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ABSTRACT:

Twin-rotor multi-input multi-output system (TRMS) is a popular experimental setup utilized mostly for

development and evaluation of aerovehicle control algorithms. Motivated by its popularity, construction steps of a TRMS
setup in an academic setting are presented in this paper. Specifically, design of mechanical and electronic hardware
components and development of related computer software are described in detail. Preliminary experiment results are
also presented to demonstrate the performance of the system. © 2015 Wiley Periodicals, Inc. Comput Appl Eng Educ
23:578-586, 2015; View this article online at wileyonlinelibrary.com/journal/cae; DOI 10.1002/cae.21628
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INTRODUCTION

Twin-rotor multi-input multi-output system (commonly abbrevi-
ated as TRMS) is an experimental, reduced model of a helicopter
that has two degrees of freedom. The main component of the
system is a beam that carries two rotors having rotation axes
orthogonal to each other (see Fig. 1). The propellers mounted on
the rotors produce thrust which is needed to move the system on
yaw and pitch axes. The overall system is obviously nonlinear and
very complex due to significant cross-coupling.

A good amount of research was devoted to TRMS. Some part of
the past research focused on deriving dynamic models for TRMS.
These works can be categorized as the ones that used physics-based
methods [1,2], the ones that used empirical methods [3-5] and their
combinations (obtained by adding an auxiliary term to the analytical
model) [6-8]. Some other past research focused on designing control
algorithms for TRMS. Classical control techniques such as combina-
tions of proportional (P), integral (I), derivative (D) controllers were
used commonly to control TRMS. In [9], a fuzzy PID controller system
is designed. In [1], two controllers are proposed for set-point control of
TRMS; one is a PD controller and the other is a fuzzy PID controller. In
addition, robust controllers were designed to deal with model
uncertainties and unmodeled effects in the system. Karimi and
Motlagh [10] proposed a robust controller based on a feedback
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linearization scheme to deal with the model uncertainties and
disturbances. In [11], Lu and Wen proposed an optimal robust
controller where the dynamic model of the TRMS was decomposed
into two single-input single-output systems and cross-coupling effects
were treated as disturbance or parametric uncertainty. Ahmad etal. [12]
proposed a robust optimal controller. Su et al. [13] proposed a robust
control scheme for a class of uncertain nonlinear systems which was
applied to TRMS. Bayrak et al. designed a robust tracking law by fusing
a continuous nonlinear feedback component with a nonlinear neural
network feedforward term [14]. Jahed and Farrokhi developed an
adaptive fuzzy controller of which parameters were updated by a
gradient based algorithm [15]. Saroj et al. presented a sliding mode
controller for TRMS [16].

The laboratory experimental setups such as TRMS are useful
as educational tools just as they are essential evaluation platforms
for testing theoretical methods. Developing an experimental
system usually costs much less compared to commercially
available setups, and also, it allows students and researchers
gain experience in design and construction of real systems [17—
26]. According to the authors’ best knowledge, there are no past
works fully dedicated to design and development of a TRMS in an
academic setting. In [26], brief information was given about the
design of a TRMS which was built in an academic laboratory.
Meanwhile some tips can be obtained from datasheets of the
commercially available experimental setups [27,28].

In this paper, we describe the design of the TRMS in our
control laboratory. A brief introduction of the dynamic system
model is given in the next section. Mechanical structure, electronic
modules, and controller interface are described in the following
sections. Finally, results of a sample experiment are presented to



Figure 1 Front view of the TRMS.

demonstrate the performance of the overall system through
application of a PID controller.

SYSTEM MODEL

Deriving a dynamic model is an important part of developing an
experimental test-bed for an aerial vehicle. There is a direct
mechanical cross-coupling between the rotation axes of a two rotor
system, because the torque generated by each rotor results in a back
force along the thrust vector of the other rotor. In addition to the
direct cross-coupling, aerodynamic effects cause a good amount of
cross-coupling, and the thrust outputs of the rotors are non-linear
functions of control inputs. Therefore, researchers usually utilized
energy-based methods (such as Lagrangian or Newtonian) in
conjunction with artificial intelligence based empirical approaches
(such as neural networks or genetic algorithms) in the literature.
Specifically, an analytical model is derived by using physics-based
methods, and then a term obtained from empirical tests via artificial
intelligence like methods is added to the analytical model. The
following analytical model is usually utilized to describe the
dynamic behavior of the system [2,29].

