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Abstract: We provide an error analysis of the operator splitting method of the Lie-Trotter type applied to the Burgers-Huxley equation
ut +αuux− εuxx = β (1−u)(u− γ)u. We show that the Lie-Trotter splitting method converges with the expected rate inHs(R), where
Hs(R) is the Sobolev space ands is an arbitrary nonnegative integer. We split the equation into linear and nonlinear parts and apply
numerical methods for these subproblems. We present errorsand confirm the theoretical results with the numerical example.
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1 Introduction

Partial differential equations have great importance in
most fields of science. Real-world physical systems,
including gas dynamics, fluid mechanics, elasticity,
relativity, ecology, neurology, thermodynamics, and many
more are modeled by nonlinear partial differential
equations (NPDEs). Burgers-Huxley equation (BHE)
being a NPDE is a model that describes the interactions
between reaction mechanisms, convection effects and
diffusion transports.[2], with some special cases BHE
reduces to Huxley equation [3] which describes nerve
pulse propagation in nerve fibers and wall motion in
liquid crystals [4,5]. The other case is Burgers’ equation
which is a parabolic second order partial differential
equation governs nonlinear process. This equation was
firstly introduced by Bateman [6], then treated by Burgers
[7] in a mathematical modelling of turbulence. These
NPDEs are high importance in nonlinear physics.

There are many numerical methods which have been
studied to compute the approximate solutions to the BHE
such as spectral methods [19], Adomain decomposition
method [20] which have been studied to solve the
generalized Burgers-Huxley equation.In [8], they apply
the operator splitting method to the Burgers-Huxley
equation by solving two nonlinear subequations. In this
paper, we divide the BHE into linear and nonlinear parts
and solve easily. To prove the convergence of the
Lie-Trotter splitting in Hs norm we use the local

well-posedness of the BHE inHs norm and boundedness
of the exact solution of BHE in Sobolev spaces.

In [9], the KdV equation is studied and they apply
Lie-Trotter and Strang splitting in order to have error
estimates for convergence. They actively make use of the
fact that solutions of KdV equation remain bounded in a
Sobolev space and this, together with an bootstrap
argument guarantees the existence of a uniform choice of
time step∆ t that prevents the solution from any Burgers
step from blowing up. On the other hand, [10] studies
equation with a Burgers type nonlinearity including the
KdV equation. They make use of the fact that solutions of
Burgers type equations remain bounded in a Sobolev
space and perform an analysis which identifies error
terms in the local error as quadrature errors which are
estimated via Lie commutator bounds. In [11] and [12],
similar analyses are studied for linear evolution equations
and for nonlinear Schrödinger equations, respectively. In
this paper, we follow a similar approach to [10] and [17].

This paper is organized as follows. After this
introduction in Section 2, we give the idea of the operator
splitting method and apply Lie-Trotter splitting to the
BHE. In Section 3, we give two hypotheses which are
connected with the local well-posedness and boundedness
of the solution of the BHE. Section 4 proves the regularity
results for the BHE. Furthermore in Section 5 by using
the regularity results we prove the local and global error
estimates in time. In identifying the local error terms we
use quadrature errors. Finally, in Section 6 numerical
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results are given and the correct convergence rates are
proved for Lie-Trotter splitting method.

2 Application the Lie-Trotter Splitting to the
Burgers-Huxley Equation

The idea of operator splitting, [14,15,16] is widely used
for the approximation of partial differential equations.
The basic idea is based on splitting a complex problem
into simpler sub-problems, each of which is solved by an
efficient method. One of the reasons for the popularity of
operator splitting is the use of dedicated special numerical
techniques for each of the equations.

We focus our attention on the case of linear and
nonlinear operators such as,

ut = Au(t)+B(u(t)), with t ∈ [0,T], u|t=t0 = u0 (1)

We employ Lie-Trotter splitting method to the
one-dimensional Burgers-Huxley equation,

ut +αuux− εuxx = β (1−u)(u− γ)u, (2)

with the initial condition

u|t=t0 = u0 (3)

wheret > 0, α,β ≥ 0 , 0< ε ≤ 1 and 0< γ < 1. When
α = 0 andε = 1, equation (2) reduces to Huxley equation
and whenβ = 0, reduces to Burgers’ equation.

