Characterization and Classification of Turkish Wines Based on Elemental Composition

Ilknur Sen¹ and Figen Tokatli^{1*}

Abstract: Commercial wines from 13 native and nonnative varieties in Turkey were analyzed for their elemental composition. Wines from four vintages (2006–2009) were analyzed by inductively coupled plasma with atomic emission spectrometry and mass spectroscopy (ICP-AES and ICP-MS) followed by multivariate statistics to study vintage, varietal, and regional differences. According to the partial least squares-discriminant analysis, wines from western regions could be discriminated with their higher Pb content. The red wines of two native grapes, Boğazkere and Öküzgözü wines were different from the remaining varieties based on their high Ca and low B and Cu levels. Öküzgözü wines were different from Syrah and Cabernet Sauvignon wines. Similarly, native Emir wines showed differences from Muscat wines. The effective variables for discrimination analysis were natural minerals (Sr, Li, Al, Ba, and B) and minerals originating from agricultural activities, processing, or pollution (Ca, Cu, Mg, Co, Pb, and Ni). Characteristics of Turkish wines from native and nonnative grape varieties such as Cabernet Sauvignon, Merlot, Syrah, and Chardonnay were defined in terms of their mineral content for the first time.

Key words: geographical classification, grape variety, mineral content, multivariate analysis, wine

The chemical composition and sensory characteristics of wine are highly influenced by geographical origin, grape variety, climatic, vintage, and processing conditions (Marini et al. 2006). In addition to details on wine composition and nutritional value, many wine consumers now expect information on the original territory of wine products, as the geographical origin of a wine can be an important criterion ensuring the quality of product. The label "controlled denomination of origin" indicates recognized winegrowing regions, winemaking practices, and grapes (Martinez-Carrasco et al. 2005) and has been used in many wine-producing countries. The label may appear in different forms, such as denominazione di origine controllata (DOC), appellation d'origine contrôlée (AOC), and denominación de origen (DO) (Castro et al. 2011, Gonzalves et al. 2008, Marengo and Aceto 2003, Martin et al. 2012, Saavedra et al. 2011, Trujillo et al. 2011). The labeling of controlled denomination of origin can help to prevent fraud and protect the origin and quality of the wine.

The minerals in wine originate from the capacity of the vine to take elements from soil (geographical region), climatic factors such as heavy rains, environmental conditions such as pollution, and agricultural applications such as fertilizers and

Acknowledgments: This research was funded by the Scientific Research Project of Izmir Institute of Technology (IYTE-BAP-18-2008). The authors thank the Environmental Research Centre of Izmir Institute of Technology for the ICP-MS analyses.

Supplemental data is freely available with the online version of this article. Manuscript submitted Jun 2013, revised Oct 2013, accepted Nov 2013

Copyright O 2014 by the American Society for Enology and Viticulture. All rights reserved.

doi: 10.5344/ajev.2013.13081

pesticides. The mineral content of red and white wines from the same region can differ due to the impact of the vinification process on the elemental composition, such as the maceration step in red winemaking, where the juice is in longer contact with the skins and flesh of the grapes (Coetzee et al. 2005).

The elemental composition of wine has been useful in characterizing wine samples, identifying wine origin, and assessing the nutritional safety of the product (Fabani et al. 2010, Grindlay et al. 2008, Gonzalves et al. 2009). The latter highly depends on the capacity of vine to uptake toxic elements, which are the consequence of pollution in the soil. Heavy metals, especially lead (Pb), cadmium (Cd), and mercury (Hg), are toxic to humans (Volpe et al. 2009).

Previous studies on wine determined the elemental composition using inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and mass spectrometry (ICP-MS), as well as graphite furnace atomic absorption spectrometry (GFAAS), flame atomic absorption spectrometry techniques (FAAS), and voltammetry. Wines from many countries have been successfully discriminated according to geographical region using elemental profiling (Angus et al. 2006, Etievant et al. 1988, Fabani et al. 2010, Gomez et al. 2004, Gonzalves et al. 2008, Kment et al. 2005, Moreno et al. 2007, Sperkova and Suchanek 2005, Thiel et al. 2004, Trujillo et al. 2011, Zou et al. 2012). To our knowledge, there are no published reports on the detailed elemental compositions and the classification of Turkish wines using multivariate statistical techniques. The classification of wine samples using multielement content is possible with the use of chemometric tools. Techniques such as principal component analyses (PCA), discriminant analyses (DA), and cluster analysis can be useful in the differentiation of samples according to their geographical origin, harvest year, and grape variety as well as the contribution of each variable to the established models.

Turkey has a long history of grapegrowing, and according to an OIV report on world vitiviniculture (OIV 2013), it had

¹Izmir Institute of Technology, Department of Food Engineering, Urla-Izmir, TR35430, Turkey.

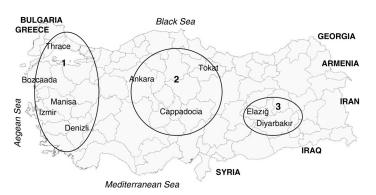
^{*}Corresponding author (figentokatli@iyte.edu.tr; tel: +90 232 750 6295; fax: +90 232 750 6196)

the fifth largest vineyard area of all wine-producing countries. The aim of this study was to characterize and classify monovarietal wine samples from grape varieties grown in Turkey based on their multielement composition and according to the geographic regions and grape varieties using multivariate statistical techniques. Significant elements that affected regional and varietal discrimination were also investigated.

Materials and Methods

Wine samples. A total of 116 commercial wine samples from the 2006, 2007, 2008, and 2009 harvest years were collected from local markets and included 66 red, five rosé, and 45 white wines. These wines were produced from 13 different grape varieties in Turkey, eight of which were native (Boğazkere, Öküzgözü, Çalkarası, Kalecik karası, Emir, Narince, Sultaniye and Papazkarası) and five of which were nonnative (Cabernet Sauvignon, Merlot, Syrah, Muscat, and Chardonnay) (Table 1). Information on vineyard and grape variety of the samples was based on the information given on the wine bottles. The grape varieties were cultivated in 10 different regions from three areas of Turkey (Figure 1). All native varieties in this study are used for winemaking. Among them Sultaniye (or Sultani, a seedless white grape) is also used for raisin production and fresh consumption.

