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Abstract Artificial intelligence methods are employed to

predict cation exchange capacity (CEC) from five different

soil index properties, namely specific surface area (SSA),

liquid limit, plasticity index, activity (ACT), and clay

fraction (CF). Artificial neural networks (ANNs) analyses

were first employed to determine the most related index

parameters with cation exchange capacity. For this pur-

pose, 40 datasets were employed to train the network and

10 datasets were used to test it. The ANN analyses were

conducted with 15 different input vector combinations

using same datasets. As a result of this investigation, the

ANN analyses revealed that SSA and ACT are the most

effective parameters on the CEC. Next, based upon these

most effective input parameters, the fuzzy logic (FL)

model was developed for the CEC. In the developed FL

model, triangular membership functions were employed for

both the input (SSA and ACT) variables and the output

variable (CEC). A total of nine Mamdani fuzzy rules were

deduced from the datasets, used for the training of the ANN

model. Minimization (min) inferencing, maximum (max)

composition, and centroid defuzzification methods are

employed for the constructed FL model. The developed FL

model was then tested against the remaining datasets,

which were also used for testing the ANN model. The

prediction results are satisfactory with a determination

coefficient, R2 = 0.94 and mean absolute error,

(MAE) = 7.1.

Keywords Artificial intelligence method � Fuzzy logic �
Artificial neural network � Clayey soils � Soil index

properties � Cation exchange capacity

Introduction

The quantity of the exchangeable cations needed to neutralize

the negative charges in a clay mineral structure (at a given

pH) is called the cation exchange capacity (CEC) and it is

expressed in milliequivalents (mEq) per 100 g of dried solid

(or centimoles of charge of ion per kilogram, cmolc/kg). The

CEC of a clayey soil originates primarily in the clay-sized

fraction though a small portion of the silt-sized fraction also

contributes to the soil’s ability to hold on to cations.

In many geotechnical and geoenvironmental engineer-

ing applications, it is necessary to have an estimate of the

CEC of a soil in order to allow preliminary design esti-

mates. In the literature, it is well documented that the

adsorption capacity of a soil is related to its CEC: the

greater is the CEC, the greater is the adsorption capacity. It

is also reported that CEC is related to the swelling potential

of a clayey soil. However, methods for determining the

CEC of soils are somewhat cumbersome and time con-

suming (Manrique et al. 1991). Standard methods of CEC

determination involve several steps (e.g. displacement of

the saturating cation requires several washings with alco-

hol). Therefore, there is a need for an efficient and quick

method for estimating the CEC of soils for practical

engineering applications. In this respect, researchers use

parameters that are easy to measure in order to predict

parameters that are somewhat cumbersome to obtain.
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Several researchers have correlated soil index properties

to the CEC and it is reported that the CEC of a soil is

closely related to its specific surface area (SSA) (Curtin

and Smillie 1976; Cihacek and Bremner 1979; Tiller and

Smith 1990; Petersen et al. 1996). Curtin and Smillie

(1976) observed in Irish soils that the CEC was strongly

correlated with its organic matter content and specific

surface area, but not to its clay content. Similarly, Farrar

and Coleman (1967) reported that the total surface area and

CEC had correlation coefficients of 0.9 or greater for 19

British clayey soils. Farrar and Coleman (1967) concluded

that the coefficient of correlation was sufficiently high to

correlate both total surface area and Atterberg limits to the

CEC. Ohtsubo et al. (1983) studied the relationships

between the CEC and clay fraction, liquid limit (LL),

plastic limit (PL), and plasticity index (PI) and reported

that CEC has highest correlation coefficients with LL and

PI parameters. The significant relationship (R2 = 0.72)

between the liquid limit and the CEC was also observed by

Smith et al. (1985).

Other than these experimental works, few researchers

have attempted to employ mathematical tools for the pre-

dicition of CEC. In this respect, the neural network models

were employed to develop a pedotransfer function for

predicting soil cation exchange capacity using the other

soil properties (Amini et al. 2005; Fooladmand 2008; Ak-

barzadeh et al. 2009; Keshavarzi and Sarmadian 2010;

Keshavarzi et al. 2011). Akbarzadeh et al. (2009) compared

neuro-fuzzy and artificial neural networks (ANN) methods

and reported that neuro-fuzzy methods perform better than

ANN for predicting CEC.

