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Abstract— In this paper, a robust controller is designed to
achieve accurate positioning of an unactuated surface vessel
by using multiple unidirectional tugboats. After initially locat-
ing opposing tugboats to specific configurations, the control
problem is transformed into a second order system with an
uncertain non–symmetric input gain matrix. Upon applying
a matrix decomposition, a robust controller is proposed. De-
tailed stability analysis ensured asymptotic tracking. Numerical
simulation results demonstrate the efficiency of the proposed
controller.

I. INTRODUCTION

The positioning of large surface vessels like barges, plat-
forms and unactuated ships is considered as the marine
example of the swarm robotic applications. Since these types
of large vessels can not generate necessary position and
orientation control effort due to their low speed operation,
they are in need of assistance of multiple tugboats. As
a result of this, this objective is realized via a group of
tugboats that are strategically positioned along the vessel’s
hull. Manipulation with multiple tugboats can be seen as
a feasible solution for these type of applications. However,
the radio communication between all involved tugboats,
especially in human manipulated tugboats, affects the con-
trol performance dramatically. Although, the communication
performance is increased with advanced global positioning
systems, control of these type of systems is still a challenging
problem because of possible problems that may arise in
communication system during manipulation. As a natural
result of these, above mentioned marine control problem has
attracted attention of the control community.

In the last decade, different types of controller designs
have been proposed for these type of applications. In [1], ori-
entation tracking control of a unactuated vessel through the
utilization of a swarm of vehicles operating in a decentralized
fashion was achieved via presented robust control strategy.
In order to design this robust controller, the influence of
the other swarm vehicle was treated as a force disturbance
into the model dynamics. In [2], an exact model knowledge
position and orientation tracking controller was proposed for
an unactuated surface vessel. In [3], an adaptive position
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control strategy was designed without using the location of
the tugboats about the vessel hull. In this paper, the control
strategy was developed such that it does not require the
communicating of data between tugboats. Another adaptive
control strategy was presented in [4] that took the uncertainty
of system parameters into account. In [5], an optimization
based force/torque allocation was employed and compared
against a commutation based force/torque allocation strategy.
Recently, in [6] a position tracking control of ship berthing
with assistance of autonomous tugboats was provided by
using sliding mode control approach.

In this paper, a robust control design for a position tracking
of a large surface vessel manipulated by 6 autonomous
tugboats is presented. First, the dynamic model of a 3 degree
of freedom unactuated surface vessel manipulated by 6 uni-
directional tugboats is given. Upon specification of the initial
configurations of the uni-directional tugboats, the control is
considered to be performed by 3 bi-directional tugboats.
Next, the open-loop error system is obtained where an
uncertain input gain matrix, which includes uncertain inertia
matrix of the surface vessel and another uncertain matrix
that includes positions of tugboats, is obtained. A matrix
decomposition is applied to initialize the control design. A
robust controller, which does not require the configurations
of the 3 bi-directional tugboats, is then proposed. Detailed
stability analysis is presented where asymptotic tracking is
ensured. Numerical simulations are performed where the
positions and orientations of the tugboats are perturbed with
sinusoidal terms and satisfactory tracking performance is
obtained.

II. SYSTEM MODEL

The dynamic model of a 3 degree of freedom unactuated
vessel manipulated by six external tugboats can be written
as [7], [8], [9], [10]

Msν̇ +Ds = F (1)
ẋ = Rν (2)

where F = [Fx, Fy,Mz]
T ∈ R represents the total forces

and moments applied to the vessel and acting on the vessels
center of mass. The inertia matrix that includes such effects
as added mass is denoted by Ms (ν) ∈ R3×3 and obtained
as [7]

Ms = MRB +MA (3)

where MRB (ν) ∈ R3×3 denotes the positive definite, sym-
metric rigid body part of the inertia matrix while the added
mass inertia matrix is represented by MA (ν) ∈ R3×3. It
should be noted that MA (ν) is not necessarily symmetric
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that can result with an asymmetric Ms (ν) [7]. However, it
is assumed that this added mass term does not lead a rank
deficiency in Ms (ν) [i.e., Ms (ν) is full rank]. The matrix
Ds (ν) ∈ R3 contains drag, damping, and other parasitic
effects while x (t) = [xp (t) , yp (t) , ψ (t)]

T ∈ R3 represents
the composite inertial position (xp, yp) and heading ψ of the
vessel while body fixed linear and angular velocity signals

are represented by ν (t) =
[
u (t) , v (t) , ψ̇ (t)

