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Abstract. Motivated by the Möbius transformation for symmetric points under
the generalized circle in the complex plane, the system of symmetric spin
coherent states corresponding to antipodal qubit states is introduced. In terms
of these states, we construct the maximally entangled complete set of two-qubit
coherent states, which in the limiting cases reduces to the Bell basis. A specific
property of our symmetric coherent states is that they never become unentangled
for any value of ψ from the complex plane. Entanglement quantifications of our
states are given by the reduced density matrix and the concurrence determinant,
and it is shown that our basis is maximally entangled. Universal one- and two-
qubit gates in these new coherent state basis are calculated. As an application,
we find the Q symbol of the XY Z model Hamiltonian operator H as an average
energy function in maximally entangled two- and three-qubit phase space. It
shows regular finite-energy localized structure with specific local extremum
points. The concurrence and fidelity of quantum evolution with dimerization of
double periodic patterns are given.
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1. Introduction

Coherent states were first introduced by E Schrödinger, in the form of wave packets for the
quantum harmonic oscillator, moving along the classical trajectories [1]. Then R J Glauber
constructed these coherent states by the Heisenberg–Weyl group [2], for a description of
coherent laser beams in quantum optics. Generalized coherent states for an arbitrary Lie group
were invented by A Perelomov and some particular realizations of these states have been
discussed by many researchers [3]. An important class of coherent states for the SU(2) and
SU(1,1) groups describes spin waves in the Heisenberg spin model of ferromagnetism [4, 5].
The SU(1,1) coherent states have also been applied to superfluidity theory for the description of
the Bogoliubov condensate state [7], in terms of pseudospin [5, 6]. It is impossible to mention
here the uncountable number of papers devoted to the subject. We just observe that the coherent
states for noninteracting magnons in spin models take the form of the direct product of Glauber’s
coherent states, which is a complete quantum analogue of the classical spin wave. The complete
quantum analogue of the classical domain wall as a quantum state in the form of the Gaussian
superposition of heavy spin complexes, as was shown by Gochev [8] using Jacobi’s triple
product identity, can be represented as a direct product of Bloch’s coherent states. This state
is a minimum uncertainty packet and the correlation functions in this state factorize. Quantum
states in both the systems, noninteracting magnons and the quantum domain wall, are separable
states.

Recently, in quantum information and quantum computation theory entangled coherent
states became an interesting tool to study entanglement in quantum systems [14]. In this study,
in addition to the Glauber coherent state |α〉, another mirror-reflected state |−α〉 has been
introduced to construct entangled states like |α〉|α〉 + |−α〉|−α〉 [9, 13]. However, these states
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are not orthogonal 〈−α|α〉 = e−2|α|
2
, and this creates several complications of computational

and interpretational character. One can construct the even and odd coherent states [16], (|α〉 ±

|−α〉)/
√

2, which are orthonormal but of course not complete. Entanglement of these Gaussian
continuous-variable states (states with the Wigner function in the Gaussian form) has been
demonstrated in an experiment of continuous-variable teleportation [10] and the quantification
of entanglement for these states was given in [11, 12]. In contrast to the teleportation of a
discrete quantum system, like a spin-1/2 particle state, in continuum-variable teleportation (as
position and momentum), the teleportation process acts on an infinite-dimensional Hilbert space
instead of the two-dimensional (2D) Hilbert space for the discrete spin variables. It was shown
that the Peres–Horodecki criterion is a necessary and sufficient separability condition for all
bipartite Gaussian states.

In this paper, motivated by the Möbius transformation and its action on symmetric points
of the generalized circle in the complex plane, we introduce the complete set of spin-1/2
coherent states that are orthogonal and maximally entangled. The paper is organized as follows.
In section 2, we pedagogically introduce the relations between the Möbius transformation and
the qubit. We have paid special attention to the so-called symmetric points in the unit circle,
appearing in the method of images from hydrodynamics, and to the related symmetric qubit
quantum states. In section 3, we construct an orthonormal basis from symmetric antipodal
qubit states and some elementary gates as Möbius transformations. Section 4 is devoted to the
symmetric two-qubit coherent states. In section 5, we show that the set of states introduced in
the previous section is maximally entangled. We follow three different methods: first we use
the reduced density matrix method and the determinant method. Then we show that averages
of spin operators in our states vanish. This property also confirms that our states are maximally
entangled, according to another, operational definition of entangled states as maximally non-
classical states. At first glance, since our states are continuous-variable states, the quantification
of entanglement for these non-Gaussian states needs to be clarified. This is due to the fact
that only the Gaussian states have been completely characterized for the case of continuous-
variables. However, our states are defined in a high-dimensional Hilbert space; they have small
Schmidt rank, namely 2, which we show by computing the reduced density operator at Bob’s
site. Therefore these states can local-unitarily be mapped to a two-qubit Hilbert space and their
entanglement properties are thus not different from those of the two-qubit case. This justifies
our use of concurrence in section 5. As an application of our results, in section 6 we calculate
the average energy in our coherent states (Q symbol of H) for the two- and three-qubit cases
in the XY Z model. This energy surface shows a regular character with local extremum points
in maximally entangled two-qubit space. The time evolution of concurrence and the fidelity of
our coherent states are derived in section 7. In section 8 we present some problems for future
studies.

2. Linear fractional transformations and symmetrical quantum states

2.1. Möbius transformation and qubits

There is a well-known relation between the group of linear fractional transformations, or the
Möbius transformations,

w = S(ψ)=
aψ + b

cψ + d
, (1)
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ad − bc 6= 0 and the group of two-by-two complex matrices [15]. Any matrix from the group,
acting on states as(

w1

w2

)
=

(
a b

c d

)(
ψ1

ψ2

)
, (2)

in terms of the homogeneous coordinates ψ = ψ1/ψ2, w = w1/w2, implies fractional
transformation (1). If we consider two quantum states |ψ〉 =

(
ψ1 ψ2

)T
and |w〉 =

(
w1 w2

)T

from 2D Hilbert space, related by a linear transformation |w〉 = U |ψ〉, then it gives the
fractional transformation (1) in the extended complex plane C .