Reagents. HNO₃ (suprapur 65%), H_2O_2 (suprapur 30%), multielement standard solution, and rhodium (Rh) were purchased from Merck (Darmstadt, Germany). Multielement standard solution of aluminum (Al), boron (B), barium (Ba), beryllium (Be), bismuth (Bi), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), gallium


Varietal	Area	Region	Vintage year	Samples (n)
Red and rosé				
Boğazkere	Eastern	Diyarbakır	2007, 2008, 2009	5
Boğazkere	Central	Cappadocia	2006, 2008	2
Boğazkere	Central	Tokat	2007	1
Cabernet Sauvignon	Western	Izmir	2006, 2007	2
Cabernet Sauvignon	Western	Bozcaada	2007	1
Cabernet Sauvignon	Western	Thrace	2006, 2008	2
Cabernet Sauvignon	Central	Cappadocia	2007, 2008	2
Cabernet Sauvignon	Central	Tokat	2007	1
Çalkarası (red)	Western	Denizli	2008	1
Çalkarası (rosé)	Western	Denizli	2006, 2008, 2009	5
Kalecik Karası	Western	Denizli	2006, 2007, 2008	10
Kalecik Karası	Western	Izmir	2006	1
Kalecik Karası	Western	Thrace	2006	1
Kalecik Karası	Central	Ankara	2006, 2007, 2008	3
Merlot	Western	Denizli	2006, 2007, 2008	4
Merlot	Western	Izmir	2006, 2007, 2009	4
Merlot	Western	Thrace	2007, 2008	2
Öküzgözü	Eastern	Elazığ	2006, 2007, 2008, 2009	9
Öküzgözü	Central	Cappadocia	2006	1
Öküzgözü	Central	Tokat	2007	1
Papazkarası	Western	Thrace	2006	1
Syrah	Western	Denizli	2006, 2007, 2008, 2009	10
Syrah	Western	Manisa	2008, 2009	2
White				
Emir	Central	Cappadocia	2006, 2007, 2008, 0909	10
Muscat	Western	Denizli	2006, 2007, 2008, 2009	5
Muscat	Western	Izmir	2006, 2008, 2009	4
Muscat	Western	Thrace	2006	1
Muscat	Western	Manisa	2008	1
Narince	Central	Tokat	2006, 2007, 2008	5
Narince	Western	Denizli	2006	1
Narince	Western	Manisa	2008, 2009	2
Sultaniye	Western	Denizli	2006, 2007, 2008	5
Sultaniye	Western	Manisa	2006	1
Chardonnay	Western	Denizli	2006, 2007, 2009	3
Chardonnay	Western	Izmir	2007, 2008, 2009	4
Chardonnay	Western	Thrace	2006, 2007	2
Chardonnay	Central	Cappadocia	2008	1

(Ga), potassium (K), lithium (Li), magnesium (Mg), manganese (Mn), sodium (Na), nickel (Ni), lead (Pb), selenium (Se), strontium (Sr), tellurium (Te), thallium (Tl), and zinc (Zn) (100 mg/L) was dissolved in 1% HNO₃ (v/v) for external calibration. For ICP-MS analyses, Rh was used as internal standard. The tuning solution of ICP-MS was 1 mg/L Li, yttrium (Y), Co, Tl, and cerium (Ce) mixture (Agilent Technologies, Santa Clara, CA). A certified reference wine sample including Cd and Pb was used for the accuracy of ICP-MS analyses (T0777, FAPAS, York, UK).

Instrumentation. The ICP-MS instrument was an Agilent 7500ce ORS, equipped with a concentric nebulizer, nickel sampling cone, and peristaltic pump (Agilent Technologies). The octopole reaction system (ORS) used in the ICP-MS was FoodORS (library for food analysis) for the wine samples. Helium and no gas ORS modes were used in the method. The ICP-AES instrument was a Varian Liberty Series II with axial viewing plasma type (Varian Inc., Palo Alto, CA) and was used to quantify major elements such as Na, Mg, K, Ca, and Fe. Optimization parameters and operating conditions of ICP-MS and ICP-AES are given (Table 2).

Standards and spikes. The ICP-MS working standard solutions were prepared daily from stock solution using 1% HNO₃ solution. The calibration concentrations (19 points) ranged from 0.01 to 500 µg/L. Rh was used as internal standard in each ICP-MS working standard solution, wine sample, and spiked sample at a concentration of 10 μ g/L in final solution. Spiked samples were also studied each time the digestion procedure was run. Trace elements like Be, Co, Ga, Cd, and Tl were spiked at a concentration of 2 μ g/L. Li, Pb, Cr, and Ni were spiked at a concentration of 10 µg/L. Two spike concentrations (100 and 1000 μ g/L) were used for B, Al, Mn, Cu, Zn, Sr, and Ba, which were present in wine at wider concentration ranges. The eight working standard solutions of ICP-AES (ranging from 0.3 to 60 mg/L) were prepared from the multielement standard using 1% HNO₃ solution with an external calibration technique. Major elements like Na, Mg, K, Ca, and Fe were spiked at 1 and 10 mg/L concentrations.

Sample preparation. The neck of wine bottles was cleaned with 2% HNO₃ solution before opening to prevent contamination by trace metals. Once opened, bottles were

Figure 1 Wine regions in Turkey: (1) western Anatolia (Izmir, Manisa, Bozcaada, Thrace, Denizli); (2) central Anatolia (Ankara, Cappadocia, Tokat); and (3) eastern Anatolia (Diyarbakır, Elaziğ).

treated according to a procedure based on the wet digestion of organic material in an open vessel (Skurikhin 1993). Rh was added as internal standard (ISTD). The solution with ISTD and 10 mL HNO₃ was heated until it evaporated down to a volume of 5 mL. Later, 10 mL HNO₃ and 4 mL H₂O₂ were added. The heating process proceeded to a final volume of 5 mL. The next step was the addition of 5 mL HNO₃, 2 mL H₂O₂, and 10 mL ultrapure water and digestion of sample until the white fume was diminished. Eventually, the solution was diluted to a final volume of 100 mL with ultrapure water. The samples were kept at 4°C for 48 hours. The certified reference wine sample was treated in the same way as the wine samples. Two replicate digestions were made for each sample together with two blanks for every experiment set excluding the sample. The spiked samples were also prepared in an identical way following spiking.

Statistical analyses and method validation. The repeatability was evaluated by calculating the relative standard deviation of replicate measurements. The limit of detection

Table 2 ICP-MS and ICP-AE	ES operational parameters.
Parameter	Value
ICP-MS	
RF power	1550 W
Sampling depth	8–9 mm
Gas	Argon
Carrier gas flow	0.9 L/min
Make-up gas flow	0.15–0.19 L/min
Nebulizer pump	0.1 rps
Octopole reaction system	FoodORS
Interference equation	208 Pb = 208 Pb+ 206 Pb+ 207 Pb
Sample and skimmer cones	Nickel
Nebulizer	Concentric
Spray chamber temperature	2°C
Reaction/collision	
He gas flow	4 mL/min
Signal measurement	
Acquisition mode	Spectrum multitune
Acquisition time	174 sec
Calibration	External
Internal standard	¹⁰³ Rh
Repetition	3
Stabilization time	30 sec
ICP-AES	
Power	1.2 kW
PMT voltage	650 V
Gas	Argon
Plasma gas	15 L/min
Auxiliary gas	1.5 L/min
Nebulizer	Concentric
Pump rate	15 rpm
Fast pump	On
Rinse time	10 sec
Sample uptake	30 sec
Integration time	2 sec
Replicates	3
Calibration	External

(LOD) was calculated as three times the standard deviation of the signal of the blank sample (prepared 10 times). The limit of quantification (LOQ) was calculated as 10 times the standard deviation of the signal of the blank sample. Recoveries were calculated based on the difference of spiked and unspiked samples and by taking the ratio of this difference to the assigned value. In general, relative standard deviation <15% was obtained for the most variables. The elements with high relative standard deviations, such as Be, Ga, and Tl, were eliminated from data analysis (although reported in tables).