]T
∈ R3. The

rotation matrix is denoted by R (ψ) ∈ SO (3) and defined
as

R (ψ) =

 cos (ψ) − sin (ψ) 0
sin (ψ) cos (ψ) 0
0 0 1

 . (4)

A. Force Decomposition and Commutation Strategy

It is assumed that, the unactuated vessel is moved via
thrust inputs that are provided from six tugboats in contact
with the vessel’s hull as shown in Figure 1. According to
this assumption F is a result of the combined efforts that is
provided from six tugboats and expressed as

F = B1U1 (5)

where U1 (t) = [u1a, u1b, u2a, u2b, u3a, u3b]
T ∈ R6 denotes

a thrust input vector from six tugboats while the thrust
configuration is shown by B1 ∈ R3×6 is defined as

B1 =


1 0 0
−1 0 0
Cα2a Sα2a Ly2aCα2a − Lx2aSα2a

Cα2b Sα2b Ly2bCα2b − Lx2bSα2b

Cα3a Sα3a −Ly3aCα3a + Lx3aSα3a

Cα3b Sα3b −Ly3bCα3b + Lx3bSα3b



T

(6)

where Cθ = cos (θ), and Sθ = sin (θ). The opposite tugboats
can then be placed as follows for utilizing the unidirectional
structure of tugboats

α2b = α2a + π Lx2b = Lx2a Ly2b = Ly2a

α3b = α3a − π Lx3b = Lx3a Ly3b = Ly3a
. (7)

As a result of this, the force equation given in (5), the thrust

Fig. 1. System description showing the vessel frames

input vector and the thrust configuration matrix defined in
same equation are obtained as

F = BU (8)
U (t) = [u1, u2, u3]

T (9)

B =

 1 0 0
Cα2a Sα2a Ly2aCα2a − Lx2aSα2a

Cα3a Sα3a −Ly3aCα3a + Lx3aSα3a

T

.(10)

by utilizing the fact that ui = uia − uib, ∀i = 1, 2, 3.
Remark 1: Similar to [3] the tugboats are considered to

be placed according to the configurations in (6). In this study,
unlike [3] we consider the configurations in (6) are the initial
configurations and that they may vary as the motion starts.
This relaxes the static positioning assumption in [3] and is
a novel departure from the existing literature.

The main purpose of the subsequent sections is to design
U (t) appropriately to obtain satisfactory tracking perfor-
mance. The following commutation strategy can be applied
to U (t) to specify tugboat’s unidirectional thrust effects [11]

uia = 1
2

(
ui +

√
u2
i + ε20

)
uib =

1
2

(
−ui +

√
u2
i + ε20

)
(11)

where i = 1, 2, 3 and ε0 ∈ R+ denotes the control gain
selected to obtain non–zero uij (t) values that prevents the
tugboats from losing contact with the vessel.

B. Open–Loop Operation

The time derivative of (2) is taken to obtain the following
compact representation of the system

ẍ = Ṙν +Rν̇ (12)

which contains the time derivative of R (ψ) that can be
obtained as follows because of the structure of the rotation
matrix

Ṙ = RS3 (13)

where S3

(
ψ̇
)
∈ R3×3 is a skew–symmetric matrix defined

as

S3 , ψ̇

 0 −1 0
1 0 0
0 0 0

 . (14)

After substituting (13) into (12), the right hand side of (12)
can be re–arranged as

ẍ = −R
(
M−1
s Ds − S3ν

)
+RM−1

s BU (15)

where (1) was utilized. The more compact form of the model
is obtained as follows by rewriting the right–hand side of (15)

ẍ = h+GU (16)

where h (x, ν) ∈ R3 and G (x, ν) ∈ R3×3 are defined as

h , −R
(
M−1
s Ds − S3ν

)
G , RM−1

s B. (17)

Since G is a real matrix with non–zero leading principal
minors the following matrix decomposition is possible [12],
[13]

G = SDUu (18)
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where S (x, ν) ∈ R3×3 represents a symmetric positive
definite matrix while a diagonal matrix with entries being
±1 and a unity upper triangular matrix are denoted by
D ∈ R3×3, and Uu (x, ν) ∈ R3×3, respectively. As a result of
applying the above matrix decomposition to the models that
are available in the literature, D came out to be an identity
matrix. Despite this, the derivations given in this paper will
be presented for the general case where it is assumed that D
is available for control design (see [14] for the presendence
of this type assumption).