T(O)8, +110)8p +12(0p.6) +13(0p,0p.0,) =, (1)

JOp +f1(0p)0y +£4(0p, 0y) +f5(0p) = up 2

where 6,(7), 8,(2), 8,(¢)° € R and 6,(2), 8,(2), 6,()° € R are the
angular position, velocity, and acceleration of the beam in the pitch
axis and the yaw axis, respectively. J € R is equal to the total
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moment of inertia of the free—free beam. f(6,,), f1(6,,), /5 (6,, 8,),
7365,6,,8,), £4(6,,0,), £5(6,)° € R are nonlinear functions, and
uy,(1), u,(t) are the input signals in the pitch axis and the yaw axis,
respectively. The nonlinear functions in Equations (1) and (2) are
given as follows:

1(6,) = ¢1c057(6,) + ¢osin’(6,) + s
f1(0,) = ¢ysin(6)) — ¢scos(6,)
12(0p,0) = §4005(6,) + psc0s(6,)0,
13(6p,0,,0,) = 2¢sin(6,)cos(6,)6,6;
F4(8,0,) = —gesin(6,)cos(6,)6]
S5(0,) = ¢7c08(6),) + pssin(6),).

with ¢y, N=1...7, denoting constants that depend on system
properties. The details of the model cannot be provided due to page
restrictions (readers are referred to [2] or [29] for details). As can
be seen from the above analytical model, there is a strong cross-
coupling between the system responses in the pitch and yaw axes.

MECHANICAL SYSTEM DESIGN

The system has a simple mechanical structure which can be
constructed and assembled easily. A free—free beam with two
rotors and a counterbalance is mounted on a rotating column as
shown in Figure 2. The important design parameters of the system
are given in Table 1, and the major components are described
under the following headers.

Mechanical Frame

Tight fitting of the moving mechanical parts is critical for
positioning accuracy. The carrier column is mounted on a steel
base box with two co-axial ball bearings. The movement of the
carrier column is restricted in the range of —180 to +180 degrees
since a single revolution around the yaw axis is sufficient for the
intended usage of this system. This restriction was required to
make electrical connections between stationary and moving parts
without using a costly slip-ring that could allow unlimited rotation.

The free—free beam is an aluminum square tubing placed on
top of the carrier column allowing a pitch angle variation between
—40 and +40 degrees. A steel shaft is fixed at the center of the
beam and it is seated in brass bearings on two sides of the beam.
The pitch angle sensor and the counterbalance are fastened to the
steel shaft.

Thrust System

The main rotor produces vertical thrust and rotates the free—free
beam around the pitch axis. The tail rotor mounted on the opposite
side of the free—free beam is orthogonal to the main rotor to obtain
thrust around the yaw axis. The DC motors of the two rotors are
placed in plastic housings that are attached to the free—free beam.
Radius of the main propeller is twice the radius of the tail propeller
since the main rotor produces thrust to lift the counterbalance. The
thrust requirement is determined by the effective weight of the
counterbalance and the desired acceleration rate together with the
total inertial mass of the moving components. The maximum
acceleration rate targeted for this system was 20 degree/s” in both
of the rotation axes.
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Figure 2 Simplified drawing of the TRMS (not to scale). The carrier column rotates around the yaw axis. The free-free

beam is attached to a shaft on top of the carrier column to

Some part of the thrust produced by each of the rotors
counteracts the back torque generated by the other rotor while the
angular position remains constant at steady state. Higher order
cross-coupling terms due to acceleration of rotors arise during the
transient changes as the beam is driven towards a new target
position. Lightweight propellers are selected since the inertial
mass of the moving rotor components should be minimized to
reduce the cross-coupling due to the rotor acceleration.

Table 1 Mechanical Parameters of the Designed TRMS

Parameter Value
Length of free-free beam 655 mm
Distance from center of free-free beam to rotors 327.5mm
Mass of free-free beam 400g
Length of counter balance rod 306 mm
Mass of counter balance rod 65¢g
Mass of main rotor 450g
Mass of tail rotor 435g
Radius of main rotor propeller 156 mm
Radius of tail rotor propeller 77 mm
Nominal power of DC motors 54 W
Nominal current of DC motors 225A
Nominal speed of DC motors 3600 rpm

allow rotation around the pitch axis.

Angular Position Sensors

Optical encoders were preferred since they have better linearity
and stability compared to other position sensors, such as
potentiometers, hall-effect sensors, or resolvers. The optical
encoders (Wachendorff Automation, WDG 58C) are the most
expensive components in the designed system since the precision
of a closed-loop system is determined mainly by the accuracy of
the components on the feedback path rather than the forward path.
The pitch angle encoder is connected to the center shaft of the
free—free beam with a flexible jaw coupling as shown in Figure 3.
The yaw angle encoder is mounted on the base box and it is
coupled to the carrier column through a belt.