The benefits of using ANN models are the ease of

application and robustness. They are, however, ‘‘black

box’’ models. They do not yield an explicit relation

between input and output variables, which makes them

more difficult to interpret. All that the model offers is a

weight matrix that defines the weights of interlayer con-

nections, which are optimized after thousands of iterations.

Considering the type of data used in CEC modeling, fuzzy

logic (FL) may prove to be a better modeling tool. This is

because such data are always associated with some error,

which makes the fuzzy approach more suitable. First of all,

the fuzzy approach provides possible rules relating input

variables to the output variable; hence, it is more in-line

with human thought. Therefore, engineers can rapidly

develop their own set of rules to test for their fit for the

fuzzy model. This makes the fuzzy approach more user

friendly.

The objective of this study is to develop a FL model to

estimate the CEC of clayey soils by using the most effec-

tive parameters. The five different soil index properties

were used for better estimation of CEC.

ANNs

ANNs have an ability to identify patterns between input

and output variables. In the commonly employed three-

layer, feed-forward neural network (FFNN), the input

quantities (xi) are fed into the input layer neurons which, in

turn, pass them on to the hidden layer neurons (zi) after

multiplying them by the connection weights (vij). A hidden

layer neuron adds up the weighted input received from

each input neuron (xivij), associates it with a bias (bj), and

then passes the result (netj) on through the activation

(transfer) function, which can be sigmoid or tangent

hyperbolic [tanh (x)] (Govindaraju and Rao 2000; Tayfur

2012).

Similarly, the produced outputs from the inner neurons

are passed to the network output neuron. The net infor-

mation received by the output neuron from the inner neu-

rons is passed through the activation function to produce

the network output. The optimal weights are found by

minimizing a predetermined error function (E) of the fol-

lowing form (Eq. 1) (ASCE 2000; Tayfur 2012):

E ¼
X

P

X

p

yi � tið Þ2 ð1Þ

where yi is the component of an ANN output vector Y; ti is

the component of a target output vector T; p is the number

of output neurons; and P is the number of training patterns.

The gradient-descent method, along with the chain rule of

differentiation, is generally employed to modify the net-

work weights as (Eq. 2) (Tayfur 2012):

Dvij nð Þ ¼ �d
oE

ovij

þ aDvij n� 1ð Þ ð2Þ

where, DvijðnÞ and Dvijðn� 1Þ are the weight increments

between node i and j during the nth and (n-1)th pass or

epoch; d is the learning rate; and a is the momentum factor.

The details of ANNs can be obtained from ASCE (2000),

Govindaraju and Rao (2000), Tayfur (2012).

Overview of FL

A general fuzzy system has basically four components:

fuzzification, fuzzy rule base, fuzzy output engine, and

defuzzification (Fig. 1).

Fuzzification components form fuzzy sets for input–

output variables using membership functions. Fuzzy

membership functions may take many forms, but in prac-

tical applications, simple linear functions, such as trian-

gular ones, are preferable. Figure 2, for example, presents

fuzzy membership functions for temperature in Izmir,

Turkey. The key idea in FL is the allowance of partial

belongings of any object to different subsets of a universal
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set. For example, four subsets in Fig. 2 form the universal

set for the temperature and 26 �C can be, at the same time,

a member of hot and warm subsets with 0.2 and 0.8

membership degrees, respectively.

Intuition, rank ordering, and inductive reasoning can be,

among many ways to assign membership functions to fuzzy

variables. The intuitive approach is instead used commonly

because it is simple and derived from the innate intelli-

gence and understanding of human beings. Fuzzification

presented in Fig. 2 is an example of the intuitive approach.

The fuzzy rule base contains rules that include all pos-

sible fuzzy relations between inputs and outputs. These

rules are expressed in the IF–THEN format. In the Mam-

dani rule system, both antecedent and consequent parts of a

rule contain verbal statements. The following is an exam-

ple of a Mamdani rule:

IF wind Wð Þ is high THEN temperature Tð Þ is low.