After taking the time derivative of (16), we obtain
...
x = ϕ+ SDUuU̇ (19)

where (16) and (18) are utilized and an auxiliary signal,
ϕ (x, ẋ, ẍ) ∈ R3 is defined as

ϕ , ḣ+ ĠG−1 (ẍ− h) . (20)

At this point, we would like to define the inverse of S as a
new matrix denoted by M (x, ν) ∈ R3×3. It is remarked that
M is symmetric and positive definite because of symmetric
and positive definite structure of S. In addition to this, the
following bounds are valid for M (x, ν)

m ‖χ‖2 ≤ χTM (x, ν)χ ≤ m̄ (x, ν) ‖χ‖2 ∀χ ∈ R3 (21)

where m ∈ R and m̄ (x, ν) ∈ R are denoted a positive
bounding constant and a positive non–decreasing function,
respectively.

The following equation can be obtained by multiplying
both sides of (19) with M

M
...
x = f +DUuU̇ (22)

where f (x, ẋ, ẍ) ,Mϕ ∈ R3.

III. ERROR SYSTEM DEVELOPMENT

Ensuring a good tracking performance for inertial po-
sitions and heading of the vessel for a given reference
trajectory and the boundedness of all signals under the
closed–loop operation constitute our main control objectives.
The control design is based on availability of x (t) and ẋ (t)
(i.e., full–state feedback).

The output tracking error, e1 (t) ∈ R3, is defined as
follows to quantify the tracking control objective

e1 , xd − x (23)

where xd (t) ∈ R3 is a smooth reference trajectory that is
chosen in the sense that

xd (t) ∈ C3 and x(i)
d (t) ∈ L∞, i = 0, 1, 2, 3. (24)

In order to eliminate the higher order time derivatives from
our Lyapunov–based stability analysis, the auxiliary error
signals, e2 (t) ∈ R3 and r (t) ∈ R3 are defined as follows

e2 , ė1 + e1 (25)
r = ė2 + Γe2 (26)

where Γ ∈ R3×3 denotes a positive–definite, diagonal,
constant gain matrix. The following expression is obtained

by taking time derivative of (26) and multiplying the result
from left with M

Mṙ = M (
...
xd + ë1 + Γė2)− f −DUuU̇ (27)

where (22), and the time derivatives (23) and (25) were
utilized. The right–hand side of (27) can be re–arranged as

Mṙ = −1

2
Ṁr − e2 −DUuU̇ +N (28)

where N (x, ẋ, ẍ, xd, ẋd, ẍd,
...
xd, t) ∈ R3 is an auxiliary

function and defined as

N ,M (
...
xd + ë1 + Γė2)− f + e2 +

1

2
Ṁr. (29)

The auxiliary function N can be partitioned as a sum
of two newly defined auxiliary signals denoted by N̄ (t),
Ñ (t) ∈ R3. These auxiliary signals are defined as

N̄ , N |x=xd,ẋ=ẋd,ẍ=ẍd
(30)

Ñ , N − N̄ . (31)

After substituting the above definitions, the final form of
open–loop error system can be obtained as follows by re–
arranging (28)

Mṙ = −1

2
Ṁr − e2 −DUuU̇ + Ñ + N̄ . (32)

IV. CONTROLLER FORMULATION

Motivated by the subsequent detailed stability analysis and
based on the open–loop error system in (32), the control input
U (t) is designed as

U = DK

[
e2 (t)− e2 (t0) + Γ

∫ t

t0

e2 (σ) dσ

]
+DΠ (33)

where the auxiliary signal Π (t) ∈ R3 is generated according
to the update law

Π̇ (t) = CSgn (e2 (t)) with Π (t0) = 03. (34)

In (33) and (34), K, C ∈ R3×3 denote positive definite,
diagonal, constant gain matrices while a vector of zeros is
represented by 03 ∈ R3 and Sgn(·) ∈ R3 is the vector signum
function. The control gain is chosen as K = I3 + kpI3 +
diag {kd,1, kd,2, 0} where kp, kd,1, kd,2 ∈ R are positive,
constant controller gains, the notation diag {·} represents a
diagonal matrix, and I3 ∈ R3×3 is the standard identity
matrix. The following closed–loop error system is obtained
by substituting the time derivative of (34) into (32) and then
adding and subtracting DKr (t)