In quantum computations, we have a qubit as a unit of information

|ψ〉 =

(
ψ1

ψ2

)
, |ψ1|

2 + |ψ2|
2
= 1, (3)

for which, in terms of the homogeneous coordinate ψ = ψ2/ψ1, we have

|ψ〉 =

(
ψ1

ψ2

)
= ψ1

(
1

ψ

)
. (4)

We fix ψ1 by the normalization condition 〈ψ |ψ〉 = 1, so that up to the global phase we have the
qubit state as

|ψ〉 =
1√

1 + |ψ |2

(
1

ψ

)
. (5)

This state coincides with the spin-1/2 generalized coherent state [17]. From another side, for
the qubit state

|θ, ϕ〉 = cos
θ

2
|0〉 + sin

θ

2
eiϕ

|1〉 =

(
cos θ

2

sin θ

2 eiϕ

)
(6)

determined by the point (θ, ϕ) on the Bloch sphere, parameterization by the homogeneous
variable

ψ =
ψ2

ψ1
= tan

θ

2
eiϕ (7)

gives stereographic projection of the point (sin θ cosϕ, sin θsinϕ, cos θ) on the unit sphere to
the complex plane ψ [22]. Therefore the Bloch sphere can be considered as a Riemann sphere
for the extended complex plane ψ and we have the SU (2) or the spin-coherent state as

|ψ〉 =
|0〉 +ψ |1〉√

1 + |ψ |2
. (8)

The computational basis states |0〉 = |↑〉 = (1 0)T and |1〉 = |↓〉 = (0 1)T in this coherent
state representation are given just by particular points in the extended complex plane
(<w,=w)∪ {∞}, as w = 0 and w = ∞, respectively. One notes that these points are symmetric
points with respect to the unit circle ψ̄ψ = 1 at the origin.
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2.2. Symmetric points

In complex analysis, two points ψ and ψ∗ are called symmetric with respect to the circle C
through ψ1, ψ2, ψ3 if and only if (ψ∗, ψ1, ψ2, ψ3)= (ψ,ψ1, ψ2, ψ3), where the cross ratio of
four points is

(ψ,ψ1, ψ2, ψ3)=
(ψ −ψ2) (ψ1 −ψ3)

(ψ −ψ3) (ψ1 −ψ2)
. (9)

The circle here is considered in the generalized form, that includes also a line, regarded as a
circle with an infinite radius. On the Riemann sphere all generalized circles are coming from
the intersection of the sphere with a plane, so that if the plane passes through the north pole,
the corresponding projection would be a line. For the unit circle at the origin, we can choose
ψ1 = −1, ψ2 = i, ψ3 = 1; then the symmetric point of ψ is ψ∗

= 1/ψ̄ . This means that points
ψ and ψ∗ have the same argument and are situated on the same half-line from the origin, and if
one of the points is out of the circle, the second one is inside the circle, and vice versa. Hence,
the points ψ = 0 and ψ∗

= ∞ are symmetric points with respect to the circle.
The cross product (9) is invariant under the Möbius transformation; therefore if a Möbius

transformation carries a generalized circle C1 into a circle C2, it transforms any pair of
symmetric points with respect to C1 into a pair of symmetric points with respect to C2.
According to this, if one considers the Möbius transformation, mapping the unit circle to the
imaginary axis regarded as the generalized circle,

ψH =
1 −ψ

1 +ψ
, (10)

then the symmetric point to the complex number ψH is just the reflection in the imaginary axis:
−ψ̄H . For the Möbius transformation

ψH = i
1 −ψ

1 +ψ
, (11)

mapping the unit circle to the real axis, the symmetric point to ψH is ψ̄H . The composition of
symmetric points in the real axis, ψ → ψ̄ , in the imaginary axis, ψ̄ → −ψ , and then in the unit
circle, −ψ → −

1
ψ̄

, produces the negative-symmetric point ψ∗
= −

1
ψ̄

. The above-mentioned
symmetric points have a simple geometrical meaning on the Bloch sphere:

1. ψ and ψ∗
= ψ̄ are projections of the points M(x, y, z) and M∗(x,−y, z).

2. ψ and ψ∗
= −ψ̄ are projections of the points M(x, y, z) and M∗(−x, y, z).

3. ψ and ψ∗
=

1
ψ̄

are projections of the points M(x, y, z) and M∗(x, y,−z).

4. ψ and ψ∗
= −

1
ψ̄

are projections of the points M(x, y, z) and M∗(−x,−y,−z).

The last case, corresponding to the antipodal points on the Bloch sphere, we study in detail
in section 3. Here we would like to just note that the above four reflections for the symmetric
points determine the anti-automorphisms considered in [14].

2.3. Symmetric qubits

Symmetric points are important in hydrodynamics theory and are related to the so-called method
of images [18]. For the point vortex in the plane bounded by the cylindrical domain [18, 19] or
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the annular domain (canonical region for the two-cylinder problem) [20], the symmetric points
represent images of the vortex. Now we wish to introduce the coherent states corresponding to
symmetric points and representing a symmetric pair of qubit states with remarkable properties.
Then, we can interpret these quantum states as a qubit and its image state, realizing some kind
of method of images in the quantum theory.

For a given qubit

|θ, ϕ〉 = cos
θ

2
|0〉 + sin

θ

2
eiϕ

|1〉 =

(
cos θ

2

sin θ

2 eiϕ

)
, (12)

in case 1, we have the symmetric qubit as

|θ,−ϕ〉 = cos
θ

2
|0〉 + sin

θ

2
e−iϕ

|1〉 =

(
cos θ

2

sin θ

2 e−iϕ

)
, (13)

and in case 2, it is

|θ, π −ϕ〉 = cos
θ

2
|0〉 − sin

θ

2
e−iϕ

|1〉 =

(
cos θ

2

− sin θ

2 e−iϕ

)
. (14)

Since the unit circle in the ψ plane, |ψ |
2
= 1, represents the equator on the Bloch sphere,

then any point on the upper hemisphere projects to the external part of the unit circle, while
on the lower hemisphere it is projected to the internal part of the circle. It is easy to see that if
the point M(x, y, z) is projected to ψ and then reflected in the equator, point M∗(x, y,−z) is
projected to the symmetric point ψ∗. According to this, we have the ‘symmetric’ qubit state in
case 3 as

|π − θ, ϕ〉 = sin
θ

2
|0〉 + cos

θ

2
eiϕ

|1〉 =

(
sin θ

2

cos θ

2 eiϕ

)
. (15)

The above-mentioned pairs of qubit states define the symmetric qubit coherent states. The
corresponding points M and M∗ on the Bloch sphere are mirror images of each other in the
coordinate planes xz, yz and xy, respectively. That is why we can call symmetrical qubit
states (13)–(15) the mirror image qubits. For every complex number ψ as a projection of the
point (θ, ϕ), we associate the coherent state (5). Then every point symmetric to ψ determines
the symmetric coherent state. For the symmetric point ψ∗

