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Let R be a left hereditary ring. We show that if the left cotorsion
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ring. In particular, we deduce that C(R R) is finitely generated if
and only if R is a semiperfect cotorsion ring. Our proof is based on
set theoretical counting arguments. We also discuss some possible
extensions of this result.
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1. Introduction and notation

Let R be a unitary ring and R-Mod, the category of unitary left R-modules. We recall that a left
R-module C is called cotorsion when it has no proper extensions by flat modules. I.e., Ext1(F , C) = 0
for any flat left R-module F . Cotorsion modules were introduced by Harrison in [13] as a homologi-
cal generalization of algebraically compact abelian groups and have been recently studied by several
authors (see e.g. [7,9–12,19]). In [10] it was proved that flat cotorsion modules enjoy many charac-
teristic properties of pure-injective (equivalently, algebraically compact) modules. In particular, their
endomorphism ring is (von Neumann) regular and left self-injective modulo its Jacobson radical and
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idempotents lift modulo any two-sided ideal. This means that their endomorphism ring is semiperfect
whenever flat cotorsion modules are finite direct sums of indecomposable direct summands.

On the other hand, it has been proved in [11, Section 3] that for any ring R there exists a local
homomorphism of rings from R to S/ J (S), where S is the endomorphism ring of the left cotorsion
envelope of R and J (S), the Jacobson radical of S (see Section 2 or [19] for definitions). Using results
in [4], authors have deduced that R is semilocal (i.e., R is semisimple modulo its Jacobson radical)
whenever S is semiperfect. The interestingness of this result is that, as the cotorsion envelope of a flat
module is always flat (see [19, Theorem 3.4.2]), we can use the above mentioned characterization to
deduce that R is semilocal whenever its cotorsion envelope is a direct sum of indecomposable direct
summands (see Section 3 in [11]). As pointed out in there, this seems to be a powerful tool to show
that a ring R is semilocal in terms of another ring (the endomorphism ring of its cotorsion envelope)
which has a milder structure.

The main goal of this paper is to exploit this idea. We consider the special case in which the
given ring R is left hereditary and we try to find conditions on its cotorsion envelope which ensure
that R is semilocal. These conditions are inspired by [5]. In that paper, authors showed that any left
hereditary ring having a countably generated left injective envelope is left noetherian.

We consider the related problem of characterizing left hereditary rings having countably generated
left cotorsion envelope. We prove that their left cotorsion envelope is a direct sum of indecomposable
direct summands and therefore, they are semilocal. In particular, we deduce that left hereditary rings
with finitely generated left cotorsion envelope are just the left hereditary left cotorsion semiperfect
rings, thus obtaining the structure of them. We would like to stress that our proof relies on set
theoretical arguments which have their origin in the decomposition of infinite sets into almost disjoint
subsets obtained by Tarski in [18, Théorème 7] and that were also used in [5,15] to obtain their main
results. However, the situation here is much more difficult to handle since we do not have unique
cotorsion envelopes of pure submodules of C = C(R R) within C . This fact was essential in [5,15],
where uniqueness of injective envelopes is a key fact (see [16] for a discussion on this question).
Indeed, our result shows one of the first situations in which this kind of techniques is successfully
applied in absence of uniqueness of envelopes.

We finish this paper by showing that the decomposition of C(R R) into a direct sum of indecom-
posables obtained in our main result seems to be true under a more general hypothesis. We show
that this is the case for any countable ring having countably generated left cotorsion envelope. As
any countable ring has left (and right) pure-global dimension bounded by one (and therefore, pure
submodules of projective modules are again projective), this fact suggests that the following question
may have a positive answer:

Question. Let R be a ring having left pure-global dimension at most 1. Is C(R R) a direct sum of
indecomposable direct summands provided it is countably (or finitely) generated?

Our proofs do not seem to work in this more general setting and therefore we do not know the
answer to the above question.

Throughout this paper, all rings will be unitary and associative. By a module we will always mean
a unitary left module unless otherwise stated. We will denote by R-Mod the category of left modules
over a ring R . If f : M → N is a homomorphism of modules and M ′ is a submodule of M , we will
denote the restriction of f to M ′ by f |M′ . We refer to [2,9,17,19] for any undefined concept used
along this paper.