With the help of the operator splitting, we break the
(1) into linear diffusion equation and nonlinear reaction
equation. In this latter type of the operator splitting, the
simpler equations are solved and then recoupled over the
initial conditions in delicate ways to preserve a certain
accuracy. We denote byu(t) = Φt

A+B(u0) is the solution
at the timet of (1) with given initial condition and the
approximate split solution is denoted byun, at
t = n∆ t ≤ T, as ∆ t → 0, whereun+1 = Φ∆ t

A (Φ∆ t
B (un)),

n= 0,1,2, ....
In our case we split the equation (2) into two

subequations,

vt = Av= εvxx (4)

and

wt = B(w) = β (1−w)(w− γ)w−αwwx (5)

acting on appropriate Sobolev spaces.

3 Error Bounds for Lie-Trotter Splitting

In the begining of the analysis, we assume that the
solutions to the BHE are locally well-posed and bounded.
Thus, the following hypotheses are about the local
well-posedness of the solutions to (2) and boundedness of
the solution and the initial condition in Sobolev spaces.
Hypothesis 3.1. For a fixed time T, there exists

M > 0such that for allu0 in Hk(R) with ‖u0‖ ≤ M, there
exists a unique strong solutionu in C([0,T],Hk) of (2). In
addition, for the initial datau0 there exists a constant
K(M,T)< ∞, such that

‖ũ(t)−u(t)‖Hk ≤ K(M,T)‖ũ0−u0‖Hk (6)

for two arbitrary solutionsu andũ, corresponding to two
different initial data ˜u0 andu0. This well-posedness result
holds, with sufficiently smallt ≤ T = T(M) for any M.
Hypothesis 3.2.The solutionu(t) and the initial datau0 of

(2) are both inHk(R), and are bounded as

‖u(t)‖Hk ≤ M < ρ and‖uo‖Hk ≤C< ∞, (7)

for 0≤ t ≤ T.

Let s be a positive integer, we define following set of
integers such that,

s≥ 1, m= s+3, ,n= s+1= m−2 (8)

We specify for which integers the hypothesis should hold
in the lemmas and theorems for the Lie-Trotter splitting
method.

4 Regularity results for Burgers-Huxley
Equation

We will present and prove several results to estimate the
local error for the Lie-Trotter splitting for the
Burgers-Huxley equation. We need to show that there
exists a small time step∆ t for the solutionsΦt

A(v0) and
Φt

B(w0) in a Sobolev spaces. The following results have
an importance of proving the convergence rate of
Lie-Trotter splitting.

4.1 Results for the Nonlinear Part

Lemma 1.For m and n in (8) assume the solution
Φt

B(w0) = w(t) of (5) with initial data w0 in Hm(R),
satisfies‖Φt

B(w0)‖Hn ≤ α for 0≤ t ≤ ∆ t. ThenΦt
B(w0) is

in Hm(R) and in particular

‖Φt
B(w0)‖Hm ≤ ecα1t‖w0‖Hm, (9)

whereα1 = (C+2Cα +Cα2),C is a general constant and
c is independent of w0.
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Proof. From the definition of normHm(R), we find that
w(t) satisfies

1
2

d
dt

‖Φ t
B(w0)‖

2
Hm

=
1
2

d
dt

‖w‖2
Hm =

1
2

d
dt

m

∑
j=0

∫

R

∂ j
x w∂ j

x wtdx

= (w,wt)Hm = (w,w(1−w)(w− γ)−wwx)Hm

= β (1+ γ)
m

∑
j=0

j

∑
k=0

(

j
k

)

∫

R

∂ j
x w∂ k

x w∂ j−k
x wdx

− β
m

∑
j=0

j

∑
k=0

k

∑
l=0

(

j
k

)(

k
l

)