= ψ̄ , it is

|ψ̄〉 =
|0〉 + ψ̄ |1〉√

1 + |ψ |2
, (16)

for the point ψ∗
= −ψ̄ ,

|−ψ̄〉 =
|0〉 − ψ̄ |1〉√

1 + |ψ |2
, (17)

and for ψ∗
=

1
ψ̄

, the symmetric coherent state is

|ψ∗
〉 = |

1

ψ̄
〉 =

ψ̄ |0〉 + |1〉√
1 + |ψ |2

. (18)

The limiting case of symmetric points ψ = 0 and ψ∗
= ∞ in the first two cases reduces to the

computational basis. In the third case, it gives the reversed basis |w = 0〉 = |1〉, |w∗
= ∞〉 =

|0〉. If one is dealing with the one-qubit gate represented by the linear transformation (2), the
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corresponding Möbius transformation (1) transforms the unit circle at the origin to a generalized
circle, so that symmetric points in the first circle transform to symmetric points with respect to
the new one. This will define the transformation rule for symmetric qubit states. So the Möbius
gate transforms the pair of symmetric qubits to the pair of symmetric qubits. In the following
sections, we find Möbius transformations related to basic quantum gates.

3. Antipodal symmetric coherent states

3.1. Generalized coherent state basis

As we have seen in the previous section, the computational basis can be considered as a
specific case of symmetric coherent states. Then, the expansion of an arbitrary qubit state in the
computational basis |φ〉 = c1|0〉 + c2|1〉 is an expansion to particular symmetric coherent states.
It suggests a natural generalization of this expansion to arbitrary symmetrical states (16)–(18)

|φ〉 = d1|ψ〉 + d2|ψ
∗
〉, (19)

with the |ψ〉 and |ψ∗
〉 states as a basis. However, this basis is not orthonormal. Due to (18)

〈ψ∗
|ψ〉 =

2|ψ |

1 + |ψ |2
6 1, (20)

d1 = 〈ψ |φ〉 =
c1 + ψ̄c2√

1 + |ψ |2
, d2 = 〈ψ∗

|φ〉 =
|ψ1|c1 + |ψ |

ψ
c2√

1 + |ψ |2
, (21)

and we have

|φ〉 =
c1 + ψ̄c2√

1 + |ψ |2
|ψ〉 +

|ψ1|c1 + |ψ |

ψ
c2√

1 + |ψ |2
|ψ∗

〉. (22)

It becomes orthonormal only in the case of computational basis, when ψ → 0 or ψ → ∞. In
the particular case when ψ belongs to the unit circle |ψ | = 1, the symmetric points coincide
ψ = ψ∗, so that 〈ψ∗

|ψ〉 = 〈ψ |ψ∗
〉 = 1 and we have just the one state.

3.1.1. Antipodal qubit and negative-symmetric basis. The above-introduced states |ψ〉 and
|ψ∗

〉 in (16)–(18) are not orthogonal. To have the orthogonal state for a given state |ψ〉,
we consider the negative-symmetric state | −ψ∗

〉 from case 4. This state is represented
by the point −ψ∗

= −1/ψ̄ , which is a rotation of the symmetric point ψ∗
= 1/ψ̄ through

angle π . We call this point the negative-symmetric point or the inverse mirror image, and the
corresponding coherent state the negative-symmetric coherent state (inverse mirror image state).
Point M(x, y, z), representing the qubit state |θ, ϕ〉 on the Bloch sphere, gives the antipodal
point M∗(−x,−y,−z) and the corresponding state

|π − θ, ϕ +π〉 = sin
θ

2
|0〉 − cos

θ

2
eiϕ

|1〉 =

(
sin θ

2

− cos θ

2 eiϕ

)
, (23)

which we call the antipodal qubit state. For the state (5) we have explicitly

|−ψ∗
〉 =

|0〉 −ψ∗
|1〉√

1 + |ψ∗|2
=

|ψ ||0〉 −
|ψ |

ψ̄
|1〉√

1 + |ψ |2
. (24)
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This state, up to the global phase, can be rewritten in the form

|−ψ∗
〉 =

−ψ̄ |0〉 + |1〉√
1 + |ψ |2

. (25)

In contrast to the symmetric state (18), the negative-symmetric state (25) is orthogonal to |ψ〉:

〈−ψ∗
|ψ〉 = 0. (26)

In addition, the states |ψ〉 and |−ψ∗
〉 satisfy the completeness relation

|ψ〉〈ψ | + |−ψ∗
〉〈−ψ∗

| = I (27)

and form the orthonormal basis, so that for any state

|φ〉 = e1|ψ〉 + e2|−ψ
∗
〉 (28)

we have

e1 = 〈ψ |φ〉 =
c1 + c2ψ̄√

1 + |ψ |2
, e2 = 〈−ψ∗

|φ〉 =
−ψc1 + c2√

1 + |ψ |2
. (29)

As is well known, the set of spin-coherent states is the overcomplete set [3]. By using the
‘resolution of unity’∫

dµ(ψ)|ψ〉〈ψ | = I, (30)

where

dµ(ψ)=
2

π

d2ψ

(1 + |ψ |2)2
(31)

is an arbitrary state that can be decomposed over the coherent states

|8〉 =

∫
dµ(ψ)8(ψ̄)|ψ〉. (32)

Then, our relations (26) and (27) show that two orthogonal states |ψ〉 and |−ψ∗
〉 give a

subsystem of complete orthogonal states and the dimension of our Hilbert space is two.

3.1.2. Antipodal coherent state for arbitrary representation j. The antipodal states can be
derived also for spin j representation of su(2) Lie algebra:

[S3, S+] = S+, [S3, S−] = −S−, [S+, S−] = 2S3, (33)

where S± =
1
2(S1 ± iS2), so that

S+| j,m〉 =
√
( j − m)( j + m + 1)| j,m + 1〉, (34)

S−| j,m〉 =
√
( j − m + 1)( j + m)| j,m − 1〉, (35)

S3| j,m〉 = m| j,m〉, (36)

where − j 6 m 6 j . The coherent state |ψ〉, ψ ∈ C , is defined as

|ψ〉 =
1

(1 + |ψ |2) j

2 j∑
k=0

(
(2 j)!

k!(2 j − k)!