The optical encoders generate quadrature outputs to allow
detection of the rotation direction. Each encoder output generates
1,024 cycles per revolution, and the number of quadrature steps is
4,096 per revolution corresponding to a resolution of 0.088° per
encoder step when the two outputs are combined.

ELECTRONICS SYSTEM DESIGN

The electronic system consists of: (i) a mainboard, (ii) two encoder
counter, and (iii) two motor driver modules that are described in
detail in the following paragraphs. The system has a modular
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brass bearings

carrier blocks mounted
on the rotating column

Figure 3 Drawing of the free-free beam joint as seen from top. The beam shaft is connected to the pitch angle encoder

with a flexible jaw coupling.

structure connected through a common serial data bus as seen in
the flow diagram in Figure 4.

Main Board

Primary function of the main board is management of
communication between the controller computer and other
system components. The main board contains a microcontroller

(Microchip, PIC16F877), a 5V regulator and a serial line driver-
receiver as shown in the circuit schematic given in Figure 5.
Addressing of the electronic modules is achieved either by
appending address information before the transmitted data, or by
activating selector signals generated by the microcontroller on the main
board. An external master computer runs the controller algorithm in the
current implementation. The master computer initiates the data
transmissions and the main board processor serves as a data bridge

Common
Serial
Data Bus

S ™\
Main Board

Main |. |

Response Response

,u;U’n..' ‘,‘p;&...
RS232 § Opftic 3% i optic %
Driver/ (= Encoder; \Encoder’
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Figure 4 Block diagram

of the electronic system.
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Figure 5 Main board circuit.

when necessary. This bus structure also allows execution of a controller
algorithm embedded in the main board processor as an alternative. In
that case, the setup becomes a standalone control system where the
external computer is used only to monitor the system behavior.

Angular Position Detection

Separate microcontrollers are used for processing of encoder
outputs where each microcontroller is dedicated to an encoder for
position detection and velocity calculation. Any microcontroller
that supports multiple pin-change interrupts can be programmed
easily to count the transitions in the encoder signals. A single,
edge-triggered interrupt signal can also be obtained by using
additional EXOR gates to generate a pulse at every transition. The
microcontroller should be capable of handling the encoder
interrupts at the maximum possible transition rate. In this design,
assuming a maximum angular velocity of 1rev/s, the minimum
time between the encoder interrupts is 244 ps, since the encoder
resolution is 4,096 counts/rev. A look-up table is used to speed up
the counting process where the table elements identify rotation
direction according to the transitions at the encoder outputs.
Present and past states of the encoder outputs are combined to
obtain a 4-bit binary number as the table index.

Motor Driver

The motor drivers utilize PWM to obtain high power efficiency, and
consequently, to minimize the cooling requirement of the driver

components. The driver microcontroller generates the PWM
waveform and polarity control signals required for the H-bridge
(STMicroelectronics, L6203) operation according to the duty cycle
settings sent from the controller. A simplified schematic of major
power control components is given in Figure 6. The four schottky
diodes, D1 through D4, protect the H-bridge during on—off
switching of the H-bridge transistors. These diodes provide the
return paths for recirculation currents when both of the transistors
on one side of the H-bridge turn off momentarily during PWM
transitions. A 10 nF ceramic snubber capacitor (C3) is mounted at
the motor terminals to filter the noise generated as the collector of
the DC motor switches through the armature windings. Any attempt
to open circuit the motor connections while there is a large current
flowing in the loop results in a high voltage induced on the motor
inductance. The schottky diodes and the snubber capacitor are the
safeguards required to keep the motor loop closed at all times.

Inductances of the power cables are useful to some extend as
they isolate the switching noise from other modules in the system.
The cable inductance becomes a problem when there is significant
voltage drop due to L.di/dt over the ground connections.
Therefore, it is crucial to confine all high frequency supply
currents to the modules that demand these currents by properly
installing bypass capacitors. Two bypass capacitors (C1 and C2)
are used on the motor driver board to stabilize the H-bridge power
supply voltage.

Motor drivers employ 10-bit timers to obtain 1,024 steps for
adjustment of motor current. The PWM frequency is set to 20 kHz
which is the maximum allowed frequency determined according
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Figure 6 Simplified schematic of motor driver.

to the microcontroller clock input. The maximum expected ripple
current is 21% of the average current that occurs at 50% PWM
duty cycle when the motor speed and the resultant back-EMF are
zero. In addition to the electrical difficulties in handling of high
frequency currents, the ripple currents produce high frequency
mechanical vibrations that can cause premature wear of the
motors, and possibly, other system components. Setting a higher
PWM frequency at the expense of reduced driver accuracy may be
preferable since the forward path accuracy is not as critical as the
feedback path accuracy in a closed-loop system.