∫

R

∂ j
x w∂ l

xw∂ k−l
x w∂ j−k

x wdx

− βγ
m

∑
j=0

∫

R

∂ j
x w∂ j

x wdx−α
m

∑
j=0

j

∑
k=0

(

j
k

)

∫

R

∂ j
x w∂ k+1

x w∂ j−k
x w

(10)

We investigate the each parts for different cases.
Case 1:For j < m andk < j, we obtain for the first

term of (10)
∣

∣

∣

∣

∫

R

∂ j
x w∂ k

x w∂ j−k
x wdx

∣

∣

∣

∣

≤

∫

R

|∂ j
x w∂ k

x w∂ j−k
x w|dx

≤ ‖∂ j
x w‖L∞‖∂ max{k, j−k}

x w‖L2‖∂ min{k, j−k}
x w‖L2

≤C‖ w‖Hm‖ w‖Hm‖ w‖Hn

≤Cα‖ w‖2
Hm (11)

where we have used Sobolev inequality and the fact that

max{k, j − k} ≤ j +1≤ m

min{k, j − k} ≤
j
2
≤

m
2
=

s−1
2

+2≤ s+1= m−2= n

sincem≥ 4.
For the second term of (10),

∣

∣

∣

∣

∫

R

∂ j
x w∂ l

xw∂ k−l
x w∂ j−k

x wdx

∣

∣

∣

∣

≤

∫

R

|∂ j
x w∂ l

xw∂ k−l
x w∂ j−k

x w|dx

≤ ‖∂ j
x w‖L∞‖∂ j−k

x w‖L∞

∫

R

|∂ l
xw∂ k−l

x w|dx

≤ ‖w‖Hm‖w‖Hm‖∂ l
xw‖L2‖∂ k−l

x w‖L2

≤C‖w‖2
Hm‖w‖Hm‖w‖Hk−m

≤Cα2‖w‖2
Hm (12)

If we takel < k≤ n andk− l < n.
For the third term of (10),

∣

∣

∣

∣

∫

R

∂ j
x w∂ j

x wdx

∣

∣

∣

∣

≤
∫

R

|∂ j
x w∂ j

x w|dx

≤ ‖∂ j
x w‖L2|∂ j

x w‖L2

≤ C‖w‖2
Hm (13)

The last term of the (10) we have the bound
∣

∣

∣

∣

∫

R

∂ j
x w∂ k+1

x w∂ j−k
x wdx

∣

∣

∣

∣

≤ ‖∂ j
x w‖L∞‖w‖Hm‖w‖Hn

≤ Cα‖w‖2
Hm (14)

see [17].
Case 2:For j = m, we obtain for the first term of (10)

∣

∣

∣

∣

∫

R

∂ j
x w∂ k

x w∂ j−k
x wdx

∣

∣

∣

∣

≤ ‖∂ k
x w‖L∞‖∂ m

x w‖L2‖∂ m−k
x w‖L2

≤ C‖∂xw‖Hk‖w‖Hm‖w‖Hm−k

≤ C‖w‖Hk+1‖w‖2
Hm (15)

To get a bound we investigate this inequality in two cases;
whenk+1≤ n and whenk= n. For the first case we obtain
∣

∣

∣

∣

∫

R

∂ j
x w∂ k

x w∂ j−k
x wdx

∣

∣

∣

∣

≤ Cα‖w‖2
Hm (16)

For the second case, we get
∣

∣

∣

∣

∫

R

∂ j
x w∂ k

x w∂ j−k
x wdx

∣

∣

∣

∣

≤ ‖w‖Hn+1‖w‖Hm‖w‖Hm−n

≤ Cα‖w‖2
Hm (17)

here we have used thatn+1≤ n+2≤ m, andm−n= 2≤
s+1= n.

