat (Lindberg and Strid, 1997). Al can also
decrease the cytosolic level of Ca2+ by acting as a Ca-channel blocker in the
plasma membrane (Pineros and Tester, 1995). This is consistent with the
present results. An increase in the cytosol Ca2+ depended on inhibition of
the Ca2+-channels by Al or on stimulated transport of Ca2+ through channels
was dependent on the specific plant parts.

In our investigation, P and S uptake were increased in root cells at both
levels of Al comparing with the control, but for P the degree of increment
was lower at 200 μM Al. Al can form complexes with P and S at any pH
(Foy et al., 1978). Because of the precipitation of P and S with Al as Al phos-
phate and Al sulfate may result in high P and S contents in roots (McCormick
and Borden, 1972). Similar values were obtained in the present experiment.
Following this, P and S deficiencies were expected in leaves but a slight in-
crease at low level of Al and then following the increment, a slight decrease
at high level of Al were observed in leaves comparing with the control for
both P and S. Concentrations of P and S in the leaves of U. pilulifera were
not affected significantly by any of Al treatments. The high nutrient concen-
trations in soil might enable sufficient nutrient uptake by plants, even when
root vitality and nutrient uptake capacity are reduced by Al (Foy et al., 1978).

Al treatments increased the concentration of Mn and Zn in roots and
leaves at both levels of Al, with increasing increments at high levels of Al.
For Zn at high level of Al treatment, a decrease was observed following the
increment at low level of Al treatment in leaves. Regarding the acquisition
of relatively unavailable micronutrients such as Zn and Mn from the soil,
terrestrial plants have evolved sophisticated strategies. These essential macro-
and micronutrients at the same time are potentially very toxic to plants. Due
to this potential toxicity, the uptake, transport, and accumulation of these
macro- and micronutrients is highly coordinated and regulated by plants
(Kochian et al., 2002). The transmembrane proton (H+) gradient serves as
the major driving force for secondary ion transport processes. H+-ATPase
is responsible for the formation and maintenance of the transmembrane
H+ gradient. Al-induced inhibition of H+-ATPase activity and as consequent
of disruption of the H+ gradient could indirectly alter ionic status and ion
homeostatis of root cells (Kochian et al., 2005). Changes in ionic strength,
pH, the concentration of other elements and complexing ligands can have
effects on the activity of cells. As a consequence of these events, a number of
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stress responses can be produced such as expression of oxidative stress genes
(Ezaki et al., 2000; Milla et al., 2002) and making the synthesis of several
proteins (Basu et al., 1994). For example, increased expression, resulting
from changes in the plant Zn and Mn status could lead to increased Zn and
Mn influx in the roots and shoots. Plants accumulate sufficient Na+ salts in
vacuoles to maintain turgor and growth if water potentials are low (Hellebust,
1976; Jennings, 1976). Aluminum interrupts water uptake (Rengel, 1992).
Data shows that there was an increase in leaves at both levels of Al treatments
although the increment was slowed at high level of Al treatment. Similarly,
in the present study, Na+ might have been accumulated in vacuoles of leaves
to maintain turgor because of water stress. Experimental data showed that Fe
concentrations in roots and leaves were influenced by Al treatments. In roots,
there was an increase at low level of Al and then a decrease at high level of Al.
On contrary, there was a reduction at 100 μM Al and following the reduction,
an increase was observed at 200 μM Al. Those increments and reductions
were small in both roots and leaves. There was antagonism between Fe and
Zn in leaves. Fe concentration was reduced with increasing Zn concentration
at low level of Al treatment but at high level of Al treatment, Fe concentration
was increased while Zn concentration was reduced. Zn-induced inhibition
of Fe translocation from roots to leaves was observed. It was observed that
increased Zn greatly increased translocation of Mn to soybean tops (White
et al., 1974). A similar result was obtained in the present study. It seems that
there are complex interactions between major ions including essentials and
nonessentials for plants.

Al can interrupt the uptake of many cations including Ca2+, Mg2+, K+,
and NH4

+ (Huang et al., 1992; Rengel and Elliott, 1992; Nichol et al.,
1993; Ryan and Kochian, 1993). The root-cell ion transport proteins can
be blocked directly by Al. For example, recently some evidence has been
presented that Al3+ interacts directly with several different plasma mem-
brane channel proteins, blocking the uptake of ions such as K+ and Ca2+

(Gassmann and Schroeder, 1994; Pineros and Tester, 1995; Pineros and
Kochian, 2001). Because of ionic size similarities between Mg2+ and Al3+,
displacement of Mg2+ by Al3+ in biological systems is possible. The negative
effect of Al on concentration of Mg2+ may be explained by ion antagonism
at uptake sites although there was a slight decrease at low level of Al and an
increase following the reduction at high level of Al in roots and vice versa in
leaves. The initial increment at low level of Al in leaves could be the result
of alleviation of H+ toxicity. Similarly, Andrew et al. (1973) reported that Al
treatment had little effect on Mg levels.

In conclusion, it was observed that some growth parameters (leaf-stem
fresh and dry weights, root dry weights, stem lengths, and leaf surface area)
of U. pilulifera were extensively altered by Al exposure and Al interferes with
the uptake, transport, and use of several macro- and micronutrients. Excess
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of Al reduces the uptake of certain elements and increases that of others,
the patterns being dependent on the element and the plant part involved.
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