Mṙ = − 1

2
Ṁr − e2 −Kr + Ñ + N̄ (35)

− D (Uu − I3)DKr −DUuDCSgn (e2)

where the fact that DD = I3 was utilized.
Before presenting the accompanying stability analysis,

more detailed examination of the last two terms of (35) are
given. The D (Uu − I3)DKr term can be rewritten as

D (Uu − I3)DKr =

 Λ1

Λ2

0

+

 Φ1

Φ2

0

 (36)
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where the auxiliary signals Λ1 (t), Λ2 (t), Φ1 (t), Φ2 (t) ∈ R
are defined as

Λ1 , d1d2k2Ũu1,2
r2 + d1d3k3Ũu1,3

r3 (37)

Λ2 , d2d3k3Ũu2,3
r3 (38)

Φ1 , d1d2k2Ūu1,2
r2 + d1d3k3Ūu1,3

r3 (39)

Φ2 , d2d3k3Ūu2,3
r3 (40)

with the following definitions of Ūu1,2
(t), Ūu1,3

(t),
Ūu2,3 (t), Ũu1,2 (t), Ũu1,3 (t), Ũu2,3 (t) ∈ R

Ūui,j
, Uui,j

|x=xd,ẋ=ẋd
(41)

Ũui,j , Uui,j − Ūui,j (42)

where Uui,j (x, ν) ∈ R represent the entries of Uu (x, ν).
From (29), it can be seen that Λ2 (t) depends on k3, and
from (37) it is clear that, Λ1 (t) depends on k3 and k2. From
(39) and (40) it can also seen that, Φ1 (t) depends on k3 and
k2 while Φ2 (t) depends on k3.

On the other hand, the following decomposition can be
applied to DUuDCSgn (e2) term

DUuDCSgn (e2) =
[
ΨT , 0

]T
+ Θ (43)

where two newly defined auxiliary signals denoted by
Ψ (t) ∈ R2 and Θ (t) ∈ R3 have the following forms[

ΨT , 0
]T

= D
(
Uu − Ūu

)
DCSgn (e2) (44)

Θ , DŪuDCSgn (e2) (45)

where Ūu (xd, ẋd) , Uu|x=xd,ẋ=ẋd
∈ R3×3 is a function of

reference trajectory and its time derivative, and Ψi (t) ∈ R,
i = 1, 2 and Θi (t) ∈ R, i = 1, 2, 3, are defined as

Ψi = di

3∑
j=i+1

djCjŨui,j
sgn (e2,j) (46)

Θi = di

3∑
j=i

djCjŪui,j
sgn (e2,j) . (47)

Remark 2: The following upper bounds can be developed
by utilizing the Mean Value Theorem [15]∥∥∥Ñ (·)

∥∥∥ ≤ ρÑ (‖z‖) ‖z‖ (48)∥∥∥Ũi,j (·)
∥∥∥ ≤ ρi,j (‖z‖) ‖z‖ (49)

where ρÑ (·), ρi,j (·) ∈ R are non–negative, globally in-
vertible, non–decreasing functions of their arguments, and
z (t) ∈ R9 is defined as

z ,
[
eT1 eT2 rT

]T
. (50)

It can be seen from (30) and (41) that N̄ (t) and Ūui,j
(t)

can be upper bounded as [16]∣∣N̄i (t)
∣∣ ≤ ζN̄i

(51)∣∣Ūui,j (t)
∣∣ ≤ ζŪui,j

(52)

where ζN̄i
, ζŪui,j

∈ R are positive bounding constants.
Based on (37)–(40), (46), (47), following upper bounds can
be obtained for i = 1, 2

|Λi| ≤ ρΛi
(‖z‖) ‖z‖ (53)

|Φi| ≤ ζΦi
‖z‖ (54)

|Ψi| ≤ ρΨi
(‖z‖) ‖z‖ (55)

and the following upper–bound can also be obtained for i =
1, 2, 3

|Θi| ≤ ζΘi
(56)

where (48)–(52) were utilized. From (56), it is clear that
‖Θ‖ ≤ ζΘ is provided for some positive bounding constant
ζΘ ∈ R, and from (53)–(55), we obtain

|Λi|+ |Φi|+ |Ψi| ≤ ρi (‖z‖) ‖z‖ (57)

where ρi (‖z‖) ∈ R i = 1, 2, are non–negative, globally
invertible, non–decreasing functions satisfying

ρΛi
+ ρΨi

+ ζΦi
≤ ρi. (58)

After this point, we can continue with the Lyapunov–
based boundedness and convergence analysis of our robust
controller design.