We are left with 2 cases;k≤ mandk= m= j. For the
first case we get,
∣

∣

∣

∣

∫

R

∂ j
x w∂ k

x w∂ j−k
x wdx

∣

∣

∣

∣

≤ ‖∂ m
x w‖L2‖∂ k

x w‖L2‖∂ m−k
x w‖L∞

≤ C‖w‖Hm‖w‖Hm‖w‖Hm−k+1

≤ Cα‖w‖2
Hm (18)

becausem− k+1< m−n≤ 2≤ n. For the second case,
we have
∣

∣

∣

∣

∫

R

∂ m
x w∂ m

x wwdx

∣

∣

∣

∣

≤ ‖w‖L∞‖∂ m
x w‖L2‖∂ m

x w‖L2

≤ C‖w‖Hn‖w‖2
Hm

≤ Cα‖w‖2
Hm. (19)

For the second term of (10),
∣

∣

∣

∣

∫

R

∂ m
x w∂ l

xw∂ k−l
x w∂ m−k

x wdx

∣

∣

∣

∣

≤ ‖∂ l
xw‖L∞‖∂ k−l

x w‖L∞‖∂ m
x w‖L2‖∂ m−k

x w‖L2

≤C‖w‖H l+1‖w‖Hk−l+1‖w‖Hm‖w‖Hm−k (20)

The above inequality is divided in two cases; whenl +1≤
n, k− l +1≤ n and l +1≤ n, k= n. For the first case
we have
∣

∣

∣

∣

∫

R

∂ m
x w∂ l

xw∂ k−l
x w∂ m−k

x wdx

∣

∣

∣

∣

≤C‖w‖Hn‖w‖Hn‖w‖Hm‖w‖Hm

≤Cα2‖w‖2
Hm (21)
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410 Y. Çiçek, G. . Tğlu: CMMSE-Convergence Analysis for Operator Splitting...

For the second case we have
∣

∣

∣

∣

∫

R

∂ m
x w∂ l

xw∂ k−l
x w∂ m−k

x wdx

∣

∣

∣

∣

≤C‖w‖Hn‖w‖Hm‖w‖Hm‖w‖Hn

≤Cα2‖w‖2
Hm (22)

Since,n− l +1≤ m, and m−n≤ 2≤ s+1= n.
We are left with three cases;l +1= k= n, l +1≤ m,

with m= n and k = m= j = l . For the first case, we
obtain
∣

∣

∣

∣

∫

R

∂ m
x w∂ l

xw∂ k−l
x w∂ m−k

x wdx

∣

∣

∣

∣

≤ ‖∂ m−k
x w‖L∞‖∂ l

xw‖L∞‖∂ m
x w‖L2‖∂ k−l

x w‖L2

≤C‖w‖Hm−k+1‖w‖H l+1‖w‖Hm‖w‖Hk−l

≤C‖w‖Hm‖w‖Hn‖w‖Hm‖w‖Hn (23)

Since,n− l ≤ n, m−k+1≤m. For the second case we get
the same result, but now we use thatm− k+1≤ m−n≤
2≤ n.

For the third case,
∣

∣

∣

∣

∫

R

∂ m
x w∂ m

x wwwdx

∣

∣

∣

∣

≤

∫

R

|(∂ m
x w)2w2|dx≤ ‖w‖2

L∞‖∂ m
x w‖2

L2

≤ C‖w‖2
Hn‖w‖2

Hm

≤ Cα2‖w‖2
Hm (24)

For the third term of (10),
∣

∣

∣

∣

∫

R

∂ m
x w∂ m

x wdx

∣

∣

∣

∣

≤ ‖∂ m
x w‖L2‖∂ m

x w‖L2

≤ C‖w‖2
Hm (25)

Finally, the last term of the (10) we have the bound
∣

∣

∣

∣

∫

R

∂ m
x w∂ k+1

x w∂ m−k
x wdx

∣

∣

∣

∣

≤ Cα‖w‖2
Hm (26)

see [17].
All in all we get, by summing up the estimates, the

following inequality

d
dt
‖w(t)‖2

Hm = ‖w(t)‖Hm
d
dt
‖w(t)‖Hm ≤ cβ‖w(t)‖2

Hm (27)

which leads to
d
dt
‖w(t)‖Hm ≤ cα1‖w(t)‖Hm (28)

whereα1 = (C+ 2Cα +Cα2). This result concludes the
proof.[10]

Lemma 2.Assume‖w0‖Hk ≤ K for some k≥ 1 . Then
there exists̄t(K)> 0 such that‖Φt

B(w0)‖Hk ≤ 2K for 0≤
t ≤ t̄(K) .