2. Main results

We begin this section by recalling some well-known facts about cotorsion modules. Let R be a
unitary ring. A left R-module C is called cotorsion if Ext1

R(F , C) = 0 for any flat left R-module F .
A homomorphism u : M → C from a module M to a cotorsion module C is called a cotorsion preen-
velope of M if any other morphism from M to a cotorsion module factors through u. A cotorsion
preenvelope u : M → C is called a cotorsion envelope if, moreover, u is minimal in the sense that
any endomorphism f of C satisfying that f ◦ u = u is an isomorphism. The existence of cotorsion
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envelopes of modules is a consequence of the solution of the so-called Flat Cover Conjecture given
in [3] (see also [9]). We will denote the cotorsion envelope of a module M by C(M). As noted in
[19, Theorem 3.4.2], any cotorsion envelope u : M → C(M) is a monomorphism with flat cokernel. In
particular, any module is a pure submodule of its cotorsion envelope. Moreover, the cotorsion en-
velope of a flat module is always flat since flat modules are closed under extensions. The following
definitions from [12] reflect the purity associated to cotorsion modules.

Definition 1. A homomorphism of modules u : N → M is called a strongly pure monomorphism if for
any cotorsion module C and any morphism f : N → C , there exists g : M → C such that g ◦ u = f .

As noted in [12, p. 14], any monomorphism with flat cokernel, as well as any splitted monomor-
phism, is a strongly pure monomorphism. Therefore, the embedding of a module in its cotorsion
envelope is a strongly pure monomorphism.

Definition 2. Let u : N → M be a strongly pure monomorphism. The morphism u is called strongly
pure-essential if whenever composed with a morphism f : M → L gives a strongly pure monomor-
phism, the morphism f itself must be a monomorphism.

Again, it was observed in [12, p. 15] that the embedding of a module in its cotorsion envelope is
always a strongly pure-essential monomorphism.

The following easy lemma will be quite useful in the sequel.

Lemma 3. Let {ui : Mi → Ci | i ∈ I} be a family of embeddings of modules into their cotorsion envelopes. Then
the induced morphism

⊕
I ui : ⊕I Mi → ⊕

I Ci is a strongly pure-essential monomorphism.

Proof. Let f : ⊕I Ci → L be a homomorphism such that f ◦ ⊕
I ui is a strongly pure monomorphism.

The homomorphism f is induced by morphisms f i : Ci → L for each i ∈ I . We must show that f
is a monomorphism. Let us assume on the contrary that there exists a nonzero element x ∈ ⊕

I Ci
such that f (x) = 0. Let I ′ ⊆ I be a finite subset of I such that x ∈ ⊕

I ′ Ci . It is straightforward to
show that, as f ◦ ⊕

I ui is a strongly pure monomorphism, so is ( f |⊕
I ′ Ci

) ◦ (
⊕

I ′ ui). But, as I ′ is a
finite set,

⊕
I ′ Ci is cotorsion and thus,

⊕
I ′ ui : ⊕I ′ Mi → ⊕

I ′ Ci is the cotorsion envelope of
⊕

I ′ Mi .
But this means that

⊕
I ′ ui is strongly pure-essential and, as ( f |⊕

I ′ Ci
) ◦ ⊕

I ′ ui is a strongly pure
monomorphism, we deduce that f |⊕

I ′ Ci
must be a monomorphism. A contradiction, since 0 �= x ∈

Ker( f |⊕
I ′ Ci

). �
Lemma 4. Let M be a left R-module, C = C(M), its cotorsion envelope and S = End(C). If f ∈ S satisfies that
M ⊆ Ker( f ), then f ∈ J (S).