V. STABILITY ANALYSIS

Proving the boundedness of the error signals under the
closed–loop operation by using Lyapunov–type stability
analysis is the first purpose of this section. Then, we will
present a lemma and obtain an upper bound for the integral
of the absolute values of the entries of the time derivative
of e2 (t) via this boundedness result. This upper bound will
be utilized in another lemma to prove the non–negativity
of a Lyapunov–like function. Finally, asymptotic stability of
the overall closed–loop system will be proven by using the
results of this lemma.

Theorem 1: (Boundedness proof) The controller in (33)
and (34) guarantee the boundedness of the error signals
in (23), (25) and (26) provided that the controller gains
kd,1, kd,2 and kp are chosen large enough compared to the
initial conditions of the system and the following condition
is satisfied for the mathematical model in (1) and (2),

λmin (Γ) ≥ 1

2
(59)

where λmin (Γ) is the minimum eigenvalue of the gain matrix
Γ.

Proof: The most general case of the proof is given
in Appendix A of [17]. The proof for the Theorem 1 can
be obtained by using 2 instead of n given in the mentioned
study.

Lemma 1: Provided that e2 (t) and ė2 (t) are bounded, the
following expression for the upper bound of the integral of
the absolute value of the i–th entry of ė2 (t) i = 1, 2, 3 can
be obtained

t∫
t0

|ė2,i (σ)| dσ ≤ κ1 + κ2

t∫
t0

|e2,i (σ)| dσ + |e2,i| (60)
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where κ1, κ2 ∈ R are some positive bounding constants.
Proof: Readers can refer to [18] for the proof.

Remark 3: As a result of the fact that Ūu (t) being unity
upper triangular, Θ (t) in (45) can be rewritten as

Θ = (I3 + Ω)CSgn (e2) (61)

where Ω (t) , D
(
Ūu − I3

)
D ∈ R3×3 is a strictly upper

triangular matrix. Since it is a function of the reference
trajectory and its time derivatives, its entries, denoted by
Ωi,j (t) ∈ R, are bounded in the sense that

|Ωi,j | ≤ ζΩi,j
(62)

where ζΩi,j
∈ R are positive bounding constants.

Lemma 2: Consider the term

L , rT
[
N̄ − (I3 + Ω)CSgn (e2)

]
. (63)

Provided that the entries of the control gain matrix C are
chosen to satisfy

C3 ≥ ζN̄3

(
1 +

κ2

Γ3

)
(64)

C2 ≥
(
ζN̄2

+ ζΩ2,3
C3

)(
1 +

κ2

Γ2

)
(65)

C1 ≥
(
ζN̄1

+ ζΩ1,2C2 + ζΩ1,3C3

)(
1 +

κ2

Γ1

)
(66)

where Γi for i = 1, 2, 3 denotes the ith diagonal element of
Γ, then it can be concluded that

t∫
t0

L (σ) dσ ≤ ζL (67)

where ζL ∈ R is a positive bounding constant defined as

ζL , κ1

2∑
i=1

3∑
j=i+1

ζΩi,j
Cj + κ1

3∑
i=1

ζN̄i
+

3∑
i=1

Ci |e2,i (t0)| .

(68)
Proof: Reader can refers to [18] for the proof.

Theorem 2: (Asymptotic convergence proof) Given the
dynamic model in (1) and (2), the controller of (33) and (34)
ensures the tracking error signal e1 (t) converges to origin
asymptotically in the sense that

‖e1 (t)‖ → 0 as t→ +∞ (69)

provided that Γ is chosen to satisfy (59), the entries of C
are chosen to satisfy (64)–(66), and kp, kd,1, kd,2 are chosen
large enough.

Proof: The most general case of the proof is given in
Appendix D of [17]. The proof for the Theorem 2 can be
obtained by using 2, 3, λ1, λ2, λ3 and Γ instead of n, m,
λ2, λ3, λ4 and α given in the mentioned study, respectively.

Remark 4: The entries of the control gain matrix C are
required to satisfy (64) which depends on the constant upper
bounds of uncertain system functions, and the entries of the
control gain matrix K are required to be chosen large enough
compared to the initial conditions of the system. While this

seems like a weakness of the controller, we will address this
issue by utilizing the self–tuning strategy that we recently
designed in [19] and [20] for the family of the controllers in
[16] as an add–on to adjust the entries of C and K.