Proof. By doing the same calculations as in the proof of
the Lemma1 with k instead ofm and using the bound for
u0 in Hk(R), we arrive with the following inequality

‖w(t)‖Hk
d
dt
‖w(t)‖Hk ≤ c‖w(t)‖4

Hk, (29)

which simplifies to

d
dt
‖w(t)‖Hk ≤ c‖w(t)‖3

Hk. (30)

The result follows by comparing with the solution of the
differential equationy′ = cy3.

Lemma 3.If ‖w0‖Hs+2 ≤ C for s≥ 1 , then there exists̄t
depending on C, such that the solution w(t) of the (5) is
C2([0, t̄],Hs).

Proof. Let t be in[0, t̄], with t̄ from Lemma2, and define

w̃(t) = w0+ tB(w0)+
∫ t

0
(t − s)dB(w(s))[B(w(s))]ds, (31)

wheredB(.)[.] is the Fréchet derivative which is given as
follows,

dB(w(s))[B(w(s))] = −3βw2B(w)+2β (1+ γ)wB(w)

− β γB(w)−αwB(w)x

− αB(w)wx (32)

Calculating the second derivative of ˜w, gives

w̃tt = dB(w(s))[B(w(s))]

= −3βw2B(w)+2β (1+ γ)wB(w)−β γB(w)−αwB(w)x

− αB(w)wx (33)

from which we have that ˜w is in C2([0, t̄],Hs). To prove
thatw̃= w, we must show that the two functions satisfies
the same differential equation and the same initial
conditions. By differentiating (5) with respect tot, we get

wtt = B(w)t = (−βw3+β (1+ γ)w2−β γw−αwwx)t

= −3βw2wt +2β (1+ γ)wwt −β γwt −αwtwx−αwwxt

= w̃tt ,

From definition ofw̃ we see that ˜w(0) = u0 andw̃t(0) =
B(u0) = wt . Thus we have shown thatw= w̃.

5 Local and Global errors in Hs space

Lemma 4.Let s≥ 1 be an integer and (7) holds for k= s+
2 for the solution u(t) =Φ∆ t

A+B(u0) of (2). If the initial data
u0 is in Hs+2(R), then the local error of the Lie-Trotter
splitting is bounded in Hs(R) by

‖Φ∆ t
A (Φ∆ t

B (u0))−Φ∆ t
A+B(u0)‖Hs ≤C∆ t2, (34)

where C only depends on‖u0‖Hs+2.

Proof. We writeetAv=Φt
A(v) to denote the linearity of the

operatorA. We start with

B(ϕ(s))−B(ϕ(0)) =
∫ s

0
dB(ϕ(ρ))[ϕ̇(ρ)]dρ . (35)

where

ϕ(ρ) = Φ(s−ρ)
A (u(ρ)), (36)

ϕ̇(ρ) = Φ(s−ρ)
A (B(u(ρ))). (37)
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Hence we get,

B(u(s)) = B(Φs
A(u0))

+

∫ s

0
dB(Φ(s−ρ)

A (u(ρ)))[Φ(s−ρ)
A (B(u(ρ)))]dρ .(38)

where we have used thatϕ(0) = Φs
A(u(0)) = Φs

A(u0).
From the variation of constants formula we have the exact
solution of (2) such that,

Φt
A+B(u0) = Φt

A(u0)+

∫ t

0
Φ(t−s)

A (B(u(s)))ds (39)

To find the exact solution after one step, we insert (38) into
(39) and evaluatet = ∆ t,

u(∆ t) = Φ∆ t
A (u0)+

∫ ∆ t

0
Φ(∆ t−s)

A (B(Φs
A(u0)))ds+E1

(40)

where

E1 =

∫ ∆ t

0

∫ s

0
Φ(∆ t−s)

A (dB(Φ(s−ρ)
A u(ρ))[ϕ̇(ρ)])dρds.