All data were standardized by subtracting the averages and dividing with the standard deviations. Transformation was used on the variables to minimize skewness. The statistical analysis for some samples having values below the LOD was performed by assigning the corresponding LOD value. The data were statistically evaluated by multivariate statistical analysis using Simca-P (ver. 10.5; Umetrics Inc., Umea, Sweden) and Minitab (ver. 16; Minitab Inc., State College, PA). Principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), and hierarchical cluster analysis (HCA) were used to evaluate the effect of growing region and grape variety on wine mineral properties. With PLS-DA, ~80% of the data set was chosen for model development and the remaining 20% constituted the validation set. The model fit and cross-validation statistics of PLS-DA were given in terms of regression coefficients R^2_{y} and Q^2 , respectively. The significant variables affecting the models were determined with the variable importance plots (VIP) of PLS-DA models created by Simca software. The variables with a VIP >1.0 were taken as the significant ones in the model (Eriksson et al. 2001).

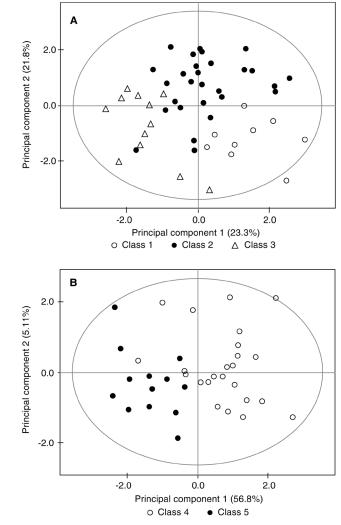
Results

The element concentrations of monovarietal red, rosé, and white wine samples are reported (Table 3, Table 4). The following elements were quantified in the samples: Al, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Na, Ni, Pb, Sr, Tl, and Zn. The results and recovery (%) values of the certified reference wine sample (contained 69.3 ng/mL Cd and 260 ng/mL Pb element) were $62.01\% \pm 9.78$ and $89\% \pm$ 14 for Cd and $280.29\% \pm 29.36$ and $108\% \pm 11$ for Pb. The recovery values of spiked samples ranged from 77 to 120% for all elements except K and Zn (<60% in red wines). Mg in red and rose wines and Ga, Cd, and Tl in white wines produced recoveries >120%. The median values of Ca and Fe were consistent with the data from European viticulture areas and South Africa (Coetzee et al. 2005, Verbeke et al. 2009). The iron contents of red and white wines were also in agreement with data observed elsewhere (Simsek et al. 2008). The median values of Na and Mg contents were slightly greater than European wines, although the minimum-maximum ranges were consistent, and median levels were consistent with the Argentinean and Spanish wines. K levels in Turkish wines were lower than the levels in European wines but consistent with Argentinean wines (Fabani et al. 2010, Gonzalves et al. 2009, Verbeke et al. 2009). The minor elements were similar to those in literature. However, Pb, Cd, and Cu levels were lower than the data observed elsewhere (Simsek et al. 2008). According to the OIV maximum acceptable limits of elements in wine, one white wine sample (Narince variety from the Tokat region) exceeded the Cu limit (1 mg/L). The samples were below the OIV limits for Zn (5 mg/L) and Pb (0.15 mg/L).

The PCA model of all data showed that white and red wines were clearly separated from each other (score plot not shown). In the classification of wine samples, the white and red wines were studied separately in PLS-DA to show more clearly the separation among different red and white wine samples.

Regional discrimination. The PLS-DA models were developed by defining classes of wines with respect to the vineyard location. PLS-DA is a special extension of PLS regression and is used to find different classes of observations by using the information given in a X data matrix (n observations and z quality variables) and a Y matrix, which is a user-defined matrix of dummy variables representing the class of observations. In PLS-DA, among-classes variation is maximized against within-classes variation so that cluster of similar observations becomes apparent (Berruetaa et al. 2007).

The PLS-DA model for the discrimination of red and rosé wines according to geographic region was developed with eight variables defined by the VIP feature of the Simca software: Sr, Ni, Ca, Cu, Li, Pb, B, and Al. The classes were established for Elazığ and Diyarbakır as class 1 (nine observations), Denizli as class 2 (28 observations), and Izmir, Bozcaada, Manisa, and Thrace as class 3 (13 observations). Wines from central Anatolia (Ankara, Cappadocia [Kapadokya], and Tokat) appeared very scattered within the control ellipse and failed to form a cluster; consequently, the red wines of this region were not included in class models. The model with two principal components produced a regression coefficient of Y matrix (R_{Y}^{2}) of 0.451 and a prediction coefficient (Q^{2}) of 0.275 (Figure 2A). The wine samples in the validation set were tested by the probability of the sample belonging to the model with a value >10% (Simca-P). All wines in the prediction set were correctly classified by the developed calibration model. Red wines of grapes cultivated in western Turkey (Izmir, Bozcaada, Manisa, and Thrace) could clearly be discriminated from those in eastern Turkey (Elazığ and Diyarbakır). The wines from western Anatolia had higher Pb levels than the wines from the east, which may be related to the growing industrial development of western Turkey. According to one study, the major source of lead contamination in table wines is the vinification process (Almeida and Vasconcelos 2003). Pb can also originate from environmental factors such as soil contamination, atmospheric pollution, and fungicidal treatment (Volpe et al. 2009). In our study, the wine samples were from different producers. Regardless of producer, the wines of western regions such as Izmir, Denizli, Manisa, and Thrace had higher Pb levels than the wines of other regions, but still had less than the legal limit set by the OIV (0.15 mg/L).


The PLS-DA model for the discrimination of white wines according to geographic region was developed with eight variables (Sr, Ni, Li, Mg, Ba, Pb, Co, and Al). The model with two principal components produced a regression coefficient of