)1/2

ψ k
| j,− j + k〉. (37)
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For the scalar product of two coherent states, after simple calculations we have

〈φ|ψ〉 =
(1 + φ̄ ψ)2 j

(1 + |φ|2) j(1 + |ψ |2) j
. (38)

Then, the orthogonality condition implies 1 + φ̄ ψ = 0 or the negative-symmetric point in the
unit circle φ = −

1
ψ̄

. The representation of these coherent states in terms of the unit vector n

〈n1|n2〉 = eiθ(n1,n2)

(
1 + n1n2

2

) j

(39)

shows that the above points are antipodal points on the Bloch sphere n1n2 = −1.
The resolution of unity in this case is [17]∫

dµ j(ψ)|ψ〉〈ψ | = I, (40)

where

dµ j(ψ)=
2 j + 1

π

d2ψ

(1 + |ψ |2)2
. (41)

Then, an arbitrary state can be decomposed over the coherent states as

|8〉 =

∫
dµ j(ψ)8(ψ̄)|ψ〉, (42)

where

8(ψ̄)= 〈ψ |8〉 =
1

(1 + |ψ |2) j

j∑
k=− j

ck

(
(2 j)!

( j + k)!( j − k)!

)1/2

ψ̄ j+k (43)

and the function in the numerator is just a polynomial of ψ̄ of an order m 6 2 j . As a result, to
any complex function f (ψ)= Pm(ψ)/(1 + |ψ |

2) j , where Pm(ψ) is an arbitrary polynomial of
degree m 6 2 j , corresponds a state vector |8〉 given by

f (ψ)= 〈8|ψ〉,

∫
dµ j(ψ)〈ξ |ψ〉 f (ψ)= f (ξ). (44)

The set of such functions is the Hilbert space, describing states of a spin- j system. The
dimension of this space is 2 j + 1, and the subset of the states determined by an arbitrary choice
of nonequal points ψ1, ψ2, . . . , ψ2 j+1 is complete. It follows from the observation that any
polynomial of degree 2 j is determined completely by its values at 2 j + 1 points. For j = 1/2 we
have the 2D Hilbert space with two orthogonal states |ψ〉 and |−ψ∗

〉, constituting the basis (27).

3.2. Unitary Möbius transformation

From the set of fractional linear transformations (1), determined by an arbitrary SL(2,C)
matrix (2), for quantum computations there is an important class of unitary transformations
given by the matrix

U =

(
a b

−b̄ ā

)
, (45)
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where |a|
2 + |b|

2
= 1. Acting on a qubit state |ψ〉 = ψ1|0〉 +ψ2|1〉, it implies the Möbius

transformation

ψU =
aψ + b

−b̄ψ + ā
(46)

for ψ = ψ1/ψ2, and the linear transformation

|ψU 〉 =

∣∣∣∣ aψ + b

−b̄ψ + ā

〉
= U |ψ〉, (47)

acting, up to the phase, on the coherent state

|ψ〉 =
1√

1 + |ψ |2

(
ψ

1

)
. (48)

This state differs from state (5) by the flipping transformation. The NOT gate σ1 = X ≡ NOT
acts on a qubit state |ψ〉 = ψ1|0〉 +ψ2|1〉 as flipping

|ψNOT〉 = σ1|ψ〉 = ψ2|0〉 +ψ1|1〉, (49)

and implies the Möbius transformation ψ → ψNOT =
1
ψ
, connecting (up to the phase) two

coherent states (5) and (48):

|ψNOT〉 =
1√

1 + |ψNOT|
2

(
ψNOT

1

)
=

1√
1 + |ψ |2

(
1

ψ

)
. (50)

Due to this we denote the flipped state (48) as |ψNOT〉. Now we consider universal gates such as
the Hadamard gate and the phase gate.

1. The Hadamard gate

H =
1

√
2

(
1 1

1 −1

)
(51)

acts on coherent state (5) as

|ψH 〉 = H |ψ〉 =
1√

1 + |ψ |2

(
1 +ψ

1 −ψ

)
=

1√
1 + |ψH |2

(
1

ψH

)
, (52)

and implies the Möbius transformation

ψH =
1 −ψ

1 +ψ
. (53)

On state (18) it acts as

|ψ∗

H 〉 = H |ψ∗
〉 =

1√
1 + |ψ∗|2

(
1 +ψ∗

1 −ψ∗

)
=

1√
1 + |ψ∗

H |2

(
1
vψ∗

H

)
(54)

where

ψ∗

H =
1 −ψ∗

1 +ψ∗
=
ψ̄ − 1

ψ̄ + 1
. (55)

Under this fractional transformation, the unit circle |ψ |
2
= 1 transforms to the imaginary

axis in the ψ plane: ψH = i=ψH , and images of symmetric points ψH and ψ∗

H are
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symmetric with respect to this axis. The corresponding symmetric states |ψH 〉 and |ψ∗

H 〉

are disposed on the Bloch sphere, equidistantly from the vertical plane through <ψ = 0.
For the negative-symmetric point, we obtain the transformation

(−ψ∗)H =
1 +ψ∗

1 −ψ∗
=
ψ̄ + 1

ψ̄ − 1
= −

1

ψ̄H

. (56)

This formula means that points ψH and (−ψ∗)H are the negative-symmetric points, but
now with respect to the unit circle at the origin. Hence, we found that the Hadamard
gate transforms symmetric points with respect to the unit circle into symmetric points
with respect to the imaginary axis, and negative-symmetric points into negative-symmetric
points, but with respect to the unit circle.

2. For the phase shift gate

Rz(θ)=

(
1 0

0 eiθ

)
(57)

we have the transformation

|ψR〉 = Rz(θ)|ψ〉 =
1√

1 + |ψ |2

(
1

eiθψ

)
=

1√
1 + |ψR|2

(
1

ψR

)
, (58)

which implies rotation around the origin through angle θ : ψR = eiθψ . The same rotation
acts on the symmetric and the negative-symmetric points.