(41)

One step with Lie-Trotter splitting is

u1 = Φ∆ t
A (Φ∆ t

B (u0)). (42)

Using the Taylor series expansion we get,

u1 = Φ∆ t
A (u0)+∆ tΦ∆ t

A (B(u0))+E2 (43)

with

E2 = ∆ t2
∫ 1

0
(1−θ )Φ∆ t

A dB(Φ∆ tθ
B (u0))[B(Φ∆ tθ

B (u0))]dθ .

(44)

The error between the exact and the split solution, after
one step becomes,

u1−u(∆ t) = ∆ tΦ∆ t
A (B(u0))−

∫ ∆ t

0
Φ(∆ t−s)

A (B(Φs
A(u(s))))ds

+ (E2−E1). (45)

by defining,

h(s) = Φ(∆ t−s)
A (B(Φs

A(u0))), (46)

we can rewrite equation (45) as follows,

u1−u(∆ t) =
∫ ∆ t

0
KR(t)h

′(t)dt+(E2−E1) (47)

By using the substitutionθ = t/∆ t, the integral is
transformed to
∫ ∆ t

0
KR(t)h

′(t)dt = (∆ t)2
∫ 1

0
(θ −1)h′(θ∆ t)dθ

= (∆ t)2KR(θ )h′(θ∆ t)dθ . (48)

Then, applying theHs norm and using the triangle
inequality,

‖u1−u(∆ t)‖Hs

≤ (∆ t)2
∫ 1

0
‖KR(θ )h′(θ∆ t)‖Hs + ‖(E2−E1)‖Hs

≤ (∆ t)2
∫ 1

0
‖KR(θ )h′(θ∆ t)‖Hs + ‖E2‖Hs + ‖E1‖Hs. (49)

where KR is bounded kernel. Here
h′(s) = −Φ(∆ t−s)

A [A,B](Φs
A(u0)) with double Lie

commutator

[A,B] = dA(v)[B(v)]−dB(v)[A(v)] (50)

We know thatΦ∆ t
A (u0) do not increase the Sobolev norm,

and therefore it is sufficient to consider the commutator for
a general vectorv. Using (4) and (5), we write

[A,B](v) = −6vv2
x−3v2vxx+2(1+ γ)v2

x+2(1+ γ)vvxx

− γvxx−2vxvxx− vxvxx− vvxxx(−3v2vxx

+ 2(1+ γ)vvxx− γvxx− vvxxx− vxxvx) (51)

Hence we get,

‖h′(s)‖Hs = ‖−6vv2
x+2(1+ γ)v2

x−2vxvxx‖Hs

≤ 6‖v‖Hs‖∂xv‖
2
Hs +2(1+ γ)‖∂xv‖

2
Hs +2‖∂xv‖

2
Hs‖∂ 2

x v‖2
Hs

≤ 6‖v‖Hs‖v‖2
Hs+1 +(4+2γ)‖v‖2

Hs+1+ ‖v‖Hs+1‖v‖Hs+2

≤ 6‖v‖3
Hs+2 +(4+2γ)‖v‖2

Hs+2 ≤ η‖v‖3
Hs+2 (52)

Thus, by usingv= Φs
A(u0) , we get

‖h′(s)‖Hs ≤ η‖Φs
A(u0)‖

3
Hs+2 ≤ η‖u0‖

3
Hs+2. (53)

Next, we will find the error bound forE1 in (41),

‖E1‖Hs

≤

∫ ∆ t

0

∫ s

0
‖Φ(∆ t−s)

A (dB(Φ(s−ρ)
A )(u(ρ)))[B̃(u(ρ))]‖Hsdρds

≤

∫ ∆ t

0

∫ s

0
‖dB(Φ(s−ρ)

A )(u(ρ))[Φ(s−ρ)
A (B(u(ρ)))]‖Hsdρds

≤
∫ ∆ t

0

∫ s

0
β‖−3(Φ(s−ρ)