Proof. We need to show that 1C − g ◦ f is an automorphism for any g ∈ S (see [2, Theorem 15.3]).
Let u : M → C be the morphism which makes C the cotorsion envelope of M . As M ⊆ Ker( f ), we get
that (1C − g ◦ f ) ◦ u = u. So, 1C − g ◦ f is an automorphism by the definition of envelope. �

Our next lemma will be used to prove our main result. Given an infinite cardinal number ℵ, we
will say that a module M is ℵ-generated if it has a generator set of cardinality bounded by ℵ.

Lemma 5. Let P be a finitely generated projective left R-module, C = C(P ), its cotorsion envelope, S =
EndR(C), J = J (S) the Jacobson radical of S, and ℵ, an infinite cardinal number. If N is a left ideal of S
such that R C N is an ℵ-generated module, then so is S (N + J )/ J .

Proof. Let us denote by w : N → S the inclusion of N in S and let π : S(I) → N be an epimorphism
for some index set I . Tensorizing by C ⊗S −, we get a morphism 1C ⊗ w : C ⊗S N → C ⊗ S ∼= C which
factors as 1C ⊗ w = u ◦q, where u : C N → C is the inclusion and q : C ⊗ N → C N is the evaluation. We
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are assuming that R C N is ℵ-generated, so there exists a subset I ′ ⊆ I of cardinality bounded by ℵ such
that, if we denote by v : C (I ′) → C (I) the natural embedding, then q ◦ (1C ⊗ π) ◦ v is an epimorphism.
Note that, as the tensor functor C ⊗S − commutes with direct sums, and R C ∼=R C ⊗S HomR(C, C), v =
1C ⊗ v ′ , where v ′ : S(I ′) → S(I) is also the natural embedding. Applying now the functor HomR(C,−),
we obtain a commutative diagram in S-Mod as follows:

S(I ′)

η
S(I′)

v ′
S(I)

ηS(I)

π
N

q∗◦ηN

ω
S

� ηS

Hom(C, C (I ′))
(1C ⊗v ′)∗

Hom(C, C (I))
q∗◦(1C ⊗π)∗

Hom(C, C N)
u∗

Hom(C, C)

where (−)∗ ≡ HomR(C,−) and η : 1S- Mod → HomR(C, C ⊗S −) is the arrow of the adjunction. Let us
write u∗ = β ◦ α, where

α : Hom(C, C N) → Im u∗

is an epimorphism and

β : Im u∗ → HomR(C, C),

a monomorphism. Let us note that α ◦q∗ ◦ηN is a monomorphism as so ηS ◦ w is. And this means that
N ∼= Im(α ◦ q∗ ◦ ηN ) ⊆ Im u∗ . Let us choose any element x ∈ Im u∗ . There exists an f ∈ HomR(C, C N)

such that x = α( f ). We have a diagram in R-Mod:

0 P
ε

C

f

C (I ′) q◦(1C ⊗π)◦(1C ⊗v ′)
C N 0

where ε : P → C denotes the morphism that makes C the cotorsion envelope of P . As P is projective,
there exists a δ : P → C (I ′) such that

q ◦ (1C ⊗ π) ◦ (
1C ⊗ v ′) ◦ δ = f ◦ ε.

Let us note that P is finitely generated and thus, Im δ embeds in a finite subsum of C (F ) of C (I ′) .
Therefore, C (F ) is cotorsion and, as Coker(ε) is flat, there exists a ϕ : C → C (F ) ⊆ C (I ′) such that
ϕ ◦ ε = δ. But this means that

P ⊆ Ker
(

f − q ◦ (1C ⊗ π) ◦ (
1C ⊗ v ′) ◦ ϕ

)

and hence

β
[
α( f ) − α ◦ q∗ ◦ (1C ⊗ π)∗ ◦ (

1C ⊗ v ′)
∗(ϕ)

] ∈ J (S)

by the above lemma. Thus, Im u∗ + J ∼= N + J .
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On the other hand, as ϕ : C → C (I ′) factors through the finite direct subsum C (F ) , and ηS(F ) : S(F ) →
HomR(C, C ⊗S S(F )) is an isomorphism (since functor HomR(C,−) commutes with finite direct sums),
there exists an element y ∈ S(I ′) such that ηS(I ′) (y) = ϕ . Therefore,

u∗( f ) + J = u∗ ◦ q∗ ◦ (1C ⊗ π)∗ ◦ (
1C ⊗ v ′)