CONTROLLER SOFTWARE

Any development platform that supports access to serial port
communication can be interfaced to the designed TRMS since it has

B TRMScontroller.vi

a simple communication protocol. In this implementation, the
controller program is written on LabVIEW Development Environ-
ment by National Instruments. LabVIEW is preferred for its
convenient real-time display and serial interface capabilities.

The user interface panel of the program is shown in Figure 7.
The serial communication parameters are accessible on the left side
of the panel. The control gains and the target angular position
settings can be adjusted, and the actual position, tracking errors, and
control inputs can be monitored in real time. The positioning errors
in pitch and yaw axes and the control inputs are plotted as a function
of time on the right side of the panel. The controller program reads
the angular positions and calculates the 10-bit duty cycle settings
sent to the PWM motor drivers in every control cycle. Push-buttons
on the panel give commands to move the free—free beam to the
origin set during initialization or to the user-entered target position.
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Figure 7 User interface panel on the controller computer.
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Figure8 Results of PID controller response. Pitch and yaw angle errors are plotted at the top. Pitch and yaw input signals
(PWM duty cycle of the main and tail rotor) are given at the bottom.

Total communication time in a control cycle required to
acquire position data and to send control input settings is ~2.2 ms
at 57,600 baud rate. The communication time determines the
maximum possible update rate, since the computation of basic
controller functions is much faster on a typical personal computer
with a floating point processor. On the other hand, it is advisable to
close all nonessential applications while running the control
program, because the actual timing precision of a personal
computer is not reliable, and it depends on the processor load. A
better timing precision can be achieved if the controller algorithm
is embedded on the main processor of the TRMS. In that case,
computation capabilities of the processor and efficiency of the
controller code become significant timing factors.

An experiment is conducted to evaluate the performance of
the TRMS. A PID controller is considered as the control law since
it does not require the knowledge of the dynamic model. The
control law u(7) € R? is obtained via

t
de
u:er+K,-/e(a)da+KdE+C )
0

e=9d —0

where e(f) € R? is the position error in degrees defined in terms
of the angular position vector, 6(f) € R? and the constant target
position vector, §; € R%. The calculated input values in u(f) are
the PWM duty cycle settings for the motor drivers. The
proportional, integral, and derivative gain factors and the PID
constant are set to

300 0 4 0 800 O
Kp = 7Ki = 7Kd = P
0 2000 0 6 0 800

[650}

C=

600

respectively. Sample plots of the position error e(f) and the
control input u(f) are presented in Figure 8. In this experiment,
initial position of the mechanical system is the origin, and the
target position is set to 30 and 20 degrees for the pitch and yaw
axes, respectively. As can be seen in the top plots, both the pitch
and yaw angle errors are driven to the vicinity of zero. A
detailed discussion on the system behavior under PID controller
can be found in [29].



CONCLUSIONS

The designed TRMS worked satisfactorily during all experimental
studies performed until now. The position detection accuracy of
the system (0.088 degree/step) is comparable to the accuracy of
commercially available systems. The control bandwidth of the
system is not limited by the data transfer rate, and it is mainly
determined by the maximum possible angular acceleration (20
degree/s?) and the properties of the control algorithm tested on the
system.

Building a TRMS in an academic setting provides flexibility
in many aspects of the system development. It is possible to choose
the system components with desired precision while the total
system cost can be kept lower compared to the commercial
systems available in the market. The controller interface can be
tailored to work with different software development platforms.
The system can serve as a test bed not only for experimental
control algorithms, but also for new module designs that can
replace the existing system components. Future modifications on a
homemade system can be made easily, having the necessary know
how for integration of the entire system.

The constructed TRMS has been used in graduate studies for
evaluation of nonlinear control algorithms. Demonstrations of
classical controller performance on the TRMS are given in control
systems courses as part of the undergraduate curriculum at Izmir
Institute of Technology. More importantly, all members of the
team gained hands-on experience on a wide range of application
areas, such as position sensors, power electronics, embedded
systems, and basic mechanics throughout the project. Several
undergraduate students worked in different development phases of
the TRMS and completed their graduation projects as part of this
work. Furthermore, the experience gained in this work also leads
to development of other experimental systems and components,
such as multi-rotor aerial vehicles [25], robust wireless
communication modules, and high precision position sensors.
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