A (u(ρ)))2(Φ(s−ρ)
A (B(u(ρ))))‖Hsdρds

+2β (1+ γ)‖(Φ(s−ρ)
A (u(ρ)))(Φ(s−ρ)

A (B(u(ρ))))‖Hsdρds

+γβ
∫ ∆ t

0

∫ s

0
‖(Φ(s−ρ)

A (B(u(ρ))))‖Hsdρds

+

∫ ∆ t

0

∫ s

0
‖(Φ(s−ρ)

A (u(ρ))Φ(s−ρ)
A B(u(ρ)))x‖Hsdρds (54)

We can rewrite the above inequality for simplicity,

‖E1‖Hs ≤ I1+ I2+ I3+ I4 (55)

We obtain the following bounds by using the Banach
algebra property ofHs(R) and non-increasing of the
solution of(4),

I1 ≤
∫ ∆ t

0

∫ s

0
‖u(ρ)‖2

Hs‖B(u(ρ))‖Hsdρds

≤

∫ ∆ t

0

∫ s

0
‖u(ρ)‖2

Hs(‖u(ρ)‖3
Hs +(1+ γ)‖u(ρ)‖2

Hs

+

∫ ∆ t

0

∫ s

0
γ‖u(ρ)‖Hs+ ‖u(ρ)‖Hs‖u(ρ)x‖Hs)dρds

≤ ‖u(ρ)‖5
Hs+(1+ γ)‖u(ρ)‖5

Hs+ γ‖u(ρ)‖3
Hs

+ ‖u(ρ)‖3
Hs‖u(ρ)‖Hs+1

≤ C
∫ ∆ t

0

∫ s

0
R5dρds=CR5

∫ ∆ t

0
sds=CR5(∆ t)2, (56)
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I2 ≤

∫ ∆ t

0

∫ s

0
‖u(ρ)‖Hs‖B(u(ρ))‖Hsdρds

≤ CR4(∆ t)2, (57)

I3 ≤

∫ ∆ t

0

∫ s

0
‖B(u(ρ))‖Hsdρds

≤ CR3(∆ t)2, (58)

For the last integral, we can write the bound as, (see [17]).

I4 ≤CR3(∆ t)2. (59)

Finally, we get

‖E1‖Hs ≤C(R5+R4+2R3)(∆ t)2 ≤ M(∆ t)2. (60)

The third and the last term is estimated similarly as the
second term.

‖E2‖Hs ≤ (∆ t)2
∫ 1

0
‖dB(Φ∆ tθ

B (u0))[B(Φ∆ tθ
B (u0))]‖Hsdθ

≤ (∆ t)2
∫ 1

0
‖3(Φ∆ tθ

B (u0))
2(B(Φ∆ tθ

B (u0)))‖Hsdθ

(61)

By doing the similar approach forE1 we find following
bound for E2. The only difference is the use of the
regularity result for the nonlinear part. The bound forE2
is given as follows,

‖E2‖Hs ≤ C(∆ t)2(M1+M2+M3), (62)

whereM1 = (R5+R4+2R3) , M2 = (R4+2R3+R2) and
M3 = (R3+2R2+R).

Hence, by combining the estimates, we obtain the
following bound for the local error,

‖u1−u(∆ t)‖Hs ≤ c(∆ t)2, (63)

wherec depends only on the initial condition and∆ t is
sufficiently small.

Theorem 1.Suppose that the exact solution u(·, t) of
Equation (2) is in Hs+2 for 0 ≤ t ≤ T. Then Lie-Trotter
splitting solution un has first order global error for
∆ t < ∆̄ t and tn = n∆ t ≤ T,

‖un−u(·, tn)‖Hs ≤ G∆ t, (64)

where G only depends on‖u0‖Hs+2 and T.