∗(ϕ) + J

= u∗ ◦ q∗ ◦ (1C ⊗ π)∗ ◦ (
1C ⊗ v ′)

∗ ◦ ηS(I′) (y) + J

= u∗ ◦ q∗ ◦ ηN ◦ π ◦ v ′(y) + J

and we deduce that Im u∗ + J = Im(u∗ ◦q∗ ◦ηN ◦π ◦ v ′)+ J . Therefore, (Im u∗ + J )/ J is |I ′|-generated
and this means that (N + J )/ J ∼= (Im u∗ + J )/ J is also ℵ-generated. �

We are now ready to prove our main result. Recall that a left R-module P is called a progenerator
if it is a finitely generated projective generator in R-Mod (see [2, Chapter 6, §22, p. 262]). A set
{Mi | i ∈ I} of independent submodules of a module M is called a local direct summand of M [6, p. 66]
when

⊕
F Mi is a direct summand of M for every finite subset F ⊆ I . If

⊕
I Mi is a direct summand

of M , then we will say that the local direct summand {Mi | i ∈ I} is a summand of M .

Theorem 6. Let R be a left hereditary ring, P , a progenerator in R-Mod and u : P → C(P ), the cotorsion
envelope of P . If C(P ) is countably generated, then C(P ) is a finite direct sum of indecomposable cotorsion
modules.

Proof. Let us call C = C(P ) and assume on the contrary that C is not a finite direct sum of inde-
composable cotorsion modules. As P is a finitely generated module which is strongly pure-essential
in C , any decomposition of C into indecomposable direct summands would only have finitely many
nonzero direct summands. So C cannot be a direct sum of indecomposable direct summands. By
[14, Theorem 10.17], there must exist a local direct summand

⊕
I Ci ⊆ C which is not a direct sum-

mand. Let us note that
⊕

I Ci ⊆ C is a strongly pure submodule of C , since it is a pure submodule of
a flat module. Thus, the cotorsion envelope of

⊕
I Ci is a direct summand of C , say C = C(

⊕
I Ci)⊕ C ′ .

Adding the direct summand C ′ to
⊕

I Ci if necessary, we may assume that C is the cotorsion envelope
of

⊕
I Ci and thus, the embedding v : ⊕I Ci → C is a strongly pure-essential monomorphism.

We are assuming that C is countably generated. So there exists an epimorphism π : R(N) → C .
Kerπ is a submodule of R R(N) and, in particular, a projective module since R is left hereditary.
Moreover, as C is flat, the inclusion Kerπ ↪→ R(N) has flat cokernel and thus, it is a strongly pure
monomorphism.

On the other hand, we know by [1] that Kerπ is a direct sum of finitely generated projective
modules, say Kerπ = ⊕

T Pt . We claim that there exists an n ∈ N such that Rn contains a local direct
summand

⊕
H Xh with |H | � |T | and Xh �= 0 for every h ∈ H . Let us note that, if |T | � |I|, this is

obvious since we are assuming that the progenerator P contains the local direct summand
⊕

I P i . So
let us assume that |T | � |I|. In particular, T is uncountable. As each Pt is finitely generated, there
exists a finite subset nt ⊂ N such that Pt ⊆ R(nt ) ⊆ R(N) . Therefore, as T is an uncountable subset but
the set of all finite subsets of N is countable, there must exist a finite number n such that the set

T ′ = {
t ∈ T

∣∣ Pt ∈ R(n)
}

has cardinality |T |, and this proves our claim. Let us note that, replacing now, if necessary, P by Rn ,⊕
I Ci by

⊕
T ′ Ct and C by Cn , we may assume that C contains a strongly pure-essential local direct

summand
⊕

I Ci with |I|� |T |.
Let us apply [18, Théorème 7] (see also the proof of [15, Theorem 1] and [8]) to construct a family

K of infinite subsets of I satisfying:

1. |I| � |K|,
2. |K ∩ K ′| < |K | = |K ′| for every K , K ′ ∈K with K �= K ′ .
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Let us call S = EndR(C) and let J = J (S) be its Jacobson radical. We know from [10] that the ring
S/ J is left self-injective, (von Neumann) regular and idempotents in S/ J lift modulo J . As each Ci is
a direct summand of C , there exists a set {ei | i ∈ I} of pairwise orthogonal idempotents in S such that
Ci = Cei for every i ∈ I . Let us also fix, for any subset A ⊆ I , injective envelopes E A = E(

⊕
i∈A Sei/ J ei)

within S/ J . As idempotents lift modulo J , there exists an idempotent e A ∈ S such that E A = Se A/ J e A .
We claim that, for any A ⊆ I , Ce A is a cotorsion envelope of

⊕
i∈A Cei within R C . Note that Ce A is

flat and cotorsion since it is a direct summand of C and that
⊕

i∈A Cei is a strongly pure submodule
of Ce A . So Ce A = C ′ ⊕ C ′′ , where C ′ is the cotorsion envelope of

⊕
i∈A Cei . This means that

Se A ∼= HomR(C, Ce A) = HomR
(
C, C ′) ⊕ HomR

(
C, C ′′).

But clearly Sei ⊂ HomR(C, C ′) for each i ∈ A. Therefore,

⊕
A

Sei/ J ei ⊆ (
HomR

(
C, C ′) + J

)
/ J

and this means that HomR(C, C ′′) + J/ J = 0 since Se A/ J e A is the injective envelope of
⊕

A Sei/ J ei
in S/ J -Mod. Thus, HomR(C, C ′′) = 0. In particular,

C ′′ ∼= C ⊗ HomR
(
C, C ′′) = 0

and Ce A = C ′ is the cotorsion envelope of
⊕

i∈A Cei .
Let us now call M = ∑

K∈K SeK . We claim that M cannot be |I|-generated. Assume on the
contrary that this is the case. Then, there would exist a subset K′ ⊆ K with |K′| � |I| such that
M = ∑

K∈K′ SeK . In particular,

(M + J )/ J =
∑

K∈K′
SeK / J eK .

As |K|� |I|, there exists a K0 ∈K \K′ . By assumption,

eK0 + J ∈
∑

K∈K′
SeK + J ,

so there exists a finite set K1, . . . , Kn ∈K′ such that

eK0 + J ∈ (SeK1 + · · · + SeKn) + J .

As S/ J is regular, it is nonsingular and thus, injective envelopes inside S/ J S/ J are unique. Therefore,
if we call A = K1 ∪ · · · ∪ Kn , we have

SeK1/ J eK1 + · · · + SeKn/ J eKn ⊆ Se A/ J e A .

And this means

SeK0/ J eK0 ⊆ Se A/ J e A .

In particular, we deduce that

ei + J i ∈ Se A/ J e A for each i ∈ K0
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and thus, K0 ⊆ A. But then,

|K0| =
∣∣K0 ∩ (K1 ∪ · · · ∪ Kn)

∣∣ = ∣∣(K0 ∩ K1) ∪ · · · ∪ (K0 ∩ Kn)
∣∣

� |K0 ∩ K1| + · · · + |K0 ∩ Kn| � |K0|

since |K0 ∩ Kl| � |K0| for each l = 1, . . . ,n (as K0 �= Kl). A contradiction, which proves our claim.
Let us now call N = ∑

K∈K CeK = C M . Lemma 5 shows that M cannot be |I|-generated since
neither (M + J )/ J is. Let us call C K = CeK for every K ∈K. We have a diagram:

Kerπ

Rn

π

⊕
i∈I Ci

∑
K∈K C K

ν
C

Let us set

P = π−1
( ∑

K∈K
C K

)
and Q = π−1

(⊕
i∈I

Ci

)
.

As R R is hereditary, both P , Q are projective and therefore, they are direct sums of finitely generated
projective modules by [1], say,

P =
⊕
β∈B

Pβ and Q =
⊕
λ∈Λ

Q λ.