3.2.1. Coherent Hadamard basis. The Hadamard basis H |0〉 =
1

√
2
(|0〉 + |1〉)≡ |+〉 and

H |1〉 =
1

√
2
(|0〉 − |1〉)≡ |−〉, under the action U |0〉 = |ψ〉 and U |1〉 = |−ψ∗

〉, transforms into

U |+〉 =
1

√
2
(|ψ〉 + |−ψ∗

〉)≡ |ψ+〉, (59)

U |−〉 =
1

√
2
(|ψ〉 − |−ψ∗

〉)≡ |ψ〉. (60)

This coherent state Hadamard basis is generated from our coherent states by the unitary
transformation

|ψ+〉 = (U HU−1)|ψ〉, (61)

|ψ−〉 = (U HU−1)|−ψ∗
〉. (62)

4. The two-qubit case

4.1. Coherent state orthonormal basis

Here we consider the generic two-qubit coherent state

|ψ1〉|ψ2〉 =
1√

1 + |ψ1|
2
√

1 + |ψ2|
2

(
1 ψ2 ψ1 ψ1ψ2

)T
. (63)
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By proper choice of ψ1 and ψ2 we can construct the two-qubit orthonormal coherent state basis.
We find this basis in the following form:

|ψ〉|ψ〉 =
1

1 + |ψ |2

(
1 ψ ψ ψ2

)T
, (64)

|ψ〉|−ψ∗
〉 =

1

1 + |ψ |2

(
−ψ̄ 1 −|ψ |

2 ψ
)T
, (65)

|−ψ∗
〉|ψ〉 =

1

1 + |ψ |2

(
−ψ̄ −|ψ |

2 1 ψ
)T
, (66)

|−ψ∗
〉|−ψ∗

〉 =
1

1 + |ψ |2

(
ψ̄2

−ψ̄ −ψ̄ 1
)T
, (67)

as the orthonormal coherent state basis. These states can be generated from the computational
basis by the operator

U =
1√

1 + |ψ |2

(
1 −ψ̄

ψ 1

)
, (68)

so that

|ψ〉|ψ〉 = (U ⊗ U )|00〉 = Û 12|00〉, (69)

|ψ〉|−ψ∗
〉 = (U ⊗ U )|01〉 = Û 12|01〉, (70)

|−ψ∗
〉|ψ〉 = (U ⊗ U )|10〉 = Û 12|10〉, (71)

|−ψ∗
〉|−ψ∗

〉 = (U ⊗ U )|11〉 = Û 12|11〉, (72)

where Û 12 = U ⊗ U .

4.1.1. Generation of maximally entangled states from coherent state basis. Due to separability,
these states are not entangled, nor is the computational basis. However, we can generate the
maximally entangled Bell states from the computational basis by using a combination of the
Hadamard gate and the CNOT gate: the Hadamard gate applied to the left qubit, followed by
the CNOT gate C : CNOT(H ⊗ I ):

C |00〉 = |φ+
B〉 =

1
√

2
(|00〉 + |11〉), C |01〉 = |ψ+

B〉 =
1

√
2
(|01〉 + |10〉), (73)

C |10〉 = |φ−

B 〉 =
1

√
2
(|00〉 − |11〉), C |11〉 = |ψ−

B 〉 =
1

√
2
(|01〉 − |10〉). (74)

This allows us to introduce the next set of coherent states

|P+〉 = (Û 12CÛ−1
12 )|ψψ〉 = Û 12C(Û−1

12 Û 12)|00〉 = Û 12|φ
+
B〉, (75)

|P−〉 = (Û 12CÛ−1
12 )|ψ −ψ∗

〉 = Û 12C(Û−1
12 Û 12)|01〉 = Û 12|φ

−

B 〉, (76)

|G+〉 = (Û 12CÛ−1
12 )|−ψ

∗ψ〉 = Û 12C(Û−1
12 Û 12)|10〉 = Û 12|ψ

+
B〉, (77)

|G−〉 = (Û 12CÛ−1
12 )|−ψ

∗
−ψ∗

〉 = Û 12C(Û−1
12 Û 12)|11〉 = Û 12|ψ

−

B 〉. (78)
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The set |P±〉, |G±〉 is an orthonormal set of two-qubit coherent states and for particular values
ψ → 0 and ψ → ∞, it reduces to the Bell basis. This is also a complete set, satisfying the
resolution of unity

|P+〉〈P+| + |P−〉〈P−| + |G+〉〈G+| + |G−〉〈G−| = I, (79)

which is easy to prove from explicit representation (98) and (99). Thus, any two-qubit state can
be expanded in this set as a basis. The concurrence formula for a two-qubit state, expanded in
the Bell basis

|φ〉 = s+
|φ+〉 + s−

|φ−〉 + h+
|ψ+〉 + h−

|ψ−〉, (80)

is given by

C = |s+2
− s−2

− h+2 + h−2
|. (81)

Then, we find a similar formula for the state |ψ〉 expanded according to our basis

|φ〉 = b+
|P+〉 + b−

|P−〉 + c+
|G+〉 + c−

|G−〉, (82)

so that the concurrence becomes

C = |b+2
− b−2

− c+2 + c−2
|. (83)

5. Maximally entangled orthogonal two-qubit coherent states

Here we show that the set of states (75)–(78)

|P±〉 =
1

√
2
(|ψ〉|ψ〉 ± |−ψ∗

〉|−ψ∗
〉), (84)

|G±〉 =
1

√
2
(|ψ〉|−ψ∗

〉 ± |−ψ∗
〉|ψ〉) (85)

is a maximally entangled set of orthogonal two-qubit states. To show this, we follow three
different methods, the reduced density matrix method, the determinant method and the
vanishing of the average of dynamical variables method for maximally non-classical states.
Since the dimension of the Hilbert space for our pure states is four, these methods are sufficient
to establish maximal entanglement of our states.

First we follow the reduced density matrix approach. The density matrix for the pure states
|P±〉 in the coherent state basis is

ρ±

P = |P±〉〈P±| (86)

=
1
2(|ψ〉|ψ〉〈ψ |〈ψ | ± |ψ〉|ψ〉〈−ψ∗

|〈−ψ∗
| (87)

± |−ψ∗
〉|−ψ∗

〉〈ψ |〈ψ | + |−ψ∗
〉|−ψ∗

〉〈−ψ∗
|〈−ψ∗

|). (88)

The reduced density matrix at Bob’s site can be written as

ρ±

B = trB (ρ
±

P )= 〈ψ |ρ±

P |ψ〉 + 〈−ψ∗
|ρ±

P |−ψ∗
〉 (89)

=
1
2(|ψ〉〈ψ | + |−ψ∗

〉〈−ψ∗
|) (90)

=
1

2

(
1 0

0 1

)
, (91)
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so that tr(ρ±

B )= 1 and tr(ρ±

B )
2
=

1
2 . Hence, the reduced density operator ρ±

B represents a mixed

state. Since the concurrence in this state is C =
√

2(1 − trρ2
B)= 1, we conclude that |P±〉 are

the maximally entangled states. In a similar way, we can show that |G±〉 are also the maximally
entangled states. Indeed, the density matrix for the pure states |G±〉 in the coherent state basis