Boğazkere min <loq< td=""> <loq< td=""> 127 66 8.7 max 86 3.39 472 152 82.9 max 86 3.39 472 152 82.9 max 86 3.46 768 167 44.6 min <loq< td=""> 0.68 425 117 6.7 max 64 3.46 768 167 44.6 max 64 3.46 768 167 44.6 max 64 3.46 768 167 44.6 max 62 4.61 604 143 52.3 med 47 1.21 416 101 4.3 sample 15 0.91 148 101 4.3 max 61 2.68 591 191 4.3 max 61 2.68 591 191 4.3 max 61 2.68 591</loq<></loq<></loq<>	193 3447 163 193 3447 163 652 6831 1556 361 4926 654 270 5085 243 933 8643 1410 464 6934 489 163 10811 947 1643 10811 947 1643 10811 947 226 4776 165 221 5622 400 219 5597 294 604 854 854	3 32 6 191 4 100		7.29 0.81						((ng/mL)
< -LOQ < < LOQ < 127 66 $86 3.39 472 152$ $55 1.18 289 100$ net Sauvignon $< LOQ 0.68 425$ $< LOQ 0.68 425$ $< COQ 0.68 425$ $< 179 542 124$ $< COQ 0.84 182$ $< S3 1.79 542 124$ $< COQ 0.84 182$ $< 47 1.21 416 110$ $< 47 1.21 416 110$ $< 47 1.21 416 110$ $< 47 1.21 416 110$ $< 15 0.91 148 101$ $62 4.61 604 143$ $< 15 0.91 148 101$ $61 2.68 591 191$ $60 1.25 373 129$ $60 1.10 240 0.91$ $89 2.98 497 154$ $66 1.10 2.68 591 191$ $66 1.10 2.68 591 191$ $66 1.10 2.68 591 191$ $66 1.10 2.98 497 154$ $66 1.10 2.98 298 497 154$ $66 1.10 2.98 298 497 154$ $66 1.10 2.98 298 497 154$ $66 1.10 2.98 298 201 157$ $61 2.13 2.13 201 157$ $70 2.19 593 201 157$ $70 2.19 593 201 157$ $70 2.19 593 201 157$ $70 0 0.76 162 85$ $< 1.08 0.76 162 857$	3447 6831 1 4926 5085 6934 10811 6239 6239 5622 5622 5622 5622											
86 3.39 472 152 55 1.18 289 100 net Sauvignon <loq< td=""> 0.68 425 117 <loq< td=""> 0.68 425 117 542 124 <loq< td=""> 0.68 768 167 53 1.79 542 124 64 3.46 768 167 53 1.21 416 110 62 4.61 604 182 74 66 143 47 1.21 4.7 1.21 416 110 e 15 0.91 148 101 ble 50 1.25 373 129 for 2.68 591 191 66 for 2.68 591 191 66 for 2.68 591 191 66 for 2.68 2.91 191 66 1.10 for 66 1.10 2.49</loq<></loq<></loq<>	6831 1 4926 5085 6934 6934 10811 6239 6239 5622 5622 5622 5627		8.93 7			16.56 1	10.62 0.23	3 116	0.1038	0.31 0	0.0578 <	<loq< td=""></loq<>
55 1.18 289 100 net Sauvignon < 245 117 $< LOQ$ 0.68 425 117 $< LOQ$ 0.68 425 117 < 53 1.79 542 124 $< LOQ$ 0.84 182 74 $< < LOQ$ 0.91 148 101 $< = 15$ 0.91 148 101 $< = 15$ 0.91 148 101 $< = 15$ 0.91 148 101 $< = 15$ 0.91 148 101 $< = 15$ 0.91 148 101 $< = 15$ 0.91 148 101 $< = 100$ < 1.25 373 129 $< = 100$ < 1.25 373 129 $< = 50$ 1.25 373 129 < 0	4926 5085 8643 6934 4776 10811 6239 5622 5622 5597 8574		22.99 38	38.66 1.36	7.3561	61.27 8	84.48 19.04	464	0.6839	18.33 0	0.4043 0.	0.4666
net Sauvignon 425 117 $< LOQ$ 0.68 425 117 64 3.46 768 167 53 1.79 542 124 53 1.79 542 124 62 4.61 604 143 47 1.21 416 110 $asi (red)$ 1.21 416 101 $asi (red)$ 1.21 416 110 $asi (red)$ 1.21 416 101 $asi (red)$ 1.21 148 101 bie 1.2 1.21 148 101 bie 50 1.25 373 129 bie 56 <td< td=""><td>5085 8643 6934 4776 10811 6239 5622 5622 5622 5627</td><td></td><td>14.99 19</td><td>19.68 1.03</td><td>4.1041</td><td>37.10 2</td><td>28.32 8.24</td><td>1 249</td><td>0.2537</td><td>0.68 0</td><td>0.1545 0.</td><td>0.2118</td></td<>	5085 8643 6934 4776 10811 6239 5622 5622 5622 5627		14.99 19	19.68 1.03	4.1041	37.10 2	28.32 8.24	1 249	0.2537	0.68 0	0.1545 0.	0.2118
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	5085 8643 6934 4776 10811 6239 5622 5622 5527 5527											
64 3.46 768 167 53 1.79 542 124 53 1.79 542 124 <loq< td=""> 0.84 182 74 <et< td=""> 15 0.91 146 110 e 15 0.91 148 101 e 15 0.91 148 101 e 15 0.91 148 101 e 1.25 373 129 191 for 2.68 591 191 191 for 2.03 1.25 373 129 for 2.10 2.19 83 29 for 2.68 591 191 16 for 2.68 2.93 193 191 for 2.68 2.99 2.99 191 for 2.68 2.99 2.90 16</et<></loq<></loq<></loq<></loq<>	8643 1 6934 4776 10811 6239 5622 5622 5597 8574	3 60	8.12 14	14.30 0.73	2.4215	29.69	2.67 10.36	3 157	0.2471	0.16 0	0.0634 0.	0.1636
53 1.79 542 124 kKarası 62 4.61 604 143 62 4.61 604 143 101 ası (red) 1.21 416 110 asi (red) 0.91 148 101 e 15 0.91 148 101 e 1.25 373 129 191 jözü 50 1.25 373 129 jözü 50 1.26 373 129 jözü 50 1.25 373 129 jözü 50 1.240 106 83 jözü 1.25 373 129 124 fö 2.09 2.49 106 106 e 56 2.19 293 201 177 f 55 1.18 401 127 177	6934 4776 10811 6239 5622 5622 5627 8574	0 255	25.23 28	28.27 1.50	6.8229	58.87 25	250.75 26.57	498	0.5848		0.3203 0.	0.5813
k Karası <_LOQ	4776 10811 6239 5622 5622 5627 8574	9 139	13.94 19	19.51 1.30	4.5837	43.47 9	97.66 14.22	2 347	0.3838	0.33 0	0.1692 0.	0.3021
 <loq< p=""> 0.84 182 74 62 4.61 604 143 47 1.21 416 110 rasi (red) rasi (rosé) </loq<>	4776 10811 6239 5622 5622 5597 8574											
62 4.61 604 143 asi (red) .1.21 416 110 asi (red) .1.21 416 101 asi (red) .0.91 148 101 alot .2.68 .591 191 61 2.68 .591 191 50 1.25 373 129 jözü 0.043 190 83 66 1.10 240 106 89 2.98 497 154 66 1.10 240 106 e 56 2.59 325 106 9 2.98 497 154 106 66 1.10 240 106 83 66 1.10 240 106 106 9 2.99 325 106 9 2.19 593 201 1 55 1.18 401 127 1 55 1.18 0.76 162 85 <100	10811 6239 5622 5622 5597 8574	5 92	5.63 7	7.67 0.61	1.5750	10.58 2	21.13 1.11	115	0.1127	0.04 0	0.0047 0.	0.0868