The details of the Mamadani rule construction meth-

odology are given elsewhere (Tayfur 2006, 2012).

The fuzzy inference engine takes into account all the

fuzzy rules in the fuzzy rule base and learns how to

transform a set of inputs to corresponding outputs. To do

so, it uses either ‘‘min’’ or ‘‘prod’’ activation operators. In

order to illustrate the inferencing methodology, it is con-

sidered a simple case presented in Fig. 3, where there are

two input variables of X and Y (Fig. 3a, b) and one output

variable of Z (Fig. 3c). For this simple system, we also

assume the following fuzzy rules:

IF X is low and Y is low THEN Z is high

IF X is high and Y is high THEN Z is low.

As seen in (Fig. 3a), X = 20 is a part of ‘low’ and ‘high’

subsets with membership degrees of 0.8 and 0.2, respec-

tively. Similarly, Y = 30 is part of ‘low’ and ‘high’ subsets

with 0.4 and 0.6 degrees of membership, respectively

(Fig. 3b). When this input pair is fed into the fuzzy model,

the inference engine would trigger the above rules. From

the triggered first and second rules, the engine would find,

by min operation, fuzzy output subsets of ‘high’ and ‘low’,

Inputs Fuzzification

Fuzzy Rule Base

Fuzzy Inference Engine

OutputsDefuzzification

Fig. 1 Schematic

representation of the fuzzy

system

µ(x)

0 8 16 24 32

1,0

0,8

0,2

Cold Cool Warm Hot

Temperature (C°)26

Fig. 2 Fuzzification of temperature for Izmir (Tayfur 2012)
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Fig. 3 Schematic representation of fuzzy inferencing a X = 20,

b Y = 30, and c fuzzy output sets for Z
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respectively, with different firing strengths (Fig. 3c). One

can find the details of the inferencing subprocess in Jantzen

(1999) and Tayfur (2012).

The next sub-process in the inferencing engine is the

composition where all of the fuzzy output subsets, obtained

as a result of the activation operators from the triggered

rules, are combined to form a single fuzzy subset for the

output variable. For this purpose, there are basically two

composition methods, maximization (max) and summation

(sum). In max composition, as an example, the two shaded

areas in (Fig. 3c) are combined, by taking the point-wise

maximum over the two subsets (Fig. 4a). In sum compo-

sition, the combined output fuzzy subset is constructed by

taking the point-wise sum over all of the fuzzy output

subsets (Fig. 4b). The details of the composition subpro-

cess are given elsewhere (Sen 2004; Tayfur 2012).

Defuzzification converts the resulting fuzzy outputs

from the fuzzy inference engine to a number. Although

there are many defuzzification methods, the centroid

method is commonly employed. In the centroid method,

the crisp output value is the abscissa under the centre of

gravity of the combined fuzzy output subset (z* in Fig. 4b

is assumed to be the centroid of the area and be the crisp

value). The details of the FL algorithm are available in the

literature (Jantzen 1999; Sen 2004; Tayfur 2012).

Materials and methods

Material characterization

In the analyses, 13 from present study and 37 from literature

(Cerato 2001) clayey soil samples of different origins and

characteristics were used. All soil samples were oven-dried

(80 �C–48 h), crushed and sieved through 75 lm. Grain size

distribution, specific gravity and CEC of the samples were

determined according to ASTM D-422-63 (ASTM 1999),

ASTM D-854-92 (ASTM 1999), and the Na method (Chap-

man 1965), respectively. LL and PL were determined

according to ASTM D-4318-98 (ASTM 1999), respectively.

The physicochemical properties of the remolded samples are

given in Table 1. The SSA of 13 remolded soils were deter-

mined using the MB-spot test method (Santamarina et al.

2002). All tests were run in duplicate for accuracy. No treat-

ment was applied on the soil samples before the SSA tests.