ρ±

G = |G±〉〈G±| (92)

=
1
2(|ψ〉|−ψ∗

〉〈ψ |〈−ψ∗
| ± |ψ〉|−ψ∗

〉〈−ψ∗
|〈ψ | (93)

± |−ψ∗
〉|ψ〉〈ψ |〈−ψ∗

| + |−ψ∗
〉|ψ〉〈−ψ∗

|〈ψ |) (94)

gives the reduced density matrix

ρ±

B = trB (ρ
±

G )= 〈ψ |ρ±

G |ψ〉 + 〈−ψ∗
|ρ±

G |−ψ∗
〉 (95)

=
1
2(|ψ〉〈ψ | + |−ψ∗

〉〈−ψ∗
|) (96)

=
1

2

(
1 0

0 1

)
, (97)

so that tr(ρ±

B )= 1 and tr(ρ±

B )
2
=

1
2 , and the state is mixed. From the concurrence C =√

2(1 − ρ2
B)= 1, it then follows that |G±〉 are the maximally entangled states.

Explicitly for these states we have

|P+〉 =
1

√
2(1 + |ψ |2)


1 + ψ̄2

ψ − ψ̄

ψ − ψ̄

1 +ψ2

 , |P−〉 =
1

√
2(1 + |ψ |2)


1 − ψ̄2

ψ + ψ̄

ψ + ψ̄

−1 +ψ2

 , (98)

|G+〉 =
1

√
2(1 + |ψ |2)


−2ψ̄

1 − |ψ |
2

1 − |ψ |
2

2ψ

 , |G−〉 =
1

√
2(1 + |ψ |2)


0

1 + |ψ |
2

−1 − |ψ |
2

0

 . (99)

This form is convenient to calculate the concurrence for a pure state |8〉 in the determinant form

C12 = 2

∣∣∣∣∣t00 t01

t10 t11

∣∣∣∣∣= 2|t00t11 − t01t10|, (100)

where ti j(i, j = 0, 1) are the coefficients of expansion for this state in the computational basis

|8〉 = t00|00〉 + t01|01〉 + t10|10〉 + t11|11〉. (101)

Applying this definition to states (98) and (99), we find that concurrence C12 = 1, as we
expected.

Finally, if we add two spins

ÊS± = ÊS1 ⊗ I ± I ⊗ ÊS2 (102)
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and calculate their averages in our states (84) and (85), then we find that they vanish:

〈P±|Ŝz
±
|P±〉 = 0, 〈P±|Ŝ+

±
|P±〉 = 0, (103)

〈G±|Ŝz
±
|G±〉 = 0, 〈G±|Ŝ+

±
|G±〉 = 0. (104)

This property has been used in [21] as an operational definition of completely entangled states,
which are considered as maximally non-classical states. Therefore, this also confirms that our
states are maximally entangled states.

At first glance, since our states are continuous-variable states, the quantification of
entanglement for these non-Gaussian states needs to be clarified. This is due to the fact that only
the Gaussian states have been completely characterized for the case of continuous-variables.
However, although our states are defined in a high-dimensional Hilbert space, they have small
Schmidt rank, namely 2, which is shown above by computing the reduced density operator
at Bob’s site. Thus, these states can local-unitarily be mapped to a two-qubit Hilbert space
and their entanglement properties are thus no different from those of the two-qubit case. It
justifies our use of the concurrence in this section. This approach is also valid for arbitrary
spin-coherent states of a spin j , living in (2 j + 1)-dimensional Hilbert space, so that two-qubit
states belong to H = C2 j+1

× C2 j+1. By using the Holstein–Primakoff representation, mapping
spin operators to the boson creation and annihilation operators, we find for large j the spin-
coherent states approach the bosonic coherent states. So, it makes sense to embed the states in
the infinite-dimensional Hilbert space by identifying | j,m − j〉 with the Fock state |m〉. Then,
one could try to characterize these states by ‘continuous-variables’, e.g. the operators X, P and
their covariances. But since the Schmidt rank of our states is 2, we do not think that one would
learn much about the state from a continuous-variable perspective and would rather say that
it is locally unitarily equivalent to a two-qubit state. Then, we just recall that all pure state
entanglement properties are fully captured by the Schmidt coefficients of the state, which are
1/

√
2, 1/

√
2 in our case. So our application of concurrence in this section seems perfectly

correct.

6. Operators and their Q symbols

Using coherent states one may represent operators acting on the Hilbert space in terms of
a certain class of functions, which determines the operators completely, and these are called
operator symbols [17]. For the Glauber coherent states, the operator symbol A(ᾱ, β)= 〈α|A|β〉

is an analytical function of complex variables ᾱ and β and is determined completely by its
diagonal values,

A(ᾱ, α)= 〈α|A|α〉, (105)

which are called Q symbols of operator A.
Operator symbols can be considered as functions on the phase space of a classical

dynamical system. In this case, coherent states may provide the natural means for quantization
and its classical correspondence. In the following, we consider the Hamiltonian operator H and
its average 〈ψ |H |ψ〉 in our spin-coherent states as the Q symbol of H : Q H (ψ). As is well
known, if an operator is bounded, then it always has a Q symbol [17], which is a value of an
entire function H(ψ,ψ)= 〈ψ |H |ψ〉. For the spin model with a finite number of qubits, the
Hamiltonian is a bounded operator; that is why its symbol always exists and is representable
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as a finite function. This function, the average energy in the coherent state, appears as a finite-
energy configuration in the phase space of the system. Below we study the XY Z spin model
for two- and three-qubit states, and calculate the Q symbol of H , as an average energy in the
coherent state.

We would like to stress that our two-qubit coherent states are maximally entangled states
and are determined by one complex ψ or two real parameters. These parameters can be fixed
by concrete physical requirements on minimal energy, or some constraints on fidelity, etc, but
will not change the entanglement of the system. That is why our Q symbol of the Hamiltonian
appears as a localized finite energy in maximally entangled two (three or higher)-qubit phase
space.