Moreover, both Kerπ and
⊕

I Ci are |I|-generated. So we get that Q is also |I|-generated. But P
cannot be |I|-generated since nor it is its homomorphic image

∑
K∈K C K . And this means that

|B| � |I|. Therefore, there exists a subset B ′ ⊆ B with |B ′| = |I| � |B| such that Q ⊆ ⊕
β∈B ′ Pβ . Then,

Kerπ ⊆ Q ⊆ ⊕
β∈B ′ Pβ ⊆ P , and this means that

∑
K∈K

C K = π(P ) = P

Kerπ
=

⊕
β∈B ′ Pβ

Kerπ
⊕

⊕
β∈B\B ′ Pβ + Kerπ

Kerπ

∼=
⊕

β∈B ′ Pβ

Kerπ
⊕

( ⊕
β∈B\B ′

Pβ

)
.

And, as |B\B ′| = |B| � |B ′| = |I|, we get that, up to a “small direct summand” (in the sense that it is
|I|-generated),

∑
K∈K C K is a direct sum of projective modules.

Let us call q : ⊕
K∈K C K �

∑
K∈K C K the epimorphism induced by the canonical projections

qL : ⊕K∈K C K � CL for any L ∈ K. As C K is the cotorsion envelope of
⊕

i∈K Ci in C , we get that the
inclusion γK : ⊕i∈K Ci ↪→ C K is a strongly pure essential monomorphism. Call γ : ⊕K∈K(

⊕
i∈K Ci) ↪→⊕

K∈K C K the morphism induced by the set {γL}L∈K . Lemma 3 shows that γ is also a strongly
pure essential monomorphism. Let us note that, by construction, q(

⊕
K∈K(

⊕
i∈K Ci)) ⊆ ⊕

i∈I Ci ⊆∑
K∈K C K . So,
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q

( ⊕
K∈K

(⊕
i∈K

Ci

))
⊆

⊕
β∈B ′ Pβ

Kerπ

which is a direct summand of
∑

K∈K C K . Let us call

ϕ :
∑
K∈K

C K →
⊕

β∈B\B ′
Pβ

the structural projection respect to the decomposition

∑
K∈K

C K =
⊕

β∈B ′ Pβ

Kerπ
⊕

( ⊕
β∈B\B ′

Pβ

)
.

As
⊕

β∈B\B ′ Pβ is projective and ϕ ◦ q : ⊕
K∈K C K → ⊕

β∈B\B ′ Pβ is an epimorphism, it splits. In
particular, we get that

⊕
K∈K

C K = Z ⊕ Z ′

where Z = Ker(ϕ ◦ q) and Z ′ ∼= ⊕
β∈B\B ′ Pβ . Let

δ :
⊕
K∈K

C K � Z

be the associated projection. We claim that δ|⊕
K∈K(

⊕
i∈K Ci) is a strongly pure monomorphism. To

check this, it is enough to note that the inclusion

⊕
K∈K

(⊕
i∈K

Ci

)
↪→

⊕
K∈K

C K

is a pure monomorphism by construction and, since it factors as

⊕
K∈K

(⊕
i∈K

Ci

)
↪→ Z ↪→

⊕
K∈K

C K ,

we get that δ is also a pure monomorphism. On the other hand, Z is a flat module since it is a direct
summand of the flat module

⊕
K∈K C K . So Coker δ is flat and thus, δ is a strongly pure monomor-

phism. But then, as γ is a strongly pure essential monomorphism and δ ◦ γ = δ|⊕
K∈K(

⊕
i∈K Ci) is a

strongly pure monomorphism, we get that δ must be a monomorphism. This means that Z ′ = 0 and
therefore,

⊕
β∈B\B ′ Pβ = 0 since it is isomorphic to Z ′ . But then,

∑
K∈K′

C K =
⊕

β∈B ′ Pβ

Kerπ

is |I|-generated and we get the desired contradiction. �
The following corollary is an immediate consequence of the above theorem.



P.A. Guil Asensio, D. Pusat / Journal of Algebra 403 (2014) 19–28 27
Corollary 7. Let R be a left hereditary ring and P , a progenerator in R-Mod. If C = C(P ) is countably gener-
ated, then any pure submodule of P is finitely generated.