ANN and neuro-fuzzy analyses

In this study, five different soil index parameters and their

variations were used in the ANN analyses. A total of 50

clayey soil sample data (37 of them compiled from liter-

ature) were utilized for this purpose (Cerato 2001; Yu-

kselen 2007). The properties of the 50 clayey soil samples

are given in Table 1. NeuroSolutions Version 5.0 was used

for the ANN analyses. Fifteen ANN analyses were con-

ducted for different parameter combinations. The number

of data used in the analyses was presented in Table 2.

All used data were separated randomly for the testing and

the training phases. Eighty percent of the data was used to

train the network and the rest to test the accuracy of the

developed models. Multilayer perception and a tansig type

transfer function were selected for the neural network model.

As a result of trials, it was decided to use one hidden layer.

Equal momentum and step size values (a = d = 0.01) were

used during the analyses. Maximum epoch number 3,000 and

0.01 (threshold) mean square error restrictions were

employed to terminate the training of the network. For the

normalization process, Eq. 3 was employed.

xactual ¼ ½½1:8ð xi � xminð Þ=ðxmax � xminÞÞ� � 0:9� ð3Þ

Using ANN analyses, the most effective soil index

parameters were determined on the CEC, and then the FL

model was developed according to these results. MATLAB

Version 7.8 (2009) which contains a fuzzy tool box was

used for the FL analyses. The Mamdani Fuzzy Inference

System was selected for the fuzzy model. The model was

composed of two input parameters [SSA and activity

(ACT)] and one output parameter (CEC). Similar to the

ANN analyses, for the fuzzy model, the data were sepa-

rated into the calibration and testing parts. While 80 % of

(a)

(b) 

µ(Z)

0,4

0,2

Z

Z*

µ(Z)

0,4

0,2

Z

Z*

0,6

Fig. 4 Schematic representation of a max composition and BOA

defuzzification (z* halves the whole set) and b sum composition and

COG defuzzification (z* is the abscissa under the centre of gravity of

the whole set)
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Table 1 The used clayey soil

samples properties
Cation exchange

capacity (mEq/

100 g)

Specific surface

area (m2g-1)

Liquid

limit

(%)

Plasticity

index (%)

Clay

fraction

(\2 lm)

Activity References Testing

data

25.1 57.6 58 14.1 32.5 0.43 Yukselen (2007)

83.7 364.8 113.6 52.9 82 0.65

60.5 136.8 61.6 11.4 35.5 0.32

57.2 54 44.9 6.2 32 0.19

5.9 26.4 24.5 6.45 21 0.31

67.1 768 330.7 280.8 80 3.51

26.2 106.8 72.2 37.5 77 0.49

132.3 753.6 111.5 69.9 56.8 1.23

6.8 26.4 51.7 9.8 38 0.19

24 79.2 58.4 23.3 28 0.83

38.4 168 70 40 75 0.54

86.1 720 464.8 416.6 90 4.63 Testing

127.9 912 395.8 343.4 90 3.82

2 15 42 16 36.2 0.44 Cerato (2001)

(Artificial clays)0.9 23 60 28 76 0.37

3.3 26 70 30 67.6 0.44

2.1 38 65 27 36.2 0.75 Testing

2.1 41 66 29 69.5 0.42

6.1 61 58 30 63.8 0.47

17.6 158 33 10 48 0.21

24.4 224 69 32 42.8 0.75

60.8 381 64 25 47.4 0.53 Testing

84.4 534 142 98 73.3 1.34

76.4 637 519 484 60.4 8.01 Testing

67 675 97 50 49.5 1.00

47.2 704 560 508 95.8 5.30

120 767 130 72 37.7 1.91 Testing

6.7 31 37 13 37 0.35 Cerato (2001)