• First, we consider the X X X model,

H = −J (S+
1 S−

2 + S−

1 S+
2 + 2Sz

1 Sz
2), (106)

where Sx =
S++S−

2 , Sy =
S+

−S−

2i and

S+
|0〉 = 0, S+

|1〉 = h̄|0〉, (107)

S−
|0〉 = h̄|1〉, S−

|1〉 = 0, (108)

Sz|0〉 =
h̄

2
|0〉, Sz|1〉 = −

h̄

2
|1〉. (109)

Then we find the Q symbol of this Hamiltonian in the |P+〉 state just as a constant

〈P+|H |P+〉 = −
J h̄2

2
. (110)

• For the X X Z model

H = −J (S+
1 S−

2 + S−

1 S+
2 )+ 21Sz

1 Sz
2, (111)

where J1= Jz, we have

〈P+|H |P+〉 =
−2h̄2

(1 + |ψ |2)2

[
−J (ψ − ψ̄)2 + Jz

(
(1 − |ψ |

2)2

2
+ψ2 + ψ̄2

)]
, (112)

and in terms of ψ = x + iy,

〈P+|H |P+〉 = −h̄2 8J y2 + Jz[1 + 2x2
− 6y2 + (x2 + y2)2]

(1 + x2 + y2)2
. (113)

In figure 1 we show the average energy surface 〈P+|H |P+〉 = E(x, y) as a function of x, y
for J = 1, Jz = −2. It has two local minima at (0,±1).

6.1. Two-qubit energy in the XY Z model

Here we calculate the average energy for the XY Z model

H =
1
2 [Jxσ

x
1 σ

x
2 + Jyσ

y
1 σ

y
2 + Jzσ

z
1σ

z
2 ], (114)
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Figure 1. The average energy surface of the XXZ model in the maximally
entangled state |P+〉, J = 1 and Jz = −2.
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Figure 2. The average energy surface for the XY Z model in the maximally
entangled state: (a) |P+〉 for J+ = 1, J− = 1.5 and Jz = −4; (b) |P−〉 for
J+ = −1, J− = −0.5 and Jz = 2.

in two-qubit spin-coherent states (84) and (85). In the |P+〉 state, we find (h̄ = 1)

〈P+|H |P+〉 =
−2J+(ψ − ψ̄)2 + J−[(1 +ψ2)2 + (1 + ψ̄2)2] + Jz[(1 − |ψ |

2)2 + 2(ψ2 + ψ̄2)]

2(1 + |ψ |2)2
.

(115)

In figure 2(a) we show the energy surface as a function of x = <ψ, y = =ψ , J+ = 1, J− =

1.5, Jz = −4, with characteristic local maxima at points (0,±1).
For the state |P−〉 we have

〈P−|H |P−〉 =
2J+(ψ + ψ̄)2 − J−[(1 −ψ2)2 + (1 − ψ̄2)2] + Jz[(1 −ψ2)(1 − ψ̄2)− (ψ + ψ̄)2]

2(1 + |ψ |2)2
.

(116)

It is shown in figure 2(b), for J+ = −1, J− = −0.5, Jz = 2, with two local minima at (±1, 0).
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Figure 3. The average energy of the XY Z model in the maximally entangled
state |G+〉: (a) for J+ = 1, J− = 0 and Jz = 0; (b) for J+ = −1.5, J− = −1.5 and
Jz = 1.5.

For the state |G+〉 the average energy is

〈G+|H |G+〉 =
2J+(1 − |ψ |

2)2 − 4J−[ψ2 + ψ̄2] + Jz[4|ψ |
2
− (1 − |ψ |

2)2]

2(1 + |ψ |2)2
. (117)

In figure 3(a) we show the average energy surface for J+ = 1, J− = 0, Jz = 0 and with a local
maximum at the origin (0, 0) and the continuum set of minima at the unit circle x2 + y2

= 1. For
another choice of parameters, J+ = −1.5, J− = −1.5 and Jz = 1.5, in figure 3(b) this surface
has a local minimum at the origin (0, 0) and two local maxima at (±1, 0).

For the state |G−〉 the energy is a constant which is independent of ψ :

〈G−|H |G−〉 = −

(
Jz

2
+ J+

)
. (118)

6.2. Three-qubit energy for the XY Z model

Our set of two-qubit coherent states can be generalized to the multiple qubit case. Here we
consider the three-qubit coherent state

|PG+〉 =
1

√
2
(|ψ〉|ψ〉|ψ〉 + |−ψ∗

〉|−ψ∗
〉|−ψ∗

〉). (119)

This state can be obtained from the maximally entangled GHZ state

|GHZ〉 =
1

√
2
(|000〉 + |111〉) (120)

by unitary transformation U123 = U ⊗ U ⊗ U. This state is also maximally entangled (it can
be seen by calculating the concurrence hyper-determinant) and in special cases ψ → 0 and
ψ∗

→ ∞ reduces to the GHZ state.
The average energy of the XY Z model in this state is

〈PG+|H |PG+〉 =
4J+|ψ |

2(1 + |ψ |
2)+ 2J−(1 + |ψ |

2)(ψ2 + ψ̄2)+ Jz(1 − |ψ |
2
− |ψ |

4 + |ψ |
6)

(1 + |ψ |2)3
.

(121)
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Figure 4. The average energy of the XY Z model in the maximally entangled
three-qubit state |PG+〉: (a) for J+ = −1, J− = −1 and Jz = −1; (b) for
J+ = 1, J− = 0 and Jz = −0.5.

In figure 4(a), for J+ = −1, J− = −1 and Jz = −1, this energy surface has two local
maxima at (∓1, 0) and two local minima at (0,±1). For J+ = 1, J− = 0 and Jz = −0.5 in the
same state, see figure 4(b), we plot the energy with local minimum at the origin (0, 0) and with
a continuous set of maxima at the unit circle x2 + y2

= 1.
Another three-qubit coherent state

|PG−〉 =
1

√
3
(|ψ〉|ψ〉|−ψ∗

〉 + |ψ〉|−ψ∗
〉|ψ〉 + |−ψ∗

〉|ψ〉|ψ〉) (122)

is related to the maximally entangled |W 〉 state

|W 〉 =
1

√
3
(|0〉|0〉|1〉 + |0〉|1〉|0〉 + |1〉|0〉|0〉) . (123)

For the average energy in this state, we have

〈PG−|H |PG−〉 =
4J+(1 + |ψ |

6)− 6J−(1 + |ψ |
2)(ψ2 + ψ̄2)− Jz(1 − 9|ψ |

2
− 9|ψ |

4 + |ψ |
6)

3(1 + |ψ |2)3
.

(124)

The 3D plot of this energy in figure 5 shows two local maxima at (±1, 0) and a local minimum
at the origin (0, 0).