Proof. The ”Lady Windermere’s Fan” is used in the proof
see [13]. Regularity result and local error are given in
Lemma1 and Lemma2. By using these results we prove
the global convergence of the Lie-Trotter splitting with
the help of an induction argument. Let us take the exact

solution u(tn) = Φ(n−k)∆ t
A+B (u(tk)) of (2) and Lie-Trotter

solution be un = Ψ∆ t(un−1) = Φ∆ t
A ◦ Φ∆ t

B (un−1),

n= 1,2, ... By using the same approach in [10] we get the
following estimate,

‖un−u(·, tn)‖Hs

≤
n−1

∑
k=0

‖Φ(n−k−1)∆ t(Ψ ∆ t(u(tk))−Φ∆ t(u(tk)))‖Hs

≤
n−1

∑
k=0

K(R,T)‖Ψ∆ t(u(tk))−Φ∆ t(u(tk))‖Hs

≤ nK(R,T)c1(C0)(∆ t)2

≤ TK(R,T)c1(C0)(∆ t) (65)

by using the previous results andn∆ t ≤ T. This completes
the proof.

6 Numerical results

In order to illustrate the efficiency and accuracy of the
operator splitting method, we work on the
Burgers-Huxley equation in the form (2) for α = β = 1,
γ = 0.5, with initial and boundary conditions as follows
[18],

u(x,0) = sin(πx), 0≤ x≤ 1

u(0, t) = u(1, t) = 0, 0≤ t ≤ T. (66)

When we apply the operator splitting method on (2),
we obtain the two subequations,

vt = A(v) = εvxx

wt = B(w) = β (1−w)(w− γ)w−αwwx

which are solved subsequently for small time steps∆ t.
For the space discretization, we consider the

Chebyshev differentiation matrices for the derivativesux
and uxx. Third order Semi-implicit Runge-Kutta method
is used for the time integration, which is well-known for
the numerical stability and less computational cost. Since
there is no exact solution to (2), we compare the results to
the higher order exponential method to prove convergence
of the Lie-Trotter splitting and show the correct
convergence rates.

The time step length∆ t = 0.001 is used for the
numerical experiment. The Figure1(a) and Figure1(b)
show the layer behaviour of the problem at different
values of timet andε.

Table 1: Estimated errors and convergence rates for
ε = 2−3 at fixed time T. (SR=Splitting Runtime,
NR=Nonsplitting Runtime)

time step L1 L2 L∞ SR NR
0.02 0.0566 0.0113 0.0035 0.5858 2.0430
0.01 0.0284 0.0057 0.0018 0.7763 4.0540
0.002 0.0057 0.0011 3.5230e−04 1.1576 5.3499
0.001 0.0028 5.7345e−04 1.7619e−04 2.1738 15.5342
0.0005 0.0014 2.8577e−04 8.8101e−05 4.0955 16.1621
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(a) Computed solutions of BHE for different values
of ε at T= 0.2.
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(b) Computed solutions of BHE for different values
of time atε = 2−9.

(c) Computed solutions of BHE for∆ t = 0.001 and
ε = 2−5.

Fig. 1: Computed solutions of BHE

The errors are given in Table2 and in the Figure2, we
give the expected orders. We observe that Lie-Trotter
splitting obtain numerical convergence results which is
correct with the theoretical results. We also check the
running times for Lie-Trotter splitting and nonsplit
solution in Table1. We observe that, Lie-Trotter splitting
results in faster CPU runtimes.
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Fig. 2: Order ofL1,L2 andL∞ errors.

Table 2: Estimated errors and convergence rates forε =
2−3 andε = 2−7.

ε = 2−3 ε = 2−7

T ∆ t = 0.001 ∆ t = 0.002 Order ∆ t = 0.001 ∆ t = 0.002 Order
0.2 8.0990e−04 0.0016 0.9823 0.0016 0.0031 0.9542
0.4 8.2993e−04 0.0017 1.0345 0.0109 0.0212 0.9597
0.6 5.3939e−04 0.0011 1.0281 0.0137 0.0263 0.9409
0.8 3.1277e−04 6.2554e−04 1 0.0096 0.0186 0.9542
1 1.7619e−04 3.5230e−04 0.9997 0.0065 0.0126 0.9549
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