47 1.21 416 110 asi (red) 0.91 148 101 0.0 15 0.91 148 101 0.0 15 0.91 148 101 0.0 15 0.91 148 101 0.0 1.25 373 129 0.043 1.25 373 129 0.043 1.26 373 129 0.043 1.26 373 129 0.043 1.26 373 129 0.43 1.00 83 89 2.98 0.43 1.10 240 106 83 0.66 1.10 240 106 83 0.6 2.59 325 106 96 0.6 2.19 593 201 1 0.70 2.19 593 201 1 0.76 1.62 323 108 321 1 0.70 2.19 593 201 1 1 1 1 <td>6239 5622 5597 8574</td> <td>7 207</td> <td>70.91 31</td> <td>31.65 1.19</td> <td>5.0510</td> <td>60.64 42</td> <td>426.34 33.35</td> <td>333</td> <td>0.5956</td> <td>21.77 0</td> <td>0.3265 0.</td> <td>0.5185</td>	6239 5622 5597 8574	7 207	70.91 31	31.65 1.19	5.0510	60.64 42	426.34 33.35	333	0.5956	21.77 0	0.3265 0.	0.5185
asi (red)	5622 5597 8574	2 128	13.40 15	15.62 0.96	3.3000	30.14 7	76.89 6.91	220	0.3082	0.28 0	0.0937 0.	0.1890
e 15 0.91 148 101 ble 15 0.91 148 101 	5622 5597 8574											
t <loq 0.91="" 101<="" 148="" li=""> 61 2.68 591 191 50 1.25 373 129 jözü 50 0.43 190 83 89 2.98 497 154 66 1.10 240 106 karası 66 1.10 240 106 66 1.10 240 106 66 1.10 240 106 66 1.10 240 106 70 2.98 497 154 66 1.10 240 106 70 2.98 497 154 70 2.19 593 201 1 70 2.19 593 201 1 70 2.19 593 201 1 71 2.19 593 201 1 72 2.19 593 201 1 73 2.10 0.76 162 85 </loq>	5597 8574	0 67	6.55 10	10.59 0.94	1.2230	23.81 4	41.62 2.12	2 185	0.1948	0.07 0	0.0208 <	<loq< td=""></loq<>
 <loq 0.91="" 101<="" 148="" li=""> 61 2.68 591 191 50 1.25 373 129 jözü 50 0.43 190 83 89 2.98 497 154 66 1.10 240 106 88 2.98 497 154 66 1.10 240 106 66 1.10 240 106 88 2.98 497 154 70 2.19 293 201 1 55 1.18 401 127 55 1.18 401 127 asi (rosé) </loq>	5597 8574											
61 2.68 591 191 50 1.25 373 129 jözü 50 1.25 373 129 50 1.25 373 129 129 50 0.43 190 83 89 2.98 89 2.98 497 154 66 1.10 240 106 karası . . . e 56 2.59 325 106 ole 56 2.19 593 201 1 70 2.19 593 201 1 55 1.18 401 127 fast (rosé) 0.76 162 85	8574	4 67	6.55 10	10.59 0.94	1.2230	23.81 4	41.62 2.12	2 185	0.1948	0.07 0	0.0208 <	<loq< td=""></loq<>
50 1.25 373 129 jözü 50 0.43 190 83 50 0.43 190 83 89 2.98 497 154 66 1.10 240 106 83 89 2.98 497 154 66 1.10 240 106 83 89 2.91 106 e 56 2.59 325 106 91 106 108 106 108 <td>100</td> <td>1 195</td> <td>23.63 22</td> <td>22.88 1.56</td> <td>7.7362</td> <td>64.63 30</td> <td>304.64 23.87</td> <td>591</td> <td>0.4383</td> <td>17.29 0</td> <td>0.3721 0.</td> <td>0.3956</td>	100	1 195	23.63 22	22.88 1.56	7.7362	64.63 30	304.64 23.87	591	0.4383	17.29 0	0.3721 0.	0.3956
jözü 50 0.43 190 83 89 2.98 497 154 66 1.10 240 106 karası e 56 2.59 325 106 9e 56 2.59 325 106 106 cLOQ 0.50 242 108 70 2.19 593 201 1 55 1.18 401 127 asi (rosé) cLOQ 0.76 162 85	393 7521 504	4 113	9.90 17	17.53 1.06	4.0804	44.99 13	139.38 10.66	3 430	0.3499	0.35 0	0.1163 0.	0.1781
50 0.43 190 83 89 2.98 497 154 66 1.10 240 106 karası 2.59 325 106 e 56 2.59 325 106 ola 56 2.59 325 106 ola 56 2.19 593 201 1 70 2.19 593 201 1 55 1.18 401 127 asi (rosé) 0.76 162 85												
89 2.98 497 154 66 1.10 240 106 karası e 56 2.59 325 106 0le	398 4310 326	6 54	8.85 8	8.92 0.83	<pre>> </pre>	10.07	9.70 1.28	81	0.0914	0.11 0	0.0258 <	<loq< td=""></loq<>
66 1.10 240 106 1 karası e 56 2.59 325 106 3 le 	708 6481 984		26.07 28	28.84 1.13	5.7910	43.42 30	306.72 27.70		0.6192	10.43 0	0.2619 0.	0.2676
e 56 2.59 325 106 3 e 56 2.59 325 106 3 ole 56 2.59 325 106 3 <loq< td=""> 0.50 242 108 70 2.19 593 201 14 55 1.18 401 127 1 rasi (rosé) 162 85</loq<>	590 5601 669	9 107	16.31 17	17.12 1.04	2.9790	24.99 2	27.71 6.89	9 223	0.2998	0.50 0	0.1229 0.	0.1217
e 56 2.59 325 106 3 le - LOQ 0.50 242 108 <loq 0.50="" 108<br="" 242="">70 2.19 593 201 14 55 1.18 401 127 1 rasi (rosé) LOQ 0.76 162 85</loq>												
 <loq 0.50="" 108<="" 242="" li=""> 70 2.19 593 201 14 55 1.18 401 127 1 asi (rosé) <loq 0.76="" 162="" 85<="" li=""> </loq></loq>	862 6828 1085	5 151	21.83 22	22.89 1.27	9.0051	59.94 34	348.27 22.52	324	0.6249	0.27 0	0.2500 0.	0.1949
0.50 242 108 2.19 593 201 14 1.18 401 127 1 0.76 162 85												
2.19 593 201 14 1.18 401 127 1 0.76 162 85	4535		5.31 9		0.6835		19.80 2.00		0.1583	0.18 <		<loq< td=""></loq<>
1.18 401 127 1 0.76 162 85	8727				5.2045		(1)		5826		-	0.3603
0.76 162 85	353 6803 448	8 117	8.60 18	18.18 1.10	4.6817	33.19 14	141.04 8.60	357	0.3106	0.37 0	0.0993 0.	0.1523
<loq 0.76="" 162="" 85<="" p=""></loq>												
	207 3759 388	8 64	8.91 9	9.59 0.73	2.3763		15.61 3.90	177	0.3566	0.14 0	0.0630 0.	0.0652
79 1.18 334 112 2	5749 1		-		-				0.9925			0.3589
med 65 0.88 235 108 8.8	250 4538 452	2 68	15.55 10	0.72 1.09	2.7005	16.77 2	27.78 10.18	211	0.4074	0.31 0	0.1109 0.	0.2169
LOD 14.96 0.12 0.15 0.24 0.71	0.01 6.13 1	1.2 0.09	0.06 0.	0.04 0.02	0.003	0.10	0.02 0.05	5 1.03	0.003	0.01 0	0.0005 0	0.001
LOQ 49.86 0.39 0.50 0.79 2.36	0.03 20.44 4	4.0 0.30	0.19 0.	0.13 0.06	0.010	0.32	0.05 0.16	3 3.44	0.010	0.02 0	0.0017 0	0.002