VI. SIMULATION RESULTS

The performance of the proposed robust controller was
demonstrated via numerical simulations. The ship model in
(1) was utilized with the following inertia matrix [8]

Ms (x) =

 m+Xu̇ 0 0
0 m− Yv̇ mxg − Yṙ

0 mxg −Nv̇ nd = mxg − Yṙ

 . (70)

In the above inertia matrix, constant terms Yṙ and Nv̇ are
selected as

Yṙ = 0.0 , Nv̇ = −1.0 (71)

to reflect the effects of added mass which result in a non
symmetric1 inertia matrix. The detailed information about
the damping matrix Ds (ν) can also be found in [8]. The
reference position of the vessel was given as

xd(t) =
[
10 sin(0.1t) (m) 10 cos(0.1t) (m) −0.1t (rad)

]T
(72)

with the initial positions x(0) = [0.3, 2.5, −π4 ]T and the
initial velocities v(0) = 03. The control gains K and C
were obtained via a self–tuning strategy [19], [20] as

K = diag{168.2, 112.3, 107.2}, C = diag{3.2, 6.4, 2.3} (73)

and the other control gains Γ and ε0 are selected as

Γ = diag{1, 5}, ε0 =
√

5. (74)

In order to obtain a proper time–dependent nature for the
tugboats’ positions without losing their contact with vessel’s
hull, six tugboats were positioned at the following locations
with respect to the vessel’s center of mass.

L1a = (−0.5, 0.1 sin (t))
L1b = (0.5, 0.1 sin (t))
L2a = (−0.25 + 0.5 sin (t) ,−0.145)
L2b = (−0.25 + 0.5 sin (t) , 0.145)
L3a = (0.1 sin (t) , 0.145)
L3b = (0.1 sin (t) ,−0.145) .

(75)

The incident angle of each tugboat with respect to the hull
was selected as follows

α1a = (π/180) sin (t) ,
α1b = π − (π/180) sin (t) ,
α2a = π/2 + (π/180) sin (t) ,
α2b = α2a + (π/180) sin (t) ,
α3a = 3π/2 + (π/180) sin (t) ,
α3b = α3a − π + (π/180) sin (t) .

(76)

The actual position tracking errors and the control inputs
are shown in Figures 2 and 3, respectively. From Figure 2 it
can be clearly seen that unactuated surface vessel tracked the
desired composite inertial positions and heading successfully
which means that our control objective was successfully met.

1In the other control approaches about this subject available in the
literature, especially in [3] which can be considered as the closest work
to ours, the inertia matrix was selected as a symmetric matrix (i.e. same
values were selected for the terms Yṙ and Nv̇). In our study, this matrix
was selected in non symmetric form and we obtained satisfactory tracking
performance. This can be considered as an other important advantage of
our controller.
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VII. CONCLUSION

In this paper, a robust controller for an unactuated surface
vessel manipulated by autonomous tugboats was designed.
The controller was designed under the restriction that the dy-
namic model of the surface vessel is uncertain. Furthermore,
unlike the similar works in the literature, the surface vessel
was considered to be under the influence of added mass
effects which resulted in an asymmetric inertia matrix. The
control problem is further complicated by the lack of accurate
positions and orientations of tugboats. As a result of these
issues, the resulting open–loop error system had an uncertain
input gain matrix. A matrix decomposition method was
applied and a robust controller was designed. The stability
of the closed–loop system was investigated via detailed
Lyapunov–type tools where asymptotic tracking was proven.
Numerical simulations were performed where the positions
and the orientations of the tugboats were considered to be
disturbed by sinusoidal perturbations. Satisfactory tracking
performance was obtained.

The novelties of the proposed control design and the
accompanying stability analysis can be listed as:
• Different from the existing works on this application

asymmetric inertial added mass effects were considered
and dealt with.

• Positions and orientations of 6 unidirectional tugboats
were considered to be available initially and then they
were allowed to vary. This was demonstrated in the
numerical simulations and can be seen from (75) and
(76). It is noted that [3] did not allow positions and

orientations of the tugboats to vary.
• A self–tuning strategy [19], [20] was employed as an

add-on in the numerical simulations to ease the control
gain tuning process.

Future work will focus on designing an optimal version of
the proposed controller to optimize control efforts.
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