(Natural Clays)5.9 52 48 19 48.2 0.39

7.4 53 53 21 56.9 0.37

8.9 54 46 20 49.8 0.40

9 70 45 20 57.9 0.35

9.2 53 38 17 42.2 0.40

9.6 44 39 19 53 0.36

15 36 48 21 37 0.30

18.3 122 35 15 16.4 0.91

18.5 25 25 8 19.9 0.40

18.5 29 42 20 56.2 0.36

22.2 120 42 25 12.4 2.02

27.5 153 74 55 58.3 0.94

28.1 149 47 27 44.5 0.61

31.6 160 54 34 38 0.89

42.6 169 60 33 60.4 0.55

43.3 83 56 39 10.2 3.82

44.9 255 61 33 71.1 0.46

15.5 11 24 5 22.2 0.23 Testing

13.4 65 74 42 50 0.84 Testing

28.4 101 42 28 25.1 1.12 Testing

17.9 78 64 39 31 1.26 Testing

13.9 75 32 20 21.3 0.94 Testing
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the data was used for the establishment of the fuzzy rules,

20 % of the data was assigned randomly to test the accu-

racy of the FL model. The testing data is shown in Table 1.

Results and discussions

CEC predication by ANNs

Five clayey soil index parameters were investigated by

combining four and three parameters separately so as to

find the parameters with the greatest effect on the cation

exchange capacity. In the first combination SSA-LL-PI-CF

parameters were used. While 40 datasets were used in

network training, 10 datasets were reserved for the network

testing. The results of the first combination are presented in

Table 2. Table 2 shows that SSA has a significant influence

on the CEC.

In the second combination, the ACT parameter was used

instead of CF. All ANN analyses were conducted for the

same datasets with the same model features. As for the first

combination, four sub-combinations were also investigated

for the second combination parameters. The results are

presented in Table 2. When the SSA parameter is included

in the combination, the determination coefficients are

higher for the case where the SSA parameter is excluded

(LL-PI-ACT). The first two combinations (SSA-LL-PI-

ACT and SSA-LL-PI-CF) and their sub-combinations

show that there is a very strong relationship between SSA

and CEC parameters (Table 2). The results of the first two

combinations in Table 2 indicate that the ACT is more

effective than the CF parameter on CEC. In the third

combination, SSA, LL, CF, and ACT parameters were used

and the PI parameter was eliminated. The ANN testing

results for this case are also summarized in Table 2. This

shows that SSA is the most effective parameter, followed

by ACT.

As a result of ANN sensitivity analyses results

(Table 2), it was found that SSA and ACT are the most

effective parameters for the prediction of CEC. The model

closely predicts the measured values with R2 = 0.92,

MAE = 9.11, and MSE 114.94. Therefore, these parame-

ters were employed for the construction of the fuzzy logic

model.

CEC prediction by neuro-fuzzy analyses

As a result of the ANN analyses, the most effective soil

index parameters were determined on the cation exchange

capacity, and then the fuzzy logic model was developed

according to these results. The model was composed of two

input parameters [SSA and ACT] and one output parameter

(CEC). By looking at the distribution of the available data

for each variable, it was decided that the number of subsets

and corresponding ranges for each variable. This is well

applied methodology in fuzzy modeling. Following the

data clustering for each variable (Fig. 5), related fuzzy

subsets were created, as presented in Fig. 5. Each variable

(two input and one output) was then designed to have five

fuzzy subsets with the triangular and trapezoidal mem-

bership functions (Fig. 5).

With the help of an excel worksheet, the model rules

were constituted following the rule-construction procedure

in Tayfur (2012). The possible rules constituted using the

calibration data set were then subject to the expert’s

interpretations, consistency of the rules and weight of the

rules. In the end, a total of nine optimal Mamdani type

fuzzy rules were obtained, as summarized in Table 3.

The constructed FL model, as a result of the calibration

dataset, was first subject to predict CEC measured values as

a function of the SSA and ACT in the calibration data set to

check the optimality of the calibration procedure. For this

stage, R2 is obtained 0.91, MAE = 9.34, MSE = 130.76

(training) and the prediction of the measured data is pre-

sented in (Fig. 6a, b). As seen, the model closely simulates

the measured data. It neither over nor under-predicts

measured values. These calibration results imply that the

constructed FL model (Fig. 5) with nine rules (Table 3) is

satisfactory.