Table 4 Element concentrations in white wines, shown as minimum (min), median (med), and maximum (max) values. Ca Fe K M SI B AI B AI Ca Fe K Mg Na SI Ca Fe K Mg SI AI B LI Cr Mn Co NI Classing (mg/mL) (mg/mL)	Table 4 E Fe K Mg (µg/mL) (µg/mL)	Table 4 E K Mg (µg/mL) (µg/mL)	Mg (µg/mL)		(Jug/mL)	soncenti Sr (ng/mL)	(ng/mL)	Mhite wir Al (ng/mL) (nes, sho Ba (ng/mL)	DWN as m Li (ng/mL) (ninimum Cr (ng/mL)	(min), n Mn (ng/mL)	nedian (me Co (ng/mL) (ng	d), and Ni g/mL) (r	maximu Cu ig/mL) (I	m (max Pb ng/mL) (values Zn ng/mL)		Cd (ng/mL)	Cd Be Tl (ng/mL) (ng/mL)	TI ng/mL)
<loq 0.40="" 242="" 38<="" 3930="" 560="" 60="" 77="" 9.8="" p=""></loq>	0.40 60 77 9.8 560 3930 242	77 9.8 560 3930 242	560 3930 242	560 3930 242	3930 242) 242		36	m	47.07	7.65	0.46	<loq <<="" th=""><th>7.44 <</th><th><loq< th=""><th>5.24</th><th>185</th><th>0.0961</th><th>0.12</th><th>0.1799</th><th><loq< th=""></loq<></th></loq<></th></loq>	7.44 <	<loq< th=""><th>5.24</th><th>185</th><th>0.0961</th><th>0.12</th><th>0.1799</th><th><loq< th=""></loq<></th></loq<>	5.24	185	0.0961	0.12	0.1799	<loq< th=""></loq<>
93 2.39 416 148 100.1 1264 6705 1661 1	416 148 100.1 1264 6705 1661 1	148 100.1 1264 6705 1661 1	100.1 1264 6705 1661 1	1264 6705 1661 1	6705 1661 1	1661	-	-	35	386.37	24.96	0.92	3.9860117.79	-	95.20	33.84	648	0.8323	31.40	2.0601	0.2705
	164 94 21.2 894 5040	94 21.2 894 5040	21.2 894 5040	894 5040	5040	_	428		68	155.92	11.35	0.67	2.3970 1	16.61 2	23.41	9.66	307	0.2677	0.69	0.3150	0.0692
Chardonnay min <loq 108="" 178="" 282<="" 4104="" 54="" <loq="" td=""><td>108 54 <loq 178="" 4104<="" td=""><td>108 54 <loq 178="" 4104<="" td=""><td><loq 178="" 4104<="" td=""><td>178 4104</td><td>4104</td><td></td><td>282</td><td></td><td>35</td><td>3.51</td><td>8.37</td><td>0.44</td><td>0.9850 1</td><td>16.94 1</td><td>18.41</td><td>1.85</td><td>175</td><td>0.1530</td><td>0.20</td><td>0.0263</td><td><loq< td=""></loq<></td></loq></td></loq></td></loq></td></loq>	108 54 <loq 178="" 4104<="" td=""><td>108 54 <loq 178="" 4104<="" td=""><td><loq 178="" 4104<="" td=""><td>178 4104</td><td>4104</td><td></td><td>282</td><td></td><td>35</td><td>3.51</td><td>8.37</td><td>0.44</td><td>0.9850 1</td><td>16.94 1</td><td>18.41</td><td>1.85</td><td>175</td><td>0.1530</td><td>0.20</td><td>0.0263</td><td><loq< td=""></loq<></td></loq></td></loq></td></loq>	108 54 <loq 178="" 4104<="" td=""><td><loq 178="" 4104<="" td=""><td>178 4104</td><td>4104</td><td></td><td>282</td><td></td><td>35</td><td>3.51</td><td>8.37</td><td>0.44</td><td>0.9850 1</td><td>16.94 1</td><td>18.41</td><td>1.85</td><td>175</td><td>0.1530</td><td>0.20</td><td>0.0263</td><td><loq< td=""></loq<></td></loq></td></loq>	<loq 178="" 4104<="" td=""><td>178 4104</td><td>4104</td><td></td><td>282</td><td></td><td>35</td><td>3.51</td><td>8.37</td><td>0.44</td><td>0.9850 1</td><td>16.94 1</td><td>18.41</td><td>1.85</td><td>175</td><td>0.1530</td><td>0.20</td><td>0.0263</td><td><loq< td=""></loq<></td></loq>	178 4104	4104		282		35	3.51	8.37	0.44	0.9850 1	16.94 1	18.41	1.85	175	0.1530	0.20	0.0263	<loq< td=""></loq<>
52.77 468 153 29.8 1	468 153 29.8 1196 9886 1	468 153 29.8 1196 9886 1	29.8 1196 9886 1	1196 9886 1	9886 1	-	1374		104	119.22	27.11	0.99	5.8394 8	84.91 46	467.65	33.76	764	0.4121	36.22	4.1898	1.7700
67 0.67 297 110 16.6 266 5221 485	297 110 16.6 266 5221	297 110 16.6 266 5221	16.6 266 5221	266 5221	5221		485		63	13.81	14.09	0.81	3.9225 4	45.23 9	91.37	14.34	379	0.2993	0.55	0.2907	0.3196
185 70	185 70 13.9 164 3357	185 70 13.9 164 3357	13.9 164 3357	164 3357	164 3357	~	225		36	9.97	5.81	0.54	0.7000	9.55	6.94	2.02	115	0.1122	0.13	0.0403	<l0q< td=""></l0q<>
0.88 507 140 44.4 849 5947 1212 1	507 140 44.4 849 5947 1212 1	507 140 44.4 849 5947 1212 1	44.4 849 5947 1212 1	849 5947 1212 1	849 5947 1212 1	1212 1	-	-	01	121.62	40.02	0.94	3.6969 6	66.96 10	1055.50	27.33	808	0.4646	8.00	0.4652	0.5336
	290 90 28.2 639 4511	290 90 28.2 639 4511	28.2 639 4511	639 4511	4511		601		80	24.77	14.15	0.71	2.0579 1	16.62 5	52.54	10.97	282	0.3352	0.46	0.3170	0.1171
26 107	26 107 14.7 336 3539	107 14.7 336 3539	14.7 336 3539	336 3539	3539		397		46	7.02	7.80	0.68	1.9325 1	18.78	23.67	18.41	246	0.1521	0.30	0.2835	<loq< td=""></loq<>
2.78 445 181 65.3 609 5967 2708 .	445 181 65.3 609 5967 2708	181 65.3 609 5967 2708	65.3 609 5967 2708	. 609 5967 2708	5967 2708	. 2708		-	194	42.75	93.55	2.20	13.0600115.16		300.50	72.43	663	2.0930	31.65	3.6333	0.8771
178 135 28.7 426 4961 672	178 135 28.7 426 4961 672	135 28.7 426 4961 672	28.7 426 4961 672	426 4961 672	4961 672	672			75	29.40	13.65	1.02	4.7350 4	43.87 4	49.95	29.06	417	0.3218	0.69	0.8912	0.4409
e 53 89 10.9 232 3106 234	53 89 10.9 232 3106 234	53 89 10.9 232 3106 234	10.9 232 3106 234	232 3106 234	3106 234	234		~	52	9.69	8.11	0.66	1.1363	8.39 2	41.04	2.94	153	0.1680	0.10	0.0697	0.0534
10270 753 1	455 153 47.4 781 10270 753 1	153 47.4 781 10270 753 1	47.4 781 10270 753 1	781 10270 753 1	10270 753 1	753 1		-	129	81.24	24.08	0.87	3.8695 3	30.31 21	211.09	13.20	509	0.4967	8.50	0.7095	0.3783
55 0.89 135 112 31.6 433 4397 473	135 112 31.6 433 4397	112 31.6 433 4397	31.6 433 4397	433 4397	4397		473		80	21.04	13.17	0.71	2.7281 2	24.60 7	71.31	7.41	262	0.3464	0.32	0.2693	0.1058
								1													