In all the above-considered examples, the average energy of the XY Z model is a function of
two variables which determine the energy surface in two- or three-qubit phase space. At every
point of this space, characterized by the complex number ψ , the quantum state is maximally
entangled. And depending on the parameters of the system as exchange integrals Jx , Jy, Jz, it
shows a specific shape with local maxima and minima at particular states. The dependence of
these maxima and minima on external parameters such as magnetic field, or on the anisotropic
exchange DM interaction, as well as on the number of qubits is worth studying.

7. Entanglement and fidelity of coherent state evolution

Some recent studies of the stability of quantum information processing focused on the
fidelity and entanglement of the quantum evolution under the influence of impurities and the
environment, as an indicator of the quality of the computation. These types of calculations

New Journal of Physics 14 (2012) 063007 (http://www.njp.org/)

http://www.njp.org/


20

10
5

0
5

10
x

10

5

0

5

10

y

1.5

1.0

0.5

0.0

E

Figure 5. The average energy of the XY Z model in the |PG−〉 state for
J+ = −1, J− = −0.2 and Jz = 0.5.

were performed for different physical systems and for different initial states. Here, as a simple
application of our two-qubit coherent states, we calculate the exact evolution in time of the
entanglement and fidelity and their dependence on the initial coherent state parameters. By the
evolution operator U (t)= exp[− i

h̄ Ht] we first study the entanglement evolution for an initially
maximally entangled two-qubit coherent state |P+〉, (84). For simplicity, we display here only
the particular case of the X X model. The time evolution of this state is

|ψ(t)〉 = U |P+〉

=
1

√
2(1 + |ψ |2)

[(1 + ψ̄2)|00〉 + e
−iJ t

h̄ (ψ − ψ̄)|01〉

+ e
−iJ t

h̄ (ψ − ψ̄)|10〉 + (1 +ψ2)|11〉]. (125)

By the determinant formula (100) for concurrence we have the time dependence

C(t)= 2|t00t11 − t01t10|

=

∣∣∣∣∣(1 + ψ̄2)(1 +ψ2)− e−
2iJ t

h̄ (ψ − ψ̄)2

(1 + |ψ |
2)2

∣∣∣∣∣ . (126)

In polar coordinates for ψ = reiθ it gives

C(t)=

√
1 −

16r 2 sin2 θ

(1 + r 2)2

(
1 −

4r 2 sin2 θ

(1 + r 2)2

)
sin2 J t

h̄
. (127)

This concurrence is a periodic function in t with revival times at t =
nπ h̄

J , n = 1, 2, . . ., when
the concurrence returns to the maximal value C = 1. It is also the periodic function of θ shown
in figures 6 and 7. The contour plot of the concurrence for different amplitudes r = 0.4, r = 0.6
and r = 1 undergoes dimerization of the periodic pattern in angle θ , from four columns at r = 1
to two columns for r = 0.4.
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Figure 6. Contour plots of the concurrence versus θ (the horizontal axis) and t
(the vertical axis): (a) for amplitude r = 0.4 and (b) for amplitude r = 0.6.
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Figure 7. The concurrence versus θ (horizontal axis) and t (vertical axis) for
amplitude r = 1: (a) the contour plot, (b) the 3D plot.

For the fidelity

F(t)= |〈ψ(t)|P+〉|
2

=

∣∣∣∣∣ |(1 + ψ̄2
|
2 + e

iJ t
h̄ |ψ − ψ̄ |

2

(1 + |ψ |2)2

∣∣∣∣∣
2

, (128)
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Figure 8. The contour plots of fidelity versus θ (horizontal axis) and t (vertical
axis): (a) for amplitude r = 0.4, (b) for amplitude r = 0.6.
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Figure 9. The fidelity versus θ (horizontal axis) and t (vertical axis) for
amplitude r = 1: (a) the contour plot and (b) the 3D plot.

by parametrization ψ = reiθ we have

F(t)= 1 −
16r 2 sin2 θ

(1 + r 2)2

(
1 −

4r 2 sin2 θ

(1 + r 2)2

)
sin2 J t

2h̄
, (129)

This also shows revival but at times t =
2nπ h̄

J , n = 1, 2, . . ., when the evolved state returns
to the maximally entangled coherent state |P+〉. We display this evolution in figures 8 and 9.
Similarly to the concurrence case, we have the peridoic pattern in θ , so that at r = 1 we have

New Journal of Physics 14 (2012) 063007 (http://www.njp.org/)

http://www.njp.org/


23

four columns merging with two columns at r = 0.4. But compared with concurrence, the fidelity
revival time is twice as long.

The time evolution of concurrence and fidelity has been computed before for a spin model
with different initial states [23], and it is not a new idea; here we did similar calculations for our
two-qubit spin coherent states and found dimerization of the double periodic patterns versus r
and θ in the complex plane ψ .

8. Conclusions

In this paper we introduced the set of maximally entangled two- and three-qubit coherent states,
determined by antipodal points on the Bloch sphere. In the complex plane, these states are
related to negative-symmetrical points with respect to the unit circle and can be interpreted as
some type of source and its image states, similar to the hydrodynamic vortex case [20]. Then we
can interpret these quantum states as a qubit and its image qubit, realizing some kind of method
of images in the quantum theory.

The procedure described here can be extended also to construct multi-qubit coherent states.
In this case, the states are characterized by complex Fibonacci and Lucas polynomials [24].
Entanglement properties of these states are under investigation. An interesting question here
is to construct the average energy as a function of phase space variables. We expect that the
energy surface in the multi-qubit case will show a specific localized structure with a number
of local maxima and minima connected to the number of qubits. One interesting question is
related to the characterization of entanglement for the continuous-variable case, which attracted
attention recently in the teleportation of coherent states. Quantification of entanglement for
these Gaussian states was completely characterized. In contrast to the Glauber bosonic coherent
states, the spin coherent states considered in this paper are non-Gaussian states. For these states
entanglement properties are fully characterized by the Schmidt coefficients of these states. It is
well known that by the Holstein–Primakoff representation, as a basic tool to study magnons,
the spin operators can be mapped to bosonic creation and annihilation operators. Then for a
large spin j one can map our coherent states to the full Fock space by identifying | j,m − j〉
with the Fock state |m〉, for m = 0, 1, . . . , 2 j . Then by introducing a =

∑
n

√
n|n − 1〉〈n| and

continuous variables as coordinate and momentum X = (a + a+)/
√

2, P = (a − a+)/i
√

2, one
can compute the covariances and check the separability criteria of [11, 12]. Although this seems
to be a cumbersome procedure it could shed some light on entanglement quantification for non-
Gaussian continuous-variable states.
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