Proof. Assume on the contrary that P contains a pure submodule N which is not finitely generated.
As R is left hereditary, N is a projective module and, by [1], it must be a direct sum of finitely gener-
ated projective modules. Say that N = ⊕

I Ni with I infinite and Ni �= 0 for all i ∈ I . Then
⊕

i∈I C(Ni)

is a local direct summand of C consisting of infinitely many direct summands. But this means that it
cannot be a direct summand, since the finitely generated module P is strongly pure-essential in C .
We can now apply the same arguments as in the proof of Theorem 6 to get a contradiction. �

Let us now apply the above theorem to left hereditary rings with countably generated left cotor-
sion envelope.

Corollary 8. Let R be a left hereditary ring and C = C(R R), its left cotorsion envelope. If C is countably gener-
ated, then R is a semilocal ring.

Proof. By Theorem 6, C is a direct sum of indecomposables. As S = End(R C) is (von Neumann) regular
and left self-injective modulo its Jacobson radical and idempotents lift modulo any two-sided ideal
(see [10]), we deduce that S is semiperfect. On the other hand, it has been proved in [11, Section 3]
that there exists a local homomorphism of rings ϕ : R → S/ J (S). Therefore, R is semilocal by the
main result in [4]. �

We can finally characterize left hereditary rings with finitely generated left cotorsion envelope.

Corollary 9. Let R be a left hereditary ring and C = C(R R), its left cotorsion envelope. The following conditions
are equivalent:

1. C is finitely generated.
2. R is a left cotorsion semiperfect ring.

Proof. (1) ⇒ (2) Let us first show that R is left cotorsion. As we are assuming that C = C(R R) is
finitely generated, there exists an epimorphism π : Rn → C for some n ∈ N. Let P = Kerπ . P is a pure
submodule of the progenerator Rn since C is flat. Therefore, it is finitely generated by Lemma 7. This
means that C is finitely presented and therefore, so is the flat module C/R . Then, C/R is projective
(as it is flat and finitely presented) and we deduce that the embedding of R R in C splits. Thus, R R is
cotorsion. In particular, R/ J (R) is (von Neumann) regular and left self-injective and idempotents lift
modulo J (R) (see [10]). As R is also semilocal by the above corollary, R must be semiperfect.

(2) ⇒ (1) If R R is cotorsion, then R R coincides with its cotorsion envelope C(R R) and thus, C(R R)

is finitely generated. �
We would like to finish this paper by discussing the following question. Carefully checking the

proof of Theorem 6, one may observe that the hypothesis “R is left hereditary” is mainly needed to
assure that certain pure submodules of projective modules are again projective. This fact suggests that
the following question might have a positive answer:

Question 10. Let R be a ring with left pure-global dimension bounded by 1 (or in which pure sub-
modules of projective left R-modules are projectives). If C(R R) is countably (or finitely) generated, is
it a finite direct sum of indecomposable direct summands?

We do not know the answer to this question. The reason is that, following the notation of The-
orem 6, we cannot assure that the constructed module π−1(

∑
K∈K C K ) is a pure submodule of a

projective module and therefore, it may not be projective under the hypotheses given in the above
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question. However, the following proposition shows that this is the case for countable rings. Let us
recall that countable rings are one of the main sources of rings with pure-global dimension at most 1.

Proposition 11. Let R be a countable ring. If C(R R) is countably generated, then it is a ( finite) direct sum of
indecomposable direct summands.

Proof. Assume on the contrary that C is not a (finite) direct sum of indecomposable direct summands.
By [14, Theorem 10.17], C = C(R R) must have a countable local direct summand

⊕
N

Ci which is not a
direct summand. We can now use the same arguments as in Theorem 6 to construct a submodule N =∑

K∈K C K of C that cannot be countably generated. But, as R is a countable ring and C is a countably
generated module, the underlying set of C is countable and therefore, any submodule of it is trivially
countably generated. A contradiction, which shows that C is a finite direct sum of indecomposable
modules. �
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