The calibrated FL model was then tested against the

validation datasets. Figure 7a and b show measured

versus predicted results. As seen, the model closely

predicts the measured values with R2 = 0.93,

Table 2 R2 and MAE values for the combinations

R2 MAE Data number

1st Combination set

SSA-LL-PI-CF 0.986 14.17 50

SSA-LL-PI 0.960 13.64 50

SSA-LL-CF 0.951 15.14 50

SSA-CF-PI 0.946 14.24 50

LL-PI-CF 0.050 28.49 50

2nd Combination set

SSA-LL-PI-ACT 0.978 9.44 50

SSA-LL-PI 0.949 10.40 50

SSA-LL-ACT 0.939 11.15 50

SSA-ACT-PI 0.946 11.53 50

LL-PI-ACT 0.264 24.75 50

3rd Combination set

SSA-LL-CF-ACT 0.903 21.47 50

SSA-LL-CF 0.870 22.70 50

SSA-LL-ACT 0.946 21.32 50

SSA-ACT-CF 0.894 20.45 50

LL-ACT-CF 0.334 35.45 50
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MAE = 7.12, and MSE = 98.74 (testing). Note that

MAE value of 7.12 may be considered to be high for

low measured values. This may imply that ANN and FL

models make over-predictions of very low measured

values used in this study. However, similar model per-

formances can be commonly encountered in a wide

spectrum of research area in the literature, especially

when the employed range of the dataset is too large

(Tayfur 2012). Hence, performance of a model is eval-

uated overall, not just based upon low (or high) values.

In that sense, it can be stated that the developed soft

computing methods in this study performed overall

satisfactorily.

Investigation of soil properties such as CEC has an

important role in studies concerning pollution prevention

and crop management. Since laboratory procedures for
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estimating CEC are cumbersome and time-consuming, it

is necessary to develop an indirect approach such as

neuro-fuzzy models for prediction of this parameter from

other soil data. Therefore, in this study indirect methods

have been used to estimate cation exchange capacity for

preliminary assessments. A total of fifty soil samples

were collected from two different studies, and therefore,

the soil samples have widely different properties with

CEC values determined by different operators. According

to the overall results of this study, the most related soil

index parameters to CEC are SSA and ACT. If SSA and

ACT are known, the CEC value can be estimated using

the neuro-fuzzy model equation which was derived in

this study. CEC can be determined by performing only a

limited number of test operations, thus saving engineer-

ing effort, time, and funds.

Conclusions

In the first part of the study, the relationships between the

soil properties (SSA, LL, PI, CF, and ACT) and CEC were

investigated by using ANN analyses. Three main combi-

nations and 12 sub-combinations were constituted by using

five soil properties (SSA, ACT, LL, CF, PI). The deter-

mination coefficients and MAE values were obtained from

15 ANN analyses. In light of these results (R2 and MAE),

the SSA parameter was found to be the parameter with

most effect on the CEC. Moreover, as a result of the

analyses conducted, it is also observed that the ACT

parameter has more effect than the CF and PI parameters.

As a result of the ANN analyses, in the end, the SSA and

ACT parameters were selected as the most influential

parameters on the CEC. The ANN performance in pre-

dicting CEC was found to be satisfactory.

Table 3 Constructed fuzzy

rules
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Fig. 6 a Comparison between measured CEC versus FL predicted

CEC with training data. b Comparison between measured CEC and

FL predicted CEC against data order (training data)
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CEC with testing data. b Comparison between measured CEC and FL

predicted CEC against data order (training data)
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In the second part of the study, a FL model was used to

constitute a connection between CEC and effective

parameters (SSA-ACT). The FL model’s performance

revealed that five subsets for each variable with nine

optimal fuzzy rules are sufficient to perform satisfactorily.

The FL model performed as well as the ANN. The pre-

diction results are found to be satisfactory with a deter-

mination coefficient (R2) 0.94, mean absolute error (MAE)

7.1, and mean square error (MSE) 98.7. These results

reveal that FL models can be used to predict CEC as a

function of SSA and ACT. However, it should be noted

that the models, while they satisfactorily predict the high

values, tend to over predict the very low values.
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