Y matrix (R_{Y}^{2}) 0.619 and a prediction coefficient (Q^{2}) of 0.372 (Figure 2B). The regional classes were established for Cappadocia and Tokat wines as class 1 (13 observations) and for Denizli, Izmir, Manisa, and Thrace wines as class 2 (24 observations). Cappadocia and Manisa wines were the richest in Sr and Li contents, despite their different classes. Izmir and Thrace wines were rich in Pb, Co, Al, and Ni contents. Denizli wines were poor in Sr, Li, Ba, and Pb contents. The concentrations of natural minerals such as Ba, B, Li, Al, and Sr do not depend on agricultural and processing activities, and they can play role on the regional discrimination of wine samples. For this study, it was recognized that the farther the distances among the vine growing regions, the better the discrimination. Similar results were reported elsewhere (Capron et al. 2007).

Varietal discrimination. Varietal discrimination was investigated through PLS-DA and HCA. The classes were

Figure 2 The PLS-DA score plots of red-rosé (**A**) and white (**B**) wines based on mineral content discriminated according to geographical region: (**A**) Class 1: Elazığ-Diyarbakır, Class 2: Denizli, Class 3: Thrace-Bozcaada-Izmir-Manisa; (**B**) Class 4: Thrace-Izmir-Manisa-Denizli, Class 5: Cappadocia-Tokat. The explained variation by each component is given in parenthesis on the axes.

defined with respect to grape variety. For the red wines, a two-component PLS-DA model was developed with Mn, Cu, B, Ca, Al, Ba, Li, K, and Zn ($R_Y^2 = 0.191$, $Q^2 = 0.116$). The elements were defined by the VIP feature of Simca software as the significant variables in the discrimination. Results indicated that the wines of two native varieties, Boğazkere and Öküzgözü, could be discriminated from the other varieties based on their higher Ca and lower B and Cu levels (Figure 3A). The majority of these native wines were from the eastern regions (Diyarbakır and Elazığ). There were also five wine samples of Boğazkere and Öküzgözü from central Anatolia (Cappadocia and Tokat). These wines were also clustered among other Boğazkere and Öküzgözü samples, despite the

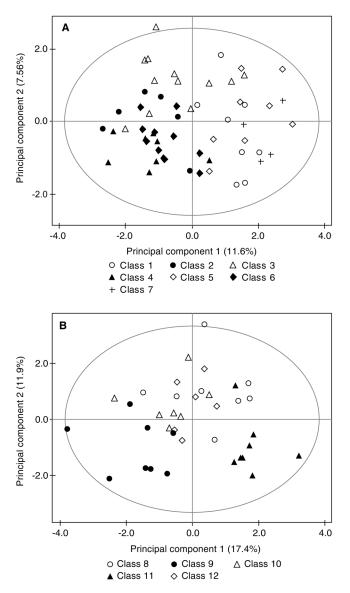


Figure 3 The PLS-DA score plots of red-rosé wines (A) and white wines (B) based on mineral content discriminated according to grape variety: (A) Class 1: Boğazkere, Class 2: Cabernet Sauvignon, Class 3: Kalecik Karası, Class 4: Merlot, Class 5: Öküzgözü, Class 6: Syrah, Class 7: Çalkarası; (B) Class 8: Chardonnay, Class 9: Emir, Class 10: Narince, Class 11: Muscat, Class 12: Sultaniye. The explained variation by each component is given in parenthesis on the axes.

regional differences. For the white wines, a two-component PLS-DA model was developed with Co, Cu, Li, K, Pb, Sr, Mg, Mn, and Na (R_{Y}^{2} =0.293, Q^{2} = 0.191). The discrimination between Emir and Muscat white wines was considered to be based on the higher Li and Sr and lower Cu levels of Emir wines and higher Pb, Co, and Mn levels of Muscat wines (Figure 3B). Emir is a native grape variety in central Anatolia, whereas Muscat is grown mostly in western Anatolia. Western Turkey is a highly industrialized area, which may help to explain the relatively higher Pb content of Muscat wines from Izmir, Manisa, Denizli, and Thrace. Details of PLS-DA models for red and white wines and the membership probabilities of samples in the validation sets are given in Supplemental Tables 1 and 2.

Hierarchical cluster analysis was successful in showing differences between some red and white wines. For red wines, native Öküzgözü wines were discriminated from the wines of Syrah and Cabernet Sauvignon varieties (Figure 4). The Euclidean technique and ward linkage method was preferred. The models were established using the variables used in the

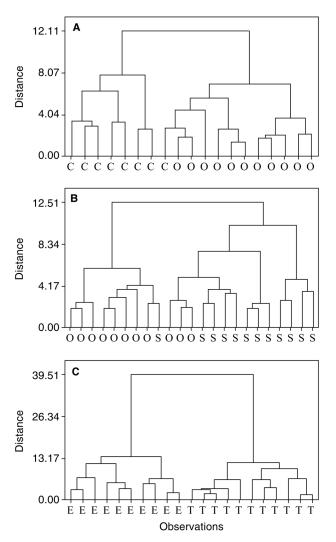


Figure 4 Dendrograms of some red and white wines based on mineral contents: A: Öküzgözü (O) and Cabernet Sauvignon (C) wines; B: Öküzgözü (O) and Syrah (S) wines; C: Emir (E) and Muscat (T) wines.

PLS-DA model for varietal discrimination of red wines. One Cabernet Sauvignon wine from the 2008 harvest year was clustered with the Öküzgözü variety (Figure 4A), and three Öküzgözü wines from 2009 harvest year were clustered within the Syrah group (Figure 4B). There was also one Syrah wine from 2006 harvest year located in the Öküzgözü cluster. For white wines, Muscat and Emir could be discriminated using the same variables used in the PLS-DA model of white wines. All the samples belonging to the two varieties were clustered in their own groups (Figure 4C).

Discussion

The elemental profiles of red and white wines differed from each other with higher levels of K and Ba and lower levels of Li in red wines. The slightly higher levels of minerals in red wines can be explained by the prolonged leaching of minerals from the grape during maceration (Coetzee et al. 2005, Martin et al. 2012). Statistical analyses were performed separately on the red-rosé wines and white wines.

The information for the wine samples in this study was based on the data given on the wine bottles. It should be emphasized that these commercial samples were produced under different conditions. The expected variability in their chemical composition due to the different vineyards, harvest year, or grape varieties might also be affected by the different production practices. Despite these various sources of variations, the wines of some varieties and some geographical origins separated themselves from others.

A limited number of samples made it difficult to fully evaluate the effect of variety and vineyard location. This was especially the case for the wines belonging to certain grape varieties, which were grown in one particular region only, such as Emir wines produced from Emir grapes of Cappadocia. Therefore, a confounding conclusion from the interpretation of data for regional and varietal classes could occur. In other words, it is not possible to be certain whether the differences of this wine are due to geographical origin or grape variety, with the available samples.

The performance of mineral content was also investigated for the discrimination of wine samples according to harvest years. The results of PCA indicated that the mineral profile of wine samples were independent of their vintage. Similar results have been reported (Martin et al. 2012).

Conclusion

The monovarietal wines produced from the native and nonnative grape varieties grown in Turkey were characterized in terms of elemental composition. The wine samples were classified with multivariate statistical techniques to show that the geography—where the grape was grown–determines the presence of certain minerals in wines. Regional discrimination was possible between the western and eastern wine-producing areas with the discriminating power of minerals such as Sr, Li, Ni, Ba, B, Pb, Ca, and Al. The wines of vineyards in western Turkey, where industrialization is high, discriminated themselves with relatively higher amounts of Pb, but still less than the allowable maximum level. Wines of some native Turkish grape varieties, such as Öküzgözü and Emir, had distinctive characteristics compared with the other wine samples.

Literature Cited

- Almeida, C.M.R., and M.T.S.D. Vasconcelos. 2003. Lead contamination in Portuguese red wines from the Douro region: From the vineyard to the final product. J. Agric. Food Chem. 51:3012-3023.
- Angus, N.S., T.J. O'Keeffe, K.R. Stuart, and G.M. Miskelly. 2006. Regional classification of New Zealand red wines using inductivelycoupled plasma-mass spectrometry (ICP-MS). Aust. J. Grape Wine Res. 12:170-176.
- Berruetaa, L.A., R.M. Alonso-Salcesa, and K. Heberger. 2007. Supervised pattern recognition in food analysis. J. Chromatogr., A 1158:196-214.
- Capron, X., J. Smeyers-Verbeke, and D.L. Massart. 2007. Multivariate determination of the geographical origin of wines from four different countries. Food Chem. 101:1585-1597.
- Castro, I., J.P. Martin, J.M. Ortiz, and O. Pinto-Carnide. 2011. Varietal discrimination and genetic relationships of *Vitis vinifera* L. cultivars from two major controlled appellation (DOC) regions in Portugal. Sci. Hortic.-Amsterdam 127:507-514.
- Coetzee, P.P., F.E. Steffens, R.J. Eiselen, O.P. Augustyn, L. Balcaen, and F. Vanhaecke. 2005. Multi-element analysis of South African wines by ICP-MS and their classification according to geographical origin. J. Agric. Food Chem. 53:5060-5066.
- Eriksson, L., E. Johanson, N.K. Wold, and S. Wold. 2001. Multi- and Megavariate Data Analysis: Principals and Applications. Umetrics AB, Umea, Sweden.
- Etievant, P., S. Pascal, J.C. Bouvier, P. Symonds, and A. Bertrand. 1988. Varietal and geographic classification of French red wines in terms of elements, amino acids and aromatic alcohols. J. Sci. Food Agric. 45:25-41.
- Fabani, M.P., R.C. Arrúa, F. Vázquez, M.P. Diaz, M.V. Baroni, and D.A. Wunderlin. 2010. Evaluation of elemental profile coupled to chemometrics to assess the geographical origin of Argentinean wines. Food Chem. 119:372-379.
- Gomez, M.D.M.C, I. Feldmann, N. Jakubowski, and J.T. Andersson. 2004. Classification of German white wines with certified brand of origin by multielement quantitation and pattern recognition techniques. J. Agric. Food Chem. 52:2962-2974.
- Gonzalves, A., S. Armenta, A. Pastor, and M. Guardia. 2008. Searching the most appropriate sample pretreatment for the elemental analysis of wines by inductively coupled plasma-based techniques. J. Agric. Food Chem. 56:4943-4954.
- Gonzalves, A., A. Llorens, M.L. Cervera, S. Armenta, and M. Guardia. 2009. Elemental fingerprint of wines from the protected designation of origin Valencia. Food Chem. 112:26-34.
- Grindlay, G., J. Mora, S. Maestre, and L. Gras. 2008. Application of a microwave-based desolvation system for multi-elemental analysis of wine by inductively coupled plasma based techniques. Anal. Chim. Acta 629:24-37.
- Kment, P., M. Mihaljevic, V. Ettler, O. Sebek, L. Strnad, and L. Rohlova. 2005. Differentiation of Czech wines using multielement composition – A comparison with vineyard soil. Food Chem. 91:157-165.
- Marengo, E., and M. Aceto. 2003. Statistical investigation of the differences in the distribution of metals in Nebbiolo-based wines. Food Chem. 81:621-630.
- Marini, F., R. Bucci, A.L. Magri, and A.D. Magri. 2006. Authentication of Italian CDO wines by class-modeling techniques. Chemometr. Intell. Lab. 84:164-171.

- Martin, A.E., J. Watling, and G.S. Lee. 2012. The multi-element determination and regional discrimination of Australian wines. Food Chem. 133:1081-1089.
- Martinez-Carrasco, L., M. Brugarolas, and A. Martinez-Poveda. 2005. Quality wines and wines protected by a designation of origin: Identifying their consumption determinants. J. Wine Res. 16:213-232.
- Moreno, I.M., D.G. Weller, V. Gutierrez, M. Marino, A.M. Camean, A.G. Gonzalez, and A. Hardisson. 2007. Differentiation of two Canary DO red wines according to their metal content from inductively coupled plasma optical emission spectrometry and graphite furnace atomic absorption spectrometry by using probabilistic neural networks. Talanta 72:263-268.
- OIV. 2013. Statistical report on world vitiviniculture. International Organisation of Vine and Wine, Intergovernmental Organisation, Paris.
- Saavedra, J., J. Fuentealba, L. Yáñez, M. Bravo, W. Quiroz, G. Lukacsy, and J.M. Carot. 2011. Chemometric approaches for the zoning of Pinot Noir wines from the Casablanca Valley, Chile. Food Chem. 127:1842-1847.
- Simsek, O., G.S. Senol, and S.D Velioglu. 2008. Trakya bolgesinde uretilen sarapların agir metal iceriklerinin belirlenmesi uzerine bir arastirma. *In* the Abstract Book of Türkiye 10. Gıda Kongresi (National Food Congress), pp. 223-226. Erzurum, Turkey.
- Skurikhin, I.M. 1993. Methods of analysis for toxic elements in foods. Part IV. General method of ashing for determination of toxic elements. J. AOAC 76:257-262.

- Sperkova, J.S., and M. Suchanek. 2005. Multivariate classification of wines from different Bohemian regions (Czech Republic). Food Chem. 93:659-663.
- Thiel, G., G. Geisler, I. Blechschmidt, and K. Danzer. 2004. Determination of trace elements in wines and classification according to their provenance. Anal. Bioanal. Chem. 378:1630-1636.
- Trujillo, J.P.P., J.E. Conde, M.L.P. Pont, J. Camara, and J.C. Marques. 2011. Content in metallic ions of wines from the Madeira and Azores archipelagos. Food Chem. 124:533-537.
- Verbeke, J.S., H. Jager, S. Lanteri, P. Brereton, E. Jamin, C.F. Hassek, M. Forina, and U. Römisch. 2009. Characterization and determination of the geographical origin of wines. Part II. Descriptive and inductive univariate statistics. Eur. Food Res. Technol. 230:15-29.
- Volpe, M.G, F. La Cara, F. Volpe, A. De Mattia, V. Serino, F. Petitto, C. Zavalloni, F. Limone, R. Pellecchia, P.P. De Prisco, and M. Di Stasio. 2009. Heavy metal uptake in the enological food chain. Food Chem. 117:553-560.
- Zou, J.F., Z.X. Peng, H.J. Du, C.Q. Duan, M.J. Reeves, and Q.H. Pan. 2012. Elemental patterns of wines, grapes, and vineyard soils from Chinese wine-producing regions and their association. Am. J. Enol. Vitic. 63:232-240.